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Abstract— We propose a method for evaluating the localiza-
tion accuracy of an indoor navigation system in arbitrarily large
environments. Instead of using externally mounted sensors, as
required by most ground-truth systems, our approach involves
mounting only landmarks consisting of distinct patterns printed
on inexpensive foam boards. A pose estimation algorithm com-
putes the pose of the robot with respect to the landmark using
the image obtained by an on-board camera. We demonstrate
that such an approach is capable of providing accurate metric
estimates of a mobile robot’s position and orientation with
respect to the landmarks in arbitrarily-sized environments
over arbitrarily-long trials. Furthermore, because the approach
involves minimal outfitting of the environment, we show that
only a small amount of setup time is needed to apply the method
to a new environment. Experiments involving a state-of-the-art
navigation system demonstrate the ability of the method to
facilitate accurate localization measurements over aribtrarily
long periods of time.

I. INTRODUCTION

Quantifying the performance of a robotic system is im-
portant for the purpose of being able to objectively compare
different systems, measure the progress of the research
endeavor, and determine whether a system is qualified for
a given application. While performance metrics and bench-
marks are common in other engineering domains as well
as other branches of robotics (e.g., industrial manipulators),
autonomous navigation lacks such established metrics and
methods. Even though there are multiple reasons why quan-
tifying the performance of a navigation system is difficult,
ranging from theoretical (what exactly should be measured?)
to practical (what should the environment look like?), one
remaining barrier is the lack of a simple, inexpensive,
and non-intrusive method of accurately and independently
determining the position of the robot (ground truth).

For such a method to scale to real environments of many
types and sizes (factory floors, office buildings, warehouses,
stores, etc.), the simplicity of the system is key. First,
the setup time required should be at most linear in the
size of the environment. Second, there should be nothing
about the technology used by the system that prevents its
deployment in large environments. Furthermore, the system
must be inexpensive to allow wide deployment in many
environments, thus removing budget considerations from the
choice of environment size. Finally, the system needs to
be non-intrusive to enable deployment in real environments
without disrupting any daily activity taking place. Being non-
intrusive is critical in enabling performance testing over long

periods of time (e.g., days or weeks).
We propose a method for measuring the localization

performance of a navigation system that satisfies these re-
quirements. The approach requires very simple outfitting of
an environment, namely placing foam boards with printed
patterns at specified waypoints on the ceiling along with an
upward facing camera on the robot. For practical reasons we
focus on indoor environments and wheeled robots, though the
method could easily be adapted to remove these restrictions.
The localization performance is determined by measuring
the accuracy and precision of position and orientation at the
sequence of waypoints chosen in a task- and environment-
specific manner. Because the system is both inexpensive
and easy to set up, it scales well and is thus applicable to
real indoor environments of virtually any size and any type,
as well as to essentially any mobile robot system. Equally
important, the limited impact of the foam boards on the
indoor environment enables measuring localization accuracy
over arbitrarily long running times. Moreover, automatically
determining the location of the robot over long periods of
time is critical for measuring other aspects of navigation per-
formance, such as speed, safety, and reliability. We describe
the procedure for using this method and evaluate its accuracy,
as well as validate its use by measuring the performance of
a state-of-the-art navigation system.

II. PREVIOUS WORK

Over the past decade the robotics community has begun
to devote more attention to developing means of comparing
and benchmarking algorithms. This shift mirrors a trend
in computer vision that began with the work of [8], [9].
For the most part, the focus has been on validating system
components like path planning and tracking, as in the case
in [2], where an external camera system covering an area of
25 m2 provided ground truth information with an accuracy
of 3 cm. In the case of SLAM, one of the earliest attempts
is the Radish dataset,1 which is an open collection of data
shared by researchers all over the world for the purpose of
evaluating and comparing algorithms. The repository enables
qualitative assessment of SLAM results (e.g., visual aspect of
the resulting map), but the lack of ground-truth information
prevents a quantitative assessment. Similar collections can

1http://radish.sourceforge.net/



be found online [10],2,3 as well as open-source algorithms
to aid comparison;4 and some attempts have been made at
defining methods for comparison [1].

More recently, significant effort has been put toward
creating SLAM benchmark datasets with ground truth in-
formation, enabling quantitative evaluation of algorithms.
The Rawseeds project [3], [5]5 contains multisensor datasets,
along with benchmark problems and solutions; ground truth
was obtained via a set of fixed lasers and cameras throughout
the environment, all calibrated together. The vision system
achieves an accuracy of 112 mm and -0.8 degrees, while
the laser system achieves an accuracy of 20 mm and 0.2
degrees. The SLAM benchmark at the University of Freiburg
[4], [7] proposes to measure the performance of SLAM
systems using “relative relations” between poses, basing all
computation on the corrected trajectory of the robot without
regard to a global coordinate system or environment model.
The authors validate the benchmark on Radish datasets
augmented with ground truth generated by manually aligning
sensor data. More recently, Sturm et al. [12], [11] present the
Technical University of Munich’s RGB-D SLAM dataset and
benchmark,6 for which ground truth was obtained using a
motion capture system with an accuracy of 10 mm and 0.5
degrees.

All of these benchmarks rely on pre-recorded data paired
with ground-truth information. Since data is recorded with
a particular equipment in a particular environment, it is
difficult to compare solutions that use a different sensor suite
or are optimized for a different environment. Additionally,
while the existing benchmarks cover the problem of creating
maps (SLAM), they cannot be used to compare naviga-
tion performance. Furthermore, the methods used to gather
ground truth are time- and cost-prohibitive to reproduce in
other labs, and they do not scale well to larger environments.
These are some of the problems that our proposed method
is designed to address.

Another set of efforts revolves around qualitative eval-
uation of indoor navigation systems through contests, as
is the case with RoboCupRescue [6]7 or RoboCupHome
[15],8 where the focus is on achieving a particular task such
as finding victims or successfully navigating to a set of
learned locations. While there has been a series of efforts to
define benchmarks for robotics in general and navigation in
particular, such as the EURON Benchmarking Initiative9 and
its related workshops,10 the Robot Standards and Reference
Architectures (RoSta) project,11 and the Performance Metrics
for Intelligent Systems (PerMIS) workshop12 organized by

2http://www.robots.ox.ac.uk/NewCollegeData
3http://www.informatik.uni-freiburg.de/˜stachnis/datasets.html
4http://openslam.org
5http://www.rawseeds.org
6http://vision.in.tum.de/data/datasets/rgbd-dataset
7http://wiki.robocup.org/wiki/Robot League
8http://wiki.robocup.org/wiki/Home League
9http://www.euron.org/activities/benchmarks
10http://www.robot.uji.es/EURON/en
11http://www.robot-standards.eu
12http://www.nist.gov/el/isd/ks/permis.cfm

the National Institute of Standards and Technology (NIST),
these efforts have not yet generated a definitive set of
performance metrics and benchmarks for navigation. Two
years ago NIST conducted navigation performance tests at
the Alabama Robot Technology Park (RTP) near Huntsville,
Alabama,13 but correspondence with the organizers has re-
vealed that while the project was successful at comparing a
number of systems qualitatively, no results have been shared
with the community yet.

The remotely accessible Teleworkbench [13] has a similar
aim as ours, namely to facilitate comparison of mobile robot
algorithms. In that work, small robots navigate a small
10 m2 space, and robot positions are determined by reading
barcodes mounted on the top of the robots using overhead
cameras. Like the other approaches, this system does not
have the ability to scale to large environments.

Tong and Barfoot [14] describe a system which involves
placing large retroreflective markers on walls throughout
an environment. A 360-degree 3D laser is used to detect
the markers, whose positions are determined via a SLAM
algorithm. Like our approach, this retroreflective system
is scalable to large environments and, once set up, can
be used to continuously measure the robot’s location. The
system achieves relative accuracy on the order of tens of
millimeters in position and half a degree in orientation.
To our knowledge, this is the only other published work
for benchmarking navigation systems on large scales in a
quantitative way. Our approach is arguably simpler to deploy
(since it does not require a scanning 3D laser) and is less
likely to be affected by occlusion, at the expense of not
computing absolute position throughout the space.

III. APPROACH

A. Overview

Our method requires placing landmarks, namely printed
patterns on foam boards, throughout the environment. A
calibration procedure is performed to determine the tilt of
the floor underneath each landmark. A separate calibration
procedure is used to determine the transformation between
the coordinate system of the camera (which is mounted on
the robot) and the coordinate system of the robot. After these
steps, the system is in place and can be used to evaluate the
performance of a robot navigation system automatically and
for indefinite periods of time. We now describe these steps
in more detail.

B. Landmarks

The landmarks are foam boards on which are printed a
pattern that allows a pose estimation algorithm to determine
the pose of the camera with respect to the landmark. Possible
choices for patterns include various AR (augmented reality)
tags or otherwise unique configurations of monochrome or
color shapes to facilitate detection and pose estimation. We
use a custom designed pattern consisting of a black-and-
white checkerboard with a grid of 14 squares by 10 squares;

13https://sites.google.com/site/templearra/Welcome



Fig. 1. The checkerboard pattern used for pose estimation.

the inner 4 × 4 area replaced by four circles centered with
respect to each of the four quadrants of this inner area,
as shown in Figure 1. Beyond the radius of each circle
are four arcs of varying length and spacing, enabling the
circles to be distinguished from one another. This pattern
is easily detectable, even when a significant portion of the
checkerboard is occluded from the field of view, and it
enables the orientation of the pattern to be determined.
The landmarks are oriented horizontally and attached to the
ceiling (or otherwise mounted on a stand) so that they can
be viewed by an upward-facing camera.

C. Estimating camera pose

When the landmark is visible in the current field-of-view
of the camera, pose estimation software computes the 6
degree-of-freedom pose of the camera in 3D space. Actually,
the software that we use (from [16]) returns the landmark’s
pose in a camera-centric coordinate system, which we then
convert to find the camera’s pose in the landmark-centric
coordinate system. We ignore the yaw and pitch angles, since
they are too noisy to be of any use for our application.
Although the robot drives on a relatively flat floor, the z value
(along the optical axis) is needed, because the ceiling height
is not guaranteed to be constant throughout an environment.
As a result, we retain the x, y, and z coordinates, along
with the roll θ of the camera about its optical axis, which is
directly related to the orientation of the robot.

D. Calibration

There are four coordinate systems that are relevant to
our problem. The image coordinate system is placed at
the upper-left of the image plane and oriented along the
image axes. The camera coordinate system is centered at
the focal point and oriented in the same direction as the
image coordinate system. The robot coordinate system is
centered with the robot and aligned with the robot driving
direction. The landmark coordinate system is centered on the
landmark and aligned with the checkerboard. Except for the
image coordinate system, which is measured in pixels, all
measurements are in meters.

Calibrating the image-to-camera transformation involves
estimating the internal camera parameters, which is done
using the well-known algorithm of Zhang [16]. Calibrating
the camera-to-robot transformation involves estimating 6 pa-
rameters: the tilt φc of the camera with respect to gravity, the

Fig. 2. Side view of a simplified camera-to-robot calibration process.
Considering only the vertical plane shown, the pose estimation software
yields the pose (x1, z1) of the camera with respect to the landmark. Then
the robot is rotated 180 degrees, and the software yields the pose (x2, z2).
From these measurements, the quantities of interest, namely φc and φf can
be computed. Note that the image plane (not shown) is perpendicular to the
optical axis and is not (in general) parallel to the floor.

azimuth θc of this camera tilt plane (i.e., the plane containing
the gravity vector and the optical axis) with respect to the
forward direction of the robot, the tilt φf of the floor (in
the immediate vicinity below the landmark) with respect to
gravity, the azimuth θf of the floor tilt plane (i.e., the plane
containing the gravity vector and the normal vector to the
floor) with respect to the positive x axis of the landmark
coordinate system, and the lateral offset of the focal point
from the robot center, expressed in polar coordinates as drc
and θrc.

To determine these 6 parameters, we place the camera
directly under the landmark using a self-leveling line laser
so that the vertical laser beams (we ignore the horizontal
beams) intersect the center of the image and the center of
the landmark, as shown in Figure 2. We then rotate the robot
by fixed increments, being careful to ensure that the axis of
rotation passes through the focal point (i.e., camera center).
The figure shows a side view of the geometry of the system
as the camera is rotated by 180 degrees, sliced by the xz-
plane. The pose estimation software measures the (x, y, z)
coordinates of the landmark with respect to the camera both
before and after the rotation, leading to (x1, y1, z1) and
(x2, y2, z2). From the figure, the camera tilt is given by
φc = sin−1((x2 − x1)/2z̄), and the floor tilt is given by
φf = sin−1((x1 + (x2− x1)/2)/z̄) = sin−1((x2 + x1)/2z̄),
where z̄ = (z1 + z2)/2. In the case of zero floor tilt we
have φf = 0, x1 = −x2, and φc = sin−1(x2/z̄). Notice
that, since the pose estimation software yields the pose of
the landmark in the camera coordinate system, the angle of
the landmark does not matter in any case.

When the camera tilt is non-zero, rotating the robot
in the manner described causes the optical axis to trace
the shape of a cone about the axis of rotation, which is
assumed to be perpendicular to the floor. Therefore, as the



Fig. 3. Circles traced by the optical axis underneath two different
landmarks. The robot was rotated in 15-degree increments, leading to 24
data points. The red data point is the one for which the robot was aligned
with the landmark at θ = 0.

Fig. 4. Left: The circle traced by the optical axis yields 4 of the 6 calibration
parameters. Right: The 2 additional parameters capture the robot-to-camera
offset. (The gray circle is the robot, the black I represents the wheels and
axle, and the blue circle is the camera.)

robot is rotated, the (x, y) coordinates returned by the pose
estimation software trace a circle, two examples of which
are shown in Figure 3.

If we let (xi, yi, zi), i = 1, . . . , n, be the readings taken as
the robot is rotated, then the center of the circle is calculated
as the mean of the coordinates: (cx, cy) = 1

n

∑n
i=1(xi, yi);

the radius of the circle is given by the average Euclidean dis-
tance to the center: rc = 1

n

∑n
i=1

√
(xi − cx)2 + (yi − cy)2;

and the distance from the circle center to the origin is given
by rf =

√
c2x + c2y . We use n = 4 readings, rotating the

robot to each of 0, 90, 180 and -90 degree positions. In
theory only two readings 180◦ apart are sufficient, but more
readings provide additional robustness to noise.

Note from Figure 2 that the radius of the circle is also
given by rc = (x2 − x1)/2, and the distance from the
landmark center to the circle center is rf = (x2 + x1)/2.
Therefore, the camera tilt is given by φc = sin−1(rc/z̄),
the floor tilt is φf = sin−1(rf/z̄), and the floor azimuth
is θf = atan2(cy, cx), where z̄ = 1

n

∑n
i=1 zi, as shown in

Figure 4. Assuming that (x1, y1) corresponds to θ = 0 (robot
is aligned with the landmark), then the camera azimuth is
θc = atan2(y1−cy, x1−cx), and the camera-to-robot offset is
measured manually on the ground to determine the distance
drc between the robot and camera centers, as well as the
angle θrc.

Once the system has been calibrated, the tilt-corrected 2D
camera pose in the ground plane (that is, corrected for floor

tilt) for a given 3D pose (x, y, z) and θ is given by

θ′ = θ (1)
x′ = x− z sinφc cos θc + θ − z sinφf cos θf (2)
y′ = y − z sinφc sin θc + θ − z sinφf sin θf . (3)

Note that the heading is not affected by tilt. The robot pose
is then calculated as a simple pose transformation:

θr = θ′ + θrc (4)
xr = x′ + drc cos θrc (5)
yr = y′ + drc sin θrc. (6)

E. Measuring performance

After mounting the landmarks, mounting the upward-
facing camera to the robot, and calibrating, the system is
ready to be used to measure the performance of a naviga-
tion system automatically and for arbitrary lengths of time.
First the robot is driven around the environment to build a
map. The nature of the map is completely irrelevant to the
proposed evaluation method, thus enabling different types
of approaches to be compared; the robot is free to generate
a 2D metric map, 3D metric map, topological map, topo-
geometric map, or otherwise, or to operate purely reactively.
The robot can be driven manually, or it can autonomously
explore. Whenever the robot is under a landmark for the
first time, the user clicks a button (or something similar) to
remember the location. This button press causes the system
being evaluated to store the location of the robot with respect
to the map being constructed. Simultaneously, the button
press triggers the pose estimation algorithm to analyze the
image from the upward-facing camera and, with calibration,
to determine the robot’s pose with respect to the landmark.
Note that this approach completely decouples the internal
map representation of the system being evaluated from the
evaluator.

Once the map has been built, the system being evaluated
contains a set of locations with respect to its internal map,
while the evaluator also contains a set of locations with
respect to the landmarks. Each landmark has an ID, and
this ID is the same in both sets of locations to enable
correspondence to be made between the system being evalu-
ated and the evaluator. To evaluate the system, the evaluator
generates a sequence of waypoints (IDs), and the robot is
commanded to visit these waypoints in sequence. When
the robot system reaches the desired location (waypoint), it
notifies the evaluator, which then analyzes the image from
the upward-facing camera to determine the robot’s pose with
respect to the landmark. The discrepancy between the pose
of the robot during map-building and the pose of the robot
during evaluation yields an indication of the accuracy of the
navigation system.

IV. EXPERIMENTAL RESULTS

We divide the experimental results into two parts. First we
evaluate the accuracy of the pose estimation system, then we



validate the proposed method by measuring the performance
of a state-of-the-art navigation system.14

A. Evaluating accuracy of pose estimation

To evaluate the accuracy of the pose estimation, we
attached a 14 × 10 inch checkerboard pattern printed on
a 470 × 336 mm foam board to the ceiling of our lab.
Each square of the checkerboard was 33.6 × 33.6 mm.
The landmark was placed 2200 mm above a CNC machine
(Fireball Meteor,15 1320 × 640 × 127 mm) capable of xy
translation with a precision of 0.0635 mm. To the carriage of
the CNC machine we attached a Microsoft LifeCam Cinema
camera, facing upward, with a 73 degree field of view,
capable of capturing images at a resolution of 1280 × 720.
The camera could see the landmark from a distance of 300
to 3000 mm; at the distance of 2200 mm the checkerboard
occupied a space of 300×220 pixels in the image and could
be seen within an area approximately 1500 × 1500 mm on
the ground. To reduce effects due to the low contrast caused
by ceiling lights, we turned off the automatic gain control
and reduced the exposure level.

The camera was rotated on the CNC till the pose estima-
tion software indicated zero degree pan (and independently
validated by making sure that the checkerboard edges were
parallel to the image edge in the captured image). The long
edge of the CNC was aligned with the long end of the
checkerboard. To align the CNC axis with the landmark axis,
the camera was moved along one direction and the CNC was
rotated till the pose estimation software showed change in
only one direction.

The CNC was calibrated by moving it to the home
location. The CNC was then moved in the x and y directions
till the pose estimation software indicated the (x, y, θ) offset
to be (0, 0, 0). This was considered as the origin and the CNC
position was noted. Once calibrated, the CNC machine was
moved within the 1320× 640 mm area at 5 mm increments.
At each position the machine was stopped for 1 to 2 seconds
to remove any vibration, then an image was taken by the
camera, and the pose estimation software estimated the pose
of the camera. Figure 5 shows the results. The average
position error was 5 mm (σ = 2 mm), and the average
orientation error was 0.3 degrees (σ = 0.2 degrees). Within
the entire area the position error never exceeded 11 mm, and
the orientation error never exceeded 1 degree. In a followup
experiment the CNC machine was moved within the same
area at 40 mm increments, but at each position 360 images
were taken (at 1 degree intervals) using a dynamixel MX-
64 servo mechanism to rotate the camera. The pose was
estimated for each image, and the results were consistent.

From perspective projection, it is easy to see that the
maximum error due to pixel quantization is

quantization error = pz/f, (7)

14We use the latest version of Adept MobileRobots’ navigation software:
Active ARNL Laser Localization Library 1.7.5 for Windows.

15http://www.probotix.com/FireBall Meteor cnc router

Fig. 5. Euclidean error of the pose estimation algorithm over a 1320 ×
640 mm area, obtained via a CNC machine.

Fig. 6. Robot with upward-facing camera attached.

where f is the focal length of the camera (4.8 mm), z
is the distance to the landmark (2200 mm), and p is the
pixel size (5 µm). Given these values, the error due to pixel
quantization is approximately 2 mm, which is consistent with
these results.

We then evaluated the accuracy of the system with the
camera mounted on an Adept Pioneer 3DX mobile robot,
shown in Figure 6. After placing 15 landmarks across 2
buildings (described below), we arbitrarily chose one of the
landmarks and placed the robot at 20 random positions /
orientations underneath it, as shown in Figure 7a. The actual
(rx, ry, rθ) of the robot was measured manually on the
ground and compared with the values calculated as described
above. The resulting Euclidean distance and orientation er-
rors were computed, shown in Figure 8.

At each of these landmarks the robot was then placed
at 5 canonical locations: (x, y, θ) = (0, 0, 0), (400, 0, 0),
(−400, 0, 0), (0, 400, 0), and (0,−400, 0), as shown in Fig-
ure 7b. The Euclidean distance and orientation errors were
calculated at all the landmarks for these five canonical
locations by comparing with manually obtained values. The



Fig. 7. 20 random (left) and 5 canonical (right) positions / orientations
used for evaluating the accuracy of pose estimation.

Fig. 8. Position and orientation error for 20 random positions / orientations.

results are shown in Figure 9. Since the results were similar
for both experiments, we only report the combined mean
position error, 15.2 mm (σ = 9.1 mm), and mean orientation
error, −0.4 degrees (σ = 0.8 degrees). The maximum errors
were 52.9 mm and 2.8 degrees.

Table I compares our landmark-based system with sev-
eral existing ground-truth systems.16 Our system yields an
average of 15 mm position error, with an average angular
error of −0.4◦, over an area approximately 1.5×1.5 m. The
Rawseeds GTvision system [5] yields an order of magnitude
more error in position, and about twice as much error in
orientation, but over an area nearly two orders of magnitude
larger. The Rawseeds GTlaser system [5], the mocap system
at TUM [11], and the retroreflective SLAM system [14]

16Data for Rawseeds, TUM’s mocap system, and the retroreflective
system are from [5, §7.3], [11, §VI-C], and [14, §V-A], respectively.

Fig. 9. Position and orientation error for the five canonical positions for
Building 99 (top) and Building 115 (bottom). Shown are the error bars
(blue) for one standard deviation, along with all the data (black circles).

dist. (mm) ang. (deg.) environment
mean s. d. mean s. d. big size (m)

GTvision 112 90 -0.8 2.2 N 10× 14
GTlaser 20 11 0.2 1.6 N 10× 14
mocap 10∗ − 0.5∗ − N 10× 12

retroreflective 21∗ 14∗ 0.5∗ 0.3∗ Y 7× 5
our system 15 9 -0.4 0.8 Y 1.5× 1.5

TABLE I
COMPARISON OF MEAN AND STANDARD DEVIATION ERROR OF OUR

SYSTEM WITH OTHER GROUND-TRUTH SYSTEMS. ONLY OURS AND THE

RETROREFLECTIVE SYSTEM SCALE TO LARGER ENVIRONMENTS.
ASTERISKS: THE RETROREFLECTIVE SYSTEM ONLY REPORTS RELATIVE,
NOT ABSOLUTE, ERRORS; AND THE NUMBERS FOR THE MOCAP SYSTEM

ARE MAXIMUM (NOT MEAN) ERRORS.

yield yield errors that are less than ours, also over much
larger areas. It is difficult to compare these results, since
the purpose of the systems is different: Motion capture and
Rawseeds work over a larger area, whereas the accuracy of
our system is limited to a fairly narrow field of view. On the
other hand our method (as well as the retroreflective system)
apply over arbitrarily large environments, whereas the other
techniques are generally limited to a single room due to the
cost and difficulty of installation and maintenance.

B. Verifying the metholodogy using an existing robot navi-
gation system

We used an existing robot navigation system to verify
the ease of deployment, ease of use, and accuracy of the
proposed method. To verify the ease of deployment, we
tracked the time and expense involved in setting up the
system for use in two environments, Building 115 and
Building 99, shown in Figures 10 and 11. Building 115 is
approximately 55 m by 23 m consisting of mostly uniform
hallways with 10 foot drywall ceilings. The building 99 space
is approximately 57 m by 52 m and contains a combination
of open space and hallways with ceilings made of a variety
of materials including drywall, acoustic tile, and decorative
wood paneling. We installed seven landmarks in Building 99,
and eight landmarks in Building 115. Installation of each
landmark required about 25 minutes, including surveying the
available space, affixing the landmark to the ceiling, and
performing the landmark calibration procedure. The robot
camera calibration was calculated at the same time as the
landmarks. We used a professional printing service to create
our foam-core landmarks, which were attached with 3M
Damage Free Hanging strips, for a total cost of less than
$200 USD. In each case the landmark position was chosen
to provide ample coverage of the building. The landmarks in
Building 115 were positioned at hallway junctions, while the
landmarks in Building 99 were positioned at points of interest
around the building (see Figure 12). One of the challenges
in Building 99 were locations where flooring changed from
carpet to tile, and where floor vents and floor access panels
were present, since an uneven floor under the landmark
reduces accuracy in position measurement. Such locations
could still be used to provide a binary result (i.e., the robot



Fig. 10. Map of Building 99. The landmarks were placed at the elevators
(1), cafe (2), lounge (3), workshop (4), copy room (5), kitchen (6), and
supply room (7).

is under the landmark), but to enable accurate measurement
we only chose areas that provided uniform floor level in the
vicinity of the landmark.

To verify the ease of use, Building 115 was used to
conduct automated navigation tests over two days during
which the robot navigated to a 108-sequence of waypoints
(landmarks) in random order. The position measurement
system operated entirely autonomously and provided detailed
position and orientation error information for the duration
of the 8 hours of testing without any manual intervention
and could continue to do so as long as the landmarks do
not move, and the camera remains calibrated. In fact, these
landmarks have been in continuous use for the past several
months in our lab, providing daily metrics information for
autonomous robot navigation. One advantage of the system
is that, once deployed, no further maintenance is needed:
There are no cables or power cords, and the landmarks do
not interfere with people’s daily activities.

To verify the accuracy, the Building 99 space was used to
conduct automated navigation tests during which the same
Adept Pioneer 3DX robot was used to map the space and
record goals at each landmark, then navigate a randomly gen-
erated 15-waypoint sequence. During mapping, the position
and orientation of the robot was recorded by the landmark
system, and at the same time its position and orientation
was marked manually on the floor using colored duct tape.
After the sequence had been travered, the Euclidean dis-
tance between the original mapped position and each visited
position was measured manually, as well as the difference
in orientation. Results are shown in Figure 13, where the
close agreement between the manually obtained values and
automatically obtained values is evident. The focus of this

Fig. 11. Map of Building 115, with the 8 landmarks identified.

paper is not on the performance of the navigation system
itself, but rather on the ability of our ground truth system to
accurately monitor the navigation system.

V. CONCLUSION

We have presented a method for evaluating the localiza-
tion performance of a mobile robot navigation system. The
method consists of attaching landmarks, namely foam boards
on which checkerboard patterns are printed, to the ceiling at
various locations around an environment. An upward-facing
camera on the robot, along with pose estimation software, is
then used to estimate the robot’s pose with respect to the
landmark. Contrary to previous approaches, the approach
is inexpensive, easy to deploy, very low maintenance, and
highly accurate. The system enables automatic performance
evaluation of arbitrarily sized environments for arbitrary
lengths of time. We have performed a thorough evaluation of
the system, showing that accuracies on the order of 15 mm
and 0.4 degrees can be obtained with proper calibration.
Future work will be aimed at using such a method to perform
long-term comparison of state-of-the-art navigation systems
in a variety of environments.
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Fig. 12. 5 of the 7 landmarks used in Building 99. From left to right: cafe, supply room, elevator, kitchen, and workshop.

Fig. 13. Position and orientation error in Building 99 for the 15-waypoint
sequence. Shown are the absolute errors (with respect to each landmark)
determined manually and by using the automatic landmark pose estimation
system.
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