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Abstract 

As machine learning (ML) systems emerge in end-user 
applications, learning algorithms and classifiers will need to 
be robust to an increasingly unpredictable operating 
environment. In many cases, the parameters governing a 
learning system cannot be optimized for every user 
scenario, nor can users typically manipulate parameters 
defined in the space and terminology of ML. 

Conventional approaches to user-oriented ML systems have 
typically hidden this complexity from users by automating 
parameter adjustment. We propose a new paradigm, in 
which model and algorithm parameters are exposed directly 
to end-users with intuitive labels, suitable for applications 
where parameters cannot be automatically optimized or 
where there is additional motivation – such as creative 
flexibility – to expose, rather than fix or automatically 
adapt, learning parameters. 

In our CHI 2008 paper, we introduced and evaluated 
MySong, a system that uses a Hidden Markov Model to 
generate chords to accompany a vocal melody. The present 
paper formally describes the learning underlying MySong 
and discusses the mechanisms by which MySong‟s learning 
parameters are exposed to users, as a case study in making 
ML systems user-configurable. We discuss the 
generalizability of this approach, and propose that 
intuitively exposing ML parameters is a key challenge for 
the ML and human-computer-interaction communities. 

1. Introduction and Related Work 

Machine learning (ML) systems have long been used by 
the scientific community for data analysis and scientific 
inference, but recently have begun to achieve widespread 
success in consumer applications as well. Recommender 
systems (Linden et al. 2003) and e-mail “spam” filtering 
applications (McGregor 2007) exemplify the recent 
commercial success of ML systems. 

In the research community, ML systems have been 
deployed for a variety of end-user applications, generally 
with a level of automation that hides the complexity of the 
underlying learning system from users. A popular approach 
has been to allow users to provide labeled examples for a 
supervised learning system that infers rules and applies 
them to subsequent data that require classification. In this 
way, systems develop user-specific models, but users need 
to interact with the system only by labeling examples. This 

general approach has been applied to image search 
(Nguyen et al. 2007, Fogarty et al. 2008), user task 
identification (Shen et al. 2006), determination of group 
scheduling preferences (Brzozowski et al. 2006), 
prediction of interruptibility (Fogarty et al. 2004, Horvitz 
et al. 2004), and e-mail classification (Kiritchenko and 
Matwin 2001, Dredze et al. 2006). Supervised machine 
learning with explicit training by users has been 
successfully used in commercial applications as well, 
particularly in speech recognition (Baker 1975) and 
handwriting recognition (Plamondon and Srihari 2000). 

Some user-oriented ML systems have demanded even 
less of users, running entirely without user invention either 
through unsupervised learning or through supervised 
learning with labeling via implicit data collection. This 
approach has been applied to classification of user 
activities (Kushmerick and Lau, 2005) and prediction of a 
user‟s presence and availability for meetings or 
interruptions (Horvitz et al., 2002). 

An additional body of work has made ML algorithms 
and models accessible to a wider community, but has 
targeted application developers and designers, rather than 
end-users. The Weka library (Witten and Frank, 2005), for 
example, has made ML techniques available to a wide 
variety of domains and applications by exposing numerous 
classifiers through a consistent and simple programming 
interface. Fogarty et al. (2007) similarly present the 
“SUBTLE” toolkit, a programmatic interface for sensor data 
analysis, including online adaptation and automatic feature 
extraction, to allow programmers and application designers 
to make inferences on sensor data with minimal experience 
in ML or signal processing. Fails and Olsen (2003) present 
a system (“Crayons”) for training an image classifier, 
intended for application designers who want to build and 
export classifiers without programmatically processing a 
training set. Ware et al. (2002) allow direct manipulation 
of decision tree thresholds, but this process is centered 
around the action of building the classifier itself, and thus 
is targeted at developers, not end-users. 

Virtually no systems, to our knowledge, have directly 
exposed the parameters of a machine learning system to 
end-users. Tóth (2003), Ware et al. (2002), and Hartmann 
et al. (2007) allow direct manipulation of machine learning 
parameters (genetic algorithm evolution parameters, 
decision tree thresholds, and classifier distance thresholds, 
respectively), but all are centered around the action of 
building the classifier itself, and thus are targeted at 
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application designers, not end-users. 
The primary reason that end-users have traditionally 

been shielded from ML parameter adjustment or model 
details is that few users have the expertise or even the 
vocabulary required to meaningfully interact with a system 
at this level. However, recent field study results (Tullio et 
al. 2007, Stumpf et al. 2007) suggest that users can in fact 
build meaningful mental models of machine learning 
systems, suggesting that exposing more details of such 
systems may be a promising approach. 

We postulate several reasons why, despite the barriers 
in intuitive interface development, exposing ML concepts 
to end-users will benefit certain scenarios: 

1) As ML systems are increasingly deployed “in the wild”, 
it will become increasingly difficult to select 
parameters that apply to all environments. End-user 
adjustment allows tailoring to a specific scenario. 

2) Allowing direct manipulation of an underlying model 
promotes user exploration and exploratory usage of 
applications that would be stifled with fixed parameters 
or automatic parameter adjustment. 

3) This approach will also lend itself directly to the 
application-designer scenarios discussed above, where 
a user with some expertise in machine learning or 
willingness to perform deeper interactions is building 
or editing a learning model that will be exported and 
applied to an end-user system. 

4) In certain scenarios, such as the one presented in this 
paper, there is intrinsic value to providing more degrees 
of freedom in a user‟s interaction with a model. In this 
case, these additional degrees of freedom lead directly 
to increased creative expressiveness. 

In our CHI 2008 paper (Simon et al. 2008), we introduced 
MySong, a system that uses a Hidden Markov Model to 
automatically generate chords to accompany a vocal 
melody. We have demonstrated that this is a powerful tool 
for allowing non-musicians to create accompanied music. 
However, allowing the user to explore the space of 
possible accompaniments – without requiring knowledge 
of either music theory or machine learning – further 
enhances the creative expression available with this tool 
and renders it useful for novices and songwriters alike. 

In this paper, we make the following three contributions: 

1) We formally describe MySong‟s algorithm for 
automatically generating accompaniments. 

2) We discuss the novel mechanisms by which MySong‟s 
machine learning parameters are exposed to users, as a 
case study in the increasingly-important space of 
making AI and ML systems user-configurable.  

3) We discuss the generalization of this approach to other 
domains, and we conclude by calling on the ML and 
HCI communities to develop additional intuitive 
mechanisms for exposing details of machine learning 

systems to end-users. 

We conclude this section with a brief description of other 
work in the computer music domain that ties intuitive 
labels or parameters to machine learning systems. For a 
more comprehensive overview of work specifically related 
to the MySong system, see (Simon et al. 2008). 

Legaspi et al. (2007) used explicit labels to learn a 
model mapping musical features to affect and emotion, for 
the purpose of generating new music that inspires a user-
specific emotional response. Given training data and a 
desired affective descriptive, this system builds a first-
order logic that generates song components and uses a 
genetic algorithm to build chords from fundamental 
musical units. Turnbull et al. (2008) and Torres et al. 
(2007) solve the related problem of conducting a search 
based on intuitive labels; this system learns a Gaussian 
mixture model that maps local audio features to intuitive 
labels using an explicitly-labeled data set, and allows users 
to search a music database using intuitive labels. 

To our knowledge, no previous systems exist that allow 
users to directly manipulate components or parameters of a 
learning system for a creativity-support application. 

2. System Description 

2.1 MySong Overview 

The MySong system allows a user with no knowledge of 
chords or music theory to quickly create and explore 
chord-based accompaniments for a vocal melody. Primary 
goals of the system are to enable non-musically-trained 
users to participate in the craft of songwriting and to 
provide songwriters and musicians with an interactive, 
exploratory scratchpad for songs. 

The basic interaction paradigm requires a user to 
simply click on a “record” button, sing a melody while 
listening to a drum pattern that fixes the timing of musical 
beats, and click on a “stop” button to end the recording. 
MySong then immediately generates a set of chords to 
accompany the recorded vocal melody and uses a 
commercial system to render those chords as an audio 
accompaniment in a user-selected style. The core of this 
system is a Hidden Markov Model that represents a chord 
sequence and is used to generate chords to accompany a 
vocal melody; in this section we will describe the 
architecture and training of that model. In Section 3, we 
will discuss several mechanisms by which users can 
intuitively interact with that model after recording a 
melody. 

2.2 Model and Assumptions 

We model a vocal melody as a sequence of notes in which 
each element corresponds to a specific “pitch class”: a 
frequency corresponding to one of the standard 12 tones in 
the chromatic musical scale (e.g. C, C#, D, etc.). In our 
training phase, this sequence will be derived from 
published musical scores (Section 2.3). In our decoding 
phase, this sequence is derived by sampling and 
discretizing a user‟s vocal melody (Section 2.4). 



In popular musical genres, a musical accompaniment is 
typically represented for performance purposes as a 
sequence of chords (often referred to as a “lead sheet”). We 
thus build our model around this representation, and 
assume that this is adequate for producing appropriate 
accompaniments. This assumption is appropriate for a wide 
variety of popular musical genres (rock, pop, country, 
R&B, jazz, etc.), but would not be valid for non-chord-
based music, including a significant fraction of classical 
pieces, heavy metal pieces, etc. 

We make the following additional assumptions: 

1) Each chord in a sequence lasts for exactly one 
measure. Here we use the term “measure” to refer to 
the smallest amount of time for which a chord will be 
played; in general this corresponds to a typical musical 
measure, but this is not necessary; hence this 
assumption can be made without loss of generality. 

2) All notes can be reduced to a single octave without 
losing information that is meaningful to chord 
selection; therefore, there are only 12 possible pitch 
classes. 

3) A sufficient statistic (for the purpose of chordal 
accompaniment) for the notes in a measure is the 
fraction of the measure during which each pitch class 
(C, C#, D, etc.) is heard. 

4) The musical key (the prior distribution of chords and 
melody notes) does not change within a melody. 

5) Possible chords are chosen from a finite dictionary 
available during model training. 

6) The location of measure boundaries in a vocal melody 
is known during both training and interactive use of 
our model. In the training phase, measure boundaries 
are delineated in training data; during interactive use, 
measure boundaries are determined by the timing of 
the drum beat along with which the user sings (Section 
2.1). 

2.2.1 Notes-only model 

Given these assumptions, one simple model is to choose 
the chord for each measure considering only the notes that 
appear in that measure. So, for each measure, the chord is 
chosen to maximize P(notes | chord). We will begin our 
discussion with this simple model, and build our Hidden 
Markov Model on this description. 

We sample the sequence of notes observed in a 
measure of melody at regular intervals (these intervals are 
arbitrarily short and do not correspond to musical note 
durations), and our model‟s observations are the notes 
occurring at each interval i. Because we assume that the 
precise temporal ordering of notes is not relevant to the 
selection of a chord within a measure (assumption (3) 
above), this sampling is equivalent to building a “pitch 
histogram”: a 12-dimensional vector x in which each 
element corresponds to the amount of time spent in the 
corresponding pitch class.  

For a given chord type c, we refer to the vector of (a 
priori) expected pitch class frequencies (i.e., as estimated 
from training data) for a measure containing that chord as 
µc, and the element of µc corresponding to a specific pitch 
class p as 𝜇𝑐𝑝 . 

We thus model the probability of the pitch histogram x 
occurring in a measure with a chord c as: 

𝑃 𝑥 𝑐 =   𝑃 𝑛𝑖 𝜇𝑐 
𝑇

𝑖=1
 

Here 𝑛𝑖  is the note appearing in timeslice 𝑖 and T is the 
number of timeslices in a measure. Looking at this in the 
log space, noticing that the probability of seeing note 𝑛 at 
some timeslice given our model is precisely 𝜇𝑛 , and then 
letting 𝑇 go to infinity (infinitely short timeslices), we 
have: 

log𝑃 𝑥 𝑐 = 

 log 𝜇𝑐𝑖

𝑇

𝑖=1
∝  𝑡𝑘 log 𝜇𝑐𝑘

12

𝑘=1
∝  𝑥𝑘 log 𝑢𝑐𝑘

12

𝑘=1
 

Here 𝑘 is a pitch class and 𝑡𝑘  is the amount of time spent in 
the pitch class k. In short, we can compute the relative 
probability of an observation vector x for a chord c by 
taking the dot-product of that observation vector with the 
log of the vector of expected pitch class frequencies 𝑢𝑐𝑘

. 

2.2.2 Chord transitions 

A simple extension to the notes-only model is to also 
model the likelihood of transitions among chords, i.e. to 
incorporate the fact that for a chord ct in a chord sequence 
(chord type c occurring at measure t), the distribution of 
probabilities over possible subsequent chords ct+1 is highly 
non-uniform. In other words, in popular music, certain 
chord transitions are much more likely than others, an 
important basic principle in music theory. 

We represent the probability of a chord ct+1 occurring 
in the measure following chord ct as P(ct+1 | ct). These 
probabilities can be stored in an m-by-m table, where m is 
the total number of chords in our dictionary. 

2.2.3 Hidden Markov Model 

MySong uses as its core representation a Hidden Markov 
Model in which each measure corresponds to a single node 
whose (initially unknown) state represents the chord 
selected to be played during that measure. The observation 
at each node is the melody fragment sung during that 
measure, treated as in Section 2.2.1. Transition 
probabilities among states are estimated from training data 
(Section 2.3) and are stored as in Section 2.2.2. 

2.3 Training 

We train the Hidden Markov Model described in Section 
2.2.3 using a database of 300 “lead sheets”: published 
musical scores containing melodies along with chord 
sequences aligned to those melodies. Without loss of 
generality, all of these lead sheets are transposed to a 
single musical key before training (this will not limit us to 
working with melodies in this key; we discuss our handling 



 

 

of arbitrary-key melodies in Section 2.6). 
Transition probabilities (Section 2.2.2) are computed 

by counting the chord transitions occurring from each 
chord type to each chord type in the database and 
normalizing these counts. “Beginning of song” and “end of 
song” are included in the transition matrix, but will not be 
part of the dictionary from which node states are assigned. 

2.4 Pitch-tracking 

In order to provide the observation vector x at each 
measure, a pitch-tracking step analyzes each measure of 
vocal audio, computes the fundamental frequency over 
40ms windows at 10ms intervals, discretizes those 
frequencies into 12 pitch classes, and builds the vector x as 
a histogram of samples observed in each pitch class. 

We note that this is not equivalent to the problem of 
transcribing a musical melody from a singer‟s voice; 
because our model assumes that a pitch histogram is a 
sufficient description of a measure for purposes of 
harmonization, we do not build a detailed rhythmic 
transcription of the melody. This approach allows MySong 
to be robust to small errors in both a user‟s pitch accuracy 
and our own frequency estimation. 

We compute the fundamental frequency using a variant 
on the method of (Boersma, 1993), but – as we assume that 
octave information is not relevant to harmonization – we 
do not perform the dynamic programming step described in 
that work, which primarily serves to eliminate octave 
errors. We briefly summarize our pitch-tracking procedure 
here; constants are selected empirically and have been 
robust to a wide range of vocal audio: 

1) Extract a single measure m of audio data, sampled at 
22kHz and normalized to the range (-1.0, 1.0). 

2) Extract 40ms windows w of audio data at 10ms 
intervals (100Hz), and center each window w around 
zero-amplitude by subtracting its mean. 

3) Discard any window w whose root-mean-squared 
(RMS) amplitude is less than 0.01 or whose RMS 
amplitude is less than 0.05 times the RMS amplitude 
of the measure; these heuristics indicate near-silence. 

4) Compute the power spectrum (the magnitude of the 
zero-padded FFT) of the window w, then compute the 
autocorrelation a of the window w by taking the IFFT 
of its power spectrum. 

5) Normalize the autocorrelation a by the mean-squared 
amplitude (energy) of the window w. 

6) Within the range of a corresponding to the frequency 
range [75Hz, 300Hz] find the minimum and maximum 
normalized autocorrelation values amin and amax. 

7) Discard any window w for which amax < 0.4 or amin > 
0.05 . These heuristics indicate weak autocorrelation 
peaks and, consequently, non-pitched voice. 

8) For each qualifying window w, compute the frequency 
fmax corresponding to the peak amax. This corresponds 
to the estimated fundamental frequency at w. 

9) Compute the continuous (non-discretized) pitch class 

p corresponding to fmax as 𝑝 = 12 log2 𝑓𝑚𝑎𝑥 𝑓𝑐  , 
where fc is the frequency of a member of a known 
musical pitch class (we choose the note C5=523.2Hz). 

10) For all windows w in the measure m, compute the 
offset between p and the nearest known musical pitch 
class, and compute the mean poffset of all such offsets. 

11) Add poffset to the value p for each window; this shifts 
the computed pitch sequence to optimally align with 
the standard chromatic scale (i.e., this minimizes the 
mean-squared difference between the computed 
frequencies and standard musical notes subject to the 
constraint that relative pitches must be preserved). 

12) Round each value p to the nearest integer pint and 
compute the final pitch class as pint mod 12; the 
histogram of these integer pitch classes over the entire 
measure m is the observation vector x for this measure. 

2.5 Decoding 

Given the vector x output by the pitch-tracking system for 
each measure in a recorded melody, MySong chooses the 
sequence of chords that maximizes the likelihood of this 
sequence of vectors.  I.e., our harmonization model selects 
chords that maximize the following objective function over 
the sequence chords for the sequence of observation 
vectors melody: 

𝐿 = log 𝑃 𝑐ℎ𝑜𝑟𝑑𝑠 + log 𝑃 𝑚𝑒𝑙𝑜𝑑𝑦|𝑐ℎ𝑜𝑟𝑑𝑠  

…where: 
log 𝑃 𝑐ℎ𝑜𝑟𝑑𝑠 = 

log 𝑃 𝑐1|𝑠𝑡𝑎𝑟𝑡 +  log𝑃 𝑐𝑖|𝑐𝑖−1 

𝑛

𝑖=2

+ log𝑃 𝑒𝑛𝑑|𝑐𝑛   

…and: 

log 𝑃 𝑚𝑒𝑙𝑜𝑑𝑦|𝑐ℎ𝑜𝑟𝑑𝑠 =  log 𝑃 𝑥𝑖 |𝑐𝑖 

𝑛

𝑖=1

 

Here n is the total number of recorded measures (known a 
priori since the user sang along with a drum beat that 
defined measure timing), ck is the chord assigned to 
measure k, 𝑃(𝑐1|𝑠𝑡𝑎𝑟𝑡) is the (known) probability that a 
song begins with c1, 𝑃(𝑒𝑛𝑑|𝑐𝑛) is the probability that a 
(known) probability that a song ends with cn, and xk is the 
observation vector corresponding to measure k. 

We use a single parameter 0 ≤ 𝛼 ≤ 1 to weight the 
importance of observations versus transitions (the 
interpretation of this parameter is discussed in more detail 
in Section 3.2). The objective function then becomes: 

𝐿 =  1 − 𝛼 log 𝑃 𝑐ℎ𝑜𝑟𝑑𝑠 + 𝛼 log 𝑃 𝑚𝑒𝑙𝑜𝑑𝑦|𝑐ℎ𝑜𝑟𝑑𝑠  

For the Hidden Markov Model defined in Section 2.2.3, the 
Viterbi algorithm chooses the sequence of chords 𝑐1 …𝑐𝑛  
that maximizes this total likelihood. This is the set of 
chords we present to the user for a new melody. 

2.6 Key determination 

As we discuss above, we transpose all the songs in our 
training database into a single musical key (expected 



distribution of notes and chords) before training our model. 
It is musically reasonable to assume that the transition 
matrices in each key are identical other than a simple 
circular shift of the transition matrix, so we maximize the 
effectiveness of our training database by considering all 12 
keys to be equivalent for the purposes of harmonization.  

However, when harmonizing a new melody, we do not 
know the key in which the user sang. We therefore 
consider multiple transpositions Tk applied to the vocal 
melody and all candidate chord sequences, where 0 ≤ 𝑘 <
12. Tk(chords) transposes each chord by k half-steps, and 
Tk(melody) transposes the new melody (the observation 
vectors x) by k half-steps. The objective function then 
becomes: 

𝐿 = log𝑃 𝑇𝑘 𝑐ℎ𝑜𝑟𝑑𝑠  
+ log 𝑃 𝑇𝑘 𝑚𝑒𝑙𝑜𝑑𝑦 |𝑇𝑘 𝑐ℎ𝑜𝑟𝑑𝑠   

We now optimize over chords and k by computing the 
optimal chord sequence for each k, and then choosing the 
key k (and corresponding sequence) with the highest 
likelihood. Empirically, this method nearly always selects 
the same key that a musician would manually assign to a 
new melody. For example, for the 26 melodies used in a 
recent evaluation of our system (Simon et al. 2008), this 
approach selected the correct key for all 26 melodies. 

3. Exposing Learning Parameters 

Using the model we presented in Section 2, a user could 
record a vocal melody and have a mathematically-optimal 
sequence of chords assigned to that melody. In many cases 
this would provide satisfactory results, but we would like 
the user to be able to subsequently manipulate the selected 
sequence of chords for two reasons: 

1) A major goal of our system is to provide a creativity 
support tool; if users cannot modify the output of our 
core algorithm, we are not enabling a creative process. 

2) The mathematically-optimal sequence of chords for any 
model may not always be the subjectively-optimal 
sequence of chords, and subjective preference may vary 
among users. Therefore it is important to allow a user to 
modify the selected chord sequence, treating our 
automatically-selected chords as a starting point. 

However, our target audience is unfamiliar with musical 
notation, so asking them to directly manipulate the chord 
sequence would undermine a major goal of our system. 
Furthermore, even a musically-trained user derives the 
most benefit from this system when leveraging the 
underlying optimization framework to rapidly explore 
chord patterns. Therefore we would like the manipulation 
stage that takes place after the original optimization to also 
be enhanced by the underlying learning mechanisms. 

However, our target audience is also unfamiliar with 
concepts and notation from machine learning, and could 
not reasonably be asked to manipulate “observation 
weights”, “transition matrices”, etc. Therefore we now turn 
our attention to the mechanisms by which MySong exposes 

components of the underlying learning system via 
interactions that are intuitive to users. Each of these 
mechanisms will modify our objective function in some 
way; we note that the computational efficiency of the 
Viterbi procedure allows all of these mechanisms to be 
manipulated in real-time. 

3.1 The “Happy Factor” 

In practice, a single transition matrix is insufficient to 
capture the variation among chord progressions. 
Orthogonal to the classification of songs into musical keys, 
songs can typically be assigned to a “mode”, which 
indicates a particular distribution of chords within the 
distribution of notes representing the key, and an 
associated emotional character. The two most common 
modes in popular music are the “major” and “minor” 
modes. We therefore divide our training database into 
major- and minor-mode songs before performing the 
training procedure described in Section 2.3 and compute 
separate transition probabilities, henceforth called Pmaj and 
Pmin, for each sub-database. 

We perform this modal division of our training 
database automatically, using an iterative procedure. To 
begin, we initialize the transition matrices Pmaj and Pmin 
using a series of simple heuristics (Appendix A).  

After initialization, we alternate between the following 
two steps in a k-means-like manner until the sets of songs 
classified as major and minor do not change: 

1) For each song in the database, estimate its likelihood 
using both the major and minor transition models, and 
assign the song to whichever yields higher likelihood. 
Likelihood is computed as in Section 2.5. 

2) Re-compute the major and minor transition matrices 
separately using the set of songs assigned to each 
model, by counting all transitions and normalizing. 

When this procedure is complete, we have two transition 
matrices Pmaj and Pmin available during the decoding stage. 
We use a parameter 0 ≤ 𝛽 ≤ 1 (called the happy factor) to 
weight the relative contribution of these two transition 
models. The transition probabilities used in our objective 
function now look like: 

log 𝑃  𝑐𝑖|𝑐𝑖−1 
= 𝛽 log 𝑃maj  𝑐𝑖|𝑐𝑖−1 +  1 − 𝛽 log 𝑃min  𝑐𝑖|𝑐𝑖−1  

The reader will likely find this form of mixing unusual, as 
we are linearly mixing transition matrices in the log 
domain. In the non-log domain, mixing two transition 
matrices with 𝛽 and 1 − 𝛽 yields a valid transition matrix: 

𝑃 𝑐𝑖 |𝑐𝑖−1 = 𝛽𝑃𝑚𝑎𝑗  𝑐𝑖|𝑐𝑖−1 +  1 − 𝛽 𝑃𝑚𝑖𝑛  𝑐𝑖|𝑐𝑖−1  

However, in the log domain, we are effectively taking the 
product of the two transition matrices raised to 
complementary powers, which will not (without 
normalization) result in a valid transition matrix: 



 

 

𝑃 𝑐𝑖 |𝑐𝑖−1 = 

𝑃𝑚𝑎𝑗  𝑐𝑖|𝑐𝑖−1 
𝛽 ∙ 𝑃𝑚𝑖𝑛  𝑐𝑖|𝑐𝑖−1 

 1−𝛽  

Empirically, this method produced chord combinations that 
were perceived to be better than those achieved via linear 
mixing; the reasons behind this are subtle. Since the two 
matrices are sufficiently different from each other (i.e., 
very major and very minor), the weighted average of the 
two results in a musically non-sensical middle ground.  To 
see why this happens, imagine that in the major-key 
transition matrix the C chord always transitions to a G 
chord, whereas in the minor-key transition matrix the C 
chord always transitions to an A-minor chord. Linearly 
mixing these results in the transition probability being split 
between G and A-minor according to 𝛽. For medium 
values of 𝛽, both are almost equally likely, which in 
practice is not the case in songs that mix major and minor 
components.  

In fact, while many songs have both major- and minor-
mode components, major-mode songs tend to express this 
combination by reinforcing the minor-mode components 
that are already typical to major-mode songs (and vice 
versa), as opposed to mixing in all possible minor 
transitions/chords. This is precisely what our log-space 
mixing does: when transition matrices are multiplied, 
common components are reinforced, while disparate 
components are reduced in probability. 

We highlight this point as an example of a non-
traditional engineering/learning decision, guided by 
usability and musicality, at the expense of “correctness” of 
the underlying system. We argue that such tradeoffs of 
usability and intuitiveness for “correctness” may be 
increasingly appropriate in user-centric ML systems. 

The value 𝛽 is directly exposed to the user as a slider 
on MySong‟s graphical user interface, and is labeled as the 
“Happy Factor”. Users do not need to understand the actual 
implementation of this factor as a transition-matrix 
blending weight, nor do non-musically-trained users need 
to understand the nature of major and minor modes to 
effectively use this slider. In the usability study we present 
in (Simon et al. 2008), non-musically-trained users were 
able to create subjectively-appropriate accompaniments for 
melodies. During this study, all 13 participants made 
extensive and successful use of this slider. 

We also note that at values of 0 and 1 for 𝛽, we are 
selecting the learned transition matrices pmin or pmaj,. 

3.2 The “Jazz Factor” 

The objective function presented in Section 2.5 summed 
the likelihood of observations and transitions, implicitly 
assuming that these contribute equally to the subjective 
quality of a chord sequence. In practice, this is not always 
the case. 

We use a single parameter 0 ≤ 𝛼 ≤ 1, called the jazz 
factor, to weight the importance of observations versus 
transitions. The objective function then becomes: 

𝐿 =  1 − 𝛼 log 𝑃 𝑐ℎ𝑜𝑟𝑑𝑠 + 𝛼 log 𝑃 𝑚𝑒𝑙𝑜𝑑𝑦|𝑐ℎ𝑜𝑟𝑑𝑠  

Setting 𝛼 = 1 causes MySong to ignore the transition 
matrices entirely, leading to surprising and unfamiliar 
chord progressions that optimally match the recorded 
melody. Setting 𝛼 = 0 causes MySong to ignore the 
observed melody entirely, leading to familiar chord 
progressions; even this extreme setting can be useful, for 
example, when building an accompaniment for non-
pitched vocals (such as rap) or experimenting with 
instrumental chord patterns. 

We expose this observation-weighting factor as another 
slider on MySong‟s graphical user interface, labeled as the 
“Jazz Factor”. We do not claim that this in any way 
represents a bias toward accompaniments in the jazz genre, 
but pilot testing suggested that this was a fairly intuitive 
name for this parameter. 

We highlight that even though the precise behavior of 
this slider is difficult to explain without introducing 
machine learning terminology, novice users were able to 
effectively use this slider to explore a wide space of 
accompaniments, all of which were musically reasonable 
(as they each optimized our objective function for a 
particular value of α). This underscores another key point 
of this work: for certain applications, providing reasonably 
intuitive handles to algorithmic parameters, with 
appropriate constraints that prevent non-intuitive behavior, 
can allow users to explore a parameter space and therefore 
make effective use of the underlying system while 
introducing human knowledge and subjective preference. 

3.3 “Top Chords” List 

When working with a chord progression or 
accompaniment, musicians often experiment with 
replacing individual chords with other chords that are 
expected to be appropriate at that point in the song and 
comparing the subjective impact of each. The model 
underlying MySong allows us to provide this same 
experimentation process to non-musically-trained users 
who would have no intuitive metric for possibly-
appropriate chord substitutions. 

In MySong‟s graphical user interface, right-clicking on 
a chord brings up a list of the top five chords that MySong 
“recommends” for this measure. For the i

th
 measure, we 

compute this listed by sorting all possible chords according 
to the following quantity: 

𝐿𝑖 = 𝛼log 𝑃 𝑥𝑖|𝑐𝑖 +  1 − 𝛼 log 𝑃 𝑐𝑖|𝑐𝑖−1 
+  1 − 𝛼 log 𝑃 𝑐𝑖+1|𝑐𝑖  

These are simply the terms in the global objective function 
which are dependent on the chord in the i

th
 measure. This 

metric takes into account both melody and chord context, 
but again does not require a user to understand the 
underlying model. 

3.4 Chord-locking 

Often a user encounters a chord that is subjectively 
pleasing when paired with the melody at a particular 
measure. The user might like to continue varying other 
parameters (e.g. α and β) while maintaining this chord, and 



guaranteeing that transitions in and out of this measure will 
still follow the appropriate “rules” defined by the trained 
transition model. 

MySong thus allows a user to “lock” a particular chord 
via the graphical user interface. When a chord is “locked”, 
further manipulation of α and β won‟t change this chord, 
but – importantly – the selection of adjacent chords will 
reflect the locked chord. Locking the chord at the i

th
 

measure to chord C has the following effect on our 
objective function: 

𝑃 𝑐𝑖|𝑐𝑖−1 =  
1 if 𝑐𝑖 = 𝐶
0 if 𝑐𝑖 ≠ 𝐶

  

3.5 Ignore melody 

For several reasons, it is sometimes useful to disregard the 
vocal melody for a measure. For example, it may be the 
case that a measure was performed inaccurately, that a 
measure contains non-musical speech, or that pitch-
tracking errors yield an observation vector that does not 
correlate well with the user‟s intended pitch. MySong thus 
allows a user to ignore a particular measure of audio via 
the graphical user interface. 

Ignoring the vocal input for the i
th

 measure can be 
efficiently accomplished by simply ignoring this measure‟s 
log 𝑃 𝑥𝑖 |𝑐𝑖  term, leaving it out of the global optimization. 
In practice this is implemented by locally setting the 
observation weight α to 0. 

4. Results 

For brevity, we will not repeat the results of the usability 
studies that are the focus of (Simon et al. 2008). We 
summarize our two studies as follows: 

1) A listening study showed that MySong produces 
subjectively-appropriate accompaniments. This is a 
validation of the model and objective function 
described in Section 2. 

2) A usability study showed that MySong‟s interaction 
techniques provided are intuitive to novice, non-
musically-trained users. This is a validation of the 
interaction techniques described in Section 3, as well 
as the overall paradigm of vocally-driven automatic 
accompaniment. 

As further verification of the intuitiveness of the 
mechanisms by which we have exposed MySong‟s 
learning parameters to users, we provide several quotes 
from participants in our usability study that provide 
qualitative support for the quantitative results of our 
usability study. We consider qualitative, subjective 
validation to be central to our core argument that, in certain 
situations, it is appropriate to expose learning parameters 
directly to an end-user. 

When asked the free-response question “What things 
were most helpful about this system?”, the following 
responses were provided by study participants: 

 “The „happy/sad‟ and „jazzy‟ options are useful for 

learning.” (P3) 

 “The ability to change the „mood‟ of the song just by 
moving the slider.” (P5) 

 “The ranges that were available with the happy & jazz 
factor.” (P8) 

 “Easy to understand concepts (happy, jazzy)” (P9) 

 “Sliders are easy.” (P10) 

 “[Sliders are] easy, not complicated. No need to 
think.” (P11) 

5. Discussion: Interactive Decoding 

We have presented MySong as a case study in “interactive 
decoding”: bringing the user into the ML-driven decoding 
process by exposing system parameters in intuitive terms. 
We highlight again that this differs from previous work in 
user systems, which typically minimize the degree to 
which learning parameters are exposed to users, and from 
previous work in ML toolkits, which typically expose a 
large set of parameters to developers and engineers. 

We propose that this new “middle ground” could have 
similar success in a number of other areas. A number of 
creativity-oriented systems, for example, could provide 
similar assistance to untrained users while providing 
sufficient degrees of freedom to allow a deep creative 
process. This approach could be applied not just to musical 
accompaniment, but to painting, computational 
photography, painting, graphic design, writing, etc. 

Outside of the creativity space, any system that uses 
machine learning to process complex data could also 
benefit from this approach to allow the user some level of 
interactivity. Image- and video-editing applications, for 
example, increasingly provide facilities for face detection 
and processing, keyframe and thumbnail selection, object 
removal, automatic cropping, etc. In almost all of these 
cases, the underlying system has a series of parameters that 
may typically be hidden from users to minimize 
complexity, but in all of these cases, as with MySong, 
users‟ overall productivity may in fact benefit from an 
ability to rapidly explore the space of relevant parameters. 

We do not argue that all end-user systems that 
incorporate some form of machine learning should expose 
core parameters to users; inevitably, this process does add 
interface complexity and the potential for users to develop 
an inaccurate intuition for how a system behaves. We 
propose that this approach will successful in spaces where 
target users have sufficient motivation to explore a 
parameter space and build an intuition for how parameters 
behave. Creativity support is an excellent example of such 
a space, where users derive a direct benefit in 
expressiveness by exploring the parameter space and 
building a mental model of a system. Scientific data 
visualization is another domain in which users have a 
vested interest in exploring a large space, so we expect a 
similar benefit if this approach is applied to classification 
or regression systems for scientific data. 

We further propose that for systems that benefit from 



 

 

direct user interaction, it may be necessary not only to 
make implementation decisions with “intuitiveness” in 
mind (Section 3.1), but also to use the intuitiveness of the 
parameter space as a metric for evaluating competing 
learning approaches. The HMM used in MySong, for 
example, comes with some limitations in terms of 
generality relative to a more general or higher-order model, 
but in terms of user experience, the ability to expose 
relevant parameters in meaningful terms and the fact that 
those parameters have predictable effects on the system 
argue heavily in favor of the HMM as an appropriate 
model for this system. This approach is in some ways in 
contrast with more traditional approaches for selecting 
learning systems, which focus on metrics such as 
classification accuracy and computational performance. 

Appendix A: Matrix initialization heuristics 

To initialize the major- and minor-mode transition matrices 
before iterative refinement, we assign a high probability p 
to all transitions leading to the I, IV, and V chords in the 
major-mode transition matrix, and the same probability to 
the vii, III, and ii chords in the minor key transition matrix. 
We assign the same value to the “song start  I” transition 
(for Pmaj) and the “vii  song end” transition (for Pmin). All 
other transitions are assigned a low probability ε. We note 
that these are simply coarse approximations of basic 
observations from music theory; in practice, this procedure 
is robust to different values for p and ε, and to other 
variants on these assumptions that conform to basic 
definitions of “major” and “minor”. 
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