
Providing Test Quality Feedback Using Static Source Code
and Automatic Test Suite Metrics

Nachiappan Nagappan1, Laurie Williams2, Jason Osborne2, Mladen Vouk2, Pekka Abrahamsson3
1 Microsoft Research, Redmond, WA 98052

nachin@microsoft.com
2 North Carolina State University, Raleigh, NC 27695

lawilli3, jaosborn, vouk@ncsu.edu
3 VTT Technical Research Center of Finland, Oulu, FIN-90571

Pekka.Abrahamsson@vtt.fi

Abstract

A classic question in software development is “How
much testing is enough?” Aside from dynamic
coverage-based metrics, there are few measures that
can be used to provide guidance on the quality of an
automatic test suite as development proceeds. This
paper utilizes the Software Testing and Reliability
Early Warning (STREW) static metric suite to provide
a developer with indications of changes and additions
to their automated unit test suite and code for added
confidence that product quality will be high.
Retrospective case studies to assess the utility of using
the STREW metrics as a feedback mechanism were
performed in academic, open source and industrial
environments. The results indicate at statistically
significant levels the ability of the STREW metrics to
provide feedback on important attributes of an
automatic test suite and corresponding code.

1. Introduction

Organizations spend a considerable amount of time
and resources on software testing-related activities.
Studies [15, 29] show that software testing activities
accounts for 50% of the total software cost. Software
testers need a means of receiving feedback on whether
they have tested enough. Traditionally dynamic
coverage metrics, such as statement and branch
coverage, have been employed as indicators of the
quality of a test suite. In this paper, we propose an
alternative approach that utilizes static measures to
provide such feedback. This static metrics based
feedback can be obtained early and throughout the
software development process.

Our approach is built upon the Software Testing
and Reliability Early Warning (STREW) metric suite
[22], a set of nine static source and test code measures.
The STREW metric suite leverages automatic testing
effort to estimate post-release field quality. Our
research objective is to investigate the utility of the
Software Testing and Reliability Early Warning
(STREW) metric suite to provide a developer with
indications of changes and additions to their
automated unit test suite and code for added
confidence that product quality will be high. Our
approach is applicable for those developers who
incrementally create an automatic unit test suite as
code is implemented, as is done with the test-driven
development [4] practice.

Case studies performed in academic, open source
and large scale industrial environments indicate the
efficacy of the nine STREW metrics to act, in
aggregate, as early indicators of post-release field
quality [22]. In this paper, we present an approach
whereby the individual metrics are used to provide
information to the developer on prudent actions to take
to gain confidence in the quality of the system. Our
approach is automated via an Eclipse plug-in, the
Good Enough Reliability Tool (GERT)
(http://gert.sourceforge.net/) [11] which is integrated
into the programmer development environment. In
GERT, (1) historical STREW metric standards from
prior projects are saved; (2) STREW metrics for the
current project are calculated and compared with these
historical standards; and (3) the developer is provided
with color-coded feedback on the comparison (In
essence the feedback is on the difference between the
individual STREW metrics for the current release
compared to past releases).

The color-coded feedback, similar to prior studies
[8, 16, 25], is based upon a Red-Orange-Green scheme
for providing developer information on each metric
relative to historical data. The Red, Orange, and Green
colors are visual levels of discrimination often
identified with bad, ok/acceptable, and good,
respectively. The premise is that the developers are not
as interested in the exact numerical difference between
a current metric and historical value as they are in
whether they need to take action. The color coding
enables the developer to quickly understand specific
actions to take on. This paper does not investigate the
selection of Red, Orange and Green as appropriate
colors (in terms of display factors) according to human
computer interaction (HCI) studies.

In this paper, we investigate the use of these three
levels of discrimination of STREW metrics. For this
investigation, we ran retrospective case studies in
academic, open source, and a structured industrial
environment. Using statistical analysis, we combined
the data from these studies to examine the efficacy of
our approach.

The organization of the remainder of this paper is as
follows. Section 2 discusses the related work, and
Section 3 provides background on the STREW metric
suite. Section 4 provides the research design. Section
5 presents the case studies and results. The limitations,
conclusions and future work are discussed in Section 6
and 7.

2. Related Work

In this section we provide information previous
work related to the use of color coding for metric
feedback and on the relationship between metrics and
software quality.

2.1 Color Coded Feedback

Providing feedback on important attributes of an
automatic unit test suite allows the developers to
identify areas that could benefit from design
restructuring/more testing. Color coding [8, 16, 25]
aids developers in understanding whether a metric is
within acceptable limits. Our work on using color-
coded feedback is motivated by prior studies at IBM
[8] and Nortel Networks [16] that use color-coding to
provide feedback on metric values based on standards
(predefined or calculated). These studies also do not
involve any HCI investigation but an analysis of the
ability to provide in-process feedback. Their primary
objectives of using color coding were also to have
different levels of feedback.

The Enhanced Measurement for Early Risk
Assessment of Latent Defects (Emerald) [16, 17]
decision-support system at Nortel Networks combined
software measurements, quality models and delivery of
results to provide in-process feedback to developers to
improve telecommunications software reliability.
Emerald provides color-coded feedback to developers
using nine categories: green, yellow and seven shades
of red, based on acceptable values of non-OO metrics
related to software system link volume, testability,
decision complexity, and structuredness. A more
detailed explanation is available in [16]. The Emerald
system was shown to improve architectural integrity;
establish design guidelines and limits; focus efforts on
modules more likely to have faults; target the test
effort effectively; identify patch-prone modules early;
incorporate design strategies to account for the risk
associated with defective patches; and help obtain a
better understanding of field problems [16]. However,
STREW differs from Emerald because STREW
leverages the automated testing effort to estimate the
post-release field quality based on test and source code
metrics. Also STREW was developed for use by OO-
languages.

Similarly at IBM, feedback on the complexity of
Smalltalk methods, based on the source code allows
developers to modify their code to more desirable
characteristics in terms of the code complexity [8].
Color-coded feedback is presented in three levels, red,
yellow and green using Smalltalk complexity metrics,
such as number of blocks, number of temporary
variables and arguments, number of parameterized
expressions. STREW, similar to the work done at
Nortel Networks and IBM, provides feedback in three
ranges red, orange and green based on in-process
metrics obtained from both the source and test code.

2.2 Software Metrics and Quality

The STREW metrics relate software quality with
metrics. The following discussion investigates the
prior work in this field. The relationship between
product quality and process capability [27] and
maturity has been recognized as a major issue in
software engineering based on the premise that
improvements in process will lead to higher quality
products. The process capability is defined as the
ability of a process to address the issue of stability, as
defined and evaluated by trend or change [27]. A
relationship between product quality and process
capability should manifest itself via meaningful
metrics that would exhibit trends and other
characteristics that would be indicative of the stability
of the process. Using the Space Shuttle software,

Schneidewind reports an assessment of long-term
metrics, such as Mean Time to Failure (MTTF), total
failures per thousand lines of code (KLOC) change in
code (churn), total test time normalized by KLOC
change in code, remaining failures normalized by
KLOC, change in code, and predicted time to next
failure to be indicative of the stability of the software
process with respect to process capability [27].

Structural O-O measurements, such as those
defined in the Chidamber-Kemerer (CK) [9] and
MOOD [7] O-O metric suites, are being used to
evaluate and predict the quality of software [14]. The
CK metric suite consist of six metrics: weighted
methods per class (WMC), coupling between objects
(CBO), depth of inheritance (DIT), number of children
(NOC), response for a class (RFC) and lack of
cohesion among methods (LCOM). Structural object-
orientation (O-O) measurements, such as those in the
Chidamber-Kemerer (C-K) O-O metric suite [9], have
been used to evaluate and predict fault-proneness [2, 5,
6]. Tang et al. [30] studied three real time systems for
testing and maintenance defects. Higher WMC and
RFC were found to be associated with fault-proneness.
El Emam et al. [13] studied the effect of project size on
fault-proneness by using a large telecommunications
application. Size was found to confound the effect of
all the metrics on fault-proneness. In addition to this,
Chidamber et al.[9] analyzed project productivity,
rework, and design effort of three financial services
applications. High CBO and low LCOM were
associated with lower productivity, greater rework, and
greater design effort. To summarize, there is a growing
body of empirical evidence that supports the
theoretical validity of the use of these internal metrics
[2, 5] as predictors of fault-proneness. The consistency
of these findings varies with the programming
language [28]. Therefore, the metrics are still open to
debate [10].

3. STREW Metric Suite

The STREW Version 2.0 metric suite consists of
nine constituent metric ratios, as shown in Table 1.
The metrics are intended to cross-check each other and
to triangulate upon an estimate of post-release field
quality. Post-release field quality information is
measured using Trouble Reports (TRs) per thousand
lines of code (KLOC), an external measure obtained
from users. A TR [21] is a customer-reported problem
whereby the software system does not behave as the
customer expects. Each STREW metric makes an
individual contribution towards estimation of the post-
release field quality but work best when used together.
Development teams record the values of these nine

metrics and the actual TRs/KLOC of projects. These
historical values from prior projects are used to build a
regression model that is used to estimate the
TRs/KLOC of the current project under development.
For our case studies, the collected TRs were screened
to remove duplicates and TRs involving
documentation problems.

The use of the STREW metric suite is predicated on
the existence of an extensive suite of automated unit
test cases being created as development proceeds.
These automated unit tests need to be structured as is
done with the one of the object-oriented (O-O) xUnit
testing frameworks, such as JUnit. The STREW
method is not applicable for script-based automated
testing because, as will be discussed, the metrics are
primarily based upon the O-O programming paradigm.
When these xUnit frameworks are used with O-O
programming, both test code and implementation code
hierarchies emerge. For each implementation source
code class, there exists a corresponding test code class.
Often each method/function in an implementation
source code class will have one or more corresponding
test code method(s)/functions(s). In industrial
practice, often such perfect parallel class structure and
one-to-one method/function correspondence is not
observed. However, a test hierarchy which ultimately
inherits from the TestCase class (the primary JUnit
class) is created to exercise the implementation code.

The nine constituent STREW metrics (SM1 – SM9)
and instructions for data collection and computation
are shown in Table 1. The metrics can be categorized
into three groups: test quantification metrics,
complexity and O-O metrics, and a size adjustment
metric.

The test quantification metrics (SM1, SM2, SM3,
and SM4) are specifically intended to crosscheck each
other to account for coding/testing styles. For
example, one developer might write fewer test cases,
each with multiple asserts [26] checking various
conditions. Another developer might test the same
conditions by writing many more test cases, each with
only one assert. We intend for our metric suite to
provide useful guidance to each of these developers
without prescribing the style of writing the test cases.
Assertions [26] are used in two of the metrics as a
means for demonstrating that the program is behaving
as expected and as an indication of how thoroughly the
source classes have been tested on a per class level.
SM4 serves as a control measure to counter the
confounding effect of class size (as shown by El-
Emam [13]) on the prediction efficiency. The
complexity and O-O metrics (SM5, SM6, SM7, and
SM8) examines the relative ratio of test to source code
for control flow complexity and for a subset of the CK
metrics.

Table 1: STREW metric elements

Test quantification
Metric ID

Number of Assertions
SLOC*

SM1

Number of Test Cases
SLOC*

SM2

Number of Assertions
Number of Test Cases

SM3

_____(TLOC+/SLOC*)___
(Number of ClassesTest /
Number of ClassesSource)

SM4

Complexity and O-O metrics
Σ Cyclomatic ComplexityTest

Σ Cyclomatic ComplexitySource

SM5

Σ CBOTest

Σ CBOSource
SM6

Σ DITTest

Σ DITSource
SM7

Σ WMCTest

Σ WMCSource
SM8

Size adjustment
SLOC* ____________
Minimum SLOC*

SM9

* Source Lines of Code (SLOC) is computed as
non-blank, non-comment source lines of code
+ Test Lines of Code (TLOC) is computed as non-
blank, non-comment test lines of code

The dual hierarchy of the test and source code
allows us to collect and relate these metrics for both
test and source code. These relative ratios for a
product under development can be compared with the
historical values for prior comparable projects to
indicate the relative complexity of the testing effort
with respect to the source code. The metrics are now
discussed more fully:

The cyclomatic complexity [20] metric for software
systems is adapted from the classical graph theoretical
cyclomatic number and can be defined as the number
of linearly independent paths in a program. Prior
studies have found a strong correlation between the
cyclomatic complexity measure and the number of test
defects [31]. Studies have also shown that code
complexity correlates strongly with program size
measured by lines of code [18] and is an indication of
the extent to which control flow is used. The use of
conditional statements increases the amount of testing
required because there are more logic and data flow
paths to be verified [19].

The larger the inter-object coupling, the higher the
sensitivity to change [9]. Therefore, maintenance of
the code is more difficult [9]. Prior studies have
shown CBO has been shown to be related to fault-

proneness [2, 5, 6]. As a result, the higher the inter-
object class coupling, the more rigorous the testing
should be [9]. A higher DIT indicates desirable reuse
but adds to the complexity of the code because a
change or a failure in a super class propagates down
the inheritance tree. The relationship between the DIT
and fault-proneness [2, 5] was found to be strongly
correlated.

The number of methods and the complexity of
methods involved is a predictor of how much time and
effort is required to develop and maintain the class [9].
The larger the number of methods in a class, the
greater is the potential impact on children, since the
children will inherit all the methods defined in the
class. The ratio of the WMCtest and WMCsource
measures the relative ratio of the number of test
methods to source methods. This measure serves to
compare the testing effort on a method basis. The
relationship between the WMC as an indicator of fault-
proneness has been demonstrated in prior studies [2,
5]. The final metric is a relative size adjustment
factor. Defect density has been shown to increase with
class size [13]. We account project size in terms of
SLOC for the projects used to build the STREW
prediction equation using the size adjustment factor.

4. Research Design

Section 4.1 describes the building of the color-
coded feedback standards, and Section 4.2 the
evaluation of the test quality feedback standards.

4.1 Test Quality Feedback Standards

Using historical data collected from previous
completed comparable projects that were successful,
the lower limit (LL) of each metric ratio is calculated
using Equation 1. The color coding is determined by
the results of this calculation. The use of this equation
is predicated on a normal distribution (The
Kolmogorov-Smirnov test to check for normality) of
TRs. If the TRs are not normally distributed, the Box-
Cox normal transformation can be used to transform
the non-normal data into normal form [24]. The mean
of the historical values for each metric (SMx) serves as
the upper limit. The historical data is computed from
previously-successful projects with acceptable levels
of TRs/KLOC. In the absence of historical data,
standard values can be used that are built from projects
with similar acceptable levels of TRs/KLOC. The
mean and the lower limit serve as the test quality
feedback standards for the STREW metrics.

n

DS
zSMXLL SMX

SMx
..)(2/αµ −= (1)

where SMx is the Mean of Metric SMx (SM1, SM2 …
as shown in Table 1); n is the number of samples used
to calculate SMx; S.D.SMx is the standard deviation of
metric SMx; and Z /2 is the upper /2 quantile of the
standard normal distribution.

Using the computed values, we determine the color
with which to code the metric, as shown in Table 2.
SMx refers to the value of each particular STREW
metric for the software system under development.
This value is compared with the LL as computed by
Equation 1 and with the average value (SMx).

Table 3: STREW metric color coded feedback explanation

Metric Meaning of RED or ORANGE Corrective Action
SM1 The assertions/KLOC are lower

compared to projects that were used
to build the feedback standards.

Add more assertions. These additional assertions should be
meaningful assertions (can be cross checked with increase in
coverage)

SM2 The test cases/KLOC are lower
compared to projects that were used
to build the feedback standards.

Add more test cases. These test case density but should be
meaningful test cases (can be cross checked with increase in
coverage)

SM3 The assertions/test case are lower
compared to projects that were used
to build the feedback standards.

Add more assertions per test case.

SM4 The overall testing effort measured
in terms of lines of code and classes
was not comparable in terms of the
projects that were used to build the
feedback standards.

Add more lines of test code. Increasing the overall testing
effort (controlling the source code size) that would lead to an
increase in the test lines of code and the test classes.

M5 The complexity of the testing effort
is not comparable in terms of the
previously-acceptable projects

Decrease cyclomatic complexity ratio by decreasing the
cyclomatic complexity of source code. The simplest
complexity measure, the cyclomatic complexity measure, ratio
of the test code and source code indicates how well the testing
has taken place at the complexity level. This metric works in
conjunction with metric SM4 indicating that the testing effort
was not thorough enough. When metric SM4 increases, metric
SM5 should also increase with respect to checking for
conditionals, infinite loops, unreachable code etc., that would
increase the metric SM5

SM6 The CBO ratio of the test code to
source code is not comparable to the
previously successful projects.

Increase the CBO ratio by reducing the coupling between
objects in source code. The larger the inter-object coupling,
the higher the sensitivity to change. Therefore, maintenance of
the code is more difficult. As a result, the higher the inter-
object class coupling, the more rigorous the testing should be
[9]. The CBO of the source code should be reduced to
eliminate the dependencies caused by coupling.

SM7 The DIT ratio of the test code to
source code is not comparable to the
previously successful projects.

Increase DIT ratio by reducing DIT in the source code. Due
to DIT, a change or a failure in a super class propagates down
the inheritance tree. Hence we have to reduce the DIT of the
source code to acceptable levels so that the DIT ratio is
comparable to the projects used to build the standards.

SM8 The WMC ratio of the test code to
source code is not comparable to the
previously successful projects.

Increase WMC ratio by breaking down complex classes in
source code to child classes. The larger the number of
methods in a class, the greater is the potential impact on
children, since the children will inherit all the methods defined
in the class. Hence we have to reduce the number of methods
in the source code to acceptable levels calculated by the
projects used to build the standard. This metric essentially
measures the importance of the modularity of the source code.

SM9 SM9 is a size adjustment factor for the regression equation and does not provide corrective action
direction to the programmer.

Table 2: Color coded feedback standards

Color Interpretation
RED SMx < LL (Metric)

ORANGE LL (Metric) ≤ SMx ≤ µSMx
GREEN SMx > µSMx

Table 3 provides detail on the specific corrective
actions the programmer can take to change a metric from
red to orange or from orange to green. The explanation of
all these metrics is with respect to the standards built for
each metric.
4.2 Evaluation methodology

To evaluate the efficacy of the test quality feedback
standards, we initially use a robust Spearman rank
correlation technique with respect to the number of
metrics which were coded in each of the colors and the
post-release TRs/KLOC. The desired correlation results
between the test quality feedback and post-release field
quality that would indicate the efficacy of the color-coded
mechanism is shown in Table 4. In Section 5, we
investigate the overall efficacy of the test quality
feedback across three development environments
(academic, open source and industrial).

Table 4: Desired correlation results with the color-
coded feedback

Color Desired
Spearman

Correlation

Interpretation

RED +
ORANGE

Positive Increase in (RED +
ORANGE) increases

post-release TRs/KLOC
GREEN Negative Increase in (GREEN)

decreases post-release
TRs/KLOC

The higher the number of metrics coded as red and
orange, the higher we expect the TRs/KLOC to be, as red
and orange metrics denote a variation from previous
testing efforts. If our color-coding works as planned, a
positive correlation coefficient would exist between the
number of red and orange metrics with the post-release
TRs/KLOC. Inversely, the correlation coefficient
between the number of green metrics and the TRs/KLOC
would be negative. We analyzed the color assigned to
each of the metric ratios SM1-SM8. SM9 is a size
adjustment factor for the regression equation and does not
provide corrective action direction to the programmer.

5 Case Studies

To investigate the effectiveness of the color-coded
feedback, retrospective case studies were carried out from
three environments; academic (A), open source (O) and

industrial (I). (Appendix A provides a detailed discussion
of these case studies). Several linear models were
considered to predict trouble reports from red-plus-orange
counts and the environment. Initially, a significant
positive sample correlation coefficient (r = 0.49; p = 0.01)
indicates that a simple linear regression with the counts as
the predictor explains 24% (R2) of the variability in
trouble report density (The coefficient of determination,
R2, is the ratio of the regression sum of squares to the
total sum of squares. As a ratio, it takes values between 0
and 1, with larger values indicating more variability
explained by the model and less unexplained variation).
Because of small sample sizes (nA = 7; nO = 13; nI = 6),
the correlation coefficient is significant only when data
are pooled across environments and not when
investigated separately for each. However, there is
evidence of differences between the feedback
measurements across the environments. A test for
equality of mean red/orange counts across environments
in an analysis of variance is highly significant (F = 12.5;
p = 0.0002). For this reason, we also consider models
which account for environment effects by allowing lines
with different slopes or different intercepts across
environments. In particular, we consider the following
four nested models for the expected trouble reports
response, E[TRs/KLOC]. In these models, RpO denotes
the red-plus-orange count and ENVi is an indicator
variable taking the value 1 if the observation comes from
environment ‘I’ and taking the value 0 otherwise. A point
to be noted is that if the analysis is performed using
greens correspondingly reverse results would be obtained
as the number of greens is a linear function of the number
of red’s and oranges.

M0 : E [TRs/KLOC] = 0

M1 : E [TRs/KLOC] = 0 + 1RpO

M2 : E [TRs/KLOC] = 0 + 1RpO + 2ENV2 + 3ENV3

M3 : E [TRs/KLOC] = 0 + 1RpO + 2ENV2 + 3ENV3

+ 4RpO x ENV2 + 5RpO x
ENV3

Table 5 summarizes the fits of the models. The
coefficient of determination R2 increases slightly as more
and more complex models are considered. However,
though models M2 and M3 explain more of the variability
in TRs/KLOC, the F-tests to compare them with the
nested simple linear regression model are not significant,
so that environment-specific coefficients in the models do
not differ significantly from 0. The models are
sequentially nested, so that an F-test may be used to
compare any model with any other model that comes
below it in the table. The only such comparison of nested
models which is found to be significant compares M0 and
M1, F=7.52(p=0.011). Attempting to allow for
environment-specific slopes and intercepts from the

limited information contained in the sample leads to over
fitting the model. In conclusion, a model in which
TRs/KLOC are linearly increasing in RpO counts, with
the increase being constant across environments, is
entirely plausible and well-determined in light of this
model selection

Table 5: Model fits

Model Description of
mean

TRs/KLOC

Model
degrees of
freedom

R2 Root
MSE

M0 Constant 0 . 2.18
M1 Simple linear

regression
1 0.24 1.94

M2 Different
intercepts

3 0.35 1.87

M3 Different slopes,
intercepts

 0.37 1.93

A scatter plot of the trouble report responses against
the color-coded feedback appears in Figure 1. In the
Figure, different characters are used for the different
environments. The least squares regression line
corresponding to model M1 is overlaid on this plot. The
linear association can be seen upon inspection of the plot,
but there is also some noise.

Figure 1: Scatter plot of TRs

Upon removal of one apparent outlying observation
which had the largest observed trouble report ratio, the
sample correlation jumps from r = 0.49 to r = 0.62,
providing even stronger evidence of a strong, positive
linear association between the color-coded feedback and
fault proneness. Further, the assessment of variability of

trouble reports also decreases from MSE = 1.94

TRs/KLOC to MSE = 1.53 TRs/KLOC. A summary of
model M0 with and without this extreme observation
appears in Table 6. Plots of the residuals from this model
do not indicate any non-normality or lack-of-fit, with the
slight exception of the outlier.

Table 6: With and without outlier data fit

Regression data Least square
regression line

R2

Outlier included -0.13 + 0.73 (RpO) 0.2385
Outlier ignored -0.61 + 0.8 (RpO) 0.3819

To characterize the extremity of outlying observations,
diagnostics can be carried out on the residuals from the
regression model. The “deleted residual” is the difference
between the observed TR’s/KLOC value and the value
predicted by the fitted regression where that observation
is ignored, or deleted from the dataset. The “studentized”
deleted residual, also called the externally studentized
residual, is obtained by dividing the residual by the
standard error of prediction corresponding to that value of
the predictor (in this case, 3 RED/ORANGE flags). Here,
the deleted residual is 6.14 (7.93-1.79), with a prediction
standard error of 1.57, leading to the studentized value of
3.91. For a formal procedure to identify the observation
as outlying, the studentized residual may be compared to
the appropriate Bonferroni critical value from a t-
distribution, t(.025/24,22)=3.48. Here the Bonferroni
correction allows for the possibility that any of the 24
observations might be an outlier. It can be noted here that
if studentized deleted residuals are similarly computed for
the other 23 observations, none exceed two in absolute
value and therefore none may be classified as outliers in
this manner. Thus we are able to identify this externally
studentized residual as an outlier.

6. Limitations

Drawing general conclusions from empirical studies in
software engineering is difficult because any process
depends to a large degree on a potentially large number of
relevant context variables. For this reason, we cannot
assume a priori that the results of a study generalize
beyond the specific environment in which it was
conducted [3]. Researchers become more confident in a
theory when similar findings emerge in different contexts
[3]. By performing multiple case studies and/or
experiments and recording the context variables of each
case study, researchers can build up knowledge through a
family of experiments [3] which examine the efficacy of a
new practice. Replication of experiments addresses
threats to experimental validity. We address these issues
related to empirical studies by replicating multiple case
studies through a family of experiments in three different
(academic, open source and industrial) contexts. Similar
results in these contexts indicate the promise of our
approach.

Two other limitations in our investigation of test
quality feedback are, the small size of the samples (seven
academic, 13 open source, and six industrial) which make
it difficult to obtain an individual statistical significance

at a high 95% confidence. Second, the analyses were all
done post-mortem, i.e. the feedback results were not used
to improve the testing effort as development proceeded.
This post-mortem feedback explains to a certain degree
the similar quantity of metrics coded in each color as
shown in Figure 3 in Appendix A.

7. Conclusions and Future Work

Feedback on important attributes of a software testing
effort can be useful to developers because it helps identify
weaknesses and the completeness of testing phase. In this
paper we have reported on the use of the STREW
measures for providing such a test quality feedback in a
controlled academic, open source and industrial
environment. The results indicate the efficacy of the
STREW metric suite to provide meaningful feedback on
the quality of the testing effort.

Further, for providing test quality feedback, we have
automated the collection and analysis of statement and
branch coverage and an earlier version of the STREW
metrics suite via an open source Eclipse plug-in GERT
(Good Enough Reliability Tool) [12, 23]. We are
updating the tool to reflect the current version of the
STREW metric suite. We also plan to use the test quality
feedback standards in-process in industrial organizations
and to study the benefits of early feedback on the quality
of the testing effort.

References
[1] P. Abrahamsson, Koskela, J., "Extreme

Programming: A Survey of Empirical Data from a
Controlled Case Study", Proceedings of
International Symposium on Empirical Software
Engineering, pp. 73-82, 2004.

[2] V. Basili, Briand, L., Melo, W., "A Validation of
Object Oriented Design Metrics as Quality
Indicators", IEEE Transactions on Software
Engineering, 22(10), pp. 751 - 761, 1996.

[3] V. Basili, Shull, F., Lanubile, F., "Building
Knowledge through Families of Experiments", IEEE
Transactions on Software Engineering, 25(4), pp.
456-473, 1999.

[4] K. Beck, Test Driven Development -- by Example.
Boston: Addison Wesley, 2003.

[5] L. C. Briand, Wuest, J., Daly, J.W., Porter, D.V.,
"Exploring the Relationship between Design
Measures and Software Quality in Object Oriented
Systems", Journal of Systems and Software, 51(3),
pp. 245-273, 2000.

[6] L. C. Briand, Wuest, J., Ikonomovski, S., Lounis, H.,
"Investigating Quality Factors in Object-Oriented
Designs: An Industrial Case Study", Proceedings of
International Conference on Software Engineering,
pp. 345-354, 1999.

[7] F. Brito e Abreu, "The MOOD Metrics Set",
Proceedings of ECOOP '95 Workshop on Metrics,
pp. 1995.

[8] S. L. Burbeck, "Real-time complexity metrics for
Smalltalk methods", IBM Systems Journal, 35(2),
pp. 204-226, 1996.

[9] S. R. Chidamber and C. F. Kemerer, "A Metrics
Suite for Object Oriented Design", IEEE
Transactions on Software Engineering, 20(6), 1994.

[10] N. I. Churcher and M. J. Shepperd, "Comments on 'A
Metrics Suite for Object-Oriented Design'", IEEE
Transactions on Software Engineering, 21(3), pp.
263-5, 1995.

[11] M. Davidsson, J. Zheng, N. Nagappan, L. Williams,
and M. Vouk, "GERT: An Empirical Reliability
Estimation and Testing Feedback Tool",
Proceedings of International Conference on
Software Reliability Engineering, Saint-Malo,
France, pp. 2004.

[12] M. Davidsson, Zheng, J., Nagappan, N., Williams,
L., Vouk, M., "GERT: An Empirical Reliability
Estimation and Testing Feedback Tool",
Proceedings of International Symposium on
Software Reliability Engineering, St. Malo, France,
pp. 269-280, 2004.

[13] K. El Emam, Benlarbi, S., Goel, N., Rai, S.N., "The
Confounding Effect of Class Size on the Validity of
Object-Oriented Metrics", IEEE Transactions on
Software Engineering, 27(7), pp. 630 - 650, 2001.

[14] R. Harrison, S. J. Counsell, and R. V. Nithi, "An
Evaluation of the MOOD Set of Object-Oriented
Software Metrics", IEEE Transactions on Software
Engineering, 24(6), pp. 491-496, June 1998.

[15] M. Harrold, "Testing: A Roadmap", Proceedings of
International Conference on Software Engineering,
Limerick, Ireland, pp. 61-72, 2000.

[16] J. Hudepohl, S. J. Aud, T. Khoshgoftaar, E. B. Allen,
and J. Mayrand, "Emerald: Software Metrics and
Models on the Desktop", IEEE Software, 13(5), pp.
56-59, September 1996.

[17] J. P. A. Hudepohl, S.J.; Khoshgoftaar, T.M.; Allen,
E.B.; Mayrand, J., "Integrating Metrics and Models
for Software Risk Assessment", Proceedings of
Seventh International Symposium on Software
Reliability Engineering, pp. 93-98, 1996.

[18] S. H. Kan, Metrics and Models in Software Quality
Engineering. Reading, MA: Addison-Wesley, 1995.

[19] T. M. Khoshgoftaar, Munson, J.C., "Predicting
software development errors using software
complexity metrics", IEEE Journal on Selected
Areas in Communications, 8(2), pp. 253-261, 1990.

[20] T. J. McCabe, "A Complexity Measure", IEEE
Transactions on Software Engineering, 2(4), pp.
308-320, 1976.

[21] P. Mohagheghi, Conradi, R., Killi, O.M., Schwarz,
H., "An Empirical Study of Software Reuse vs.
Reliability and Stability", Proceedings of
International Conference on Software Engineering,
pp. 282-292, 2004.

[22] N. Nagappan, "A Software Testing and Reliability
Early Warning (STREW) Metric Suite," in Computer
Science Department. PhD Thesis, Raleigh: North
Carolina State University, 2005.

[23] N. Nagappan, Williams, L., Vouk M.A., ""Good
Enough" Software Reliability Estimation Plug-in for
Eclipse", Proceedings of IBM-ETX Workshop, in
conjunction with OOPSLA 2003, pp. 36-40, 2003.

[24] NIST/SEMATECH, e-Handbook of Statistical
Methods: http://www.itl.nist.gov/div898/handbook/.

[25] M. C. Ohlsson, Wohlin, C., "Identification of Green,
Yellow and Red Legacy Components", Proceedings
of International Conference on Software
Maintenance, pp. 6-15, 1998.

[26] D. S. Rosenblum, "A practical approach to
programming with assertions", IEEE Transactions on
Software Engineering, 21(1), pp. 19-31, 1995.

[27] N. F. Schneidewind, "An integrated process and
product model", Proceedings of Fifth International
Software Metrics Symposium, pp. 224-234, 1998.

[28] R. Subramanyam, Krishnan, M.S., "Empirical
Analysis of CK Metrics for Object-Oriented Design
Complexity: Implications for Software Defects",
IEEE Transactions on Software Engineering, 29(4),
pp. 297 - 310, 2003.

[29] B. V. Tahat, B. Korel, and A. Bader, "Requirement-
Based Automated Black-Box Test Generation",
Proceedings of 25th Annual International Computer
Software and Applications Conference, Chicago,
Illinois, pp. 489-495, 2001.

[30] M.-H. Tang, Kao, M-H., Chen, M-H., "An empirical
study on object-oriented metrics", Proceedings of
Sixth International Software Metrics Symposium, pp.
242-249, 1999.

[31] J. Troster, "Assessing Design-Quality Metrics on
Legacy Software," Software Engineering Process
Group, IBM Canada Ltd. Laboratory, North York,
Ontario 1992.

Appendix A: Case Study Details

In the following three sub-sections, details of the
academic, open source and industrial case studies are
provided.

A.1 Academic feasibility study
We performed a controlled feasibility with

junior/senior-level students at North Carolina State
University (NCSU). The students worked on a project
that involved development of an Eclipse plug-in to collect
software metrics. The project was six weeks in duration

and used Java as the programming language. The JUnit
testing framework was used for unit testing; students
were required to have 80% statement coverage. A total of
22 projects were submitted, and each group had four to
five students. The projects were between 617 LOCsource
and 3,631 LOCsource. On average, the ratio of LOCtest to
LOCsource was 0.35. Each project was evaluated by 45
independent test cases. Actual TRs/KLOC was estimated
by test case failures because the student projects were not
released to customers.

We used the technique of random splitting to build our
test feedback standards from 15 randomly-selected
academic projects and evaluated the built standards using
the seven remaining projects.

A.2 Open source case study
To build the standards, shown in Table 7 twenty-seven

open source projects that were developed in Java were
selected from Sourceforge (http://sourceforge.net). The
following criterion was used to select the projects from
Sourceforge.
• software development tools. All of the chosen

projects are software development tools, i.e. tools
that are used to build and test software and to detect
defects in software systems.

• download ranking of 85% or higher. In Sourceforge,
the projects are all ranked based on their downloads
on a percentile scale from 0-100%. For example, a
ranking of 85% means that a product is in the top
85% of quantity of downloads. We chose this
criterion because we reasoned that a comparative
group of projects with similarly high download rates
would be more likely to have a similar usage
frequency by customers that would ultimately reflect
the post-release field quality.

• automated unit testing. The projects needed to have
JUnit automated tests.

• defect logs available. The defect log needed to be
available for identifying TRs with the date of the TR
reported.

• active fixing of TRs. The TR fixing rate is used to
indicate the system is still in use. The time between
the reporting of a TR and the developer fixing it
serves as a measure of this factor. Projects that had
open TRs that were not assigned to anyone over a
period of three months were not considered.

• Sourceforge development stage of 4 or higher. This
denotes the development stage of the project (1-6)
where 1 is a planning stage and 6 is a mature phase.
We chose a cut-off of 4 which indicates the project is
at least a successful beta release. This criterion
indicates that the projects that are at a similar stage of
development and are not projects too early in the
development lifecycle.

Table 7: Test quality feedback standards
Metric RED ORANGE GREEN
SM1 < 0.0545 [0.0545, 0.0822] > 0.0822
SM2 < 0.0721 [0.0721, 0.1261] > 0.1261
SM3 < 0.7790 [0.7790, 1.0958] > 1.0958
SM4 < 0.7881 [0.7881, 1.0427] > 1.0427
SM5 < 0.2474 [0.2474, 0.3376] > 0.3376
SM6 < 0.3417 [0.3417, 0.4490] > 0.4490
SM7 < 0.3498 [0.3498, 0.4931] > 0.4931
SM8 < 0.2349 [0.2349, 0.3217] > 0.3217

Figure 2 shows the names of the projects and their
sizes in LOCsource. On average, the ratio of LOCtest to
LOCsource was 0.37. The projects range from around 2.5
KLOCsource to 80 KLOCsource. The TRs are normally
distributed with a range from 0.20 to 6.9 TRs/KLOC
(Mean=1.42). The defect logs were screened for duplicate
TRs to obtain an accurate measure of TRs/KLOC.

Figure 2: Open source project sizes

We used 13 versions of httpunit, one of the 27 open
source software projects used in our earlier analysis to
evaluate the test quality feedback standards. The system
has a lifetime in use of three years. Each release has a
time period of 2.5-3 months so that the TRs/KLOC
collected are representative of equal usage. The test
quality feedback standards were calculated using the 27
open source projects, as discussed earlier. The test quality
feedback for the 13 versions was evaluated against the

standards built using the 27 open source projects. Figure
3 shows the size of the 13 versions as they grew over a
period of three years from almost 3 KLOC to 11.5
KLOC.

Figure 3: httpunit Project size (LOCsource)

A.3 Structured industrial case study
We analyzed a structured industrial case study to

investigate the results under a more controlled
environment. Six releases of a commercial software
system “eXpert” were analyzed. A metaphor that
describes the intended purpose of the system is a large
sized “virtual file cabinet,” which holds a number of
organized rich, i.e. annotated, links to physical or web-
based resources [1]. The system has 300+ potential users
and is a Java, web-based client-server solution developed
by four developers at VTT Technical Research Centre of
Finland [1]. The four developers were 5-6th year
university students with 1-4 years of industrial experience
in software development. Team members were well-
versed in the Java O-O analysis and design approaches.
The overall development time was 2.1 months and post-
release TRs/KLOC was available from failure logs. The
color categorization for the six releases of the industrial
software system were calculated using the standards built
from the open source projects described in Section A.2.
Measures such as effort and time were collected to make
sure that these factors were in a comparable level across
all the releases. This data is presented in Table 8 [1].

Table 8: Industrial project data description (adapted from [1])

No.

Collected Data Release
1

Release
2

Release
3

Release
4

Release
5

Release 6
(correction

phase)

Total

1. Calendar time 2 2 2 1 1 0.4 8.4
2. Total work effort (h) 195 190 192 111 96 36 820
3. LOC per release 1821 2386 1962 460 842 227 7698
4. TRs 4 5 4 4 11 0 28
5. TRs/KLOC 2.19 2.10 2.04 8.70 13.06 0.0 1.43

