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Abstract Our approach is built upon the Software Testing
and Reliability Early Warning (STREW) metric suite
A classic question in software development is “How [22], a set of nine static source and test code measures.
much testing is enough?” Aside from dynamic The STREW metric suite leverages automatic testing
coverage-based metrics, there are few measures thateffort to estimate post-release field qualit@ur
can be used to provide guidance on the quality of an research objective is to investigate the utility of the
automatic test suite as development proceeds. ThisSoftware Testing and Reliability Early Warning
paper utilizes the Software Testing and Reliability (STREW) metric suite to provide a developer with
Early Warning (STREW) static metric suite to provide indications of changes and additions to their
a developer with indications of changes and additions automated unit test suite and code for added
to their automated unit test suite and code for added confidence that product quality will be higl©ur
confidence that product quality will be high. @approach is applicable for those developers who
Retrospective case studies to assess the utility of usingncrementally create an automatic unit test suite as
the STREW metrics as a feedback mechanism wereode is implemented, as is done with the test-driven
performed in academic, open source and industrial development [4] practice.
environments. The results indicate at statistically = Case studies performed in academic, open source
significant levels the ability of the STREW metrics to and large scale industrial environments indicate the
provide feedback on important attributes of an efficacy of the nine STREW metrics to act, in

automatic test suite and corresponding code. aggregate, as early indicators of post-release field
quality [22]. In this paper, we present an approach
whereby the individual metrics are used to provide
information to the developer on prudent actions to take
to gain confidence in the quality of the system. Our
Organizations spend a considerable amount of time approach is automated via an Eclipse plug-in, the
and resources on software testing-related activities.Goo‘_j Enough Reliability ~~ Tool — (GERT)

Studies [15, 29] show that software testing activities _(http.//qert.sourceforqe.net{ll] which IS integrated
accounts for 50% of the total software cost. Software MO the programmer development environment. In

testers need a means of receiving feedback on whethePERT. (.1) historical STREW metric standgrds from
they have tested enough. Traditionally dynamic prior projects are saved; (2) STREW metrics for the
coverage metrics, such as statement and branc current project are calculated and compared with these
coverage, have b’een employed as indicators of the istorical standards; and (3) the developer is provided

quality of a test suite. In this paper, we propose an with color-coded feedback on the comparison (In

alternative approach that utilizes static measures to &SSence the feedback is on the difference between the

provide such feedback. This static metrics based individual STREW metrics for the current release

feedback can be obtained early and throughout theOMpPared to past releases).
software development process.

1. Introduction




The color-coded feedback, similar to prior studies  The Enhanced Measurement for Early Risk
[8, 16, 25], is based upon a Red-Orange-Green schemeAssessment of Latent Defects (Emerald) [16, 17]
for providing developer information on each metric decision-support system at Nortel Networks combined
relative to historical data. The Red, Orange, and Greensoftware measurements, quality models and delivery of
colors are visual levels of discrimination often results to provide in-process feedback to developers to
identified with bad, ok/acceptable, and good, improve telecommunications software reliability.
respectively. The premise is that the developers are notEmerald provides color-coded feedback to developers
as interested in the exact numerical difference betweenusing nine categories: green, yellow and seven shades
a current metric and historical value as they are in of red, based on acceptable values of non-OO metrics
whether they need to take action. The color coding related to software system link volume, testability,
enables the developer to quickly understand specific decision complexity, and structuredness. A more
actions to take on. This paper does not investigate thedetailed explanation is available in [16]. The Emerald
selection of Red, Orange and Green as appropriatesystem was shown to improve architectural integrity;
colors (in terms of display factors) according to human establish design guidelines and limits; focus efforts on
computer interaction (HCI) studies. modules more likely to have faults; target the test

In this paper, we investigate the use of these threeeffort effectively; identify patch-prone modules early;
levels of discrimination of STREW metrics. For this incorporate design strategies to account for the risk
investigation, we ran retrospective case studies in associated with defective patches; and help obtain a
academic, open source, and a structured industrialbetter understanding of field problems [16]. However,
environment. Using statistical analysis, we combined STREW differs from Emerald because STREW
the data from these studies to examine the efficacy ofleverages the automated testing effort to estimate the
our approach. post-release field quality based on test and source code

The organization of the remainder of this paper is as metrics. Also STREW was developed for use by OO-
follows. Section 2 discusses the related work, and languages.

Section 3 provides background on the STREW metric ~ Similarly at IBM, feedback on the complexity of
suite. Section 4 provides the research design. SectionSmalltalk methods, based on the source code allows
5 presents the case studies and results. The limitationsgdevelopers to modify their code to more desirable
conclusions and future work are discussed in Section 6characteristics in terms of the code complexity [8].

and 7. Color-coded feedback is presented in three levels, red,
yellow and green using Smalltalk complexity metrics,
2. Related Work such as number of blocks, number of temporary

variables and arguments, number of parameterized
In this section we provide information previous e€xpressions. STREW, similar to the work done at
work related to the use of color Coding for metric Nortel Networks and IBM, pr0V|des feedback in three

feedback and on the relationship between metrics andranges red, orange and green based on in-process
software quality. metrics obtained from both the source and test code.

2.1 Color Coded Feedback 2.2 Software Metrics and Quality

Providing feedback on important attributes of an ~ The STREW metrics relate software quality with
automatic unit test suite allows the developers to metrics. The following discussion investigates the
identify areas that could benefit from design prior work in this field. The relationship between
restructuring/more testing. Color coding [8, 16, 25] product quality and process capability [27] and
aids developers in understanding whether a metric ismaturity has been recognized as a major issue in
within acceptable limits. Our work on using color- software engineering based on the premise that
coded feedback is motivated by prior studies at IBM improvements in process will lead to higher quality
[8] and Nortel Networks [16] that use color-coding to products. The process capability is defined as the
provide feedback on metric values based on standardsability of a process to address the issue of stability, as
(predefined or calculated). These studies also do notdefined and evaluated by trend or change [27]. A
involve any HCI investigation but an analysis of the relationship between product quality and process
ability to provide in-process feedback. Their primary capability should manifest itself via meaningful
objectives of using color coding were also to have metrics that would exhibit trends and other
different levels of feedback. characteristics that would be indicative of the stability

of the process. Using the Space Shuttle software,



Schneidewind reports an assessment of long-termmetrics and the actual TRs/KLOC of projects. These
metrics, such as Mean Time to Failure (MTTF), total historical values from prior projects are used to build a
failures per thousand lines of code (KLOC) change in regression model that is used to estimate the
code (churn), total test time normalized by KLOC TRs/KLOC of the current project under development.
change in code, remaining failures normalized by For our case studies, the collected TRs were screened
KLOC, change in code, and predicted time to next to remove duplicates and TRs involving
failure to be indicative of the stability of the software documentation problems.
process with respect to process capability [27]. The use of the STREW metric suite is predicated on
Structural O-O measurements, such as thosethe existence of an extensive suite of automated unit
defined in the Chidamber-Kemerer (CK) [9] and test cases being created as development proceeds.
MOOD [7] O-O metric suites, are being used to These automated unit tests need to be structured as is
evaluate and predict the quality of software [14]. The done with the one of the object-oriented (O-O) xUnit
CK metric suite consist of six metrics: weighted testing frameworks, such as JUnit. The STREW
methods per class (WMC), coupling between objects method is not applicable for script-based automated
(CBO), depth of inheritance (DIT), number of children testing because, as will be discussed, the metrics are
(NOC), response for a class (RFC) and lack of primarily based upon the O-O programming paradigm.
cohesion among methods (LCOM). Structural object- When these xUnit frameworks are used with O-O
orientation (O-O) measurements, such as those in theprogramming, both test code and implementation code
Chidamber-Kemerer (C-K) O-O metric suite [9], have hierarchies emerge. For each implementation source
been used to evaluate and predict fault-proneness [2, 5code class, there exists a corresponding test code class.
6]. Tang et al. [30] studied three real time systems for Often each method/function in an implementation
testing and maintenance defects. Higher WMC and source code class will have one or more corresponding
RFC were found to be associated with fault-proneness.test code method(s)/functions(s). In industrial
El Emam et al. [13] studied the effect of project size on practice, often such perfect parallel class structure and
fault-proneness by using a large telecommunications one-to-one method/function correspondence is not
application. Size was found to confound the effect of observed. However, a test hierarchy which ultimately
all the metrics on fault-proneness. In addition to this, inherits from theTestCaseclass (the primary JUnit
Chidamber et al.[9] analyzed project productivity, class) is created to exercise the implementation code.
rework, and design effort of three financial services  The nine constituent STREW metrics (SM1 — SM9)
applications. High CBO and low LCOM were and instructions for data collection and computation
associated with lower productivity, greater rework, and are shown in Table 1. The metrics can be categorized
greater design effort. To summarize, there is a growing into three groups: test quantification metrics,
body of empirical evidence that supports the complexity and O-O metrics, and a size adjustment
theoretical validity of the use of these internal metrics metric.
[2, 5] as predictors of fault-proneness. The consistency Thetest quantification metrics (SM1, SM2, SM3,
of these findings varies with the programming and SM4) are specifically intended to crosscheck each
language [28]. Therefore, the metrics are still open to other to account for coding/testing styles.  For

debate [10]. example, one developer might write fewer test cases,
each with multiple asserts [26] checking various
3. STREW Metric Suite conditions. Another developer might test the same

conditions by writing many more test cases, each with

The STREW Version 2.0 metric suite consists of Only one assert. We intend for our metric suite to
nine constituent metric ratios, as shown in Table 1. provide useful guidance to each of these developers
The metrics are intended to cross-check each other andvithout prescribing the style of writing the test cases.
to triangulate upon an estimate of post-release field Assertions [26] are used in two of the metrics as a
quality.  Post-release field quality information is means for demonstrating that the program is behaving
measured using Trouble Reports (TRs) per thousandas expected and as an indication of how thoroughly the
lines of code (KLOC), an external measure obtained source classes have been tested on a per class level.
from users. A TR [21] is a customer-reported problem SM4 serves as a control measure to counter the
whereby the software system does not behave as the&onfounding effect of class size (as shown by El-
customer expects. Each STREW metric makes anEmam [13]) on the prediction efficiency. The
individual contribution towards estimation of the post- complexity and O-O metrics (SM5, SM6, SM7, and
release field quality but work best when used together. SMB8) examines the relative ratio of test to source code

Development teams record the values of these ninefor control flow complexity and for a subset of the CK
metrics.



Table 1: STREW metric elements proneness [2, 5, 6As a result, the higher the inter-

Test quantification object class coupling, the more rigorous the testing

Metric D should be [9]. A higheDIT indicates desirable reuse
Number of Assertions SM1 but adds to th_e cqmplexity of the code because a
sSLOC change or a failure in a super clas_s propagates down
Number of Test Cases SM2 the inheritance tree. The relationship between the DIT
SLOC and fault-proneness [2, 5] was found to be strongly
Number of Assertions SM3 correlated,

The number of methodsand the complexity of

Number of Test Cases : . ) .
(TLOG/SLOC) Sva metho_dsnvol_ved is a predictor of hqw rr_1uch time and

(Number of Classes,/ effort is required to develop and maintain the class [9].

Number of Classggutg The larger the number of methods in a class, the
= = : greater is the potential impact on children, since the

LI T e O ) e e children will inherit all the methods defined in the

2 Cyclomatic Complexifys SM5 class. The ratio of the WMG@Gy and WMCqurce

% Cyclomatic Complexitjuce measures the relative ratio of the number of test

2 CBOrest SMé methods to source methods. This measure serves to

2 CBOsource compare the testing effort on a method basis. The

2 DITrest SM7 relationship between the WMC as an indicator of fault-

S DITsource proneness has been demonstrated in prior studies [2,

S WMCreet SMS8 5]. The final metric is arelative size adjustment

> WMCsource factor. Defect density has been shown to increase with

Size adjustment class size [13]. We account project size in terms of

SLOC SM9 SLOC for the projects used to build the STREW

Minimum SLOC prediction equation using the size adjustment factor.

" Source Lines of Code (SLOC) is computed as i

non-blank, non-comment source lines of code 4. Resear ch Design

" Test Lines of Code (TLOC) is computed as non- Section 4.1 describes the building of the color-

blank, non-comment test lines of code coded feedback standards, and Section 4.2 the

The dual hierarchy of the test and source code €evaluation of the test quality feedback standards.
allows us to collect and relate these metrics for both
test and source code. These relative ratios for a4.1 Test Quality Feedback Standards
product under development can be compared with the
historical values for prior comparable projects to  Using historical data collected from previous
indicate the relative complexity of the testing effort completed comparable projects that were successful,
with respect to the source code. The metrics are nowthe lower limit (LL) of each metric ratio is calculated
discussed more fully: using Equation 1. The color coding is determined by

The cyclomatic complexity20] metric for software  the results of this calculation. The use of this equation
systems is adapted from the classical graph theoreticalis predicated on a normal distribution (The
cyclomatic number and can be defined as the numberkolmogorov-Smirnov test to check for normality) of
of linearly independent paths in a program. Prior TRs. If the TRs are not normally distributed, the Box-
studies have found a strong correlation between theCox normal transformation can be used to transform
cyclomatic complexity measure and the number of test the non-normal data into normal form [24]. The mean
defects [31]. Studies have also shown that code of the historical values for each metrjg,) serves as
complexity correlates strongly with program size the upper limit. The historical data is computed from
measured by lines of code [18] and is an indication of previously-successful projects with acceptable levels
the extent to which control flow is used. The use of of TRs/KLOC. In the absence of historical data,
conditional statements increases the amount of testingstandard values can be used that are built from projects
required because there are more logic and data flowwith similar acceptable levels of TRs/KLOC. The

paths to be verified [19]. mean and the lower limit serve as the test quality
The larger the inter-objeatoupling the higher the  feedback standards for the STREW metrics.

sensitivity to change [9]. Therefore, maintenance of S.D.swix

the code is more difficult [9]. Prior studies have LL(SMX) = fgy— 22 In (1)

shown CBO has been shown to be relatedatot-



wherepusyy is the Mean of Metric SMx (SM1, SM2 ...

Using the computed values, we determine the color

as shown in Table 1); n is the number of samples usedwith which to code the metric, as shown in Table 2.

to calculateusyy: S.Dguy is the standard deviation of
metric SMx; andZ,, is the uppew/2 quantile of the

standard normal distribution.

SMx refers to the value of each particular STR

EW

metric for the software system under development.

This value is compared with the LL as computed by

Equation 1 and with the average valug)-

Table 3: STREW metric color coded feedback explanation

direction to the programmer.

Metric M eaning of RED or ORANGE Corrective Action

SM1 The assertions/KLOC are lowpAdd more assertions. These additional assertions should|be
compared to projects that were ugeaheaningful assertions (can be cross checked with increase in
to build the feedback standards. coverage)

SM2 The test cases/KLOC are loweAdd more test cases. These test case density but should be
compared to projects that were usemheaningful test cases (can be cross checked with increase in
to build the feedback standards. coverage)

SM3 The assertions/test case are lowAidd more assertions per test case.
compared to projects that were used
to build the feedback standards.

SM4 The overall testing effort measureddd more lines of test code. Increasing the overall testing
in terms of lines of code and clasgesffort (controlling the source code size) that would lead to an
was not comparable in terms of théncrease in the test lines of code and the test classes.
projects that were used to build the
feedback standards.

M5 The complexity of the testing effortDecrease cyclomatic complexity ratio by decreasing the
is not comparable in terms of theyclomatic complexity of source code. The simplest
previously-acceptable projects complexity measure, the cyclomatic complexity measure, ratio

of the test code and source code indicates how well the testing
has taken place at the complexity level. This metric works in
conjunction with metric SM4 indicating that the testing effort
was not thorough enough. When metric SM4 increases, metric
SM5 should also increase with respect to checking| for
conditionals, infinite loops, unreachable code etc., that wpuld
increase the metric SM5

SM6 The CBO ratio of the test code [tdncrease the CBO ratio by reducing the coupling between
source code is not comparable to thabjects in source code. The larger the inter-object coupling,
previously successful projects. the higher the sensitivity to change. Therefore, maintenance of

the code is more difficult. As a result, the higher the inter-
object chss coupling, the more rigorous the testing shoul

[9]. The CBO of the source code should be reduced to
eliminate the dependencies caused by coupling.

SM7 The DIT ratio of the test code tdncreaseDIT ratio by reducing DIT in the sour ce code. Due
source code is not comparable to th DIT, a change or a failure in a super class propagates gown
previously successful projects. the inheritance tree. Hence we have to reduce the DIT of the

source code to acceptable levels so that the DIT ratio is
comparable to the projects used to build the standards.

SM8 The WMC ratio of the test code ftdncrease WMC ratio by breaking down complex classes in
source code is not comparable to theurce code to child classes. The larger the number of
previously successful projects. methods in a class, the greater is the potential impagt on

children, since the children will inherit all the methods defiped
in the class. Hence we have to reduce the number of methods
in the source code to acceptable levels calculated by the
projects used to build the standard. This metric essentially
measures the importance of the modularity of the source cpde.

SM9 SM9 is a size adjustment factor for the regression equation and does not provide correative acti




Table2: Color coded feedback standards industrial (). (Appendix A provides a detailed discussion
of these case studies). Several linear models were

- considered to predict trouble reports from red-plus-orange
SMX < LL (Metric) counts and the environment. Initially, a significant
LL (Metric) < SMX < powx positive sample correlation coefficient (r = 0.49; p = 0.01)

GREEN SMX > psux indicates that a simple linear regression with the counts as

Table 3 provides detail on the specific corrective the predictor explains 24% fRof the variability in
actions the programmer can take to change a metric from{Ouble report density (The coefficient of determination,
red to orange or from orange to green. The explanation ofR"; is the ratio of the regression sum of squares to the

all these metrics is with respect to the standards built for total sum of squares. As a ratio, it takes values between 0
each metric. and 1, with larger values indicating more variability

; explained by the model and less unexplained variation).
4.2 Evaluation methodology Because of small sample sizeg é07; b = 13; n = 6),

To evaluate the efficacy of the test quality feedback the correlation coefficient is significant only when data
are pooled across environments and not when

standards, we initially use a robust Spearman rank. . .
) : . investigated separately for each. However, there is
correlation technique with respect to the number of _ . .
. . . evidence of differences between the feedback
metrics which were coded in each of the colors and the .
. . measurements across the environments. A test for
post-release TRs/KLOC. The desired correlation results . .
: . equality of mean red/orange counts across environments
between the test quality feedback and post-release fiel

quality that would indicate the efficacy of the color-coded n ?n analysis of variance I highly 5|gn|f|cant_ (F =125
. : . . p = 0.0002). For this reason, we also consider models
mechanism is shown in Table 4. In Section 5, we

investigate the overall efficacy of the test quality which account for environment effects by allowing lines

. with different slopes or different intercepts across
feedback across three development environments _ . . . :
. ) ) environments. In particular, we consider the following
(academic, open source and industrial).

four nested models for the expected trouble reports

Color I nter pretation

Table 4: Desired correlation resultswith the color- response, E[TRs/KLOC]. In these models, RpO denotes
coded feedback the red-plus-orange count and ENis an indicator
Color Desired Interpretation variable taking the value 1 if the observation comes from
Spearman environment ‘I' and taking the value 0 otherwise. A point
Correlation to be noted is that if the analysis is performed using
RED + Positive Increase in (RED + greens correspondingly reverse results would be obtained
ORANGE ORANGE) increases as the number of greens is a linear function of the number
post-release TRs/KLOC of red’s and oranges.
Negative Increase in (GREEN) Mo : E [TRS/KLOC] =,
decreﬁ;;ifgsct eleass 1, : E [TRSIKLOC] =fo+ B:RpO

The higher the number of metrics coded as red angM2 - B [TRS/KLOC] =Bo + B1RpO +B,ENV; + BsENVs

orange, the higher we expect the TRs/KLOC to be, as redMs : E [TRS/KLOC] =, + B;RpO +BENV, + BENV;

and orange metrics denote a variation from previous + BsRPO x ENV, + BsRpO X
testing efforts. If our color-coding works as planned, a ENV3

positive correlation coefficient would exist between the  Tahle 5 summarizes the fits of the models. The
number of red and orange metrics with the post-releasecoefficient of determination Rncreases slightly as more
TRs/KLOC. |nverse|y, the correlation coefficient and more Comp|ex models are considered. However,
between the number of green metrics and the TRs/KLOC though models M2 and M3 explain more of the variability
would be negative. We analyzed the color assigned tojn TRs/KLOC, the F-tests to compare them with the
each of the metric ratios SM1-SM8. SM9 is a size nested simple linear regression model are not significant,
adjustment factor for the regression equation and does nokg that environment-specific coefficients in the models do

provide corrective action direction to the programmer. not differ significantly from 0. The models are
' sequentially nested, so that an F-test may be used to
5 Case Studies compare any model with any other model that comes

below it in the table. The only such comparison of nested
To investigate the effectiveness of the color-coded models which is found to be significant comparesavid
feedback, retrospective case studies were carried out fronrM;, F=7.52(p=0.011). Attempting to allow for
three environments; academic (A), open source (O) andenvironment-specific slopes and intercepts from the



limited information contained in the sample leads to over Table 6: With and without outlier data fit
fitting the model. In conclusion, a model in which
TRs/KLOC are linearly increasing in RpO counts, with
the increase being constant across environments, is
entirely plausible and well-determined in light of this
model selection

Regression data Least square R?
regression line
Outlier included | -0.13 + 0.73 (RpQ) 0.2385
Outlier ignored -0.61 + 0.8 (RpO 0.3819

Table5: Modd fits To characterize the extremity of outlying observations,

diagnostics can be carried out on the residuals from the

Model | Description of Model R® | Root regression model. The “deleted residual” is the difference
mean degrees of MSE | petween the observed TR's/IKLOC value and the value

TRSKLOC freedom predicted by the fitted regression where that observation

Mo Constant 0 : 2.18 s ignored, or deleted from the dataset. The “studentized”
M Simple linear 1 0.24 | 1941  (eleted residual, also called the externally studentized
regression residual, is obtained by dividing the residual by the

M. Different 3 0.35 | 1.87| standard error of prediction corresponding to that value of
_Intercepts the predictor (in this case, 3 RED/ORANGE flags). Here,

Ms Different slopes, 037 | 1.93| the deleted residual is 6.14 (7.93-1.79), with a prediction

Intercepts standard error of 1.57, leading to the studentized value of

A scatter plot of the trouble report responses against3.91. For a formal procedure to identify the observation
the color-coded feedback appears in Figure 1. In theas outlying, the studentized residual may be compared to
Figure, different characters are used for the different the appropriate Bonferroni critical value from a t-
environments. The least squares regression linedistribution, t(.025/24,22)=3.48. Here the Bonferroni
corresponding to model Ms overlaid on this plot. The correction allows for the possibility that any of the 24
linear association can be seen upon inspection of the plotpbservations might be an outlier. It can be noted here that
but there is also some noise. if studentized deleted residuals are similarly computed for
the other 23 observations, none exceed two in absolute
value and therefore none may be classified as outliers in
this manner. Thus we are able to identify this externally
studentized residual as an outlier.

o - A Open Source +
0 Academic
+  Industrial

6. Limitations

TRs/KLOC

Drawing general conclusions from empirical studies in
software engineering is difficult because any process
depends to a large degree on a potentially large number of

A relevant context variables. For this reason, we cannot
o - A § assume a priori that the results of a study generalize
; J: g 8‘ beyond the specific environment in which it was
conducted [3]. Researchers become more confident in a
Redorange theory when similar findings emerge in different contexts
Figure 1: Scatter plot of TRs [3]. By performing multiple case studies and/or

experiments and recording the context variables of each
case study, researchers can build up knowledge through a
family of experiments [3] which examine the efficacy of a
new practice. Replication of experiments addresses
hreats to experimental validity. We address these issues
elated to empirical studies by replicating multiple case
studies through a family of experiments in three different
trouble reports also decreases frofMSE = 1.94 (academic, open source and industrial) contexts. Similar

TRs/KLOC to VMSE = 1.53 TRs/KLOC. A summary of results in these contexts indicate the promise of our

model My with and without this extreme observation approach.

; . : Two other limitations in our investigation of test
appears in Table 6. Plots of the residuals from this model . :
dgpnot indicate any non-normality or lack-of-fit, with the quality feedback are, the small size of the samples (seven

sliaht excention of the outlier academic, 13 open source, and six industrial) which make
9 P ' it difficult to obtain an individual statistical significance

Upon removal of one apparent outlying observation
which had the largest observed trouble report ratio, the
sample correlation jumps from r = 0.49 to r = 0.62,
providing even stronger evidence of a strong, positive
linear association between the color-coded feedback an
fault proneness. Further, the assessment of variability of



at a high 95% confidence. Second, the analyses were al[7] F. Brito e Abreu, "The MOOD Metrics Set",
done post-mortem, i.e. the feedback results were not used  Proceedings of ECOOP '95 Workshop on Metrics,
to improve the testing effort as development proceeded. pp. 1995.

This post-mortem feedback explains to a certain degree[8] S. L. Burbeck, "Real-time complexity metrics for
the similar quantity of metrics coded in each color as Smalltalk methods"]BM Systems Journal 35(2),

shown in Figure 3 in Appendix A. pp. 204-226, 1996.
[9] S. R. Chidamber and C. F. Kemerer, "A Metrics
7. Conclusions and Future Work Suite for Object Oriented Design", IEEE

. ) ) Transactions on Software Engineerjng0(6), 1994.
Feedback on important attributes of a software testing 10]N. I. Churcher and M. J. Shepperd, "Comments on ‘A
effort can be useful to developers because it helps identify “Metrics Suite for Object-Oriented Design1EEE
weaknesses and the completeness of testing phase. In this  Transactions on Software Engineering21(3), pp.
paper we have reported on the use of the STREW 5535 1995

measures for providing such a test quality feedback in a 11]M. Davidsson, J. Zheng, N. Nagappan, L. Williams,

controlled academic, open source and industrial and M. Vouk, "GERT: An Empirical Reliability

environment. The results indicate the efficacy of the Estimation and Testing Feedback Tool",
STREW metric suite to provide meaningful feedback on Proceedings of International Conference on
the quality of the testing effort. Software  Reliability ~Engineering, Saint-Malo,

Further, for providing test quality feedback, we have France, pp. 2004.

automated the collection and analysis of statement andi12] M. Davidsson, Zheng, J., Nagappan, N., Williams,
branch coverage and an earlier version of the STREW" | = vouk, M., "GERT: An Empirical Reliability

metrics suite via an open source Eclipse plug-in GERT Estimation and Testing Feedback Tool",
(Good Enough Reliability Tool) [12, 23]. We are Proceedings  of International Symposium on

updating the tool to reflect the current version of the Software Reliability Engineering, St. Malo, France,
STREW metric suite. We also plan to use the test quality pp. 269-280, 2004.

feedback standards in-process in industrial organizations{13jK. E| Emam, Benlarbi, S., Goel, N., Rai, S.N., "The
and to study the benefits of early feedback on the quality "~ confounding Effect of Class Size on the Validity of

of the testing effort. Object-Oriented Metrics",IEEE Transactions on
Software Engineering27(7), pp. 630 - 650, 2001.
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Appendix A: Case Study Details

In the following three sub-sections, details of the
academic, open source and industrial case studies are
provided.

A.1 Academic feasibility study

We performed a controlled feasibility with
junior/senior-level students at North Carolina State
University (NCSU). The students worked on a project
that involved development of an Eclipse plug-in to collect
software metrics. The project was six weeks in duration

and used Java as the programming language. The JUnit
testing framework was used for unit testing; students
were required to have 80% statement coverage. A total of
22 projects were submitted, and each group had four to
five students. The projects were between 617 QEC

and 3,631 LOG. On average, the ratio of LQGto
LOCsource Was 0.35. Each project was evaluated by 45
independent test cases. Actual TRs/KLOC was estimated
by test case failures because the student projects were not
released to customers.

We used the technique of random splitting to build our
test feedback standards from 15 randomly-selected
academic projects and evaluated the built standards using
the seven remaining projects.

A.2 Open sour ce case study

To build the standards, shown in Table 7 twenty-seven
open source projects that were developed in Java were
selected from Sourceforgét{p://sourceforge.ngt The
following criterion was used to select the projects from
Sourceforge.

» software development tools All of the chosen
projects are software development tools, i.e. tools
that are used to build and test software and to detect
defects in software systems.
download ranking of 85% or highein Sourceforge,
the projects are all ranked based on their downloads
on a percentile scale from 0-100%. For example, a
ranking of 85% means that a product is in the top
85% of quantity of downloads. We chose this
criterion because we reasoned that a comparative
group of projects with similarly high download rates
would be more likely to have a similar usage
frequency by customers that would ultimately reflect
the post-release field quality.

» automated unit testingrhe projects needed to have
JUnit automated tests.

» defect logs available The defect log needed to be
available for identifying TRs with the date of the TR
reported.

» active fixing of TRs The TR fixing rate is used to
indicate the system is still in use. The time between
the reporting of a TR and the developer fixing it
serves as a measure of this factor. Projects that had
open TRs that were not assigned to anyone over a
period of three months were not considered.
Sourceforge development stage of 4 or highdiis
denotes the development stage of the project (1-6)
where 1 is a planning stage and 6 is a mature phase.
We chose a cut-off of 4 which indicates the project is
at least a successful beta release. This criterion
indicates that the projects that are at a similar stage of
development and are not projects too early in the
development lifecycle.




Table7: Test quality feedback standards standards built using the 27 open source projects. Figure
Metric RED ORANGE GREEN 3 shows the size of the 13 versions as they grew over a
SM1 < 0.0545 [ 0.0545, 0.0822|]] > 0.0822 period of three years from almost 3 KLOC to 11.5

SM2 | <0.0721] [0.0721,0.1261] >o0.1261 KLOC.

SM3 | <0.7790| [0.7790,1.0958] > 1.0958 e
SM4 | <0.7881| [0.7881,1.0427] >1.0427
SM5 | <0.2474| [0.2474,0.3376] > 0.3376
SM6 | <0.3417| [0.3417,0.4490] > 0.4490
SM7 <0.3498| [0.3498,0.4931] >0.4981
SM8 | <0.2349| [0.2349,0.3217] >0.3217

- Project size

SLOC

Figure 2 shows the names of the projects and their
sizes in LOGyee On average, the ratio of LQE to
LOCsource Was 0.37. The projects range from around 2.5
KLOCsource 10 80 KLOGouce The TRs are normally
distributed with a range from 0.20 to 6.9 TRs/KLOC

123 124 125 176 1 130 140 141 145 151 102 193 104

(Mean=1.42). The defect logs were screened for duplicate SOTTWARE VERSIONS
TRs to obtain an accurate measure of TRs/KLOC. Figure 3: httpunit Project size (L OCsuree)
A.3 Structured industrial case study

We analyzed a structured industrial case study to
investigate the results under a more controlled
environment. Six releases of a commercial software
system ‘“eXpert” were analyzed. A metaphor that
g describes the intended purpose of the system is a large
@ o sized “virtual file cabinet,” which holds a number of

organized rich, i.e. annotated, links to physical or web-
based resources [1]. The system has 300+ potential users
and is a Java, web-based client-server solution developed
by four developers at VTT Technical Research Centre of
Finland [1]. The four developers were 5-6th year

60000 —

20000 —

12345075 510101213 14151517 18192021 2226 24 25 20 27 university students with 1-4 years of industrial experience
Open Source Projects in software development. Team members were well-
Figure 2: Open source project sizes versed in the Java O-O analysis and design approaches.

We used 13 versions @ittpunit one of the 27 open  The overall development time was 2.1 months and post-
source software projects used in our earlier analysis torelease TRs/KLOC was available from failure logs. The
evaluate the test quality feedback standards. The systengolor categorization for the six releases of the industrial
has a lifetime in use of three years. Each release has &oftware system were calculated using the standards built
time period of 2.5-3 months so that the TRs/KLOC from the open source projects described in Section A.2.
collected are representative of equal usage. The tesiMeasures such as effort and time were collected to make
quality feedback standards were calculated using the 27sure that these factors were in a comparable level across
open source projects, as discussed earlier. The test qualitpll the releases. This data is presented in Table 8 [1].
feedback for the 13 versions was evaluated against the

Table 8: Industrial project data description (adapted from [1])

Collected Data Releage Release| Release| Release| Release| Release 6| Total
1 2 3 4 5 (correction

No. phase)
1. Calendar time 2 2 2 1 1 0.4 8.4
2. Total work effort (h) 195 190 192 111 96 36 820
3. LOC per release 1821 2386 1962 460 842 227 7698
4, TRs 4 5 4 4 11 0 28
5. TRs/KLOC 2.19 2.10 2.04 8.70 13.06 0.0 1.43




