
Cowboys, Ankle Sprains, and Keepers of Quality:
How Is Video Game Development Different

from Software Development?

Emerson Murphy-Hill
North Carolina State University
Raleigh, North Carolina, U.S.
emerson@csc.ncsu.edu

Thomas Zimmermann and Nachiappan Nagappan
Microsoft Research

Redmond, Washington, U.S.
{tzimmer,nachin}@microsoft.com

ABSTRACT
Video games make up an important part of the software industry,
yet the software engineering community rarely studies video
games. This imbalance is a problem if video game development
differs from general software development, as some game experts
suggest. In this paper we describe a study with 14 interviewees and
364 survey respondents. The study elicited substantial differences
between video game development and other software development.
For example, in game development, “cowboy coders” are necessary
to cope with the continuous interplay between creative desires and
technical constraints. Consequently, game developers are hesitant
to use automated testing because of these tests’ rapid obsolescence
in the face of shifting creative desires of game designers. These
differences between game and non-game development have
implications for research, industry, and practice. For instance, as a
starting point for impacting game development, researchers could
create testing tools that enable game developers to create tests that
assert flexible behavior with little up-front investment.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General – Standards. K.8.0
[Personal Computing]: General – Games.

General Terms
Human Factors, Management

Keywords
Software engineering, games, practices

1. INTRODUCTION
Games are becoming an increasingly important part of the software
development industry. Beyond simply entertainment, video games
are increasingly being used to train students, soldiers, and medical
professionals [1] [2]. Congruent with their growing importance,
video games’ revenue is increasing as well; video games earned
more than three times the revenue of retail software in 2012 [3].
Despite games’ importance, they are rarely studied in software
engineering research. Of the 116 open and closed source software
projects studied in the last two years at major software engineering
venues, only 3 were games [4]. Of the projects in two major

software engineering corpora, SIR [5] and Qualitus [6], 0% and 3%
are games, respectively. The lack of software engineering research
about games, despite their importance, presents two problems.

First, if non-game software development is indeed different than
game development, past software engineering research will have
little impact on games. By analogy, the medical community faced
significant criticism for over-enrolling men in coronary heart
disease studies. As a result, “procedures and therapies currently
used” for the disease are “developed predominantly or exclusively
for men” [7]. Software engineering researchers’ practice of “under-
enrolling” games in studies may likewise result in tools and
practices that are inapplicable to game development.

Second, if game development is indeed different from “traditional”
software engineering, there are educational and practical impacts.
In his book on game development, Bethke states

Too often game developers hold themselves apart from formal
software development and production methods with the false

rationalization that games are an art, not a science. [8]
If this statement is true, then software engineering educators need
to teach their students different skills for game development than
for developing other types of software. If this statement is false,
then game developers would benefit from adopting the practices of
software engineering that are empirically validated.

So: is game development different from traditional software
engineering, or is it not? Like most questions, the answer is likely
that it is different in some ways but similar in others. Unfortunately,
which way it is similar or different has not been systematically
studied. This paper’s primary contribution is the first broad-based
empirical study to explicitly contrast traditional software
engineering against video game development.

In Section 2, we survey research on game development and discuss
the few empirical studies that do exist. In Section 3, we describe
our interview and survey study methodology, then discuss the
results in Section 4. We discuss limitations to our study in Section
5, the implications in Section 6, and conclude in Section 7.

2. RELATED WORK
Many books exist with prescriptive practices for developing games.
Some describe the developer roles and the high-level process that
developers and organizations should use when creating games [9]
[10] [11] [8] [12]. In the same vein, Blow’s magazine article details
his experiences with the fundamental difficulties in game
development [13]. These works are based on the experience of the
authors and largely do not contextualize game development as a
special type of software engineering. In contrast, our findings are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE'14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2756-5/14/05... $15.00.

based on empirical observations that explicitly focus on the
differences between general software engineering and game
development.

Recently, several researchers have focused on studying the process
of developing games. Ampatzoglou and Stamelos provide an
overview of the intersection of software engineering and games,
noting the dearth of empirical studies [14]. One such study is
Tschang’s qualitative investigation of 65 game development
project postmortems, finding significant differences between game
development and other creative industries [15]. Tschang also
developed a grounded theory of creativity in game development
[16] and a theory of innovation [17]. Baba and Tschang contrast the
spiral model of software development [18] against a new “outward
spiral model” of game development, empirically derived from
business practice manuals and some number of interviews with
Japanese “managers and project team members” [19]. Our work
builds on this work by studying differences between traditional
software engineering and game development.

Like our work, existing work has empirically investigated game
development. Burger-Helmchen and Cohendet interviewed 8 game
developers and discovered how communities of developers and
users interact [20]. Kultima and Alha interviewed 28 game
professionals, finding that they viewed their development process
was organic and uncontrollable [21]. Stacey and Nandhakumar
interviewed 20 developers, finding that predefined phases in
traditional software development models may be harmful to game
development [22]. Callele and colleagues analyzed 50 postmortems
of game development projects and found most requirements
failures occur between the preproduction and production phases
[23]. Kasurinen and colleagues interviewed 27 game developers
and found they expect adaptability in the tools they use [24]. Musil
and colleagues surveyed 13 Austrian game companies, revealing
that the industry largely uses Agile practices [25]. Lewis and
colleagues created a taxonomy of bugs in video games [26]. In
contrast to this prior work, our paper studies broad differences
between game development and traditional software engineering.

Also like our work, some existing research has investigated
differences between game development and traditional software
engineering. Specifically, Petrillo and colleagues analyzed 20
publically-available game postmortems and found that problems
encountered [27] [28] and processes used [29] by game developers
were largely the same as those for traditional software engineers.
One significant limitation to this work is that contributing game
developers may be reticent to report some negative aspects of their
work, because the postmortems were publically available. In
contrast, our work uses anonymized interviews and surveys, which
we believe helped respondents be more candid.

Prior position papers have explicitly compared software
engineering and game development, namely that of Lewis and
Whitehead [30] as well as Kanode and Haddad [31]. In contrast, the
work presented here derives its results from empirical grounding.

3. METHODOLOGY
Our study methodology involved two parts, qualitative interviews
and quantitative surveys, which we describe below. All study
materials can be found at our website.1

1http://people.engr.ncsu.edu/ermurph3/experiments/Games.pdf

3.1 Interviews
Protocol. We interviewed developers with experience in both game
development and non-game development. The first author
interviewed developers either in person if they worked in the
Seattle area, or via Skype or phone if they did not. Each interview
was completed in an average of about one hour. The interview had
four parts.

In the first, the interviewer asked a few demographic questions
relating to how much experience the interviewee had.

In the second part, the interviewer asked an open-ended question
about what differences the interviewee noticed between software
development for games versus non-games. This part allowed
interviewees to speak freely about differences without the
interviewer biasing their responses.

In the third and fourth part of the interview, we presented
interviewees with a list of topics to prompt them to discuss topics
that they had not explicitly considered. We gave half of
interviewees the topics from the 10 areas in the Software
Engineering Body of Knowledge (SWEBOK) [32], such as
software maintenance and software testing. We gave the other half
of interviewees Humphrey and colleagues’ list of general work
features from applied psychology [33], such as social support and
problem solving. We chose SWEBOK to ensure that software
engineering topics were discussed, and the general list to make sure
that we covered a breadth of potential differences. The difference
between the third and the fourth part was that in the third,
interviewees chose 2 or 3 topics to discuss, whereas in the fourth,
the interviewer chose 2 or 3 topics. Moreover, in the fourth part, the
interviewer selected topics that been discussed the least in previous
interviews, to ensure even coverage of the topics. As a result, each
topic was discussed at least twice across all interviewees. Finally,
we thanked interviewees and debriefed them by informing them
about what we planned to do with the data.

Participants. We interviewed people with experience with both
game and non-game development by searching LinkedIn,2 which
contains resumes of professionals. We searched for LinkedIn
members who were part of the “Game Development” group, which
included more than 65 thousand members at the time of the study.

Our initial search results included non-developers, including
designers with experience only in entertainment. We thus added the
“engineer” keyword to our search. We also aimed to focus on
developers who made video games, so we included the following
keywords in our search: PSP, PS1, PS2, PS3, PlayStation, Xbox,
Wii, and GameCube. This left 207 potential candidates to
interview.

We further narrowed our selection of potential interviewees by
manually scanning the search results for several criteria, making
sure that each potential interviewee reported at least 2 years of
game development experience within the last 10 years; at least 2
years of non-game development experience within the last 10 years;
and listed contributing to specific game titles. We performed this
search through each of the three LinkedIn accounts of the authors.
We chose candidates from “2nd degree connections”, meaning
associates of associates, because LinkedIn does not allow the
unfiltered viewing of profiles of community members of 3rd or
more degree.

2 http://www.linkedin.com

Thirty-eight people fit our criteria, all of whom we contacted by
email or social networking. Because many developers did not
respond immediately, we followed up repeatedly until we had
interviewed enough developers to reach saturation, that is, until we
were not discovering any new differences. We reached saturation
at 14 interviewees. In the remainder of the paper, we label each
interviewee P1 through P14.

Nine interviewees were working on a game at the time of the
interview and five worked on other software. Five interviewees
worked at Microsoft. Thirteen interviewees were male. Below, we
summarize the self-reported game and non-game development
experience data from interviewees:

Games Non-Games
Median years of development experience 8.5 8.5

Number of interviewees
with “extensive”
experience in…

Programming 10 12
Design 6 5

Management 7 4
Audio/Visual 2 3

Testing 3 5

After recruiting, we found that P13 did not have software
engineering experience but instead worked as a hardware engineer
with software developers, prior to working in games. We included
him in our interviews because we felt his current game role, as a
producer, would provide a valuable perspective. However, because
of P13’s lack of software experience outside of games, we only use
P13’s data to illustrate game development themes brought up by
other interviewees.
Data Analysis. We used a transcription service to transcribe the
audio, then coded the interviews using Qualyzer.3 We coded
transcripts using the same SWEBOK [32] and general work [33]
topics we used to prompt interviewees.

3.2 Surveys
Protocol. We created a 10-minute survey designed to assess
differences between game and non-game development. Our survey
aimed to quantify the qualitative differences expressed by
interviewees over a range of developers.

We used our results from the interviews to write 84 candidate
statements that asked respondents to rate their agreement with each
statement on a 5-point Likert scale, from Strongly Disagree to
Strongly Agree. For example, one statement was “Creating my
software is challenging.”

We removed statements that we felt were the most ambiguous, were
the most difficult for developers to accurately self-assess, or were
most similar to one another. This reduced our list to 28 final
statements, which we felt would keep the survey sufficiently brief.

The survey also collected demographic information.

Participants. We recruited engineers and testers to participate
because many statements on the survey reflected technical concepts
that engineers and testers would be most qualified to rate.

We recruited three sets of potential respondents within Microsoft:
300 who worked on games (who we will refer to as the “Games”
set), 300 who worked on Microsoft Office (“Office”), and 300 from
across the company but did not work on games or Microsoft Office
(“Other”). We chose these sets in order to contrast responses; if
Games respondents provide significantly different responses than

3 http://qualyzer.bitbucket.org

Office and Other, this provides quantitative evidence to establish a
difference between game and non-game development. The reason
for choosing two types of non-game developers (Office and Other)
was that we were unsure whether high variances in product
differences would overwhelm game versus non-game differences.
Thus, to augment a diverse sample of developers (Other), we also
sampled a more homogenous set from single product (Office).

40% of recruits completed the survey. Below we summarize the
self-reported experience and backgrounds from respondents:

Games Office Other
Mean years at Microsoft 4.4 7.1 5.1

Mean years of development
experience

10.7 11.0 8.8

Number of engineers 113 61 82
Number of testers 32 39 37

Data Analysis. We examined distributions of Likert responses for
each of the three participant sets and compared them using a
Wilcoxon rank-sum test. Although we report the full results in
Section 4.3, along the way in Sections 4.1 and 4.2, we link
interviewee comments with survey responses by referring to survey
statements like so: [S1]. We number statements in the order in
which they appeared in the survey, S1 through S28. We annotate
each with whether they are statistically significant, like so:

[S1] Significant differences between Games and both
Office and Other that confirm interviewees’
responses

[S1] Significant differences between Games and either
Office or Other that confirm interviewees’ responses

[S1] No significant differences

[×S1] Significant differences between Games and Office
or Other, but opposite of interviewee responses

Other outcomes were theoretically possible, but did not occur. One
such example could be [×S1], meaning that both Office and Other
were significantly different from Games, but Other confirmed
interviewee responses while Office opposed them.

4. RESULTS
In this section, we report results based on the interview topics. We
combine several topics into one when interviewees had little to say
about an individual topic. In some cases, we have anonymized parts
of quotes to maintain interviewees’ privacy.

4.1 SWEBOK Topics
4.1.1 Software Requirements
Nearly every interviewee made a strong statement about
differences between game requirements versus requirements in
other software. In essence, games generally have one and only one
requirement – that they are “fun.”
Interviewees noted that functional requirements are better suited for
non-games than games [S6]. As P13 noted, as a game
developer, you are “designing an experience, an emotional
experience... It’s something supposed to be fun which is very
subjective” and is an “artistic achievement.” Rather than strict
requirements, the game designer “will give you a set of high-level

goals that they want out of a certain feature, but they don’t even
really know what they want” (P3).
Interviewees pointed to several reasons why requirements are so
much more subjective in game development. As P3 said, even with
a clear vision from a designer, when the vision is implemented, it
may not be fun. Another reason is that the consequences of
unfulfilled requirements in a game are less problematic than in
other software; game users move on quickly after a single
incomplete experience, but if a user is using email software and the
email does not get to his boss, the user “could get fired” (P1).
Another reason for requirement differences between games and
non-games is because game user experiences tend to be
significantly different from non-game experiences. P8 gave an
example: in an e-commerce application, a user has a task to
complete that typically takes only a few minutes. In contrast, in
some games people play for hours straight on a daily basis over the
course of months. As a result, the requirement for games is that the
user should be able to stay engaged on multiple timescales, and the
mechanism to achieve that will vary from game to game.
Instead of requirements specifications that may be found in general
software development, guidance for what a game should do comes
from other sources. Game designers with a particular vision are one
source. If a game has a predecessor, game requirements can come
from users, yet the “fun” requirement caveat applies – if a user
wants something, it may not be implemented because it may not
enhance fun. For games that are re-released every year (such as
sports games), another source of guidance can come from previous
iterations; as P8 suggested, game developers may ask

"What did players play two years ago?" and really fixing the
issues that were there some time ago. And also playing
somebody else's games and comparing your own game to
somebody else's, trying to make it better or trying to solve some
of the problems, try to differentiate.

Although usability and user experience is often an important
quality of non-game software, the way users interact with games
means that the user experience requirements for games and non-
games are different. For example,

Game play is more about feel. It’s hard to dissect scientifically.
(P13)

In sum, requirements appear to be more subjective in games. As we
will discuss in subsequent sections, this has several consequences
for the way games are developed, compared to non-game software.

4.1.2 Software Design
Interviewees explained that in games they tended to do less design
as a planning activity for a few reasons.
First, because the “fun” requirement is nebulous, many plans that
are made will not produce a fun game. Thus, participants said that
there is wasted effort [S5] if part of a game turns out not to be fun,
and that waste is multiplied if additional effort was put into design.
For example, according to P11, the game producer

…doesn’t want you [the developer] to go and spend a whole
bunch of time planning out how you’re going to do this thing
that he’s asked for because he might change his mind in a week
or two. Knowing that, he knows deep down that designing is
useless because he’s going to be constantly changing things…

As a consequence of less design-as-planning, interviewees reported
very little up-front thought put into architecture [S8]. As P11 put it,
“there is very little design… on the architecture of games. It’s more
of a ‘we needed to do this yesterday, go do it.’” Interviewees did

not totally discount architecture in games, instead noting that it was
less important in one-off games but more important in game series
where components are reused across releases. While the lifespan of
non-game software similarly has an influence on how much
architecture is designed up-front, the problem appears to be
especially acute for games because games’ lifespans are less
predictable. Paradoxically, game developers may go into
“architectural debt” early on [S3][S4] because there is such a high
probability that parts of their code will be thrown away, yet if the
game is successful and they wish to maintain or extend it, the
architectural debt must be paid down.
Second, interviewees reported less design-as-planning for cultural
reasons. As P5 explains it, “the design process as well is a little bit
different because… creativity tends to be rewarded more than
technical prowess.” Likewise, P11 pointed at the culture as well,
noting that the fundamental difference is that game development is
“a young man’s game and because of that, the whole process of
building games is an immature process.”

4.1.3 Software Construction, Tools, and Methods
A theme that interviewees repeatedly mentioned was code and tool
reuse. Interviewees mentioned that they believed that there was
little code reuse between and within games, compared to non-game
software [S1]. For example, in games:

There’s a lot of hacks and kludges to get things working… I’m
sure you would find tons of duplication of effort, definitely. I’ve
been an audio programmer on [X] different games and I’ve
written [X] different audio engines. (P11)

One reason that there appears to be less code reuse is because
games frequently have a significant emphasis on performance, and
that project-specific performance tuning is necessary:

It’s difficult to find a highly-optimized solution that’s going to
work for your particular game because [your situation is]
specific to the type of experience that you’re trying to create.
That just trickles to everything, the kind of physics that you have
in your game, the kind of visuals you have in your game. (P5)

The above quote implies that another reason why there is less code
reuse in games is because reuse implies similarities between
software, yet games emphasize innovation. P5 echoed this, saying,

The thing that makes video games unique is gamers want unique
experiences… With [general software], you don’t want to
change too much [because of, for example, the] backlash that
Microsoft received every time they move a button or change an
interface.

However, several interviewees noted that reuse takes place
frequently in games, just in different ways. One way was that code
is recycled between subsequent game releases (P11). Another
source of reuse is in game engines, where multiple games and
multiple companies can reuse a core framework (P2, P9, P11).
Another source of reuse is the reuse of tools. Interviewees
mentioned that tool pipelines are critical for building games, and
that these pipelines may be used within organizations. Whereas
general software development tools, such as refactoring tools,
enjoy widespread availability to programmers, game tools appeared
to be developed more commonly within organizations [S15]. For
example, P5 summarized the tooling differences as:

[In general software development,] you might be building Word
or Excel or something like that [and use] some zip… tool or
something. But you’re building… video games, you are
sometimes building the resource compiling tools or tools that

are intended to extract 3D assets from other software like Maya
or Max and then convert it into a native format that then your
engine can load and render and process. So the tool pipeline is
incredibly important to video game development and it’s
probably I would say almost larger than the game itself.

4.1.4 Software Testing and Quality
Although software quality is important in both games and non-
games, the practice of testing appears to differ significantly. The
reason that quality is important in games is that, as P10 put it:

It’s almost like watching a movie... so that experience for you to
immerse [yourself] in the game experience, it has to not create
anything that would take you out of that immersion.

One significant difference is that there appears to be significantly
less test automation in game development:

 In general, that's something that is very heavily done in games
– unit testing, regression testing, all the different types of
software testing you don't really see in video games, either.
Games are tested, but at the game play level.” (P9)

As this quote suggests, rather than using automated, low-level
testing, testing in games tends to be run more often at a high level,
either by a human playing through the game [S16], or as a script
simulating what a human would do [×S17]. Traditional software
engineering best practices dictate that neglecting low-level testing,
like unit testing [S18], is risky [32], so it is worth investigating
why game developers appear to ignore this advice.

One reason that games are difficult to write automated tests
for is that it is so difficult to separate the user interface from the rest
of the game. For example, P4 noted, best testing practice is to

use MVC or one of the other patterns in order to try to separate
things so they're more easily testable. This, in general, is more
difficult in computer game development because of the extent to
which the user interaction is so pivotal… A lot of times, I'll see
developers just throw up their hands and say, "No, I'm … not
gonna worry about unit tests at all." It's much more common in
the game industry than it is in other places.

Another reason that it is difficult to write automated tests for games
is that it is harder to explore the state space in games [S19]:

[Games tend] to have a large number of states that are user
driven… If you tried to create a test matrix for it, you end up
either having an immense test matrix or you end up restricting
the game design. In many cases, severely. (P4)

Another challenge is simply asserting what the correct behavior is:
If I'm playing a game, and maybe like I shoot this guy and I see
like a visual artifact like bouncing, do I care? (P1)

I could… write unit tests and say this enemy dies in two hits but
it’s not really meaningful because it’s not really that he dies in
two hits that’s so important, it’s that he dies in the right amount
of hits that the game designer thinks is the good amount. (P12)

Yet another challenge to writing tests is the non-determinism that
occurs in games due to multithreading, distributed computing,
artificial intelligence, and randomness injected to increase
gameplay difficulty. As P5 put it,

Definitely maintaining determinism in a sort of multi-player
environment is much more crucial that a single player
[environment]. You can definitely introduce very, very strange
bugs in, say, a game that wasn’t designed to be multi-player and

is multi-threaded as well and is doing a lot of these complicated
AI behaviors and physics.

Interviewees reported that there was also a strategic reason for
doing less automated testing and more human testing: automated
testing is fragile to frequent changes, whereas human testing tends
to be more resilient. In this sense, automated tests reduce agility.
As P12 put it, “the game designer changes his mind so often that
tiny [test] tweaks happen all over the place.”
Interviewees also stated that another reason human testing is so
common is because it is relatively cheap, because game play testers
are less expensive than software testers:

So the cost is less; so that's the thing. Would you rather have one
guy that can do this automation or have four guys who can
actually go play the game? (P1)

Game testers illustrate Braverman’s sociological notion of
deskilling, where technology enables skilled workers (developers
who can write automated tests) to be replaced by unskilled workers
(play testers) [34]. This deskilled work stands in stark contrast to
that of game programmers, who can be described as doing craft
work, which depends “on special skills [which is marked by] the
lack of standardization of the product” [35].

One of the consequences of lack of test automation is that,
once a bug is reported, it is difficult to diagnose and debug [S20]:

A lot of times the bug reports tend to come back and it’s more
like, ‘oh well I pushed this button and I was in this corner and
the game locked up.’ So you have to kind of go back and try and
reproduce that type of situation. (P5)

4.1.5 Software Maintenance
Similar to game developers’ delay of architectural design,
maintenance also appears to be something that is often delayed in
games later than it would be in non-game software. As P12 put it,

There’s always a feeling in games that you almost don’t really
have to maintain it. In [non-game software], what’s going to
happen is most of your development time is actually going to be
in maintenance, you really have to make sure that the code you
write, the abstractions that you come up with for your code are
clean, that they’re maintainable, that you’ll be able to go in and
make changes as the years go by and presumably your system
stays in operation. With a video game… there’s kind of a sense
that you’re the last one to touch the code.

Also like the up-front design of architecture, there is a tradeoff
between improving maintainability early and the likelihood that
this effort will result in waste because the game will not be a
success (P2, P3). Interviewees also delayed improving
maintainability in games due to lack of management buy-in. As we
will discuss in Section 4.1.7, one reason for less management buy-
in appears to be because managers tend to be non-technical [S21]:

Anytime you’re going to be working on clean code, you have to
have buy-in from management or you have to have an
engineering team that’s willing to tell management to back off
because in the end, you’re going to be sacrificing time to do that.
(P12)

Another reason for lack of maintenance in games, at least from
a programming perspective, is that product releases may entail
changes to content rather than changes to behavior. While non-
games may compete in the marketplace based on new features, that
may not be the case for some games:

[In new releases] they put in a bit of stuff for rendering
improvements and usually they would add maybe one gameplay
feature. Other than that, it’s just [content] changes, so for [a
specific game company], a game like [a specific sports title] is
basically printing money. (P11)

Several interviewees indicated that the cloud changes the way they
maintain games. The increasing popularity of cloud-based game
services such as Steam [36] means that the maintenance process for
games is starting to look much like the maintenance process for
non-games.

4.1.6 Software Configuration Management
Several interviewees noted that configuration management is
especially important in game development compared to other types
of software development. Part of the reason appears to be that
because traditional automated testing is so rare, there exists a more
urgent need to automatically build a system as a kind of smoke test:

It has to run on different machines…. [Two large game
companies] have huge testing centers where they've got pretty
much every combination you can think of CPU, RAM, hard
drives, and different graphics cards and drivers… And they test
your game on each piece of hardware to make sure that there
are no faults. (P9)

Still, interviewees reported that the configuration management was
sometimes “very chaotic” (P12). Part of the problem seems to be
lack of code review [S2]:

When we did [a specific game title] there wasn’t really any code
review at all. (P12)

I've also seen quite a lot of damage done to the software by
people checking in patches that never should have been checked
in, or they should have been reviewed by someone… [it’s] still
a major pain to undo changes. (P7)

Another difference in configuration management between
game and non-game development is that games tend to have
significant amounts of content, also called assets or resources:

You just end up having lots more resources, lots more properties
that you have to track and trigger at the right time. (P4)

P11 indicated that content can become a liability to configuration
management, both for technical reasons and for social ones:

If the artist is lazy or if the artist is new and inexperienced they
don’t know all of the ins and outs of things that they can’t do so
they tend to do whatever they were trained to do and break that
thing a lot… [In non-games,] code tends to be more segregated
so if a guy checked in code that complied but doesn’t … I don’t
care… When somebody checks in broken art, that can crash you
right off the bat, even if it’s got nothing to do with what you do.

Based on this, configuration management is a challenge for games,
both because asset changes more likely to induce failures, and
because the people who are checking in asset changes may be less
familiar with how to use configuration management.

4.1.7 Software Engineering Management
Interviewees suggested that a significant difference between
management in games versus non-games is that people in game
management positions tend not to have technical backgrounds:

Engineering management, in my time with [two large game
companies], the person that I always reported to… didn’t
contribute code…. half of them had no engineering experience
at all. (P3)

One reason appears to be a culture that discourages engineers from
moving into management [S24]. P7 notes the attitude that

if a technical person [moves to management, they are] probably
wasting their time. And that's an attitude that I've seen in just
about every [game] company.

Interviewees pointed out that a consequence of non-engineers in
management roles is that it is hard in games to communicate
engineering issues [S22]. For example, P3 gave a recent example
of a manager not understanding why one developer was unable to
fix a bug while another developer had fixed thirty bugs in the same
amount of time. P3 had to explain to the manager that bugs are not
equivalent; the first developer had a very difficult frame rate bug,
while the second developer was fixing typos in the user interface.
Interviewees also gave examples where non-engineering
management did not respect important engineering activities
because the activities had no immediate impact:

There’s a lot of short-term thinking… maybe the benefits [of
long term investments] are more nuanced because being able to
tell you that I have a more flexible or more Agile piece of
technology is the possibility of a benefit in the long-term… if I’m
a project manager… those things don’t necessarily translate on
a balance sheet the same way. (P3)
Interviewees also discussed non-technical management being

shielded from the consequences of engineering activities:
If you have the engineers, the cowboy programmers that’ll go in
and save the day, that can do a disservice actually because it
may hide some serious problems. So for some of the
management, they could legitimately say, “Well I didn’t know it
was that bad,” and that might actually be true because we
always ship their games on time.” (P3)

As a consequence, P3 noted that when software engineering
practices are introduced into a game organization, it typically
comes from engineers rather than management [S23]:

 I can tell you it’s certainly a grassroots thing. It’s engineers
who had sort of been there for a few years. They’re the ones who
ultimately have to endure the pain when you’re working with
software that’s breaking all the time. They have to fix it.

4.1.8 Software Engineering Process
Nine interviewees used the word “Agile” to describe the process of
developing games [S9]:

When I worked in games, I got exposed to Agile, Sprint, Scrum…
In the more traditional [large company] way, … they're the
opposite…. One year long, they know exactly what's going to
happen every week. It's very different. (P1)

It appears that the unpredictability in games is what makes Agile a
good fit. In fact, arguably some game organizations developed their
Agile processes well before Agile became popular in other kinds of
software; P2 mentioned the Cabal group structure used at the game
company Valve in the late 1990’s [37], likening it to the Scrum
methodology with a greater focus on interdisciplinary teams.
Adhesion to Agile varied, according to interviewees, who implied
that Agile is sometimes a euphemism for a lack of process [S10]:

[Game developers] operate in a more, we'll call it, Agile mode,
or if you like, hacking mode... It's almost a full hacking thing,
but there's a lotta really smart people here, so it works. (P2)

Perhaps one reason game teams exhibit lack of process is because
the notion of imposing control goes against a core principle of game
development, that is, the importance of creativity [S11]:

We've got so many specialists on the team, so the kind of
planning that you usually do in Agile doesn't work quite so
well… You know [specialists] are more concerned about the
creative process than an engineering process. (P4)

Finally, with respect to process, interviewees reported being
under significantly more pressure to release the software on time
for games than for non-game software:

I think perhaps part of it is that the schedules are usually very
tight, and there's a sense that you can't afford to lose any hours.
In fact, a lot of teams put their teams on incredibly, incredibly
pressured schedules. (P7)

Inflexible deadlines [S14] may be one reason for the intensity:
You can't shift Christmas, where when [a non-game] is going to
ship, somewhat you can slip lots of things… some games choose
to ship at other times of the year, but most games ship at
Christmas because that's where most of the buying is done. (P4)

4.2 General Work Topics
In this section, we discuss differences between game and non-game
development in terms of general work topics. No common themes
emerged from several general work topics (job complexity,
information processing, social support, feedback on the job,
feedback from others, experienced responsibility, ergonomics, task
identity, or task variety), so we did not discuss them in this section.

4.2.1 Problem Solving and Skill Variety
Interviewees identified three main differences between game and
non-game development in job complexity and problem solving.
First, interviewees noted that developing games presented distinct
technical challenges [S25]. For example, P2 suggested that the
often intense use of graphics in games meant that there tended to
be a need for “higher-level math and specialized knowledge.” P11
summarized the differences as:

Some of the hardest programming I’ve done has been in
games… In business programming, you don’t care how fast that
code runs, you don’t care how much memory it [consumes… In]
games, you do have to care about… [making] small block
allocators for memory allocation or worrying about memory
fragmentation or disk speed load times and things like that.

Second, the subjectivity inherent in meeting the “fun”
requirement gives game developers complex problems to solve:

Game companies might be tougher, just because… it’s more
creative and less structured. (P14)

Third, interviewees suggested that a wider variety of skills is
required to develop games [S12], which can make game
development more challenging if a developer lacks those skills:

So a wide range of… topics go into making a game whereas
regular non-game development tends to be a little bit more
domain-specific, a little bit more narrower in terms of the
knowledge you need to employ to specific development. (P10)

P14 gave a specific example, suggesting that monetization of
games is one special skill that is required in game development that
makes the job more challenging:

Now it’s more about monetization… the majority [of game
companies] today are going to be much more focused on “what
tactics can we use to entice our users to spend money while
they’re interacting with our product?

4.2.2 Autonomy
Of the interviewees we asked, most said there were no differences
in how much autonomy they had between game and non-game
software development. One interesting exception was from P10,
who suggested that, because many of the challenges that face video
game developers are creative in nature, game developers must have
a high level of autonomy.

4.2.3 Specialization and Interdependence
Interviewees’ remarks regarding specialization and
interdependence focused on the broad range of skills required to
make games, compared to non-game software development:

That’s part of how I’ve been successful because communication
is a very important skill in being able to sort of bridge these gaps
between different disciplines. (P3)

As P3 suggests, the interdisciplinary workplace in game
organizations [S13] entails the need for conflict resolution:

I've heard that exchange going on many times during a variety
of game development project. And, typically, “Okay, well no,
you can't have that. But lets try to get good sound and a good
tradeoff.”… That's how you negotiate something.” (P4)

Beyond expertise, discipline diversity has benefits in game teams:
[Designers and artists are] keepers of quality and so … anything
that sticks out may bug them more than it would a developer.
(P6)

Other than these keepers of quality, game development groups
sometimes use specialists typically not seen in other types of
software development. P2 related the story of the game Diablo III,
whose fun was reduced after the virtual money supply exceeded
people’s ability to spend it, so “all the prices got driven [up] and
hyperinflation set in.” To foresee and prevent this problem in future
games, P2 noted that game companies are now “hiring things like
sociologists and anthropologists and economists, people you think
wouldn't have much of anything to do with games.”
Interviewees noted that non-game software sometimes also has
specialists as well, but the need is not as great. Instead, developers
in non-game groups tend to be generalists:

My team is probably a typical team for a Web development
company, where you have a number of people who know how to
write JavaScript… and they know also how to write… server
code… Typically, they do both. (P8)

4.2.4 Interaction Outside the Organization
Interviewees indicated that game developers tend to have a stronger
tie to the customer, both because game players tend to be more
engaged than general software users, and because meeting the
“fun” requirement is difficult without understanding the customer:

I doubt that there would be the same level of engagement from
consumers who are using, you know, even [a productivity
application] I would say. There’s probably not as many people
who are contributing bug reports and things like that as there
are in games. (P3)

4.2.5 Knowledge of Results
Interviewees reported few differences in terms of knowing the
impact of their software. One difference was suggested by P2, who
reported that one clear indicator that an organization did well is
whether is game is profitable and wins awards. P2 and P11 both
noted that, as with all software, in a large organization it is difficult

to isolate the contributions of a single individual. Nonetheless, P2
and P7 both reported on a kind of “celebrity status” afforded to
individual developers of popular games that does not exist for non-
game software developers [S26]. P7 related the story of visiting
a foreign country and telling the cab driver that he was a developer
of a popular driving game franchise:

He literally just got his cell phone and started calling all of his
friends telling them that, you know, "Here's a guy who built [this
specific driving game]."

Finally, P2 made an interesting comment that, although he plays
the games he develops for testing purposes,

I don’t play the full game, so don’t know the full experience. For
instance, [a specific first person shooting game], even though I
worked on it for years and years and years, almost five years,
I've never actually played it… It's kinda like film stars that star
in movies often don't wanna see themselves on the screen after
they’re done with production. [S27]

4.2.6 Significance and Experienced Meaningfulness
Interviewees reported finding meaningfulness and significance in
largely by seeking out challenging problems and through
innovation, which are present in both games and non-games.
However, interviewees appeared to view non-game software as
having a more meaningful impact than game software [S28]:

I mean we all know that we’re just building a game and … it’s
not going to be as important as some other business-critical
software. (P8)

Nonetheless, interviewees felt that developing games was still
meaningful for a number of reasons.
First, interviewees found meaning in their work party by knowing
how many people use it. Applications like Microsoft Office are
generally used by a larger number of people than games like Halo,
though this varies from software to software.
Second, interviewees distinguished games from non-games in the
kinds of interactions people had with them. Respondents largely
reported games were built for entertainment purposes (with the
notable exception of “serious games” [1] [2]) whereas other
applications allow people to be productive or creative. While
respondents felt there was value in both, non-game software is
meaningful in that it can allow users express themselves and create
things they may not easily be able to create, while games can
provide positive memories and experiences. Games also influence
users at a more emotional level than non-games, which adds
meaningfulness to the experience of developing those games.
Interviewees implied that there were other nice side effects of
games, such as that they can promote socialization in families.
While P2 worked in the game industry for a significant amount of
time, he felt conflicted about the meaningfulness of game
development. While it is meaningful for the reasons expressed
above, he likened his role to pushing drugs on people in that both
games and drugs can provide positive, escapist experiences.
Likewise, P13 expressed concern about games that promote
violence or that are demeaning to women. These two themes rarely
arise in non-game software.

4.2.7 Physical Demands and Work Conditions
At the beginning of this study, we considered removing physical
demands and work conditions from the list of topics that we would

4 http://ea-spouse.livejournal.com/274.html

ask interviewees about, because we assumed that there were few
differences between game and non-game software development.
While several interviewees confirmed this assumption, others
surprised us with differences in these areas.
First, several interviewees reminded us that the video game
industry is notorious for requiring developers to work long hours,
which requires a certain type of physical endurance. Others spoke
of the emotional strain that long hours places on developers. For
example, P4 noted that “even though I love games, I don't want to
work in a game, because I know it's going to be like 12 months of,
like, not seeing my family on the weekends.” A couple of
interviewees retold the story of an anonymous spouse of a game
developer who posted an open letter in 2004 to Electronic Arts’
executives, a letter that lamented the impact that the poor working
conditions have on developers’ family lives.4 This letter struck a
chord with many game developers, although apparently long hours
are still the norm, according to interviewees. While interviewees
acknowledged that long work hours also occur in other kinds of
software development, they held that the phenomenon is
significantly more severe in game development. P1 went so far as
to compare game development managers to “slave drivers.”
Second, interviewees noted a few environmental effects of working
in games that they had not noticed in non-game environments. P6
described working on a game title for a motion-based game system
(such as Nintendo Wii or Microsoft Kinect), where the test team
found development physically demanding – in fact, some testers
sprained their ankles as they were jumping and ducking in an
attempt to test the motion-based aspects of the game. P13 noted that
in some game development organizations that make first-person
shooters, developers are essentially exposed to years of constant
simulated gunfire as developers test their software. Similarly, P6
said that game development teams tend to be high energy, where
there is “more music playing and more people talking and more
footballs being tossed down the hallway than non-game teams.”
Some developers found this so distracting that they worked from
home.
Finally, P2 noted that an “occupational hazard” that is “unique to
gaming” is that most developers at one company had “acquired
motion sickness.” According to P2, in the course of testing game
via play-through, developers are exposed to suboptimal game
experiences, such as low frame rates and unresponsive controls:

If [developers] do it for a long time… they actually can't stand
to look at games anymore because that makes them ill. So what
happens is that they learn to feel motion sickness by looking at
laggy stuff all the time. Now the reason that this doesn't appear
in the general populace [is because] by the time you're done
[with the game] and you ship, the performance is tuned and
optimized.

We found this story interesting, so we conducted a survey of 165
Microsoft employees who just got off public buses to determine
whether game developers are more susceptible to motion sickness.
The study did not uncover any significant differences between the
two groups. The curious reader can find details in our companion
technical report [38].

4.3 Survey Results
Table 1 summarizes the survey results (refer to Section 3.2 for
methodology). The Statement column shows the statements
presented to interviewees. The next column indicates the label,

used previously in this paper. The three Likert Distribution columns
indicate the distribution of agreement for each respondent set
(Games developers, Office developers, and Other developers). The
leftmost bar indicates strong disagreement, the middle bar indicates
neutrality, and the rightmost bar indicates the strongest agreement.
For example, most game engineers strongly agreed with S13.
The two Effect Size columns indicate the difference in means
between Games and Office in the first subcolumn and the
difference between Games and Other in the second subcolumn. For
example, the mean response to S13 for game developers was a
score of about 4.5 (between “Agree” and “Strongly Agree”)
whereas the mean response for Office developers was 3.3 (between
“Neutral” and “Agree”); as a consequence, the effect size is 4.5 –
3.3 = 1.2. Effect sizes are additionally colored on a gradient from
blue to orange; blue colors means game developers were more
likely to agree with the statement and orange colors mean they were
less likely to agree.
The last column, p-values, indicates the degree of statistical
significance between Games and Office in the first subcolumn and
between Games and Other in the second subcolumn. The table is
sorted by the last column. Statistically significant differences are
highlighted in green (originally α=.05, but α=.016 after a
Benjamini-Hochberg correction for false discovery [39]).
The survey disconfirmed several of interviewees’ claims about
differences between games and non-games. For example,
engineers’ likeliness to be encouraged to move into management
[S24] was very similar across all three groups. One explanation is
that for this question, and likely several others, this trait is pervasive
to company culture across Microsoft.

Overall, the results of the survey do confirm some differences.
Based on statistically significant differences between Games and
both Office and Other, we can say with some certainty that:
• Game developers have less clear requirements than non-game

developers. [S6]
• Game developers tend to use what they perceive as an Agile

process more than non-game developers. [S9]
• Creativity is valued more in game development teams. [S11]
• The ability to communicate with non-engineers is valued more

on game development teams. [S13]
• Game development requires a more diverse team. [S12]
• People are more impressed by game developers’ work. [S26]

5. LIMITATIONS
The reader should consider several limitations when interpreting
our results. First, the interviews and survey were limited, albeit in
complementary ways. The interview findings have limited
generalizability because we interviewed few developers, although
the number (14) was on par with other interview studies (Section
2). While the survey’s large number of respondents afforded much
better generalizability, its short length means we could cover only
a few topics. Thus, while the interviews and surveys individually
provide limited insights, the combination of the two provide a
substantial contribution towards understanding the differences
between developing games versus other types of software.
Second, in our interviews we sampled only from people with
LinkedIn resumes; it may be that people listed on LinkedIn differ
in some way from those who are not. Likewise, we conducted the
survey entirely within Microsoft, so the results may not generalize

Table 1. Survey Results. Orange cells indicate where game developers disagree more strongly with the statement than Office or

Other developers, blue cells where they agree more strongly. Green cells represent statistically significant differences.

Likert Distributions Effect Size p-values

Statement Games Office Other

Games
vs.

Office

Games
vs.

Other

Games
vs.

Office

Games
vs.

Other

Being able to communicate with non-engineers is highly valuable in my job. S13 1.2 1.3 .000 .000
My software is well tested by unit tests. S18 -0.2 -0.8 .245 .000

When I tell people outside of my company about the software I work on, they are impressed. S26 0.5 0.5 .000 .000
My team uses a waterfall process, rather than an agile process. S9 -0.3 -0.6 .006 .000

Creativity is highly valued on my team. S11 0.4 0.3 .000 .000
Creating my software requires a team of people, each with different skills. S12 0.3 0.3 .004 .001

It's difficult to write thorough automated tests for my software because it's so complex. S19 0.1 0.4 .507 .011
My software has clear functional requirements. S6 -0.4 -0.3 .003 .013

My software is well tested by manual simulation (e.g., scripts that thoroughly use the software). S17 -0.5 -0.4 .001 .020
The last bug I fixed was difficult to diagnose. S20 -0.3 -0.3 .082 .021

After my software is released, I would like to use it outside of work. S27 0.2 0.3 .192 .023
My software is well tested manually(e.g., paid testers thoroughly use the software). S16 -0.3 0.3 .064 .024

Whether requirements are met in my software is highly subjective. S7 0.3 0.3 .081 .044
Most of the feature code I write will probably be included in the shipped software. S5 0.2 -0.3 .579 .045

Creating my software is challenging. S25 0.0 0.1 .533 .048
From a technical perspective, it is easy to reuse others' code when creating my software. S1 0.1 0.2 .299 .080

Most of the code I write is reviewed by other people. S2 -0.4 -0.3 .004 .083
My software creates value for society. S28 -0.3 -0.2 .010 .121

When my team introduces a software engineering practice, the initiative usually comes from managers. S23 -0.2 -0.2 .101 .153
My team has flexible release deadlines. S14 0.0 -0.2 .924 .180

My team makes most of the tools I use. S15 0.2 0.2 .178 .201
My team adheres strictly to a process (for example, scrum or waterfall). S10 -0.4 -0.2 .011 .215

I often discuss technical issues with my manager. S22 -0.3 -0.2 .159 .237
In my team, engineers are encouraged to move into management positions. S24 0.0 0.1 .858 .453

My manager has a lot of engineering experience. S21 -0.2 -0.2 .975 .554
My software has high technical debt (for example, a lot of hacks). S3 -0.1 0.0 .436 .820

My software's architecture evolves significantly as the software gets more mature. S8 0.1 0.0 .237 .876
The technical debt is likely to be paid down in the future (for example, through refactoring). S4 0.2 0.0 .276 .992

elsewhere. Although our experience has been that Microsoft
developers use a range of software practices, it seems likely that
Microsoft’s non-game culture in testing, for example, has
infiltrated its game development teams. However, that we were able
to detect differences between game and non-game groups in
Microsoft is noteworthy.
Third, our interview structure focused on differences between game
and non-game development, rather than similarities. Thus,
interviewees may have been inclined to exaggerate differences.
Fourth, in both the interviews and surveys, we asked people about
subjective opinions, which may sometimes differ from reality. For
example, participants in both studies reported on doing Agile
software development, but different developers likely have
different opinions of what “being Agile” means.
Fifth, our study combined all “game developers” into one
homogenous group, even though, as interviewees pointed out,
practices vary between teams within the game industry. The same
limitation applies to our characterization of “non-game
developers.” Thus, while this kind of conflation is common in this
type of study, the reader should be careful to not overgeneralize.
Finally, due to our sampling methodology, our findings may only
apply to video games. Further research into other types, like mobile
and internet games, could expose other differences for those types.

6. IMPLICATIONS
Research. The results we present here imply that several strands of
research could have a significant impact on games. The first is the
study of testing with non-determinism, such as the CHESS tool
[40], which reruns tests with every thread interleaving. Extending
and scaling up this technique to other types of non-determinism
exhibited in games remains an open research problem. Other areas
of testing remain especially challenging in games, such as
exploring the large state space. Other testing topics like how to
make concrete yet flexible assertions in games remains an open
problem. Finally, most testing literature looks for bugs in source
code, but the results here suggests that significant and important
bugs also arise from changes to game content. Early detection of
build-breaking content changes is a fertile area for future research.
Game developers’ significant reliance on in-house tools raises new
areas of study for researchers. What functionality do these tools
provide that off-the-shelf tools do not? How do these tools evolve
over time? Who is responsible for maintaining these tools? Is there
duplication of effort in building these tools across teams and
companies? Do these tools have defects, and how are they tested?
Indeed, in-house tools may face many of the same challenges that
a company’s main software product faces, yet we know of no
existing work that systematically investigates in-house
development tools, either in games or elsewhere.
Practice. We were interested to learn that software engineering
practices are getting integrated into game teams, especially Agile
processes. It appeared that a successful strategy to get management
buy-in for new engineering practices is to communicate with
management about engineering challenges, rather than isolating
management. While high-overhead software engineering practices
may yet be inappropriate for most types of video game
development due to the high uncertainty, low-overhead practices
such as pair programming or remote code review may be especially
beneficial.
It appears that not only does game development have something to
learn from non-game development, but vice-versa as well.
Interviewees found that games provided high user satisfaction in

part because of extensive focus on understanding user needs, rather
than satisfying pre-defined requirements. More focus on the user in
other types of software may be beneficial as well.
Education. Our results suggest that special skills, beyond those
taught to most computer science students, would be beneficial for
students thinking about moving into games. Chief among them is
the ability to communicate with non-engineers. One interviewee
even suggested that students would benefit from working in a non-
engineering role, so that they could empathize with non-engineers.
Creativity appeared to be an especially important non-technical
skill that could be enhanced in students headed for game
development careers. On the technical side, special focus on math
and performance tuning appears to be especially useful for students.

7. CONCLUSIONS
Videos games make up a significant part of modern software
development, yet software engineering researchers in the past have
made little effort to empirically study games. Our results suggest
that games have significant differences from “traditional” software
development, and this paper contributes an empirical foundation on
which to understand those differences. In a larger sense, this work
represents a step towards understanding software development not
as a homogenous whole, but instead as a rich tapestry of varying
practices involving diverse people across diverse domains.

8. ACKNOWLEDGMENTS
The first author was a Visiting Researcher at Microsoft Research
when this paper was written. Thanks to Thomas Stoffregen at the
Affordance Perception-Action Laboratory for help designing the
motion sickness survey, as well as Thomas Debeauvais and Gifford
Cheung for help distributing it. Thanks to Andy Begel, Chris Lewis,
Jeff Leiter, Eric Whitmire, and the entire Developer Liberation
Front for their reviews. Thanks to the creators of Qualyzer for
creating that software. Special thanks to interviewees and survey
respondents for participating.

9. REFERENCES

[1] T. Marsh, "Serious games continuum: Between games for
purpose and experiential environments for purpose,"
Entertainment Computing, vol. 59, no. 2, pp. 61-68, 2012.

[2] T. Connolly, E. A. Boyle, E. MacArthur, T. Hainey and J. M.
Boyle, "A systematic literature review of empirical evidence
on computer games and serious games," Computers &
Education, vol. 59, no. 2, pp. 661-686, 2012.

[3] M. Nayak, "A look at the $66 billion video-games industry,"
Reuters, June 2013.

[4] M. Nagappan, T. Zimmermann and C. Bird, "Diversity in
Software Engineering Research," Proceedings of
Foundations of Software Engineering, 2013.

[5] H. Do, S. Elbaum and G. Rothermel, "Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact," Empirical Software Engineering,
vol. 10, no. 4, pp. 406-435, 2005.

[6] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe
and H. a. N. J. Melton, "Qualitas Corpus: A Curated
Collection of Java Code for Empirical Studies," Proceedings
of the Asia Pacific Software Engineering Conference, pp.
336-345, December 2010.

[7] T. A. Beery, "Gender bias in the diagnosis and treatment of
coronary artery disease," Heart & Lung: The Journal of
Acute and Critical Care, vol. 24, no. 6, pp. 427-435, 1995.

[8] E. Bethke, Game Development and Production, 2003.

[9] H. M. Chandler, The Game Production Handbook, 2008.

[10] M. McGuire and O. C. Jenkins, Creating Games: Mechanics,
Content, and Technology, CRC Press, 2008.

[11] M. McShaffry and D. Graham, Game Coding Complete,
Fourth Edition, 4 ed., Cengage Learning PTR, 2012.

[12] M. T. Wyman, Making Great Games: An Insider's Guide to
Designing and Developing the World's Greatest Games,
CRC Press, 2012.

[13] J. Blow, "Game Development: Harder Than You Think,"
IEEE Software, pp. 28-37, February 2004.

[14] A. Ampatzoglou and I. Stamelos, "Software engineering
research for computer games: A systematic review,"
Information and Software Technology, vol. 52, no. 9, pp.
888-901, 2010.

[15] F. T. Tschang, "Videogames as Interactive Experiential
Products and Their Manner of Development," International
Journal of Innovation Management, vol. 9, no. 1, 2005.

[16] F. T. Tschang, "Balancing the Tensions Between
Rationalization and Creativity in the Video Games Industry,"
Organization Science, vol. 18, pp. 989-1005, 01 Nov. 2007.

[17] F. Tschang and J. Szczypula, "Idea Creation, Constructivism
and Evolution as Key Characteristics in the Videogame
Artifact Design Process," European Management Journal,
vol. 24, pp. 270--287, Aug. 2006.

[18] B. W. Boehm, "A spiral model of software development and
enhancement," Computer, vol. 21, pp. 61-72, 1988.

[19] Y. Baba and F. Tschang, "Product Development in Japanese
TV Game Software: The Case of An Innovative Game,"
International Journal of Innovation Management, 2001.

[20] T. Burger-Helmchen and P. Cohendet, "User Communities
and Social Software in the Video Game Industry," Long
Range Planning, vol. 44, pp. 317--343, oct 2011.

[21] A. Kultima and K. Alha, ""Hopefully Everything I'm Doing
Has to Do with Innovation": Games Industry Professionals
on Innovation in 2009," in Games Innovations Conf., 2010.

[22] P. Stacy and J. Nandhakumar, "A temporal perspective of the
computer game development process," Information Systems
Journal, vol. 19, pp. 479-497, 2009.

[23] D. Callele, E. Neufeld and K. Schneider, "Requirements
engineering and the creative process in the video game
industry," in 13th IEEE International Conference on
Requirements Engineering (RE'05), 2005.

[24] J. Kasurinen, J. P. Stranden and K. Smolander, "What do
game developers expect from development and design
tools?," in Proceedings of the Conf. on Evaluation and
Assessment in Software Engineering, 2013.

[25] J. Musil, A. Schweda, D. Winkler and S. Biffl, "A Survey on
a State of the Practice in Video Game Development," 2010.

[26] C. Lewis, J. Whitehead and N. Wardrip-Fruin, "What went
wrong: a taxonomy of video game bugs," in Proceedings of
the Fifth International Conference on the Foundations of
Digital Games, 2010.

[27] F. Petrillo, M. Pimenta, F. Trindade and C. Dietrich, "What
went wrong: A survey of problems in game development,"
Comput. Entertain., vol. 7, feb 2009.

[28] F. Petrillo, M. Pimenta, F. Trindade and C. Dietrich,
"Houston, we have a problem...: a survey of actual problems
in computer games development," in Proceedings of the
2008 ACM symposium on Applied computing, 2008.

[29] F. Petrillo and M. Pimenta, "Is Agility out there?: Agile
practices in game development," in Proceedings of the
International Conference on Design of Communication,
2010.

[30] C. Lewis and J. Whitehead, "The whats and the whys of
games and software engineering," in Intl. Workshop on
Games and Software Engineering, 2011.

[31] C. Kanode and H. Haddad, "Software Engineering
Challenges in Game Development," in Information
Technology: New Generations, 2009.

[32] A. Abran, J. W. Moore, P. Bourque, R. Dupuis and L. L.
Tripp, Guide to the Software Engineering Body of
Knowledge (SWEBOK), IEEE, 2004.

[33] S. E. Humphrey, J. D. Nahrgang and F. P. Morgeson,
"Integrating motivational, social, and contextual work design
features: a meta-analytic summary and theoretical extension
of the work design literature.," Journal of Applied
Psychology, vol. 92, p. 1332, 2007.

[34] H. Braverman, Labor and monopoly capital, 1975.

[35] R. Blauner, Alienation and Freedom, 1964.

[36] C. L. More, "Digital Games Distribution: The Presence of the
Past and the Future of Obsolescence," Media and Culture ,
vol. 12, no. 3, 2009.

[37] S. van der Graaf, "Get Organized At Work! A Look Inside
the Game Design Process of Valve and Linden Lab," Bulletin
of Science, Technology, and Society, vol. 32, no. 6, pp. 480-
488, 2012.

[38] E. Murphy-Hill, T. Zimmermann and N. Nagappan, "Motion
Sickness Susceptibility in Software Developers," Microsoft
Research (MSR-TR-2014-24), 2014.

[39] Y. Benjamini and Y. Hochberg, "Controlling the false
discovery rate: a practical and powerful approach to multiple
testing," Journal of the Royal Statistical Society. Series B
(Methodological), pp. 289--300, 1995.

[40] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar
and I. Neamtiu, "Finding and reproducing heisenbugs in
concurrent programs," in Proceedings of the Conference on
Operating Systems Design and Implementation, 2008.

	1. INTRODUCTION
	2. RELATED WORK
	3. METHODOLOGY
	3.1 Interviews
	3.2 Surveys

	4. RESULTS
	4.1 SWEBOK Topics
	4.1.1 Software Requirements
	4.1.2 Software Design
	4.1.3 Software Construction, Tools, and Methods
	4.1.4 Software Testing and Quality
	4.1.5 Software Maintenance
	4.1.6 Software Configuration Management
	4.1.7 Software Engineering Management
	4.1.8 Software Engineering Process

	4.2 General Work Topics
	4.2.1 Problem Solving and Skill Variety
	4.2.2 Autonomy
	4.2.3 Specialization and Interdependence
	4.2.4 Interaction Outside the Organization
	4.2.5 Knowledge of Results
	4.2.6 Significance and Experienced Meaningfulness
	4.2.7 Physical Demands and Work Conditions

	4.3 Survey Results

	5. LIMITATIONS
	6. IMPLICATIONS
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES

