Abstract

Symbolic reasoning of large programs is bound to be imprecise. How to deal with this imprecision is a fundamental problem in program analysis. Imprecision forces approximation. Traditional static program verification builds “may” over-approximations of the program behaviors to check universal “for-all-paths” properties, while automatic test generation requires “must” under-approximations to check existential “for-some-path” properties.

In this paper, we introduce a new approach to test generation where tests are derived from validity proofs of first-order logic formulas, rather than satisfying assignments of quantifier-free first-order logic formulas as usual. Two key ingredients of this higher-order test generation are to (1) represent complex/unknown program functions/instructions causing imprecision in symbolic execution by uninterpreted functions, and (2) record uninterpreted function samples capturing input-output pairs observed at execution time for those functions. We show that higher-order test generation generalizes and is more precise than simplifying complex symbolic expressions by using their concrete runtime values as done in DART [11]. We present several program examples where our approach can exercise program paths and find bugs missed by previous techniques. We discuss the implementability and applications of this approach. We also explain why dynamic test generation is more powerful than static test generation.

1. Introduction

Automatic code-driven test generation aims at proving existential properties of programs: does there exist a test input that can exercise a specific program branch or statement, or follow a specific program path, or trigger a bug? Test generation dualizes traditional program verification and static program analysis aimed at proving universal properties which holds for all program paths (such as “there are no bugs of type X in this program”).

Symbolic reasoning of large programs is bound to be imprecise. After all, if perfect bit-precise symbolic reasoning was possible, static program analysis would detect standard programming errors without reporting false alarms. How to deal with this imprecision is a fundamental problem in program analysis. Traditional static program verification builds “may” over-approximations of the program behaviors in order to prove correctness, but at the cost of reporting false alarms. Dually, automatic test generation requires “must” under-approximations in order to drive program executions and find bugs without reporting false alarms, but at the cost of possibly missing bugs.

Most of the program analysis literature discusses program verification for universal properties. Yet, paradoxically, the biggest practical impact of program analysis so far has been bug finding, not proving the absence of bugs (especially since most practical scalable tools are unsound for this). The study of effective program verification techniques for existential properties (aka “sound bug finding”) has recently experienced quite a resurgence. A catalyst is arguably recent work on systematic dynamic test generation [11], and related extensions and tools (e.g., [5, 14, 19]). Over the last few years, these techniques have been made more scalable [13], and have been used to found many new security vulnerabilities in Windows [8] and Linux [18] applications.

Work on automatic code-driven test generation can roughly be partitioned into two groups: static versus dynamic test generation. Static test generation [15] consists of analyzing a program P statically, by reading the program code and using symbolic execution techniques to simulate abstract program executions in order to attempt to compute inputs to drive P along specific execution paths or branches, without ever executing the program. On the other hand, dynamic test generation [16] consists of executing the program P starting with some given or random input, gathering symbolic constraints on inputs at conditional statements along the execution, and then using a constraint solver to infer variants of the previous inputs in order to steer the next execution of the program towards an alternative program branch; this process can be repeated with the goal of systematically executing all (or as many as possible) feasible program paths, while checking each execution using run-time checking tools (like Purify, Valgrind or AppVerifier) for detecting various types of errors [11].

It is argued in [7, 11] that dynamic test generation is more powerful than static test generation because imprecision in symbolic execution can be alleviated using concrete values and randomization: whenever symbolic execution does not know how to generate a constraint for a program statement depending on some inputs, one can always simplify this constraint using the concrete runtime values of those inputs. To illustrate this point, consider the following program example [7]:

```c
int obscure(int x, int y) {
    if (x == hash(y)) return -1; // error
    return 0; // ok
}
```

Assume the constraint solver cannot “symbolically reason” about the function hash. This means that the constraint solver cannot generate two values for inputs x and y that are guaranteed to satisfy (or violate) the constraint x == hash(y). (For instance, if hash is a hash or cryptographic function, it has been mathematically designed to prevent such reasoning.) In this case, static test generation cannot generate test inputs to drive the execution of the program obscure through either branch of the conditional...

[Copyright notice will appear here once 'preprint' option is removed.]
statement: static test generation is helpless for a program like this. Note that, for test generation, it is not sufficient to know that the constraint \( x \Rightarrow \text{hash}(y) \) is satisfiable for some \( x \) and \( y \), it is also necessary to generate some specific values for \( x \) and \( y \) that satisfy or violate this constraint.

In contrast, dynamic test generation can easily generate, for a fixed value of \( y \), a value of \( x \) that is equal to \( \text{hash}(y) \) since the latter is known at runtime. By picking randomly and then fixing the value of \( y \), we can, in the next test execution, set the value of the other input \( x \) either to \( \text{hash}(y) \) or to something else in order to force the execution of the then or else branches, respectively, of the test in the function \( \text{obscure} \).

In summary, static test generation is unable to generate test inputs to control the execution of the program \( \text{obscure} \), while dynamic test generation can easily drive the executions of that same program through all its feasible program paths. In realistic programs, imprecision in symbolic execution typically creeps in in many places, and dynamic test generation allows test generation to recover from that imprecision. Dynamic test generation can be viewed as extending static test generation with additional runtime information, and is therefore more general and powerful.

But how much more powerful? How often can this concretization trick be used? It would not work in the case of a constraint like \( \text{hash}(x) \Rightarrow \text{hash}(y)+1 \). Does there exist an algorithm to determine for which constraints concretization “works” and when it does not? Can concretization be modeled symbolically and therefore simulated by static symbolic execution and test generation? If so, what is the fundamental difference between static and dynamic test generation? Can one formalize both and prove (and clarify how and why) they are different? Is it possible to deal with imprecision in symbolic reasoning differently, in order to enable even more powerful test generation?

The purpose of this paper is to answer all these questions, which are central to test generation and program analysis. We start by carefully formalizing “concretization” as introduced in [11], and show that it may or may not generate sound path constraints (Section 3). We then introduce (Section 4) a new more general form of test generation, which we call higher-order because it uses a higher-order logic representation of program paths. Higher-order test generation uses uninterpreted functions to represent unknown functions or instructions during symbolic execution, records uninterpreted function samples capturing input-output pairs observed at execution time for those functions, and generates new test inputs from validity proofs of first-order logic formulas with uninterpreted functions. We then show (in Section 5) that higher-order test generation can not only fully “simulate” concretization when the latter is done in a sound manner, but that it is also more general and powerful. We discuss how to implement this approach in practice in Section 6, and present an application (in Section 7) which requires the power of higher-order test generation: parsers with input lexers using hash functions for fast keyword recognition. We conclude (in Section 9) by clarifying in what sense dynamic test generation is more powerful than static test generation.

2. Background: Systematic Dynamic Test Generation

Dynamic test generation (see [11] for further details) consists of running the program \( P \) under test both concretely, executing the actual program, and symbolically, calculating constraints on values stored in program variables \( v \) and expressed in terms of input parameters. Side-by-side concrete and symbolic executions are performed using a concrete store \( M \) and a symbolic store \( S \), which are mappings from memory addresses (where program variables are stored) to concrete and symbolic values respectively. A symbolic value is any expression \( e \) in some theory \( T \) where all free variables are exclusively input parameters. For any program variable \( v \), \( M(v) \) denotes the concrete value of \( v \) in \( M \), while \( S(v) \) denotes the symbolic value of \( v \) in \( S \). For notational convenience, we assume that \( S(v) \) is always defined and is simply \( M(v) \) by default if no symbolic expression in terms of inputs is associated with \( v \) in \( S \). When \( S(v) \) is different from \( M(v) \), we say that that program variable \( v \) is “symbolic”, meaning that the value of program variable \( v \) is a function of some input(s) which is represented by the symbolic expression \( S(v) \) associated with \( v \) in the symbolic store. We also extend this notation to allow \( M(e) \) to denote the concrete value of symbolic expression \( e \) when evaluated with the concrete store \( M \). The notation \( + \) for mappings denotes updating; for example, \( M' = M + [m \mapsto e] \) is the same map as \( M \), except that \( M'(m) = e \).

The program \( P \) manipulates the memory (concrete and symbolic stores) through statements, or commands, that are abstractions of the machine instructions actually executed. A command can be an assignment of the form \( v := e \) (where \( v \) is a program variable and \( e \) is an expression) or \( e_1 \Leftarrow e_2 \) (where \( e_1 \) is a memory address dereference at the address defined by evaluating expression \( e_2 \) and \( e_3 \) is an expression), a conditional statement of the form \( if \ e \ then \ C' \ else \ C'' \) where \( e \) denotes a boolean expression, and \( C' \) and \( C'' \) denote the unique\(^1\) next command to be evaluated when \( e \) holds or does not hold, respectively, or \( \text{stop} \) corresponding to a program error or normal termination.

Given an input vector \( I \) assigning a concrete value \( I_i \) to the \( i \)-th input parameter, the evaluation of a program defines a unique\(^2\) program execution \( S_0 \xrightarrow{C_1} s_1 \ldots \xrightarrow{C_n} s_n \) that executes the finite sequence \( C_1 \ldots C_n \) of commands and goes through the finite sequence \( s_1 \ldots s_n \) of program states. Each program state is a tuple \( (C, M, S, pc) \) where \( C \) is the next command to be evaluated, and \( pc \) is a special meta-variable that represents the current path constraint. For a finite sequence \( w \) of commands (i.e., a control path \( w \)), a path constraint \( pc_w \) is a formula of theory \( T \) that characterizes the input assignments for which the program executes along \( w \). To simplify the presentation, we assume that all the program variables have some unique initial concrete value in the initial concrete state \( M_0 \), and that the initial symbolic store \( S_0 \) identifies the program variables \( v \) whose values are program inputs (for all those, we have \( S_0(v) = x_i \), for which \( x_i \) is the symbolic variable corresponding to the input parameter \( I_i \)). Initially, \( pc \) is defined to be \text{true}.

Systematic dynamic test generation [11] consists of systematically exploring all feasible control-flow paths of the program under test by using path constraints and a constraint solver. By construction, a path constraint represents conditions on inputs that need be satisfied for the current program path to be executed. Given a program state \( (C, M, S, pc) \) and a constraint solver for theory \( T \), if \( C \) is a conditional statement of the form \( if \ e \ then \ C' \ else \ C'' \), any satisfying assignment, or model, to the formula \( pc \land \neg e \) (respectively \( pc \land e \)) defines program inputs that will lead the program to execute the \text{then} (resp. \text{else}) branch of the conditional statement. By systematically repeating this process, such a directed search can enumerate all possible path constraints and eventually execute all feasible program paths.

The search is exhaustive provided that the generation of the path constraint (including the underlying symbolic execution) and the constraint solver for the given theory \( T \) are both sound and complete, that is, for all program paths \( w \), the constraint solver returns a satisfying assignment for the path constraint \( pc_w \) if and only if the path is feasible (i.e., there exists some input assignment leading

---

\(^1\) We assume program executions are sequential and deterministic.

\(^2\) We assume program executions terminate. In practice, a timeout prevents non-terminating program executions and issues a runtime error.
1  evalSymbolic(e) =
2     match (e):
3         case v: // Program variable v
4             return S(kv)
5         case + (e1, e2): // Addition
6             f1 = evalSymbolic(e1)
7             f2 = evalSymbolic(e2)
8             if f1 and f2 are constants
9                 return evalConcrete(e)
10            else
11                 return createExpression('+', f1, f2)
12         etc.
13         default: // default for unhandled expression
14             // pc = pc ∧ \exists_x e(x) = h_k
15             return evalConcrete(e)

Figure 1. Symbolic expression evaluation.

1 Procedure executeSymbolic(P, I) =
2     initialize M0 and S0
3     path constraint pc = true
4     C = getNextCommand()
5     while C ≠ stop
6     match (C):
7         case (v := e):
8             M = M + [kv ↦ evaCon(c(e))]
9             S = S + [kv ↦ evaCon(c(e))]
10         case (if e then C' else C''):
11             b = evalConcrete(e)
12             c = evalConcrete(e)
13             if b then pc = pc ∧ c
14             else pc = pc ∧ ¬c
15     C = getNextCommand() // end of while loop

Figure 2. Symbolic execution.

to its execution). In this case, in addition to finding errors such as
the reachability of bad program statements (like assert(false)), a
directed search can also prove their absence, and therefore obtain
a form of program verification.

Theorem 1. (adapted from [11]) Given a program P as defined
above, a directed search using a path constraint generation and a
constraint solver that are both sound and complete exercises all
feasible program paths exactly once.

In this case, if a program statement has not been executed when
the search is over, this statement is not executable in any context.
In practice, path constraint generation and constraint solving are
usually not sound and complete.

Note that the above formalization and theorem do apply to
programs containing loops or recursion, as long as all program
executions terminate. However, in the presence of a single loop
whose number of iterations depends on some unbounded input,
the number of feasible program paths becomes infinite. In practice,
search termination can always be forced by bounding input values,
loop iterations or recursion, at the cost of potentially missing bugs.

Figure 1 illustrates how to evaluate symbolic expressions e in-
volved when symbolically executing individual program instruc-
tions, while Figure 2 shows how to generate a path constraint while
symbolically executing a whole program. The notation k & v denotes
the address at which the value of program variable v is stored.

3. Sound and Unsound Concretization
3.1 Concretization and Must Abstraction

When a program expression cannot be expressed in the given theory
T decided by the constraint solver, it can be simplified using
concrete values of sub-expressions, or replaced by the concrete
value of the entire expression. This case corresponds to line 13
of Figure 1. Let us call concretization the process of replacing a
symbolic expression by its current concrete value during dynamic
symbolic execution.

In the presence of concretizations, path constraint generation is
in general no longer “sound and complete” since constraints be-
come approximate and path constraints no longer capture accu-
rate program path feasibility. (In the original DART algorithm
of [11], some completeness flag would then be set off and the outer
loop in Figure 2 of [11] would run forever.) Moreover, Theorem 1
no longer holds since its assumptions are no longer satisfied.

Loosely speaking, concretizing a symbolic expression under-
approximates its set of possible values by a singleton set containing
its unique current runtime value. In that sense, concretization can be
viewed as a “must abstraction” which is sound for bug-finding [9].

Must abstractions capture existential reachability properties that
are guaranteed to hold on some program executions. Formally, must
transitions are usually [9] defined as follows:

there exists a must transition from an abstract state a1 to an
abstract state a2 if, for every concrete state c1 abstracted by
a1, there exists a program execution from c1 to a concrete
state c2 such that c2 is abstracted by a2.

Must transitions can be chained together to prove existential reach-
ability properties of programs, i.e., find bugs in a sound man-
ner [9, 14]. Similarly, we can define must path constraints that are sound for
bug finding.

Definition 1. A path constraint pcω is sound if every input as-
signment satisfying pcω defines a program execution following
path ω.

In other words, if a sound path constraint is satisfiable, then the cor-
responding program path is feasible. But the converse does not nec-
nessarily hold: an algorithm for generating sound path constraints
may fail to generate path constraints for some feasible program
paths, and hence may fail to exercise some code and may miss bugs.

3.2 Unsound Concretization

Strictly speaking, however, concretization alone does not guarantee
a sound path constraint generation. Consider the following program
ear.

```c
int foo(int x, int y) {
    if (x == hash(y)) {
        ...
    if (y == 10) return -1; // error
    }
    ...
}
```

Assume that the function hash is “unknown”, that the program
is run with the input values x=567 and y=42, that hash(42) is
567, and hence that the execution takes the then branch of the
conditional statement. The path constraint generated by the DART
algorithm of Figures 1 and 2 (i.e., without line 14 of Figure 1) is

\[
x = 567 ∧ y ≠ 10
\]

Indeed, the expression hash(y) which (we assume) is outside T
is replaced by its concrete value 567 by line 15 of Figure 1. But
the algorithm does not “record” this concretization at the first
conditional statement, and allow a symbolic constraint y ≠ 10 to
be generated on y later on. This path constraint correctly captures
the current concrete execution (since x is indeed 567 and y is
indeed different from 10 for this run), but it is not sound: for x
equal to 567 and all values of y different from 10, we do not know
whether $\text{hash}(y) = 567$ and therefore whether the same execution path would be taken.

By negating the last constraint of this unsound path constraint and solving the new path constraint

$$x = 567 \land y = 10$$

one gets a new test input that should drive the program towards the error, but results instead in a divergence [11], i.e., an unexpected program path being taken if $\text{hash}(10)$ is different from 567.

The risk of divergences in the presence of unsound path constraints is not a new observation: it is discussed in [11] and motivates the need for comparing the actual path taken by the program under test with the expected path $w$ derived from each path constraint $pc_w$. When additional constraints are automatically injected in path constraints for checking additional program properties such as the absence of buffer overflows [12], every new test input generated violating such injected constraints should be executed to confirm the bug before reporting it to the user, in order to avoid reporting false alarms due to divergences from unsound path constraints (unlike [17]).

### 3.3 Sound Concretization

To generate sound path constraints, we propose the following new variant of the DART algorithm: whenever a symbolic expression $e$ is concretized during symbolic execution, for all symbolic variables $x_i$ occurring in $e$, a new concretization constraint $x_i = I_i$ is added to the path constraint, as illustrated in line 14 of Figure 1, which we now assume is un-commented. This implies that the value of each such symbolic variable $x_i$ is fixed to a constant equal to the corresponding current input value $I_i$ below in the path constraint. Let us call this procedure sound concretization.

Indeed, we now show that sound concretization results in sound path constraints.

**Theorem 2.** The algorithm of Figures 1 and 2 with sound concretization, i.e., including line 14 of Figure 1, generates sound path constraints.

**Proof:** The proof relies on the assumption that all sources of imprecision in symbolic execution are detected and trigger the default case in the procedure evalSymbolic shown in Figure 1. In every such case, line 14 is executed and a concretization constraint is injected in the path constraint. Otherwise, in all other cases, symbolic execution of individual instructions (assignments or conditional statements) is assumed to be precise, i.e., both sound and complete.

Consider a path constraint $pc_w$ generated by this algorithm during the execution of a program path $w$ with an input vector $I = \{I_i | vi\}$. For every symbolic variable $x_i$ (generalizing program input $I_i$) occurring in $pc_w$, two cases are possible. Either there is a concretization constraint forcing $x_i$ to be equal to $I_i$. Or all constraints on $x_i$ in $pc_w$ are both sound and complete (symbolic execution is precise so far for all individual instructions involving $x_i$). Either way, all values of $x_i$ satisfying $pc_w$ satisfy all the tests on inputs along $w$ and hence lead to a program execution following the same path $w$. Since the same argument holds for all symbolic variables $x_i$, $pc_w$ is sound.

Note that, unlike ordinary constraints derived from conditional statements executed by the program under test, concretization constraints should not be negated later in the directed search, because these constraints do not correspond to conditional statements of the program, and therefore may not exercise new program paths.

Consider again the example of function `foo` shown in Section 3.2. With sound concretization, a concretization constraint $y = 42$ would be generated when symbolically evaluating $\text{hash}(y)$ in the first conditional statement.

Sound concretization generates sound path constraints and eliminates divergences. But in practice, sound concretization is not necessarily "better" than DART's default unsound concretization, for two reasons.

First, a drawback of sound concretization is that it reduces the ability to generate new tests. For instance, in the previous example, sound concretization generates the sound path constraint

$$y = 42 \land x = 567 \land y \neq 10$$

After negating the last constraint, the resulting constraint

$$y = 42 \land x = 567 \land y = 10$$

is not satisfiable, and no new test is generated to try to cover the `then` branch of the second conditional statement.

Consider now this program using the same `hash` function:

```c
int foo-bis(int x, int y) {
    if (x != hash(y)) {
        ...
        if (y == 10) return -1; // error
    }
    ...
}
```

Unsound concretization would now generate a path constraint

$$x \neq 567 \land y \neq 10$$

After negating the last constraint, a constraint solver would easily solve the (unsound) path constraint

$$x \neq 567 \land y = 10$$

and generate a new test that is likely (but not guaranteed) to hit the error, assuming `hash(10)` is likely different from the value of $x$ whatever its value is. This is an example of a "good divergence".

Second, and perhaps most importantly, sound concretization is **much harder to implement** than unsound concretization, since it requires detecting explicitly all sources of imprecision in symbolic execution — including conservatively estimating all possible inputs and outputs of all individual instructions and all unknown/library/operating-system functions used by the program under test —, while unsound concretization can simply be implemented by handling some program instructions and ignoring the others.

Finally, note that adding line 14 of Figure 1 is just one way to inject concretization constraints and that other variants are possible. For instance, the injection of concretization constraints for symbolic variables $x_i$ occurring in a concretized expression $e$ could be delayed during symbolic execution until $e$ is actually being used in some constraint (if any) in the path constraint $pc_w$. This way, examples such as

```c
    ... x := hash(y);
    if (y == 10) return -1; // error
    ...
```

could be handled with sound concretization by postponing injecting a concretization constraint for $y$ from when `hash(y)` is computed to when program variable $x$ is being tested (if at all), and a constraint to cover the other branch of the test (`y == 10`) could be generated and solved.

### 4. Higher-Order test Generation

We now introduce a more general form of test generation, which we call **higher-order** because it uses a higher-order logic representation of program paths. Higher-order test generation requires three steps:
1. uninterpreted functions are used to represent unknown functions or instructions during symbolic execution;
2. new test inputs are derived from validity proofs of first-order logic formulas with uninterpreted functions;
3. concrete input-output value pairs need be recorded as uninterpreted function samples that are used when generating new concrete test inputs.

We now discuss these three steps in detail one by one.

4.1 Symbolic Execution with Uninterpreted Functions

Another well-known approach for reasoning about unknown functions is to represent those using uninterpreted functions. Figure 3 presents a more general algorithm for dynamic symbolic execution where unknown functions or instructions are represented explicitly using uninterpreted function symbols. This algorithm extends the standard symbolic execution procedure of Figure 2 with the new lines marked with *. Whenever an unknown function or instruction \( f \) is encountered during symbolic execution (line 10 of Figure 3), an uninterpreted function symbol \( f \) uniquely representing the function/instruction is used to represent the symbolic return value of the function call, which is defined as the application of the function to its symbolic input arguments (line 12).

By unknown function, we mean any function whose code is not available or not precisely representable by a symbolic expression of the theory \( T \) handled by the constraint solver for whatever reason (such as hash or crypto functions, operating-system functions, environment/library functions outside of the main scope of analysis, etc.). Similarly, by unknown instruction, we mean any atomic program instruction not handled by the symbolic evaluation procedure, i.e., involving some symbolic expression previously concretized in line 13 of Figure 1. For simplicity, we represent such unknown instructions by uninterpreted functions as well; line 13 of Figure 1 is thus no longer reachable, by construction, with the new algorithm.\(^3\)

In Figure 3, \( \text{args} \) denotes a list of arguments. Each argument is a variable \( v \) whose value is an input to the function call (we consider a call-by-value function model here, for simplicity).

Consider again the example of function \( \text{foo} \) shown in Section 3.2. When symbolically executing the conditional statement \( (x \equiv \text{hash}(y)) \), a fresh uninterpreted function symbol \( h \) is introduced to represent the unknown function \( \text{hash} \). If the \( \text{then} \) branch of the conditional statement is taken, the path constraint generated is then

\[
x = h(y)
\]

The new symbolic execution performed by the algorithm of Figure 3 typically generates more symbolic values than the standard symbolic execution procedure of Figure 2, since it represents unknown functions with “symbolic” uninterpreted functions instead of using concretization and falling back on concrete values. Therefore, the new algorithm typically generates more symbolic constraints in the path constraint \( pc \) (lines 17 and 18). We can prove that those path constraints are always sound.

**Theorem 3.** The algorithm of Figure 3 generates sound path constraints.

**Proof:** The proof relies on the assumption that all sources of imprecision in symbolic execution are detected in line 10 of the procedure \( \text{executeSymbolic} \) in Figure 3 and are representable by uninterpreted functions (line 12), i.e., that every unknown/instruction function/instruction is deterministic and with a known input-output signature. For all other cases, symbolic execution of individual instructions (assignments or conditional statements) is assumed to be precise, i.e., both sound and complete.

Consider a path constraint \( pc_w \) generated by this algorithm during the execution of a program path \( w \) with an input vector \( I = \{I_i|I_i\} \). At any time during the symbolic execution along \( w \), all direct dependencies on inputs are tracked precisely via the symbolic store, either in sound and complete manner via the procedure \( \text{evalSymbolic} \) of Figure 1, or using uninterpreted function applications. Therefore, at every conditional statement \( C \) executed along \( w \), if a constraint \( c \) involving some symbolic variable \( x_i \) is added in \( C \) to the path constraint \( pc_w \), all input values of \( x_i \) satisfying \( c \) take the same branch as the current concrete value \( I_i \), of \( x_i \). Since the same argument holds for all symbolic variables \( x_i \) and all symbolic constraints in \( pc_w \), \( pc_w \) is sound.

By default, free variables are existentially quantified in the definition of satisfiability. Thus, uninterpreted functions are implicitly quantified existentially in the previous proof. For instance, "an assignment \( (x = 1, y = 2) \) for inputs \( x \) and \( y \) satisfies a path constraint \( x = h(y) \)" means that \( 1 = h(2) \). This implies that \( \exists h, x, y : x = h(y) \), where \( h \) is the specific unknown function being called by the current program.

4.2 Generating Tests from Validity Proofs

Test generation from path constraints with uninterpreted functions is performed from validity proofs as will be described shortly. This requires path constraints to be post-processed before calling the validity checker: every ordinary symbolic variable representing a program input is existentially quantified, resulting in a first-order logic formula of the form

\[
\exists x : \phi(f, x)
\]

while every uninterpreted function symbol \( f \) is implicitly left universally quantified in the validity check. Remember that first-order logic does not allow explicit quantification over functions; universal function quantification is implicit when checking validity, while existential function quantification is implicit when checking satisfiability.

We emphasize that representing unknown functions by uninterpreted function symbols in validity queries is not new in program verification. Indeed, for verification, the set of possible behaviors of unknown functions needs to be over-approximated to guarantee a may abstraction that can be used to prove correctness, hence the use of (implicit) universal quantification. However, what is new here (to the best of our knowledge) is our use of (implicit) universal quantification for uninterpreted function symbols for test generation, instead of (implicit) existential quantification with satisfiability queries as usual in the context of test input generation. We discuss this further in Section 8.

We now illustrate this important difference, and why we need it. Consider again the example of the \( \text{obscure} \) function used in the introduction:

```c
int obscure(int x, int y) {
    if (x == hash(y)) return -1; // error
    return 0; // ok
}
```

Let us assume again that the function \( \text{hash} \) is “unknown”, that the program is run first with the input values \( x=33 \) and \( y=42 \), and that \( \text{hash}(42) \) is 567 and hence that the first execution takes the \( \text{else} \) branch of the conditional statement. With the standard (DART) symbolic execution of Figure 2, the single constraint appearing in the path constraint \( pc \) is

\[
x \neq 567
\]

\(^3\)Any symbolic expression \( e \) including an unknown function/instruction application \( f(args) \) as sub-expression is equivalent to \( v_f(args) := f(args) \) followed by \( e \) where \( f(args) \) is replaced by \( v_f(args) \).
Next, the *satisfiability* of the negation of this constraint, namely

\[ x = 567 \]

is checked by the constraint solver. Since it is satisfiable, the satisfying assignment returned by the constraint solver is transformed into a new input vector, namely \( x = 567 \) and \( y = 42 \), that will drive the next execution of the program along the then branch of the conditional statement. Note how input variable \( x \) is existentially quantified in the satisfiability check performed by the constraint solver.

In contrast, with the new symbolic execution procedure of Figure 3, the single constraint appearing in the path constraint is now

\[ x \neq h(y) \]

where \( h \) denotes the uninterpreted function symbol representing the unknown function \( h \). After post-processing, the validity of the formula

\[ \exists x, y : x = h(y) \]

is checked by the constraint solver (i.e., for all \( h \)). If the formula is valid, a test-generation strategy is derived from the validity proof of the formula, viewed as a strategy for making the formula always true. In this case, the formula is valid and the strategy is

"fix \( y \), then set \( x \) to the value \( h(y) \)."

In other words, with the new algorithm, new tests are derived from validity proofs, instead of satisfying assignments as usual.

### 4.3 The Need for Uninterpreted Function Samples

However, the above test strategy is necessary but not sufficient to compute precise input vectors, as required in test generation. For instance, with the above test strategy, the "value \( h(y) \)" is not derived from the validity proof: precise values for \( x \) can be obtained only when some values for \( y \) and \( h(y) \) are known. In general, the value of \( h(y) \) for a given \( y \) can only be known at runtime. (Unless the function \( h \) is completely known and not too complex to be represented as a logic formula; then a constraint solver using constant propagation starting from some concrete input value \( y \) could simulate the execution of \( h \) with value \( y \) as argument and compute the value \( h(y) \); however, even in this case, constant propagation is orders of magnitude slower and less scalable than simply running the actual code implementing the function \( h \) with value \( y \) as argument.)

In the above example, we need to know that if \( y \) is set to 42, then \( h(y) \) is 567 in order to set \( x \) to that value following the test-generation strategy derived from the validity proof.

In other words, the new symbolic execution algorithm using uninterpreted functions also needs to record runtime concrete values to allow for test generation of specific concrete input values. Let us call this step *uninterpreted function sampling*.

Specifically, we can record the concrete value of any function application such as \( h(y) \) during dynamic symbolic execution as well as the concrete value of each of its arguments, as shown in line 13 of Figure 3: a pair \((c, f(\text{evalConcrete}(\text{args})))\) is recorded for each function application where \( \text{evalConcrete(\text{args})} \) denotes the list of concrete values of each function argument and \( c \) denotes the concrete return value of the function applied to those concrete argument values. In the above example, the record pair is thus \((567, h(42))\), meaning that \( 567 = h(42) \).

These pairs \((c, f(\text{evalConcrete(\text{args})))\) of recorded values have two purposes.

- They are used to interpret a test generation strategy derived from a validity proof in order to assign concrete values to function applications (such as \( h(y) \)) appearing in the strategy and generate concrete values to new input tests.
- They can also be used to generate additional constraints of the form \( c = f(\text{evalConcrete(\text{args})}) \) as an antecedent to the path constraint that is passed to the constraint solver. Such constraints restrict the possible interpretations for uninterpreted function symbol \( f \), and increases the chance of validity.

The latter can be more powerful and is necessary for higher-order test generation to always subsume sound concretization, as will be shown in the next section. Therefore, we adopt this option in what follows.

To sum up, given a path constraint \( pc \) using a set \( X \) of symbolic variables, a set \( F \) of uninterpreted functions and a set \( IO_F \) of recorded input-output function samples, the post-processed formula \( POST(pc) \) obtained by post-processing \( pc \) in high-order test generation is the first-order logic formula defined by

\[ POST(pc) = \exists X : S \Rightarrow pc \]

where \( \exists X \) denotes that all symbolic variables \( x_i \in X \) are existentially quantified, and \( S \) is the conjunction of equality constraints \( c = f(\text{evalConcrete(\text{args}))} \) for all \((c, f(\text{evalConcrete(\text{args}))) \in IO_F \). In what follows, we call \( S \) the antecedent of \( POST(pc) \).

For instance, consider again our running example with a path constraint \( pc \) containing a single constraint \( x = h(y) \) and a single
recorded pair \((567, h(42))\), \(POST(pc)\) is
\[\exists x, y : (567 = h(42)) \Rightarrow (x = h(y))\]

Sometimes, the antecedent does not help the validity proof itself, as in the previous example, and only helps for generating actual concrete test values. But sometimes, the antecedent is necessary to prove validity, as shown in Section 5.3.

In practice, recording all concrete arguments and return values of all uninterpreted function applications used in a path constraint can be prohibitively expensive for long program executions. Moreover, it is unfortunately hard to predict which concrete values will be needed later in the path constraint, i.e., which concrete values are concretizations of symbolic expressions with uninterpreted functions on which there are tests below in the path constraint. However, it is possible to track only some sources of imprecision and only represent those using uninterpreted functions, and to track and represent only some input-output pairs for tracked functions. Impelementability issues will be discussed further in Section 6.

5. Comparison

In this section, we compare the test-generation power of higher-order test generation (Section 4) with sound and unsound concretization (Section 3).

5.1 Higher-Order Test Generation and Unsound Concretization are Incomparable

As discussed at the end of Section 3.3, sound and unsound concretization are incomparable in general, since unsound concretization can lead to (bad or good) divergences that will not occur with sound concretization. Similarly, by Theorem 3, higher-order test generation generates sound path constraints and is thus incomparable to unsound concretization in general, for the same reasons.

**EXAMPLE 1.** Consider the function
```cpp
int bar(int x, int y) { // x, y are inputs
    if ((x == hash(y)) AND (y == hash(x))) { // error
        ...
    }
    ...
}
```

Given random inputs \(x = 33\) and \(y = 42\) and assuming \(\text{hash}(42) = 567\) and \(\text{hash}(33) = 123\), unsound concretization will generate an unsound path constraint
\[x \neq 567 \lor y \neq 123\]
whose negation \(x = 567 \land y = 123\) is satisfiable and generates a new test input pair \((x = 567, y = 123)\) which will likely lead to a divergence. In contrast, higher-order test generation will generate a sound path constraint
\[x \neq h(y) \lor y \neq h(x)\]
After post-processing, the validity of the formula \(\exists x, y : x = h(y) \land y = h(x)\) will be checked. But no new test will be generated since this formula is invalid (i.e., in general, unless we learn some additional property of \(h\) such as there exists an \(x\) such as \(x = h(h(x))\), for instance). ♦

5.2 Higher-Order Test Generation is as Powerful as Sound Concretization

In the remainder of this section, we will therefore restrict the comparison of higher-order test generation to sound concretization. Both algorithms generate sound path constraints (see Theorems 2 and 3). We now show that high-order test generation is more powerful than test generation with sound concretization.

Given a path constraint \(pc = \bigwedge_{1 \leq i \leq n} c_i\), let \(ALT(pc)\) denote the new alternate path constraint defined by the conjunction of the negation of the last constraint \(c_n\) of \(pc\) with all previous constraints \(c_j\) with \(j < i\) in \(pc\). We thus have
\[\text{ALT}(pc) = \neg c_n \land \bigwedge_{1 \leq i < n} c_i\]
Remember that, as explained in Section 2, all nonempty prefixes of a path constraint are also path constraints (except those ending with a concretization constraint).

Let \(pc_{w}^{SC}\) denote a path constraint generated for a program path \(w\) with sound concretization (Section 3.3) and whose last constraint is not a concretization constraint. Let \(pc_{w}^{UF}\) be the path constraint generated with higher-order test generation (Section 4.1) for the same program path \(w\). Given any theory \(T\), let \(T \cup T_{EU F}\) denote the theory combining \(T\) with the theory of equality with uninterpreted functions (EUF). If \(pc_{w}^{SC}\) and \(ALT(pc_{w}^{SC})\) are quantifier-free formulas over \(T\), then \(pc_{w}^{UF}\) and \(ALT(pc_{w}^{UF})\) are quantifier-free formulas over \(T \cup T_{EU F}\), while \(POST(ALT(pc_{w}^{UF}))\) is a first-order logic formula over \(T \cup T_{EU F}\), by construction.

**THEOREM 4.** (Simulation Theorem)
If \(\text{ALT}(pc_{w}^{SC})\) is satisfiable, then \(POST(\text{ALT}(pc_{w}^{UF}))\) is valid.

**Proof:** We show how to derive a validity proof for \(POST(\text{ALT}(pc_{w}^{UF}))\) from any satisfying assignment for \(\text{ALT}(pc_{w}^{SC})\).

Whenever a complex/unknown expression \(e(x_i) \notin T\) occurs during symbolic execution with sound concretization, a concretization constraint \(x_i = I_i\) is introduced in \(pc_{w}^{SC}\), \(e(x_i)\) becomes \(e(I_i)\), and all future expressions \(e(x_i)\) depending on \(x_i\) become \(e(I_i)\). In contrast, in higher-order test generation, every occurrence of a complex/unknown expression \(e(x_i) \notin T\) becomes \(f_e(x_i)\) where \(f_e\) is an uninterpreted function symbol representing \(e\), and the pair \((\text{evalConcrete}(e(I_i)), f_e(I_i))\) is being recorded.

Consider any symbolic variable \(x_i \in X\) for which there is a concretization constraint \(x_i = I_i\) in \(\text{ALT}(pc_{w}^{SC})\). Consider any expression \(e(x_i) \notin T\) concretized into \(e(I_i)\) and occurring in \(\text{ALT}(pc_{w}^{SC})\). In \(POST(\text{ALT}(pc_{w}^{SC}))\), \(e(x_i)\) is represented by \(f_e(x_i)\) and \(\text{evalConcrete}(e(I_i)) = f_e(I_i)\) is in the antecedent.

In \(POST(\text{ALT}(pc_{w}^{UF}))\), repeat the following process for all the symbolic variables \(x_i\) with a concretization constraint in \(\text{ALT}(pc_{w}^{SC})\) and for all the functions \(f_e\) using those variables as arguments: substitute all the occurrences of \(x_i\) by \(I_i\) and then all the occurrences of any function \(f_e(I_i)\) by \(\text{evalConcrete}(e(I_i))\). (Note that this last step would not be possible if \(\text{evalConcrete}(e(I_i)) = f_e(I_i)\) was not present, i.e., known and recorded, in the antecedent of \(POST(\text{ALT}(pc_{w}^{UF}))\)).

At the end, we are left with a formula \(\phi(X')\) where all remaining symbolic variables \(x'_i \in X'\) do not have concretization constraints in \(\text{ALT}(pc_{w}^{SC})\). Therefore, we know that all expressions of the form \(e(x'_i)\) in \(\phi(X')\) are in \(T\), that they did not introduce imprecision in symbolic execution, and that they are represented in the exact same way in \(\text{ALT}(pc_{w}^{SC})\).

Thus, by construction, the consequent of \(\phi(X')\) is syntactically equivalent to \(\text{ALT}(pc_{w}^{SC})\) when all its concretization constraints are removed. Since all occurrences of all uninterpreted function symbols \(f_e\) have been eliminated from the consequent of \(\phi(X')\), the universal quantification over those functions in \(\phi(X')\) becomes void intuitively. The same holds for the existential quantification for all symbolic variables \(x_i \notin X'_i\) that no longer appear in \(\phi(X')\). Since the consequent of \(\phi(X')\) is logically equivalent to \(\text{ALT}(pc_{w}^{SC})\), if the latter is satisfiable, then \(\exists X' : S \Rightarrow\)
$\text{ALT}(p_{\text{SC}}^w)$ is valid. This implies that $\exists X: S \Rightarrow \text{ALT}(p_{\text{SC}}^w)$ is valid (by setting the value of each variable $x_i \in X \setminus X'$ to 1).\]

We emphasize that the previous theorem holds only if uninterpreted function samples are used. Otherwise, higher-order test generation may not be able to simulate sound concretization, as illustrated by the following example.

**Example 2.** Consider the function

```c
int pub(int x, int y) { // x,y are inputs
    if ((hash(x) > 0) AND (y == 10)) return -1 // error
    ...}
```

Given random inputs $x = 1$ and $y = 2$ and assuming $\text{hash}(1) = 5$, sound concretization will generate a sound path constraint

$$x = 1 \land y \neq 10$$

(after simplifying 5 > 0 to true). The alternate path constraint $x = 1 \land y = 10$ is satisfiable and generates a new test input pair $(x = 1, y = 10)$ to cover the then branch of the conditional statement. In contrast, higher-order test generation without uninterpreted function samples will generate a sound path constraint

$$h(x) > 0 \land y \neq 10$$

However, after post-processing of the alternate path constraint attempting to cover the then branch, the validity of the formula

$$\exists x, y : h(x) > 0 \land y = 10$$

will be checked. But no new test will be generated since this formula is invalid (to see this, consider the function $h$ such that $h(x) = 0$ for all $x$, for instance). Instead we consider higher-order test generation with uninterpreted function samples, we then obtain after post-processing the formula

$$\exists x, y : (h(1) = 5) \Rightarrow (h(x) > 0 \land y = 10)$$

which is valid (by setting $x = 1, y = 10$).

An important remark is that Theorem 4 only compares the path-constraint generation capabilities of higher-order test generation and sound concretization. But it does not state that if there exists a constraint solver that can prove the satisfiability of $\text{ALT}(p_{\text{SC}}^w)$, then there exists a constraint solver that can prove the validity of $\text{POST}(\text{ALT}(p_{\text{SC}}^w))$. Thus, when we say that “higher-order test generation is as powerful as sound concretization”, we assume we are given perfect constraint solvers for both satisfiability and validity checking.

### 5.3 Higher-Order Test Generation is More Powerful Than Sound Concretization

The previous theorem states that higher-order test generation is at least as powerful as sound concretization. Is it more powerful? The answer is yes, and for three reasons.

First, since higher-order test generation uses $T \cup T_{\text{EUF}}$, it can infer test strategies thanks to axioms included in the theory of equality with uninterpreted functions (EUF), which are not available to sound concretization, which only uses $T$.

**Example 3.** Higher-order test generation can generate tests from validity proofs of post-processed path constraints such as

$$\exists x, y : f(x) = f(y)$$

thanks to the theory of equality with uninterpreted functions. (Solution strategy: set $x = y$). In contrast, sound concretization would force the concretization of $x, y, f(x)$ and $f(y)$, and would not be able to generate a test to cover a path with such a path constraint.

Second, higher-order test generation can sometimes leverage concrete input-output pairs that are part of the antecedent of a post-processed path constraint in order to prove valid formulas that would otherwise be invalid.

**Example 4.** Consider the post-processed path constraint

$$\exists x, y : f(x) = f(y) + 1$$

This formula is in general invalid (to see this, consider a function $f$ that always returns 0). However, assume that it is dynamically observed that $f(0) = 0$ and $f(1) = 1$. Then these record pairs can be part of the antecedent of the post-processed path constraint, which becomes

$$\exists x, y : f(0) = 0 \land f(1) = 1 \Rightarrow f(x) = f(y) + 1$$

This formula is valid (solution strategy: set $x = 1$ and $y = 0$). In either case, sound concretization would force the concretization of $x, y, f(x)$ and $f(y)$ and would not be able to generate new tests.

Third, higher-order test generation can sometimes generate test strategies that involves a sequence of new tests, whose purpose is to collect additional function samples in a targeted manner, instead of a single new test as usual. Let us call this new type of test generation multi-step test generation.

**Example 5.** Consider again the example of function $\text{foo}$ of Section 3.2, reproduced here for convenience:

```c
int foo(int x, int y) {
    if (x == hash(y)) {
        ... if (y == 10) return -1; // error
    }
    ...}
```

Starting with $x = 33$ and $y = 42$ and assuming again $\text{hash}(42) = 567$, this first test takes the else branch of the first conditional statement. After negating the last constraint, we obtain the post-processed alternate path constraint

$$\exists x, y : (h(42) = 567) \Rightarrow x = h(y)$$

This formula is valid and we generate a new input vector $\langle x = 567, y = 42 \rangle$. We run this new test and we now take the then branch of the first conditional statement followed by the else branch of the second conditional statement. After negating the last constraint, we obtain the post-processed alternate path constraint

$$\exists x, y : (h(42) = 567) \Rightarrow x = h(y) \land y = 10$$

This formula is valid, and a test strategy derived from the validity proof is “set $y = 10$, set $x = h(10)$”. However, since the value of $h(10)$ has never been sampled, it is currently unknown!

A new intermediate test with, say, $(x = 567, y = 10)$ is necessary to learn the value of $h(10)$, say 66. Only then can a second input vector $(x = 66, y = 10)$ be generated to finish interpreting the previous test strategy, and be run to exercise the then branch of the second conditional statement and hit the error!

This is an example of two-step test generation. Of course, such examples can easily be generalized to $k$-step test generation for any $k$ bounded by the number of program inputs.

Another related yet orthogonal suggestion would be to include in the antecedent of post-processed alternate path constraints generated with higher-order test generation, not only all the input-output value pairs observed for the current run, but also all value pairs observed during all previous runs.
6. Discussion: Implementability

As explained in the introduction, the main purpose of this paper is to carefully study the power of recent test generation techniques such as DART which are quickly gaining popularity. It is also to understand the fundamental difference between static and dynamic test generation. In the process, we proposed higher-order test generation as a powerful test generation technique generalizing sound concretization. How practical is higher-order test generation?

For large realistic applications such as those targeted by white-box fuzzing [13], exhaustively tracking all sources of imprecision during symbolic execution is problematic. Such imprecision can be due to unhandled individual instructions (for instance, the complete x86 instruction set contains hundreds of instructions described in a 1,000+ page manual with exotic bit-manipulations, floating-point/SSE2 instructions, etc. operating-system calls (should kernel execution be symbolic and if so up to what depth?), complex functions (for hashing, encrypting, compressing, encoding, CRC-ing data), etc. Moreover, some of this imprecision is hard to capture using uninterpreted functions because the real functions may look nondeterministic and/or with complex or unknown input-output signatures (such as malloc, rand, fork, etc. which take as inputs large/unknown parts of the operating-system state and may have many hidden side effects). Finally, capturing at execution time all observed input-output value pairs is problematic as well. For large applications, all this would slow down an already slow symbolic execution and generate gigantic path constraints that would overwhelm even the best engineered constraint solvers.

Therefore, we envision a more focused role for higher-order test generation, targeted at reasoning about specific user-identified complex or unknown functions that must be dealt with in order to properly test an application. One such application is presented in the next section.

Another obstacle to the implementability of higher-order test generation is the relative lack of support for generating validity proofs by existing constraint solvers such as SMT solvers. Indeed, a first-order logic formula $\exists X : \phi(F, X)$ can be proved valid by checking whether its negation $\forall X : \neg\phi(F, X)$ is unsatisfiable with a Satisfiability-Modulo-Theories solver. (In the application described in the next section, we used the Z3 SMT solver [6]).

For first-order logic formulas like those considered here, validity (equivalently unsatisfiability) is usually proved using saturation techniques [2]. Better tool support for generating saturation-based proofs (not just models for satisfiable instances) that are parsable by other tools would help extracting a test generation strategy from such proofs. In fact, our paper could be viewed as a “requirement specification” for next-generation SMT solvers for test generation, a growing application area for those, by presenting higher-order test generation as a new possible application for those tools.

7. Application

In this section, we present an application which requires the power of high-order test generation: test generation for parsers with input lexers using hash functions for fast keyword recognition.

As observed in [10], dynamic test generation can be ineffective when testing applications with highly-structured inputs. Examples of such applications are compilers and interpreters. These applications process their inputs in stages, such as lexing, parsing and evaluation. Unfortunately, lexers often detect language keywords by comparing their pre-computed hash values with the hash values of strings read from the input. This effectively prevents symbolic execution and constraint solving from ever generating input strings that match those keywords since hash functions cannot be inverted (i.e., given a constraint $x = \text{hash}(y)$ and a value for $x$, one cannot compute a value for $y$ that satisfies this constraint). In those cases, test generation is defeated already in the first processing stages.

A typical code pattern is shown in Figure 4 in the appendix. This C code is an excerpt from the open-source flex lexer. Initially, the function $\text{addsym}$ is called with every input-language keyword so that each of those are hashed (with function $\text{hashfunct}$) and stored in a hash table $\text{table}$. Once the hash table is populated, the parsing of the input starts. The input is being divided into chunks delimited by blank-spaces/tabs/etc. Each of those chunks are then parsed and the function $\text{findsym}$ is called to check whether a chunk matches a keyword.

Because of the presence of function $\text{hashfunct}$, dynamic test generation cannot generate input strings (“chunks”) matching specific keywords. In [10], it is shown how such a problematic lexer can be bypassed altogether for test generation of the subsequent input-processing stages by (1) instrumenting the lexer so that its return $\text{symbol}$ values become symbolic inputs during symbolic execution, and (2) lifting the input space from character strings to sequences of symbols (token ids) using a grammar specification of the input language being parsed. Unfortunately, instrumenting a lexer this way can be problematic for complex lexers, and this approach requires a user-supplied input-grammar specification.

In contrast, higher-order test generation provides a fully automatic solution to test generation through such lexers. The only thing the user is required to specify is the name of the hash function $\text{hashfunct}$, whose calls are then tracked during symbolic execution and represented using an uninterpreted function exactly as described in Section 4. During the hash table initialization, all the pairs ($\text{hashvalue}, \text{hashfunct}(\text{keyword})$) are being recorded to be included in the antecedent of post-processed path constraints. Whenever test generation needs a specific symbol to drive the parser through a new specific program branch, the theory of equality with uninterpreted functions combined with all the input-output value pairs recorded for $\text{hashfunct}$ makes it possible to effectively “inverse” this hash function for the finitely many keywords of the input language, which is sufficient for test generation for such applications. For instance, for a conditional statement of the form $\text{if (symbol == 52)}$ ..., observing that $\text{hashfunct('while')} = 52$ is sufficient for higher-order test generation to generate an input chunk equal to $\text{while}$ in order to exercise the then branch of the conditional statement.

Note that, in some lexers, hash values are pre-computed and hard-coded in the source code. Then, it is not possible to observe at execution time all relevant input-output value pairs for such hash functions at the beginning of each execution. However, such input-output pairs could still be “learned” over time by starting the testing session with a representative set of well-formed inputs, observing the hash values of all the language keywords those inputs contain, and then using all pairs recorded in all previous executions in subsequent symbolic executions.

We have performed preliminary experiments with higher-order test generation in such a targeted manner in conjunction with the whitebox fuzzer SAGE [13], and using the Z3 SMT solver [6]. Experiments with a simple parser including a lexer similar to Figure 4 show that, when used in such a targeted manner, higher-order test generation does not overwhelm at all the constraint solver. Regular dynamic test generation with symbolic execution and unsound concretization is not better than blackbox random testing because it is not able to drive executions passed the hash functions in the lexer and triggers many divergences. In contrast, higher-order test generation can accurately drive program executions and increases overall test coverage significantly.

In summary, higher-order test generation extends the applicability of whitebox fuzzing to structured parsers using hash functions.
8. Other Related Work

Abstracting program functions using uninterpreted functions is a well-known technique in verification-condition generation for program verification of universal properties (e.g., [3]). In that context, the set of all program behaviors is over-approximated in presence of program-analysis imprecision, and verification is established by checking the validity of a logic formula representing the entire program (or module). Uninterpreted function symbols in the formula are therefore implicitly universally quantified as in our work.

In the context of test generation, uninterpreted functions have been used for representing symbolic test summaries in compositional symbolic execution [1, 14]. There, a function summary is represented by a first-order logic formula using an uninterpreted function symbol representing the function. A function summary is defined as a disjunction (i.e., a set) of intraprocedural path constraints expressed in terms of the function inputs and outputs. Function summaries can be computed incrementally, to include more and more intraprocedural path constraints as they are discovered during a directed search. Test generation with function summaries is performed as usual by a satisfiability check, where all uninterpreted functions are therefore implicitly existentially quantified. This use of uninterpreted functions for function summaries is thus different from their use in higher-order test generation where uninterpreted functions represent imprecision in symbolic execution in individual path constraints. Both types of uninterpreted functions could actually be used simultaneously, as they are orthogonal, for “higher-order compositional test generation”. Note that function summaries do not have to be represented using uninterpreted functions, and can be encoded directly in propositional logic instead [7].

We do not know of any other work where tests are derived from validity proofs, or where uninterpreted functions are used to model imprecision in symbolic execution for test generation. The (implicit) alternation of universal function quantifiers and existential variable quantifiers in our post-processed path constraints can be viewed as a game between an unknown environment (controlling the unknown functions) and a test generator (controlling test inputs). To view test generation as a game is not new [4, 20]. Model-driven test generation for conformance testing, i.e., checking whether a blackbox implementation satisfies a whitebox specification, can be viewed as a game and, under specific assumptions, be encoded logically using quantifier alternation, for instance using Quantified Boolean Formulas. However, test strategies derived from such logic encodings are derived again from satisfiability proofs (strategies), not validity proofs as in our work.

9. Conclusion

We presented higher-order test generation, a powerful new form of test generation, which can also be expensive as it requires tracking explicitly sources of imprecision in symbolic execution, using uninterpreted functions, recording input-output function samples, and checking validity of first-order logic formulas. We showed how this approach can perform novel forms of test generation, such as multi-step test generation, and drive the executions of input parsers with levers using hash functions for fast keyword recognition.

We also showed that the key property of dynamic test generation that makes it more powerful than static test generation is only its ability to observe concrete values and to record those in path constraints. In contrast, the process of simplifying complex symbolic expressions using concrete runtime values can be accurately simulated using uninterpreted functions. However, those concrete values are necessary to effectively compute new input vectors, a fundamental requirement in test generation.

Acknowledgments. I thank Leonardo de Moura for several insightful discussions related to this work. I also thank Nikolaj Bjorner, Yuri Gurevich and Mihalis Yannakakis for helpful comments.

References

/* addsym — add symbol and definitions to symbol table
  * -1 is returned if the symbol already exists, and the change not made.
  */
static int addsym (sym, str_def, int_def, table, table_size)
    register char sym[];
    char *str_def;
    int int_def;
    hash_table table;
    int table_size;
{
    int hash_val = hashfunc (sym, table_size);
    register struct hash_entry *sym_entry = table[hash_val];
    register struct hash_entry *new_entry;
    register struct hash_entry *successor;

    while (sym_entry) {
        if (!strcmp (sym, sym_entry->name)) { /* entry already exists */
            return −1;
        }
        sym_entry = sym_entry->next;
    }
    /* create new entry */
    new_entry = (struct hash_entry *)
        flex_alloc (sizeof (struct hash_entry));
    if (new_entry == NULL)
        flexfatal ("symbol table memory allocation failed");
    if ((successor = table[hash_val]) != 0) {
        new_entry->next = successor;
        successor->prev = new_entry;
    } else
        new_entry->next = NULL;
    new_entry->prev = NULL;
    new_entry->name = sym;
    new_entry->str_val = str_def;
    new_entry->int_val = int_def;
    table[hash_val] = new_entry;
    return 0;
}
/* findsym — find symbol in symbol table */
static struct hash_entry *findsym (sym, table, table_size)
    register const char *sym;
    hash_table table;
    int table_size;
{
    static struct hash_entry empty_entry = {
        (struct hash_entry *) 0, (struct hash_entry *) 0,
        (char *) 0, (char *) 0, 0,
    };
    register struct hash_entry *sym_entry = table[hashfunc (sym, table_size)];

    while (sym_entry) {
        if (!strcmp (sym, sym_entry->name))
            return sym_entry;
        sym_entry = sym_entry->next;
    }

    return &empty_entry;
}

Figure 4. Code excerpt from the flex lexer (file sym.c, flex-2.5.35, February 2008).