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Abstract 
 

A classic question in software development is “How 
much testing is enough?”  Aside from dynamic 
coverage-based metrics, there are few measures that 
can be used to provide guidance on the quality of an 
automatic test suite as development proceeds.  This 
paper utilizes the Software Testing and Reliability 
Early Warning (STREW) static metric suite to provide 
a developer with indications of changes and additions 
to their automated unit test suite and code for added 
confidence that product quality will be high.  
Retrospective case studies to assess the utility of using 
the STREW metrics as a feedback mechanism were 
performed in academic, open source and industrial 
environments. The results indicate at statistically 
significant levels the ability of the STREW metrics to 
provide feedback on important attributes of an 
automatic test suite and corresponding code.    
 
 
1. Introduction 
 

Organizations spend a considerable amount of time 
and resources on software testing-related activities. 
Studies [15, 29] show that software testing activities 
accounts for 50% of the total software cost.  Software 
testers need a means of receiving feedback on whether 
they have tested enough. Traditionally dynamic 
coverage metrics, such as statement and branch 
coverage, have been employed as indicators of the 
quality of a test suite.  In this paper, we propose an 
alternative approach that utilizes static measures to 
provide such feedback.  This static metrics based 
feedback can be obtained early and throughout the 
software development process. 

Our approach is built upon the Software Testing 
and Reliability Early Warning (STREW) metric suite 
[22], a set of nine static source and test code measures. 
The STREW metric suite leverages automatic testing 
effort to estimate post-release field quality. Our 
research objective is to investigate the utility of the 
Software Testing and Reliability Early Warning 
(STREW) metric suite to provide a developer with 
indications of changes and additions to their 
automated unit test suite and code for added 
confidence that product quality will be high. Our 
approach is applicable for those developers who 
incrementally create an automatic unit test suite as 
code is implemented, as is done with the test-driven 
development [4] practice.     

Case studies performed in academic, open source 
and large scale industrial environments indicate the 
efficacy of the nine STREW metrics to act, in 
aggregate, as early indicators of post-release field 
quality [22].  In this paper, we present an approach 
whereby the individual metrics are used to provide 
information to the developer on prudent actions to take 
to gain confidence in the quality of the system.  Our 
approach is automated via an Eclipse plug-in, the 
Good Enough Reliability Tool (GERT) 
(http://gert.sourceforge.net/) [11] which is integrated 
into the programmer development environment.  In 
GERT, (1) historical STREW metric standards from 
prior projects are saved; (2) STREW metrics for the 
current project are calculated and compared with these 
historical standards; and (3) the developer is provided 
with color-coded feedback on the comparison (In 
essence the feedback is on the difference between the 
individual STREW metrics for the current release 
compared to past releases).  



The color-coded feedback, similar to prior studies 
[8, 16, 25], is based upon a Red-Orange-Green scheme 
for providing developer information on each metric 
relative to historical data.  The Red, Orange, and Green 
colors are visual levels of discrimination often 
identified with bad, ok/acceptable, and good, 
respectively. The premise is that the developers are not 
as interested in the exact numerical difference between 
a current metric and historical value as they are in 
whether they need to take action.  The color coding 
enables the developer to quickly understand specific 
actions to take on.  This paper does not investigate the 
selection of Red, Orange and Green as appropriate 
colors (in terms of display factors) according to human 
computer interaction (HCI) studies.        

In this paper, we investigate the use of these three 
levels of discrimination of STREW metrics.  For this 
investigation, we ran retrospective case studies in 
academic, open source, and a structured industrial 
environment.  Using statistical analysis, we combined 
the data from these studies to examine the efficacy of 
our approach.  

The organization of the remainder of this paper is as 
follows. Section 2 discusses the related work, and 
Section 3 provides background on the STREW metric 
suite.  Section 4 provides the research design. Section 
5 presents the case studies and results.  The limitations, 
conclusions and future work are discussed in Section 6 
and 7.  
 
2. Related Work 
 

In this section we provide information previous 
work related to the use of color coding for metric 
feedback and   on the relationship between metrics and 
software quality. 

 
2.1 Color Coded Feedback 
 

Providing feedback on important attributes of an 
automatic unit test suite allows the developers to 
identify areas that could benefit from design 
restructuring/more testing. Color coding [8, 16, 25] 
aids developers in understanding whether a metric is 
within acceptable limits. Our work on using color-
coded feedback is motivated by prior studies at IBM 
[8] and Nortel Networks [16] that use color-coding to 
provide feedback on metric values based on standards 
(predefined or calculated). These studies also do not 
involve any HCI investigation but an analysis of the 
ability to provide in-process feedback. Their primary 
objectives of using color coding were also to have 
different levels of feedback. 

The Enhanced Measurement for Early Risk 
Assessment of Latent Defects (Emerald) [16, 17] 
decision-support system at Nortel Networks combined 
software measurements, quality models and delivery of 
results to provide in-process feedback to developers to 
improve telecommunications software reliability.  
Emerald provides color-coded feedback to developers 
using nine categories: green, yellow and seven shades 
of red, based on acceptable values of non-OO metrics 
related to software system link volume, testability, 
decision complexity, and structuredness.  A more 
detailed explanation is available in [16]. The Emerald 
system was shown to improve architectural integrity; 
establish design guidelines and limits; focus efforts on 
modules more likely to have faults; target the test 
effort effectively; identify patch-prone modules early; 
incorporate design strategies to account for the risk 
associated with defective patches; and help obtain a 
better understanding of field problems [16]. However, 
STREW differs from Emerald because STREW 
leverages the automated testing effort to estimate the 
post-release field quality based on test and source code 
metrics. Also STREW was developed for use by OO-
languages. 

Similarly at IBM, feedback on the complexity of 
Smalltalk methods, based on the source code allows 
developers to modify their code to more desirable 
characteristics in terms of the code complexity [8]. 
Color-coded feedback is presented in three levels, red, 
yellow and green using Smalltalk complexity metrics, 
such as number of blocks, number of temporary 
variables and arguments, number of parameterized 
expressions.  STREW, similar to the work done at 
Nortel Networks and IBM, provides feedback in three 
ranges red, orange and green based on in-process 
metrics obtained from both the source and test code. 

 
2.2 Software Metrics and Quality 
 

The STREW metrics relate software quality with 
metrics. The following discussion investigates the 
prior work in this field. The relationship between 
product quality and process capability [27] and 
maturity has been recognized as a major issue in 
software engineering based on the premise that 
improvements in process will lead to higher quality 
products. The process capability is defined as the 
ability of a process to address the issue of stability, as 
defined and evaluated by trend or change [27]. A 
relationship between product quality and process 
capability should manifest itself via meaningful 
metrics that would exhibit trends and other 
characteristics that would be indicative of the stability 
of the process. Using the Space Shuttle software, 



Schneidewind reports an assessment of long-term 
metrics, such as Mean Time to Failure (MTTF), total 
failures per thousand lines of code (KLOC) change in 
code (churn), total test time normalized by KLOC 
change in code, remaining failures normalized by 
KLOC, change in code, and  predicted time to next 
failure to be indicative of the stability of the software 
process with respect to process capability [27].  

Structural O-O measurements, such as those 
defined in the Chidamber-Kemerer (CK) [9] and 
MOOD [7] O-O metric suites, are being used to 
evaluate and predict the quality of software [14].  The 
CK metric suite consist of six metrics: weighted 
methods per class (WMC), coupling between objects 
(CBO), depth of inheritance (DIT), number of children 
(NOC), response for a class (RFC) and lack of 
cohesion among methods (LCOM). Structural object-
orientation (O-O) measurements, such as those in the 
Chidamber-Kemerer (C-K) O-O metric suite [9], have 
been used to evaluate and predict fault-proneness [2, 5, 
6].   Tang et al. [30] studied three real time systems for 
testing and maintenance defects. Higher WMC and 
RFC were found to be associated with fault-proneness. 
El Emam et al. [13] studied the effect of project size on 
fault-proneness by using a large telecommunications 
application. Size was found to confound the effect of 
all the metrics on fault-proneness. In addition to this, 
Chidamber et al.[9] analyzed project productivity, 
rework, and design effort of three financial services 
applications. High CBO and low LCOM were 
associated with lower productivity, greater rework, and 
greater design effort. To summarize, there is a growing 
body of empirical evidence that supports the 
theoretical validity of the use of these internal metrics 
[2, 5] as predictors of fault-proneness. The consistency 
of these findings varies with the programming 
language [28].  Therefore, the metrics are still open to 
debate [10]. 

 
3. STREW Metric Suite 
 

The STREW Version 2.0 metric suite consists of 
nine constituent metric ratios, as shown in Table 1.  
The metrics are intended to cross-check each other and 
to triangulate upon an estimate of post-release field 
quality.  Post-release field quality information is 
measured using Trouble Reports (TRs) per thousand 
lines of code (KLOC), an external measure obtained 
from users. A TR [21] is a customer-reported problem 
whereby the software system does not behave as the 
customer expects.  Each STREW metric makes an 
individual contribution towards estimation of the post-
release field quality but work best when used together.  
Development teams record the values of these nine 

metrics and the actual TRs/KLOC of projects.  These 
historical values from prior projects are used to build a 
regression model that is used to estimate the 
TRs/KLOC of the current project under development. 
For our case studies, the collected TRs were screened 
to remove duplicates and TRs involving 
documentation problems.   

The use of the STREW metric suite is predicated on 
the existence of an extensive suite of automated unit 
test cases being created as development proceeds.  
These automated unit tests need to be structured as is 
done with the one of the object-oriented (O-O) xUnit 
testing frameworks, such as JUnit.  The STREW 
method is not applicable for script-based automated 
testing because, as will be discussed, the metrics are 
primarily based upon the O-O programming paradigm.  
When these xUnit frameworks are used with O-O 
programming, both test code and implementation code 
hierarchies emerge.  For each implementation source 
code class, there exists a corresponding test code class. 
Often each method/function in an implementation 
source code class will have one or more corresponding 
test code method(s)/functions(s).   In industrial 
practice, often such perfect parallel class structure and 
one-to-one method/function correspondence is not 
observed.    However, a test hierarchy which ultimately 
inherits from the TestCase class (the primary JUnit 
class) is created to exercise the implementation code. 

The nine constituent STREW metrics (SM1 – SM9) 
and instructions for data collection and computation 
are shown in Table 1.  The metrics can be categorized 
into three groups:  test quantification metrics, 
complexity and O-O metrics, and a size adjustment 
metric.      

The test quantification metrics (SM1, SM2, SM3, 
and SM4) are specifically intended to crosscheck each 
other to account for coding/testing styles.  For 
example, one developer might write fewer test cases, 
each with multiple asserts [26] checking various 
conditions.  Another developer might test the same 
conditions by writing many more test cases, each with 
only one assert.  We intend for our metric suite to 
provide useful guidance to each of these developers 
without prescribing the style of writing the test cases.  
Assertions [26] are used in two of the metrics as a 
means for demonstrating that the program is behaving 
as expected and as an indication of how thoroughly the 
source classes have been tested on a per class level. 
SM4 serves as a control measure to counter the 
confounding effect of class size (as shown by  El-
Emam [13]) on the prediction efficiency. The 
complexity and O-O metrics (SM5, SM6, SM7, and 
SM8) examines the relative ratio of test to source code 
for control flow complexity and for a subset of the CK 
metrics. 



Table 1:  STREW metric elements 

Test quantification   
Metric ID 

Number of Assertions 
SLOC* 

SM1 

Number of Test Cases 
SLOC* 

SM2 

Number of Assertions 
Number of Test Cases 

SM3 

_____(TLOC+/SLOC*)___ 
(Number of ClassesTest / 
Number of ClassesSource) 

SM4 

Complexity and O-O metrics  
Σ Cyclomatic ComplexityTest 

Σ Cyclomatic ComplexitySource 

SM5 

Σ CBOTest 

Σ CBOSource 
SM6 

Σ DITTest 

Σ DITSource 
SM7 

Σ WMCTest 

Σ WMCSource 
SM8 

Size adjustment  
SLOC* ____________                                             
Minimum SLOC* 

SM9 

* Source Lines of Code (SLOC) is computed as 
non-blank, non-comment source lines of code 
+ Test Lines of Code (TLOC) is computed as non-
blank, non-comment test lines of code 

The dual hierarchy of the test and source code 
allows us to collect and relate these metrics for both 
test and source code.  These relative ratios for a 
product under development can be compared with the 
historical values for prior comparable projects to 
indicate the relative complexity of the testing effort 
with respect to the source code.  The metrics are now 
discussed more fully:  

The cyclomatic complexity [20] metric for software 
systems is adapted from the classical graph theoretical 
cyclomatic number and can be defined as the number 
of linearly independent paths in a program.  Prior 
studies have found a strong correlation between the 
cyclomatic complexity measure and the number of test 
defects [31]. Studies have also shown that code 
complexity correlates strongly with program size 
measured by lines of code [18] and is an indication of 
the extent to which control flow is used.  The use of 
conditional statements increases the amount of testing 
required because there are more logic and data flow 
paths to be verified [19].      

The larger the inter-object coupling, the higher the 
sensitivity to change [9].  Therefore, maintenance of 
the code is more difficult [9].  Prior studies have 
shown CBO has been shown to be related to fault-

proneness [2, 5, 6]. As a result, the higher the inter-
object class coupling, the more rigorous the testing 
should be [9].  A higher DIT indicates desirable reuse 
but adds to the complexity of the code because a 
change or a failure in a super class propagates down 
the inheritance tree. The relationship between the DIT 
and fault-proneness [2, 5] was found to be strongly 
correlated. 

The number of methods and the complexity of 
methods involved is a predictor of how much time and 
effort is required to develop and maintain the class [9]. 
The larger the number of methods in a class, the 
greater is the potential impact on children, since the 
children will inherit all the methods defined in the 
class. The ratio of the WMCtest and WMCsource 
measures the relative ratio of the number of test 
methods to source methods. This measure serves to 
compare the testing effort on a method basis. The  
relationship between the WMC as an indicator of fault-
proneness has been demonstrated in prior studies [2, 
5]. The final metric is a relative size adjustment 
factor. Defect density has been shown to increase with 
class size [13].   We account project size in terms of 
SLOC for the projects used to build the STREW 
prediction equation using the size adjustment factor. 

 
4. Research Design 

Section 4.1 describes the building of the color-
coded feedback standards, and Section 4.2 the 
evaluation of the test quality feedback standards.  

4.1 Test Quality Feedback Standards 

Using historical data collected from previous 
completed comparable projects that were successful, 
the lower limit (LL) of each metric ratio is calculated 
using Equation 1. The color coding is determined by 
the results of this calculation.  The use of this equation 
is predicated on a normal distribution (The 
Kolmogorov-Smirnov test to check for normality) of 
TRs. If the TRs are not normally distributed, the Box-
Cox normal transformation can be used to transform 
the non-normal data into normal form [24]. The mean 
of the historical values for each metric (SMx) serves as 
the upper limit.  The historical data is computed from 
previously-successful projects with acceptable levels 
of TRs/KLOC. In the absence of historical data, 
standard values can be used that are built from projects 
with similar acceptable levels of TRs/KLOC.  The 
mean and the lower limit serve as the test quality 
feedback standards for the STREW metrics. 

n

DS
zSMXLL SMX

SMx
..)( 2/αµ −=                         (1)  



where SMx is the Mean of Metric SMx (SM1, SM2 … 
as shown in Table 1); n is the number of samples used 
to calculate SMx; S.D.SMx is the standard deviation of 
metric SMx; and Z /2 is the upper /2 quantile of the 
standard normal distribution.  

Using the computed values, we determine the color 
with which to code the metric, as shown in Table 2.   
SMx refers to the value of each particular STREW 
metric for the software system under development.  
This value is compared with the LL as computed by 
Equation 1 and with the average value (SMx).    

Table 3: STREW metric color coded feedback explanation 

Metric Meaning of RED or ORANGE Corrective Action   
SM1 The assertions/KLOC are lower 

compared to projects that were used 
to build the feedback standards. 

Add more assertions. These additional assertions should be 
meaningful assertions (can be cross checked with increase in 
coverage) 

SM2 The test cases/KLOC are lower 
compared to projects that were used 
to build the feedback standards. 

Add more test cases. These test case density but should be 
meaningful test cases (can be cross checked with increase in 
coverage) 

SM3 The assertions/test case are lower 
compared to projects that were used 
to build the feedback standards. 

Add more assertions per test case.    

SM4 The overall testing effort measured 
in terms of lines of code and classes 
was not comparable in terms of the 
projects that were used to build the 
feedback standards. 

Add more lines of test code. Increasing the overall testing 
effort (controlling the source code size) that would lead to an 
increase in the test lines of code and the test classes. 

M5 The complexity of the testing effort 
is not comparable in terms of the 
previously-acceptable projects 

Decrease cyclomatic complexity ratio by decreasing the 
cyclomatic complexity of source code. The simplest 
complexity measure, the cyclomatic complexity measure, ratio 
of the test code and source code indicates how well the testing 
has taken place at the complexity level. This metric works in 
conjunction with metric SM4 indicating that the testing effort 
was not thorough enough. When metric SM4 increases, metric 
SM5 should also increase with respect to checking for 
conditionals, infinite loops, unreachable code etc., that would 
increase the metric SM5 

SM6 The CBO ratio of the test code to 
source code is not comparable to the 
previously successful projects. 
 

Increase the CBO ratio by reducing the coupling between 
objects in source code. The larger the inter-object coupling, 
the higher the sensitivity to change. Therefore, maintenance of 
the code is more difficult.  As a result, the higher the inter-
object class coupling, the more rigorous the testing should be   
[9].  The CBO of the source code should be reduced to 
eliminate the dependencies caused by coupling. 

SM7 The DIT ratio of the test code to 
source code is not comparable to the 
previously successful projects. 

Increase DIT ratio by reducing DIT in the source code. Due 
to DIT, a change or a failure in a super class propagates down 
the inheritance tree. Hence we have to reduce the DIT of the 
source code to acceptable levels so that the DIT ratio is 
comparable to the projects used to build the standards. 

SM8 The WMC ratio of the test code to 
source code is not comparable to the 
previously successful projects. 

Increase WMC ratio by breaking down complex classes in 
source code to child classes. The larger the number of 
methods in a class, the greater is the potential impact on 
children, since the children will inherit all the methods defined 
in the class. Hence we have to reduce the number of methods 
in the source code to acceptable levels calculated by the 
projects used to build the standard. This metric essentially 
measures the importance of the modularity of the source code. 

SM9 SM9 is a size adjustment factor for the regression equation and does not provide corrective action 
direction to the programmer.    



Table 2: Color coded feedback standards 

Color Interpretation 
RED SMx < LL (Metric) 

ORANGE LL (Metric) ≤ SMx ≤ µSMx 
GREEN SMx > µSMx 

Table 3 provides detail on the specific corrective 
actions the programmer can take to change a metric from 
red to orange or from orange to green. The explanation of 
all these metrics is with respect to the standards built for 
each metric. 
4.2 Evaluation methodology 

To evaluate the efficacy of the test quality feedback 
standards, we initially use a robust Spearman rank 
correlation technique with respect to the number of 
metrics which were coded in each of the colors and the 
post-release TRs/KLOC. The desired correlation results 
between the test quality feedback and post-release field 
quality that would indicate the efficacy of the color-coded 
mechanism is shown in Table 4.  In Section 5, we 
investigate the overall efficacy of the test quality 
feedback across three development environments 
(academic, open source and industrial). 

Table 4: Desired correlation results with the color-
coded feedback 

Color Desired 
Spearman 

Correlation 

Interpretation 

RED + 
ORANGE 

Positive Increase in (RED + 
ORANGE) increases 

post-release TRs/KLOC 
GREEN Negative Increase in (GREEN) 

decreases post-release 
TRs/KLOC 

The higher the number of metrics coded as red and 
orange, the higher we expect the TRs/KLOC to be, as red 
and orange metrics denote a variation from previous 
testing efforts. If our color-coding works as planned, a 
positive correlation coefficient would exist between the 
number of red and orange metrics with the post-release 
TRs/KLOC.  Inversely, the correlation coefficient 
between the number of green metrics and the TRs/KLOC 
would be negative. We analyzed the color assigned to 
each of the metric ratios SM1-SM8.  SM9 is a size 
adjustment factor for the regression equation and does not 
provide corrective action direction to the programmer.    

5 Case Studies 

To investigate the effectiveness of the color-coded 
feedback, retrospective case studies were carried out from 
three environments; academic (A), open source (O) and 

industrial (I). (Appendix A provides a detailed discussion 
of these case studies). Several linear models were 
considered to predict trouble reports from red-plus-orange 
counts and the environment. Initially, a significant 
positive sample correlation coefficient (r = 0.49; p = 0.01) 
indicates that a simple linear regression with the counts as 
the predictor explains 24% (R2) of the variability in 
trouble report density (The coefficient of determination, 
R2, is the ratio of the regression sum of squares to the 
total sum of squares. As a ratio, it takes values between 0 
and 1, with larger values indicating more variability 
explained by the model and less unexplained variation). 
Because of small sample sizes (nA = 7; nO = 13; nI = 6), 
the correlation coefficient is significant only when data 
are pooled across environments and not when 
investigated separately for each. However, there is 
evidence of differences between the feedback 
measurements across the environments. A test for 
equality of mean red/orange counts across environments 
in an analysis of variance is highly significant (F = 12.5; 
p = 0.0002). For this reason, we also consider models 
which account for environment effects by allowing lines 
with different slopes or different intercepts across 
environments. In particular, we consider the following 
four nested models for the expected trouble reports 
response, E[TRs/KLOC]. In these models, RpO denotes 
the red-plus-orange count and ENVi is an indicator 
variable taking the value 1 if the observation comes from 
environment ‘I’ and taking the value 0 otherwise. A point 
to be noted is that if the analysis is performed using 
greens correspondingly reverse results would be obtained 
as the number of greens is a linear function of the number 
of red’s and oranges. 

M0 : E [TRs/KLOC] = 0 

M1 : E [TRs/KLOC] = 0 + 1RpO 

M2 : E [TRs/KLOC] = 0 + 1RpO + 2ENV2 + 3ENV3 

M3 : E [TRs/KLOC] = 0 + 1RpO + 2ENV2 + 3ENV3                                                              

+ 4RpO x ENV2 + 5RpO x 
ENV3   

Table 5 summarizes the fits of the models. The 
coefficient of determination R2 increases slightly as more 
and more complex models are considered. However, 
though models M2 and M3 explain more of the variability 
in TRs/KLOC, the F-tests to compare them with the 
nested simple linear regression model are not significant, 
so that environment-specific coefficients in the models do 
not differ significantly from 0. The models are 
sequentially nested, so that an F-test may be used to 
compare any model with any other model that comes 
below it in the table. The only such comparison of nested 
models which is found to be significant compares M0 and 
M1, F=7.52(p=0.011). Attempting to allow for 
environment-specific slopes and intercepts from the 



limited information contained in the sample leads to over 
fitting the model. In conclusion, a model in which 
TRs/KLOC are linearly increasing in RpO counts, with 
the increase being constant across environments, is 
entirely plausible and well-determined in light of this 
model selection 

Table 5: Model fits 

Model Description of 
mean 

TRs/KLOC 

Model 
degrees of 
freedom 

R2 Root 
MSE 

M0 Constant 0 . 2.18 
M1 Simple linear 

regression 
1 0.24 1.94 

M2 Different 
intercepts 

3 0.35 1.87 

M3 Different slopes, 
intercepts 

 0.37 1.93 

A scatter plot of the trouble report responses against 
the color-coded feedback appears in Figure 1. In the 
Figure, different characters are used for the different 
environments. The least squares regression line 
corresponding to model M1 is overlaid on this plot. The 
linear association can be seen upon inspection of the plot, 
but there is also some noise.  

 
Figure 1: Scatter plot of TRs 

Upon removal of one apparent outlying observation 
which had the largest observed trouble report ratio, the 
sample correlation jumps from r = 0.49 to r = 0.62, 
providing even stronger evidence of a strong, positive 
linear association between the color-coded feedback and 
fault proneness. Further, the assessment of variability of 

trouble reports also decreases from MSE  = 1.94 

TRs/KLOC to MSE  = 1.53 TRs/KLOC. A summary of 
model M0 with and without this extreme observation 
appears in Table 6. Plots of the residuals from this model 
do not indicate any non-normality or lack-of-fit, with the 
slight exception of the outlier. 

Table 6: With and without outlier data fit 

Regression data Least square 
regression line 

R2 

Outlier included -0.13 + 0.73 (RpO) 0.2385 
Outlier ignored -0.61 + 0.8 (RpO) 0.3819 

To characterize the extremity of outlying observations, 
diagnostics can be carried out on the residuals from the 
regression model.  The “deleted residual” is the difference 
between the observed TR’s/KLOC value and the value 
predicted by the fitted regression where that observation 
is ignored, or deleted from the dataset.  The “studentized” 
deleted residual, also called the externally studentized 
residual, is obtained by dividing the residual by the 
standard error of prediction corresponding to that value of 
the predictor (in this case, 3 RED/ORANGE flags). Here, 
the deleted residual is 6.14 (7.93-1.79), with a prediction 
standard error of 1.57, leading to the studentized value of 
3.91.  For a formal procedure to identify the observation 
as outlying, the studentized residual may be compared to 
the appropriate Bonferroni critical value from a t-
distribution, t(.025/24,22)=3.48.  Here the Bonferroni 
correction allows for the possibility that any of the 24 
observations might be an outlier.  It can be noted here that 
if studentized deleted residuals are similarly computed for 
the other 23 observations, none exceed two in absolute 
value and therefore none may be classified as outliers in 
this manner. Thus we are able to identify this externally 
studentized residual as an outlier. 

6. Limitations 

Drawing general conclusions from empirical studies in 
software engineering is difficult because any process 
depends to a large degree on a potentially large number of 
relevant context variables.  For this reason, we cannot 
assume a priori that the results of a study generalize 
beyond the specific environment in which it was 
conducted [3].  Researchers become more confident in a 
theory when similar findings emerge in different contexts 
[3]. By performing multiple case studies and/or 
experiments and recording the context variables of each 
case study, researchers can build up knowledge through a 
family of experiments [3] which examine the efficacy of a 
new practice.  Replication of experiments addresses 
threats to experimental validity. We address these issues 
related to empirical studies by replicating multiple case 
studies through a family of experiments in three different 
(academic, open source and industrial) contexts. Similar 
results in these contexts indicate the promise of our 
approach. 

Two other limitations in our investigation of test 
quality feedback are, the small size of the samples (seven 
academic, 13 open source, and six industrial) which make 
it difficult to obtain an individual statistical significance 



at a high 95% confidence. Second, the analyses were all 
done post-mortem, i.e. the feedback results were not used 
to improve the testing effort as development proceeded. 
This post-mortem feedback explains to a certain degree 
the similar quantity of metrics coded in each color as 
shown in Figure 3 in Appendix A.  
 
7. Conclusions and Future Work 

Feedback on important attributes of a software testing 
effort can be useful to developers because it helps identify 
weaknesses and the completeness of testing phase. In this 
paper we have reported on the use of the STREW 
measures for providing such a test quality feedback in a 
controlled academic, open source and industrial 
environment. The results indicate the efficacy of the 
STREW metric suite to provide meaningful feedback on 
the quality of the testing effort.  

Further, for providing test quality feedback, we have 
automated the collection and analysis of statement and 
branch coverage and an earlier version of the STREW 
metrics suite via an open source Eclipse plug-in GERT 
(Good Enough Reliability Tool) [12, 23].  We are 
updating the tool to reflect the current version of the 
STREW metric suite. We also plan to use the test quality 
feedback standards in-process in industrial organizations 
and to study the benefits of early feedback on the quality 
of the testing effort. 
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Appendix A:  Case Study Details 

In the following three sub-sections, details of the 
academic, open source and industrial case studies are 
provided. 

A.1 Academic feasibility study 
We performed a controlled feasibility with 

junior/senior-level students at North Carolina State 
University (NCSU). The students worked on a project 
that involved development of an Eclipse plug-in to collect 
software metrics. The project was six weeks in duration 

and used Java as the programming language. The JUnit 
testing framework was used for unit testing; students 
were required to have 80% statement coverage. A total of 
22 projects were submitted, and each group had four to 
five students. The projects were between 617 LOCsource 
and 3,631 LOCsource.  On average, the ratio of LOCtest to 
LOCsource was 0.35.  Each project was evaluated by 45 
independent test cases.  Actual TRs/KLOC was estimated 
by test case failures because the student projects were not 
released to customers.    

We used the technique of random splitting to build our 
test feedback standards from 15 randomly-selected 
academic projects and evaluated the built standards using 
the seven remaining projects.   

A.2 Open source case study 
To build the standards, shown in Table 7 twenty-seven 

open source projects that were developed in Java were 
selected from Sourceforge (http://sourceforge.net).  The 
following criterion was used to select the projects from 
Sourceforge.   
• software development tools.  All of the chosen 

projects are software development tools, i.e. tools 
that are used to build and test software and to detect 
defects in software systems.   

• download ranking of 85% or higher.  In Sourceforge, 
the projects are all ranked based on their downloads 
on a percentile scale from 0-100%.  For example, a 
ranking of 85% means that a product is in the top 
85% of quantity of downloads.  We chose this 
criterion because we reasoned that a comparative 
group of projects with similarly high download rates 
would be more likely to have a similar usage 
frequency by customers that would ultimately reflect 
the post-release field quality.    

• automated unit testing. The projects needed to have 
JUnit automated tests.   

• defect logs available.  The defect log needed to be 
available for identifying TRs with the date of the TR 
reported.  

• active fixing of TRs.  The TR fixing rate is used to 
indicate the system is still in use. The time between 
the reporting of a TR and the developer fixing it 
serves as a measure of this factor. Projects that had 
open TRs that were not assigned to anyone over a 
period of three months were not considered.  

• Sourceforge development stage of 4 or higher. This 
denotes the development stage of the project (1-6) 
where 1 is a planning stage and 6 is a mature phase.  
We chose a cut-off of 4 which indicates the project is 
at least a successful beta release. This criterion 
indicates that the projects that are at a similar stage of 
development and are not projects too early in the 
development lifecycle. 

 



Table 7: Test quality feedback standards 
Metric RED ORANGE GREEN 
SM1 < 0.0545 [ 0.0545, 0.0822 ] > 0.0822 
SM2 < 0.0721 [ 0.0721, 0.1261] > 0.1261 
SM3 < 0.7790 [ 0.7790, 1.0958] > 1.0958 
SM4 < 0.7881 [ 0.7881, 1.0427] > 1.0427 
SM5 < 0.2474 [ 0.2474, 0.3376] > 0.3376 
SM6 < 0.3417 [ 0.3417, 0.4490] > 0.4490 
SM7 < 0.3498 [ 0.3498, 0.4931] > 0.4931 
SM8 < 0.2349 [ 0.2349, 0.3217] > 0.3217 

Figure 2 shows the names of the projects and their 
sizes in LOCsource. On average, the ratio of LOCtest to 
LOCsource was 0.37. The projects range from around 2.5 
KLOCsource to 80 KLOCsource. The TRs are normally 
distributed with a range from 0.20 to 6.9 TRs/KLOC 
(Mean=1.42). The defect logs were screened for duplicate 
TRs to obtain an accurate measure of TRs/KLOC.  

 
Figure 2: Open source project sizes 

We used 13 versions of httpunit, one of the 27 open 
source software projects used in our earlier analysis to 
evaluate the test quality feedback standards.  The system 
has a lifetime in use of three years. Each release has a 
time period of 2.5-3 months so that the TRs/KLOC 
collected are representative of equal usage. The test 
quality feedback standards were calculated using the 27 
open source projects, as discussed earlier. The test quality 
feedback for the 13 versions was evaluated against the 

standards built using the 27 open source projects.  Figure 
3 shows the size of the 13 versions as they grew over a 
period of three years from almost 3 KLOC to 11.5 
KLOC.   

 
Figure 3: httpunit Project size (LOCsource)    

A.3 Structured industrial case study 
We analyzed a structured industrial case study to 

investigate the results under a more controlled 
environment. Six releases of a commercial software 
system “eXpert” were analyzed. A metaphor that 
describes the intended purpose of the system is a large 
sized “virtual file cabinet,” which holds a number of 
organized rich, i.e. annotated, links to physical or web-
based resources [1]. The system has 300+ potential users 
and is a Java, web-based client-server solution developed 
by four developers at VTT Technical Research Centre of 
Finland [1]. The four developers were 5-6th year 
university students with 1-4 years of industrial experience 
in software development. Team members were well-
versed in the Java O-O analysis and design approaches. 
The overall development time was 2.1 months and post-
release TRs/KLOC was available from failure logs.  The 
color categorization for the six releases of the industrial 
software system were calculated using the standards built 
from the open source projects described in Section A.2.  
Measures such as effort and time were collected to make 
sure that these factors were in a comparable level across 
all the releases. This data is presented in Table 8 [1].   

 

Table 8: Industrial project data description (adapted from [1]) 

 
 

No. 

Collected Data Release 
1 

Release 
2 

Release 
3 

Release 
4 

Release 
5 

Release 6 
(correction 

phase) 

Total 

1. Calendar time 2 2 2 1 1 0.4 8.4 
2. Total work effort (h) 195 190 192 111 96 36 820 
3. LOC per release 1821 2386 1962 460 842 227 7698 
4. TRs 4 5 4 4 11 0 28 
5.  TRs/KLOC 2.19 2.10 2.04 8.70 13.06 0.0 1.43 

 


