
Playing with Quantified Satisfaction
Nikolaj Bjørner1 and Mikoláš Janota2

1 Microsoft Research, Redmond, USA
2 Microsoft Research, Cambridge, UK

Abstract

We develop an algorithm for satisfiability of quantified formulas. The algorithm is based on recent
progress in solving Quantified Boolean Formulas, but it generalizes beyond propositional logic to
theories, such as linear arithmetic over integers (Presburger arithmetic), linear arithmetic over reals,
algebraic data-types and arrays. Compared with previous algorithms for satisfiability of quantified
arithmetical formulas our new implementation outperforms previous implementations in Z3 by a
significant margin.

1 Introduction
Evaluating a quantified formula of the form ∃x∀y∃z∀u . F [x, y, z, u] can be naturally seen as a game
between two parties: the existential player that seeks to find values for x and z that satisfy F and a
universal player (spoiler) that attempts to counter the moves for x with values for y and the move for z
with values for u such that falsify F . The connection between games and quantifiers is used in many
connections, in model-theoretical tools such as Ehrenfeucht-Fraı̈ssé games [1, 12], and also in algorithms
for QBF formulas [15].

This paper takes as starting point the recent algorithm Qesto from [15] and develops generalizations
for non-propositional formulas. Let us illustrate one central ingredient of Qesto on a simple example.

Example 1. Consider the formula G, where:

G = ∀u1, u2∃e1, e2 . F
F = (u1 ∧ u2 → e1) ∧ (u1 ∧ ¬u2 → e2) ∧ (e1 ∧ e2 → ¬u1)

We wish to evaluate the formula G and the algorithm proceeds as a game between a universal and
existential player. The universal player seeks to falsify F and the existential player seeks to satisfy F .

• In the first round, the ∀ player can falsify F using a model M , where M = [u1 7→ >, u2 7→
>, e1 7→ ⊥, e2 7→ ⊥]. Thus, ¬F [>,>, e1, e2] is satisfiable.

• In its quest to falsify F , the ∀ player took control over some existential variables. The ∃ player can
now strike back and change values to satisfy F . For example, F [>,>,>,⊥] is true.

• The ∀ player has no move to counter this assignment. It has to backtrack over the assignment to
e1, e2. In particular ¬F [u1, u2,>,⊥]∧u2 is already unsatisfiable without regard to the assignment
to u1. Therefore, the ∀ player learns ¬u2 and reconsiders its original move and instead settles on
the assignment M = [u1 7→ >, u2 7→ ⊥, e1 7→ ⊥, e2 7→ ⊥] which satisfies ¬F .

• But the ∃ player can easily counter this move by setting e1 7→ ⊥, e2 7→ >.

• Therefore, the ∀ player has yet again to consider what went wrong by determining the core
¬u2 ∧ ¬F [u1, u2,⊥,>], which is empty. The universal player has to give up and the existential
player established that the formula is true.

1

Playing with Quantified Satisfaction Bjørner and Janota

Several approaches to solving QBF formulas already fit into this level of abstraction. For example,
Lintao Zhang’s scheme for combining DNF and CNF [22] can be seen as realization of this approach.
The approach was extended to finite domains in [4], but not infinite domains, such as linear arithmetic, as
the approach did not incorporate finitary lemma learning. Qesto builds on top of this scheme by also
tracking dependencies between universally and existentially quantified variables and carefully encoding
auxiliary variables to capture these dependencies. The aim in this paper is to develop methods that work
for theories that admit quantifier elimination. There are several key ingredients in our approach: at the
highest level, quantifier satisfiability is solved as a game between two quantifiers, and we present a general
algorithm based on this approach. We rely on theories admitting model-based quantifier elimination to
compute effective cores and in the process we show how theories, such as linear arithmetic and algebraic
datatypes can (separately) be solved using this approach. There is also a cute analogy with how Property
Directed Reachability (PDR or IC3) [5] works. Similar to PDR, the approach we develop explores,
then refines, a set of frames by adding properties in an incremental way. But in contrast to PDR, the
frames alternate with respect to logical implication. The analogy only goes so far, of course, as we don’t
enjoy inductive generalization for quantified formulas (but a possible generalization of our methods
to infinite games may readily do so). Yet, there are several other connections with various methods
developed in QBF and SMT. For instance, dual propagation [11] exploits that a satisfying assignment
to F is a core of ¬F , from which a reduced size implicant of F can be derived. In a similar way, we
use partial satisfying assignments to F to search for cores of ¬F . The process of finding a small core
and forming model-based projection on top of the core serves the purpose of finding implicants for F
(with some variables projected away). We finally extend the algorithm for checking satisfiability of
quantified formulas to also quantifier elimination. Similar to the work that uses dependency sequents [10]
we produce formulas in CNF, but our use of dual propagation replaces a special purpose SAT solver
with dependency sequents. Our approach furthermore extends to theories, while dependency sequents
only apply to propositional logic. There are several approaches that have been developed for limited
quantifier prefixes, such as validity of ∀∃ fragment, e.g., satisfiability of the ∃∀ fragments. Our algorithm,
when restricted to the ∃∀ fragment, is highly related to these methods. In [7], model-based projection is
used to find instantiations of a (universally quantified) formula. The set of instances is finite as long as
model-based projection produces a finite number of projections. Similar, in [21] an algorithm is presented
for satisfying ∃∀ formulas. Their procedure is a special case of ours for the two level case. Zachary
Kincaid presented, at Dagstuhl on Information from Deduction: Models and Proofs, an algorithm for
satisfying formulas over LRA that also uses a game-based approach. These other approaches do not
consider strategies. Furthermore, a common differentiator is that our approach limits instantiations to
clauses (and not the original formulas), this reduces the set of new atoms produced by model-based
projection (it only has to consider the atoms in a core). RAReQs [14] also uses instantiations of full
formulas, but is able to leverage the Boolean domain to produce strong projections.

2 Preliminaries

2.1 Cores

Suppose A is a formula and L is a conjunction of literals, an (minimal) unsatisfiable core, L′ ⊆ L, is
any (minimal) subset of L such that A ∧ L′ is unsatisfiable. We will overload the notion of core and
also consider a formula L’, which is inconsistent with A, uses the same vocabulary as L and which is a
consequence of L, as a core.

2

Playing with Quantified Satisfaction Bjørner and Janota

2.2 Model Based Projection
Several quantifier elimination algorithms can be formulated as transformations that take a formula ∃~x . F
and produce an equivalent formula in the form of a disjunction of formulas. Each of the disjuncts is
linear size in F , but the number of disjunctions may also be exponential in the number of bound variables
~x. Dually, for a formula ∀~x . F , these procedures can be used to create an equivalent conjunction of
formulas. However, to establish unsatisfiability of a conjunction G∧ ∀~x . F it is not necessarily useful to
first expand ∀~x . F into a large conjunction and then check ground unsatisfiability of the rest. Instead, it
is only required to enumerate just the conjuncts for ∀~x . F that are sufficient to show unsatisfiability. In
the terminology of grounding, it is only interesting to enumerate the groundings of ∀~x . F that suffice to
establish unsatisfiability.

Model-based projection [17] was introduced to tailor a quantifier-elimination algorithm into an engine
for producing partial instantiations. It follows the theme of model-based quantifier instantiation [3, 6, 8]
by selecting instances based on models that should be blocked by a quantifier.

The model-based projection function Mbp(M,~x, F) is required to compute a formula that implies
∃~x . F and evaluates to true in M . In summary, the requirements for model-based projection are as
follows:

Requirement 1 (Correctness, Complexity, Coverage, Convergence). Assume M |= F and ϕ =
Mbp(M,~x, F). Then:

Correctness FV (ϕ) ∩ ~x = ∅, M |= ϕ, and ϕ =⇒ ∃~xF .

Complexity The size of Mbp(M,x, F) is no larger than the size of F .

Coverage There is a sequence M1, . . . , of models of F , such that (∃x . F) ≡
∨

i Mbp(Mi, x, F).

Convergence Let M1,M2, . . . , be an infinite sequence of models of literals F , then there is a finite set
of equivalent projections Mbp(Mi, x, F).

It suffices to define model based projection for a single variable and a conjunction of literals that
contain the variable by using the following definitions:

Mbp(M, ∅, ϕ) = ϕ

Mbp(M,~x, ϕ) = Mbp
(
M,~x,

∧
{sign(M,a) | a is an atom in ϕ}

)
Mbp(M,x~x, ϕ) = Mbp(M,x,Mbp(M,~x, ϕ))

Mbp(M,x, ϕ ∧ ψ) = Mbp(M,x, ϕ) ∧ ψ if x 6∈ FV (ψ)

where

sign(M,a) := if M(a) then a else ¬a

2.3 Model Based Projection for Linear Real Arithmetic
Suppose we have a variable x and literals L of the form x ' t, x 6' t, t ≤ x, t < x, x ≤ s or x < s,
where x does not occur in t, s, and a model M , such that M |= L. Let us first simplify the case
analysis by replacing strict inequalities by non-strict inequalities by using infinitesimals. In other words
t < x is replaced by the inequality t + ε ≤ x. If the set of literals L contains an equality x ' t,
then the projection of L with respect to x is the substitution of t for x. If L contains a disequality

3

Playing with Quantified Satisfaction Bjørner and Janota

x 6' t then if M(x) < M(t), replace the disequality by the inequality x + ε ≤ t, otherwise since
M |= x 6' t it is the case that M(x) > M(t) and we can replace the disequality by x ≥ ε + t.
We can now assume that M |= L, where L only contains inequalities. Among the lower bounds
select a greatest lower bound t0 such that M(t0) ≥ M(ti) for every term ti; or among the upper
bounds a least upper bound s0 such that M(s0) ≤ M(sj) for every term sj . The projection with
respect to x is the set {t ≤ t0 | (t ≤ x) ∈ L} ∪ {t0 ≤ s | (x ≤ s) ∈ L}; or alternatively
{t ≤ s0 | (t ≤ x) ∈ L} ∪ {s0 ≤ s | (x ≤ s) ∈ L}.

Using equations, the projection can be defined as (we give the case where t0 is the greatest lower
bound for x under M):

Mbp(M,x, x ' t ∧ L) = L[t/x]

Mbp(M,x, x 6' t ∧ L) = Mbp(M,x, x ≥ t+ ε ∧ L) if M(x) > M(t)

Mbp(M,x, x 6' t ∧ L) = Mbp(M,x, x+ ε ≤ t ∧ L) if M(x) < M(t)

Mbp(M,x,
∧
i

ti ≤ x ∧
∧
j

x ≤ sj) =
∧
i

ti ≤ t0 ∧
∧
j

t0 ≤ sj where M(t0) ≥M(ti),∀i

Projection produces one disjunction from the Loos-Weispfenning quantifier elimination method [18].

Lemma 1. Requirement 1 holds for Mbp of Linear Real Arithmetic.

2.4 Model Based Projection for Linear Integer Arithmetic

Projection for integer linear arithmetic is somewhat similar. It splits bounds into greatest lower and least
upper bounds. This time the dividing bound is of the form t ≤ ax and bx ≤ s, where a, b are positive
integer constants. To ensure that there exists an x between these two bounds we can use a model-based
resolution rule originally used in the Omega test [20], where formulated in the style of [2]. It takes the
form:

resolve(M,ax ≤ t, bx ≥ s) =
as+ (a− 1)(b− 1) ≤ bt if (a− 1)(b− 1) ≤M(bt− as)
as ≤ bt ∧ b|(s+ d) ∧ a(s+ d) ≤ bt) elif a ≥ b, d :=M(−s) mod b
as ≤ bt ∧ a|(t− d) ∧ as ≤ b(t− d) else b > a, d :=M(t) mod a

Lemma 2. SupposeM |= ax ≤ t, bx ≥ s, thenM |= resolve(M,ax ≤ t, bx ≥ s) and resolve(M,ax ≤
t, bx ≥ s) =⇒ ∃x . ax ≤ t ∧ bx ≥ s.

Resolution accumulates divisibility constraints of the form c | (ax+ t), where c and a are positive
integer constants and x is not free in t. Divisibility constraints can be seen as short-hands for equalities
of the form cy = ax+ t, where y is a fresh existentially bound variable. But this does not simplify the
problem, instead it introduces new variables. We can eliminate divisibility constraints by using the model
M to focus case analysis. Given

∧n
i=1 di | (aix+ ti) true in model M we define:

d := lcm(d1, . . . , dn)

u := M(x) mod d

4

Playing with Quantified Satisfaction Bjørner and Janota

Then we can replace the divisibility constraints by

∃x′.x = u+ d · x′ ∧
n∧

i=1

di | (aiu+ ti)

We can use these two transformations to define model based projection for a conjunction of integer
linear constraints as follows:

Mbp(M,x,

n∧
i=1

di | (aix+ ti) ∧ L) = Mbp (M,x′, L[u+ d · x′/x]) ∧
n∧

i=1

di | (aiu+ ti)

Mbp

M,x,
∧
i

ti ≤ aix ∧
∧
j

bjx ≤ sj

 =
∧
i

tia0 ≤ t0ai ∧
∧
j

resolve(M,a0x ≤ t0, bjx ≥ sj)

if M(t0/a0) ≥M(ti/ai),∀i

Lemma 3. Requirement 1 holds for Mbp of Linear Integer Arithmetic.

2.5 Model Based Projection for Algebraic Datatypes

Let us for simplicity consider the case of LISP S-expressions. Generalization to other algebraic data-types
is straight-forward. We assume we are given a conjunction of equalities, disequalities and constructor
tests over data-type terms. The constructors are cons(u, v),nil , there is a constructor test cons?(u)
which holds when u is a cons, and the functions car(u), cdr(u) are defined to take the first, respectively
second argument, when u is a cons. Furthermore, we can assume that equalities are normalized, such
that the right-hand side is a variable or expression using selectors and that there are no equalities whose
one side occurs properly in the other side. We also maintain the following property: whenever L contains
a subterm car(u) or cdr(u), then L also contains a conjunct cons?(u). So whenever M |= L, then u
evaluates to a cons under M . If x occurs in the scope of a car or cdr , then we apply the following
transformation:

Mbp(M,x,L) = Mbp(M [y 7→M(car(x)), z 7→M(cdr(x))], yz, L[cons(y, z)/x])

and simplify L under the rewrites car(cons(s, t)) = s, cdr(cons(s, t)) = t. So in the following we
assume that x is not in the scope of an accessor. We can solve for x (assume x occurs in t but not in u)
by using the transformations corresponding to unification:

Mbp(M,x, cons(t, s) ' u ∧ L) = cons?(u) ∧Mbp(M,x, t ' car(u) ∧ s ' cdr(u) ∧ L)
Mbp(M,x, x ' x ∧ L) = Mbp(M,x,L)

Mbp(M,x, u ' x ∧ L) = L[u/x]

This leaves us with disequalities where the variable x we would like to project occurs. Disequalities can
be decomposed using the model M :

5

Playing with Quantified Satisfaction Bjørner and Janota

Mbp(M,x, cons(t, s) 6' u ∧ L) = cons?(u) ∧Mbp(M,x, s 6' cdr(u) ∧ L)
if M(s) 6=M(cdr(u)),M(cons?(u))

Mbp(M,x, cons(t, s) 6' u ∧ L) = cons?(u) ∧Mbp(M,x, t 6' car(u) ∧ L)
if M(s) =M(cdr(u)),M(t) 6=M(car(u)),M(cons?(u))

Mbp(M,x, cons(t, s) 6' u ∧ L) = ¬cons?(u) ∧Mbp(M,x,L) if M(¬cons?(u))

Thus, every occurrence of x is isolated as t1 6' x ∧ t2 6' x ∧ We can assume that x does not occur
in ti, because otherwise the disequality is a tautology by the occurs check. At this point we can always
solve for x by constructing a suitably large term that is different from each of t1, t2, Thus,

Mbp(M,x, t1 6' x ∧ . . . ∧ tn 6' x) = >

Lemma 4. Requirement 1 holds for Mbp of Algebraic Datatypes.

2.6 Model Based Projection for Arrays
The paper [16] develops model-based projection techniques that apply to constraints with arrays. It
generally does not satisfy the Convergence criteria as the number of projections can in this case be
infinite.

3 A Quantified Satisfiability Game
We are now ready to describe our algorithm for quantified satisfiability.

In the following assume that we are given a formula G := ∃~x1∀~x2∃~x3 . . . F , where F is quantifier
free. Assume G is closed (top level existential quantification can be used to create closed formulas).
Initialize F1, F3, . . . Fj , where j is odd, to F and F2, F4, . . . Fj , where j is even, to ¬F . Let a1, . . . , an
be the atoms, denoted A, occurring in F1, F2, Each atom may contain any subset of the bound
variables. An interpretation M assigns truth values to the atoms A. The set A is updated every time new
constraints are added to one of F1, F2,

For each atom we associate two levels: level∀ and level∃. For the atom a, level∀(a) is the
highest index of a universally quantified variable in a, similarly for level∃(a). We set level(a) =
max(level∃(a), level∀(a)). We also extend levels to depend on indices: If j is odd, then level j = level∃.
If j is even, then level j = level∀.

Furthermore, define the auxiliary functions:

strategy(M, j) :=
∧
{sign(M,a) | M 6= null , a ∈ A, level j(a) ≤ j − 2}

tail(j) := ~xj−1, ~xj , ~xj+1, . . .

In other words, the literals in strategy(M, j) use the free variables ~x1, ~x2, . . . , ~xj−2, ~xj−1, ~xj+1, ~xj+3, ~xj+5, . . .
and they do not contain the variables ~xj , ~xj+2, ~xj+4 etc. For the special case where M = null , we note
that strategy(M, j) = >.

Algorithm 1 shows the QSAT algorithm. It initializes the level j to 1, modelM to null and loops until
it determines whether G is true or false. The algorithm applies also to the case where G has free variables.

6

Playing with Quantified Satisfaction Bjørner and Janota

In this case the algorithm determines whether G is satisfiable or unsatisfiable. If Fj ∧ strategy(M, j) is
satisfiable, the level is increased and M is updated to the model corresponding to a satisfying assignment
to the formula. Notice that the level cannot increase forever because Fj+1 is complementary to Fj , so
when a strategy assigns a truth value to all atoms in Fj , then Fj+1 is false under that strategy.

Algorithm 1: QSAT

1 j ← 1;
2 M ← null ;
3 while True do
4 if Fj ∧ strategy(M, j) is unsat then
5 if j = 1 then
6 return G is false
7 if j = 2 then
8 return G is true
9 C ← Core(Fj , strategy(M, j));

10 J ← Mbp(M, tail(j), C);
11 j ← index of max variable in J ∪ {1, 2} of same parity as j;
12 Fj ← Fj ∧ ¬J ;
13 M ← null ;
14 else
15 M ← the current model;
16 j ← j + 1;

Example 2. Assume we have the formula

F = z ≥ 0 ∧ ((x ≥ 0 ∧ y ≥ 0) ∨ y + z ≤ 1)

G = ∃x∀y∃z . F

Then F1 = F, F2 = ¬F, F3 = F, F4 = ¬F .

1. First we determine if F1 is satisfiable, it is with model M = [x 7→ 0, z 7→ 3, y 7→ −2]. The atomic
formulas x ≥ 0 and z ≥ 0 and y + z ≤ 1 are true.

2. strategy(M, 2) = z ≥ 0 ∧ x ≥ 0, because level2(z ≥ 0) = level2(x ≥ 0) = 0, but level2(y ≥
0) = level2(y + z ≤ 1) = 2. Recall, that level2 = level∀, which is the highest index of a
universally quantified variable, while level3 = level∃, which is the highest index of an existentially
quantified variable. Since there are no universal quantifiers in the formula z ≥ 0, we have
level∀(z ≥ 0) = 0.

3. F2 ∧ x ≥ 0 ∧ z ≥ 0 is satisfiable with model M = [x 7→ 0, z 7→ 3, y 7→ −1].

4. strategy(M, 3) = z ≥ 0 ∧ x ≥ 0 ∧ ¬(y ≥ 0) because level3(y + z ≤ 1) = 3 and level3(y ≥
0) = 0.

5. F3 ∧ z ≥ 0 ∧ x ≥ 0 ∧ ¬(y ≥ 0) is satisfiable with model M = [x 7→ 0, z 7→ 0, y 7→ −1].

6. F4 ∧ z ≥ 0 ∧ x ≥ 0 ∧ ¬(y ≥ 0) ∧ y + z ≤ 1 is unsatisfiable, in particular,

¬F =⇒ ¬(z ≥ 0 ∧ y + z ≤ 1)

7

Playing with Quantified Satisfaction Bjørner and Janota

So we set I := ¬(z ≥ 0∧ y+ z ≤ 1) and compute J := Mbp(M, z, z ≥ 0∧ y+ z ≤ 1) = y ≤ 1.
So F2 ← F2 ∧ ¬(y ≤ 1) and search back-jumps to level 2. Note that y ≤ 1 is added to the set of
atoms A.

7. F2 is satisfiable with model M = [x 7→ −1, y 7→ 2, z 7→ −3].

8. F3 ∧ ¬(x ≥ 0) ∧ ¬(y ≤ 1) is unsatisfiable with core ¬(x ≥ 0), and we back-jump to j = 1.

9. F1 is satisfiable with M = [x 7→ 0, z 7→ 3, y 7→ 2].

10. F2 ∧ z ≥ 0 ∧ z ≥ 0 is unsatisfiable, hence F is true.

Let us now establish correctness for algorithm QSAT.

Invariant 1. M = null or j > 1,M |= Fj−1.

Invariant 2. For odd j: (∀~xj+1∃~xj+2 . . . F) =⇒ (∀~xj+1∃~xj+2 . . . Fj)

Invariant 3. For even j: (∀~xj+1∃~xj+2 . . .¬F) =⇒ (∀~xj+1∃~xj+2 . . . Fj)

Theorem 1. Algorithm QSAT is partially correct: when it terminates it correctly determines whether G
is true or false.

Proof. Invariant 1 holds at initialization, is easily seen to be maintained during the loop. Similarly,
invariants 2 and 3 are established at initialization time.

If j = 1 and F1 is unsatisfiable, then from invariant 2 we know that the original formula is unsatisfi-
able.

If j = 2 and F2 ∧ strategy(M, 2) is unsatisfiable, then M = null and already F2 is unsatisfiable,
hence ¬∀~x2∃~x3 F is also unsatisfiable and therefore ∀~x2∃~x3 F is true. The case where M 6=
null is more general and in the following we will assume that M 6= null . In this case ∀~x2∃~x3 . . . , F
holds for any assignment to ~x1 that satisfies the premise strategy(M, 2). In particular it holds for any
assignment to ~x1 that can be extended to an assignment satisfying the premise. We know that this premise
is satisfiable by the way j is incremented.

Finally assume j > 2 and Fj ∧ strategy(M, j) is unsatisfiable for M 6= null . In this case
Fj =⇒ ¬strategy(M, j), so there is a core of strategy(M, j). In other words, the conjunction
Fj ∧ strategy(M, j) has a minimal, or reduced size, unsatisfiable core C that selects sufficient liter-
als from strategy(M, j) to obtain unsatisfiability. The core implies ¬Fj , but contains variables from
~xj−1, ~xj , . . . that we would like to eliminate. By taking Mbp(M, tail(j), C) we obtain a formula
J := Mbp(M, tail(j), C), such that J =⇒ (∃tail(j) . C). Thus, (∀tail(j) . ¬C) =⇒ ¬J .

We claim that ∀tail(j) . ¬C, which is the same as ∀~xj−1, ~xj~xj+1, ¬C, is equivalent to

∀~xj−1∃~xj∀~xj+1∃~xj+2, . . . , . ¬C.

To establish this, we examine the atoms in C. Since the free variables in C is a subset of the free variables
in strategy(M, j), they do not contain the variables ~xj , ~xj+2, Therefore, it makes no difference
whether we bind those variables universally or existentially.

By monotonicity (∀~xj−1∃~xj∀~xj+1 Fj) =⇒ ¬J , and thus we can add ¬J to Fj−2, Fj−4, . . .
while maintaining invariants 2 and 3.

Theorem 2. Algorithm QSAT terminates for theories satisfying requirement 1.

8

Playing with Quantified Satisfaction Bjørner and Janota

Proof. We work by induction on the nesting depth of quantifiers. At the inner-most levels, Fj = F
and Fj+1 = ¬F . These formulas contain a finite number of atomic sub-formulas. The assumption is
that model-based projection (Requirement 1) can only create a finite set of projections to eliminate the
inner-most variables corresponding to Fj+1. At this point, levels Fj−1 and Fj are complementary for
variables ~x1, . . . , ~xj−1, and therefore the maximal iteration depth of QSAT has decreased.

4 On Cores
Taking any unsatisfiable core from strategy(M, j) as C preserves correctness and termination for our
definition of strategy. However, it is not the only approach. In [13] we use Farkas lemma to find weaker
cores. The weaker cores use atoms that are linear combinations of inequalities occurring in Fj . Let us
briefly recall the approach for linear real arithmetic.

Suppose Fj ∧ strategy(M, j) is unsatisfiable, then then there is a resolution proof using a subset of
literals from Fj resolved against literals from strategy(M, j) and theory axioms, or T-axioms. Literals
from T-axioms can be partitioned into two groups corresponding to the two conjuncts. Thus, axioms are

of the form: ¬
([

C
D

] [
~x0
~x

]
≤
[
~c
~d

])
, where the inequalities with coefficients C,~c resolve against

strategy(M, j). The coefficients from Farkas’ lemma are ~λC and ~λD respectively, such that:

~λCC

[
~x0
~x

]
+ ~λDD

[
~x0
~x

]
> ~λC~c+ ~λD ~d,

and therefore:

D

[
~x0
~x

]
≤ ~d → ~λDD

[
~x0
~x

]
≤ ~λD ~d → ¬(~λCC

[
~x0
~x

]
≤ ~λC~c) .

The disjunction of all such consequents ~λDD
[
~x0
~x

]
≤ ~λD ~d from all T-axioms is a sufficient conse-

quence of Fj that does not contain any variables from ~x0 and is inconsistent with strategy(M, j). So the
negation of this disjunction forms a stronger core.

5 On Strategies
So far strategy(M, j) selected atoms using M based on the deepest existentially or universally quantified
variable occurring in the atom. We established that this approach was sound, but it is far from the most
powerful way to constrain the moves of opposing players. For example, we can use a refined definition
of strategy that fixes values to variables of the same quantifier.

Example 3. Consider the formula ∃x∀y∃z . 2z+y ≤ x∨6+y > x. By playing [x 7→ 0, y 7→ 1, z 7→ 3]
we can satisfy the formula. Furthermore, if we set strategy(M, j) = x = 0 ∧ z = 3, there are no
possible moves for the ∀y player and we immediately learn that the formula is true.

Fixing variables to constants does not produce particularly strong strategies.

Example 4. Consider the formula ∃x∀y∃z . x+ y ≤ z. The formula is true, but our approach so far
has to first play the inner most ∃z quantifier to counter ∀y’s move for any fixed x, z. A better strategy is
to set z := x+ y. In this way, no matter what y chooses, it is unable to satisfy ¬(x+ y ≤ z), and the ∀y
player will have immediately lost.

9

Playing with Quantified Satisfaction Bjørner and Janota

A generalization of the previous example suggests a strategy of the form: Given a model M , such
that M |= Fj−1, set

strategy∗(M, j) = strategy(M, j)

∧
∧{

x = max {ti | level(x) > level(ti), (ti ≤ x) ∈ A,M(ti ≤ x)} |
level(x) is of same parity as j

}
There are several possible improvements to this strategy as well. For example, the most straight-forward
improvement is to consider the upper bounds for x instead of the lower bounds if these are more
instrumental for falsifying Fj . Furthermore, there may be atoms where x occurs together with other
quantified variables of the same level.

In the propositional case, strategies that are represented as arbitrary clauses can be shown to be more
powerful. We leave exploration of stronger strategies as future work.

6 Quantifier Elimination
Suppose we have a formula G[~x0] where variables ~x0 are free. and we wish to compute a quantifier free
formula that is equivalent to G[~x0]. We can modify the quantifier satisfiability algorithm to compute
this formula in stages. In each round we compute a quantifier-free formula J that implies ¬G. Thus,
G =⇒ ¬J . We take the conjunction of these ¬J . In more detail, assume that G[~x0] is of the form
∃~x2∀~x3, . . . F , then ¬G[~x0] ≡ ∀~x2∃~x3, . . .¬F . Note that we omit the variables ~x1 in the expansion of
G. When referring to ~x1 we will assume that it is an empty sequence of variables. Set F0 ← F, F2 ←
¬F, F3 ← F, Assume as induction hypothesis that G[~x0] =⇒ Ans , where Ans is a quantifier-free
formula containing at most variables ~x0. If F2 ∧Ans ∧ strategy(M, 2) is unsatisfiable, then F2 implies
¬(Ans ∧ strategy(M, 2)), and therefore F2 =⇒ ¬C for the core C. Then by model-based projection
J =⇒ ∃~x2, ~x3 C, and since the free variables in C only include ~x0, ~x2, ~x4, ~x6, . . . we have
J =⇒ ∃~x2∀~x3∃~x4 C. So by monotonicity (F2 =⇒ ¬C), we get J =⇒ ∃~x2∀~x3∃~x4 ¬F2,
thus, J =⇒ ¬G[~x0].

Algorithm 2 shows a variant of QSAT adapted to quantifier elimination.

7 Evaluation
Figures 1 and 2 summarize evaluation of QSAT versus algorithm QT [19]. We see that overall the new
algorithm, QSAT, substantially improves over QT.

8 Conclusions
We presented algorithms for satisfiability and quantifier elimination of quantified formulas. The algo-
rithms take inspiration from recent developments in QBF solving and we show how to handle some
theories that admit quantifier elimination, such as linear integer and real arithmetic and a theory of
algebraic data-types. In the future we would like to extend the algorithms to use more powerful strategies,
which can also be very useful in the Boolean case. We would also like to investigate other theories for
model-based projection and when one can combine theories with projection. For example, it is known
that algebraic data-types and linear arithmetic can be combined, but our current approach with separate
projection operations for arithmetic and algebraic datatypes does not realize such a combination. Theories
do not necessarily have to admit quantifier elimination for inclusion in this scheme and we would like

10

Playing with Quantified Satisfaction Bjørner and Janota

Algorithm 2: QE-SAT

1 j ← 1;
2 M ← null ;
3 Ans ← >;
4 while True do
5 if Fj ∧ strategy(M, j) ∧Ans is unsat then
6 if j = 1 then
7 return Ans
8 C ← Core(Fj , strategy(M, j) ∧Ans);
9 J ← Mbp(M, tail(j), C);

10 if j = 2 then
11 j ← 1;
12 Ans ← Ans ∧ ¬J ;
13 else
14 j ← index of max variable in J ∪ {1, 2} of same parity as j;
15 Fj ← Fj ∧ ¬J ;
16 M ← null ;
17 else
18 M ← current model;
19 j ← j + 1;

Figure 1: Time taken to solve 64 quantified integer linear arithmetic benchmarks from [19]. The method
described in [19] is on the x-axis, our new method is on the y-axis. All benchmarks are solved almost
instantaneously by QSAT with the longest run time being 0.08 seconds. This contrasts with 10 timeouts
for QT.

.

11

Playing with Quantified Satisfaction Bjørner and Janota

Figure 2: Time taken to solve benchmarks from SMT-LIB2 benchmark suite from the LRA benchmark
suite. The x-axis shows running time for Algorithm QT and the y-axis shows running times for the new
algorithm QSAT. Note that many of these benchmarks have been randomly generated and this reflects in
overall fluctuations in the number of Simplex pivoting steps taken to check satisfiability. Still our new
method performs much better overall. Algorithm QT times out for 42 benchmarks (within 1200 seconds),
while QSAT times out for 2 benchmarks.

to investigate when taking the alternating view helps solving general formulas. This would contrast
incremental grounding provided by quantifier instantiation methods. Finally, extending this method to
solve reachability games should be within reach, and it opens up formulating and solving reachability
games that rely on data and not just finite domain reachability games.

12

Playing with Quantified Satisfaction Bjørner and Janota

References
[1] K. Apt and E. Grädel, editors. Lectures in Game Theory for Computer Scientists. Cambridge University Press,

2011.
[2] N. Bjørner. Linear quantifier elimination as an abstract decision procedure. In Giesl and Hähnle [9], pages

316–330.
[3] M. P. Bonacina, C. Lynch, and L. M. de Moura. On Deciding Satisfiability by DPLL(G+T) and Unsound

Theorem Proving. In R. A. Schmidt, editor, Automated Deduction - CADE-22, 22nd International Conference
on Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, volume 5663 of Lecture Notes in
Computer Science, pages 35–50. Springer, 2009.

[4] L. Bordeaux and L. Zhang. A solver for quantified boolean and linear constraints. In Y. Cho, R. L. Wainwright,
H. Haddad, S. Y. Shin, and Y. W. Koo, editors, Proceedings of the 2007 ACM Symposium on Applied Computing
(SAC), Seoul, Korea, March 11-15, 2007, pages 321–325. ACM, 2007.

[5] A. R. Bradley. SAT-Based Model Checking without Unrolling. In VMCAI, pages 70–87, 2011.
[6] L. M. de Moura and N. Bjørner. Bugs, moles and skeletons: Symbolic reasoning for software development. In

Giesl and Hähnle [9], pages 400–411.
[7] G. Fedyukovich, A. Gurfinkel, and N. Sharygina. Automated Discovery of Simulation Between Programs. In

LPAR, 2015.
[8] Y. Ge and L. M. de Moura. Complete Instantiation for Quantified Formulas in Satisfiabiliby Modulo Theories.

In A. Bouajjani and O. Maler, editors, Computer Aided Verification, 21st International Conference, CAV 2009,
Grenoble, France, June 26 - July 2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer Science,
pages 306–320. Springer, 2009.

[9] J. Giesl and R. Hähnle, editors. Automated Reasoning, 5th International Joint Conference, IJCAR 2010,
Edinburgh, UK, July 16-19, 2010. Proceedings, volume 6173 of Lecture Notes in Computer Science. Springer,
2010.

[10] E. Goldberg and P. Manolios. Quantifier elimination by dependency sequents. Formal Methods in System
Design, 45(2):111–143, 2014.

[11] A. Goultiaeva, M. Seidl, and A. Biere. Bridging the gap between dual propagation and cnf-based QBF solving.
In E. Macii, editor, Design, Automation and Test in Europe, DATE 13, Grenoble, France, March 18-22, 2013,
pages 811–814. EDA Consortium San Jose, CA, USA / ACM DL, 2013.

[12] E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema, and S.Weinstein. Finite
Model Theory and Its Applications. Texts in Theoretical Computer Science. Springer, 2007.

[13] K. Hoder and N. Bjørner. Generalized Property Directed Reachability. In Theory and Applications of
Satisfiability Testing - SAT 2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceedings,
pages 157–171, 2012.

[14] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke. Solving QBF with counterexample guided
refinement. In A. Cimatti and R. Sebastiani, editors, SAT, volume 7317, pages 114–128. Springer, 2012.

[15] M. Janota and J. Marques-Silva. Solving QBF by clause selection. In Q. Yang and M. Wooldridge, editors,
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pages 325–331. AAAI Press, 2015.

[16] A. Komuravelli, N. Bjørner, A. Gurfinkel, and K. L. McMillan. Compositional verification of procedural
programs using horn clauses over integers and arrays. In FMCAD, 2015.

[17] A. Komuravelli, A. Gurfinkel, and S. Chaki. SMT-Based Model Checking for Recursive Programs. In A. Biere
and R. Bloem, editors, Computer Aided Verification - 26th International Conference, CAV 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of
Lecture Notes in Computer Science, pages 17–34. Springer, 2014.

[18] R. Loos and V. Weispfenning. Applying linear quantifier elimination. Comput. J., 36(5):450–462, 1993.
[19] A. Phan, N. Bjørner, and D. Monniaux. Anatomy of alternating quantifier satisfiability (work in progress). In

P. Fontaine and A. Goel, editors, 10th International Workshop on Satisfiability Modulo Theories, SMT 2012,
Manchester, UK, June 30 - July 1, 2012, volume 20 of EPiC Series, pages 120–130. EasyChair, 2012.

13

Playing with Quantified Satisfaction Bjørner and Janota

[20] W. Pugh. A practical algorithm for exact array dependence analysis. Commun. ACM, 35(8):102–114, August
1992.

[21] A. Tiwari, A. Gascón, and B. Dutertre. Program synthesis using dual interpretation. In A. P. Felty and
A. Middeldorp, editors, Automated Deduction - CADE-25 - 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, volume 9195 of Lecture Notes in Computer
Science, pages 482–497. Springer, 2015.

[22] L. Zhang. Solving QBF by combining conjunctive and disjunctive normal forms. In Proceedings, The Twenty-
First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial
Intelligence Conference, July 16-20, 2006, Boston, Massachusetts, USA, pages 143–150. AAAI Press, 2006.

14

	Introduction
	Preliminaries
	Cores
	Model Based Projection
	Model Based Projection for Linear Real Arithmetic
	Model Based Projection for Linear Integer Arithmetic
	Model Based Projection for Algebraic Datatypes
	Model Based Projection for Arrays

	A Quantified Satisfiability Game
	On Cores
	On Strategies
	Quantifier Elimination
	Evaluation
	Conclusions

