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Abstract

We present a novel method for learning with Gaussian process regres-
sion in a hierarchical Bayesian framework. In a first step, kernel matri-
ces on a fixed set of input points are learned from data using a simple
and efficient EM algorithm. This step is nonparametric, in that it does
not require a parametric form of covariance function. In a second step,
kernel functions are fitted to approximate the learned covariance matrix
using a generalized Nyström method, which results in a complex, data
driven kernel. We evaluate our approach as a recommendation engine
for art images, where the proposed hierarchical Bayesian method leads
to excellent prediction performance.

1 Introduction

In many real-world application domains, the available training data sets are quite small,
which makes learning and model selection difficult. For example, in the user preference
modelling problem we will consider later, learning a preference model would amount to
fitting a model based on only 20 samples of a user’s preference data. Fortunately, there
are situations where individual data sets are small, but data from similar scenarios can
be obtained. Returning to the example of preference modelling, data for many different
users are typically available. This data stems from clearly separate individuals, but we can
expect that models can borrow strength from data of users with similar tastes. Typically,
such problems have been handled by either mixed effects models or hierarchical Bayesian
modelling.

In this paper we present a novel approach to hierarchical Bayesian modelling in the context
of Gaussian process regression, with an application to recommender systems. Here, hier-
archical Bayesian modelling essentially means to learn the mean and covariance function
of the Gaussian process.

In a first step, a common collaborative kernel matrix is learned from the data via a simple
and efficient EM algorithm. This circumvents the problem of kernel design, as no paramet-
ric form of kernel function is required here. Thus, this form of learning a covariance matrix
is also suited for problems with complex covariance structure (e.g. nonstationarity).

A portion of the learned covariance matrix can be explained by the input features and, thus,



generalized to new objects via a content-based kernel smoother. Thus, in a second step,
we generalize the covariance matrix (learned by the EM-algorithm) to new items using a
generalized Nystr̈om method. The result is a complex content-based kernel which itself
is a weighted superposition of simple smoothing kernels. This second part could also be
applied to other situations where one needs to extrapolate a covariance matrix on a finite
set (e.g. a graph) to a continuous input space, as, for example, required in induction for
semi-supervised learning [14].

The paper is organized as follows. Sec. 2 casts Gaussian process regression in a hierarchical
Bayesian framework, and shows the EM updates to learn the covariance matrix in the first
step. Extrapolating the covariance matrix is shown in Sec. 3. We illustrate the function of
the EM-learning on a toy example in Sec. 4, before applying the proposed methods as a
recommender system for images in Sec. 4.1.

1.1 Previous Work

In statistics, modelling data from related scenarios is typically done via mixed effects mod-
els or hierarchical Bayesian (HB) modelling [6]. In HB, parameters of models for indi-
vidual scenarios (e.g. users in recommender systems) are assumed to be drawn from a
common (hyper)prior distribution, allowing the individual models to interact and regular-
ize each other. Recent examples of HB modelling in machine learning include [1, 2]. In
other contexts, this learning framework is called multi-task learning [4]. Multi-task learn-
ing with Gaussian processes has been suggested by [8], yet with the rather stringent as-
sumption that one has observations on the same set of points in each individual scenario.
Based on sparse approximations of GPs, a more general GP multi-task learner with para-
metric covariance functions has been presented in [7]. In contrast, the approach presented
in this paper only considers covariancematrices(and is thus non-parametric) in the first
step. Only in a second extrapolation step, kernel smoothing leads to predictions based on a
covariance function that is a data-driven combination of simple kernel functions.

2 Learning GP Kernel Matrices via EM

The learning task we are concerned with can be stated as follows: The data are observations
from M different scenarios. In thei.th scenario, we have observationsyi = (yi

1, . . . , y
i
Ni)

on a total ofN i points,Xi = {xi
1, . . . ,x

i
Ni}. In order to analyze this data in a hierarchical

Bayesian way, we assume that the data for each scenario is a noisy sample of a Gaussian
process (GP) with unknown mean and covariance function. We assume that mean and
covariance function are shared across different scenarios.1

In the first modelling step presented in this section, we consider transductive learning (“la-
belling a partially labelled data set”), that is, we are interested in the model’s behavior only
on pointsX, with X =

⋃M
i=1 Xi and cardinalityN = |X|. This situation is relevant

for most collaborative filtering applications. Thus, test points are the unlabelled points in
each scenario. This reduces the whole “infinite dimensional” Gaussian process to its finite
dimensional projection on pointsX, which is anN -variate Gaussian distribution with co-
variance matrixK and mean vectorm. For the EM algorithm to work, we also require that
there is some overlap between scenarios, that is,Xi ∩Xj 6= ∅ for somei, j. Coming back
to the user modelling problem mentioned above, this means that at least some items have
been rated by more than one user.

Thus, our first modelling step focusses on directly learning the covariance matrixK and

1Alternative HB approaches for collaborative filtering, like that discussed in [5], assume that
model weightsare drawn from a shared Gaussian distribution.



m from the data via an efficient EM algorithm. This may be of particular help in problems
where one would need to specify a complex (e.g. nonstationary) covariance function.

Following the hierarchical Bayesian assumption, the data observed in each scenario is thus
a partial sample fromN (y |m,K + σ21), where1 denotes the unit matrix. The joint
model is simply

p(m,K)
M∏
i=1

p(yi |f i)p(f i |m,K), (1)

wherep(m,K) denotes the prior distribution for mean and covariance. We assume a Gaus-
sian likelihoodp(yi |f i) with diagonal covariance matrixσ21.

2.1 EM Learning

For the above hierarchical Bayesian model, Eq. (1), the marginal likelihood becomes

p(m,K)
M∏
i=1

∫
p(yi |f i)p(f i |m,K) df i. (2)

To obtain simple and stable solutions when estimatingm andK from the data, we con-
sider point estimates of the parametersm andK, based on a penalized likelihood approach
with conjugate priors.2 The conjugate prior for meanm and covarianceK of a multivari-
ate Gaussian is the so-called Normal-Wishart distribution [6], which decomposes into the
product of an inverse Wishart distribution forK and a Normal distribution form,

p(m,K) = N (m |ν, η−1K)Wi−1(K|α, U). (3)

That is, the prior for the Gram matrixK is given by an inverse Wishart distribution with
scalar parameterα > 1/2(N−1) andU being a symmetric positive-definite matrix. Given
the covariance matrixK, m is Gaussian distributed with meanν and covarianceη−1K,
whereη is a positive scalar. The parameters can be interpreted in terms of an equivalent
data set for the mean (this data set has sizeA, with A = ν, and meanµ = ν) and a data set
for the covariance that has sizeB, with α = (B + N)/2, and covarianceS, U = (B/2)S.

In order to write down the EM algorithm in a compact way, we denote byI(i) the set of
indices of those data points that have been observed in thei.th scenario, that isI(i) =
{j | j ∈ {1, . . . , N} and xj ∈ Xi}. Keep in mind that in most applications of interest
N i � N such that most targets are missing in training.KI(i),I(i) denotes the square
submatrix ofK that corresponds to pointsI(i), that is, the covariance matrix for points in
the i.th scenario. ByK·,I(i) we denote the covariance matrix of allN points versus those
in thei.th scenario.

2.1.1 E-step

In the E-step, one first computes̃f
i
, the expected value of functional values on allN

points for each scenarioi. The expected value is given by the standard equations for the
predictive mean of Gaussian process models, where the covariance functions are replaced
by corresponding sub-matrices of the current estimate forK:

f̃
i
= K·,I(i)(KI(i),I(i) + σ21)−1(yi −mI(i)) + m, i = 1, . . . ,M. (4)

Also, covariances between all pairs of points are estimated, based on the predictive covari-
ance for the GP models: (> denotes matrix transpose)

C̃i = K −K·,I(i)(KI(i),I(i) + σ21)−1K>
·,I(i), i = 1, . . . ,M. (5)

2An efficient EM-based solution for the caseσ2 = 0 is also given by [9].



2.1.2 M-step

In the M-step, the vector of mean valuesm, the covariance matrixK and the noise variance
σ2 are being updated. Denoting the updated quantities bym′, K ′, and(σ2)′, we get

m′ =
1

M + A

(
Aµ +

M∑
i=1

f̃
i

)

K ′ =
1

M + B

(
A(m′ − µ)(m′ − µ)> + BS +

M∑
i=1

(
(f̃

i
−m′)(f̃

i
−m′)> + C̃i

))

(σ2)′ =
1
N

(
M∑
i=1

‖yi − f̃
i

I(i)‖2 + trace C̃i
I(i),I(i)

)
.

An intuitive explanation of the M-step is as follows: The new meanm′ is a weighted
combination of the prior mean, weighted by the equivalent sample size, and the predictive
mean. The covariance update is a sum of four terms. The first term is typically irrelevant,
it is a result of the coupling of the Gaussian and the inverse Wishart prior distributions via
K. The second term contains the prior covariance matrix, again weighted by the equivalent
sample size. As the third term, we get the empirical covariance, based on the estimated
and measured functional valuesf i. Finally, the fourth term gives a correction term to
compensate for the fact that the functional valuesf i are only estimates, thus the empirical
covariance will be too small.

3 Learning the Covariance Function via Generalized Nystr̈om

Using the EM algorithm described in Sec. 2.1, one can easily and efficiently learn a covari-
ance matrixK and mean vectorm from data obtained in different related scenarios. Once
K is found, predictions within the setX can easily be made, by appealing to the same
equations used in the EM algorithm (Eq. (4) for the predictive mean and Eq. (5) for the
covariance). This would, for example, be of interest in a collaborative filtering application
with a fixed set of items. In this section we describe how the covariance can be generalized
to new inputsz 6∈ X.

Note that, in all of the EM algorithm, the content featuresxi
j do not contribute at all. In

order to generalize the learned covariance matrix, we employ a kernel smoother with an
auxiliary kernel functionr(·, ·) that takes a pair of content features as input. As a con-
straint, we need to guarantee that the derived kernel is positive definite, such that straight-
forward interpolation schemes cannot readily be applied. Thus our strategy is to interpolate
the eigenvectors ofK instead and subsequently derive a positive definite kernel. This ap-
proach is related to the Nyström method, which is primarily a method for extrapolating
eigenfunctions that are only known at a discrete set of points. In contrast to Nyström,
the extrapolating smoothing kernel is not known in our setting and we employ a generic
smoothing kernelr(·, ·) instead [12].

Let K = UΛUT be the eigendecomposition of covariance matrixK, with a diagonal
matrix of eigenvaluesΛ and orthonormal eigenvectorsU . With V = UΛ1/2, the columns
of V are scaled eigenvectors. We now approximate thei-th scaled eigenvectorvi by a
Gaussian process with covariance functionr(·, ·) and obtain as an approximation of the
scaled eigenfunction

φi(w) =
N∑

j=1

r(w,xj)bi,j (6)



with weightsbi = (bi,1, . . . , bi,N )> = (R + λI)−1vi. R denotes the Gram matrix for the
smoothing kernel on allN points. An additional regularization termλI is introduced to
stabilize the inverse. Based on the approximate scaled eigenfunctions, the resulting kernel
function is simply

l(w,z) =
∑

i

φi(w)φi(z) = r(w)>(R + λI)−1K(R + λI)−1r(z). (7)

with r(w)> = (r(x1,w), . . . , r(xN ,w)). R (resp.L) are the Gram matrices at the train-
ing data pointsX for kernel functionr (resp.l) . λ is a tuning parameter that determines
which proportion ofK is explained by the content kernel. Withλ = 0, L = K is repro-
duced which means that all ofK can be explained by the content kernel. Withλ → ∞
thenl(w,z) → 0 and no portion ofK is explained by the content kernel.3 Also, note that
the eigenvectors are only required in the derivation, and do not need to be calculated when
evaluating the kernel.4

Similarly, one can build a kernel smoother to extrapolate from the mean vectorm to an
approximate mean function̂m(·). The prediction for a new objectv in scenarioi thus
becomes

f i(v) = m̂(v) +
∑

j∈I(i)

l(v, xj) βi
j (8)

with weightsβ given byβi = (KI(i),I(i) + σ2I)−1(yi −mI(i)).

It is important to notel has a much richer structure than the auxiliary kernelr. By expand-
ing the expression forl, one can see thatl amounts to a data-dependent covariance function
that can be written as a superposition of kernelsr,

l(v, w) =
N∑

i=1

r(xi, v)aw
j , (9)

with input dependent weightsaw = (R + λI)−1K(R + λI)−1rw.

4 Experiments

We first illustrate the process of covariance matrix learning on a small toy example: Data
is generated by sampling from a Gaussian process with the nonstationary “neural network
covariance function” [11]. Independent Gaussian noise of variance10−4 is added. Input
pointsX are 100 randomly placed points in the interval[−1, 1]. We considerM = 20
scenarios, where each scenario has observations on a random subsetXi of X, with N i ≈
0.1N . In Fig. 1(a), each scenario corresponds to one “noisy line” of points.

Using the EM-based covariance matrix learning (Sec. 2.1) on this data, the nonstationarity
of the data does no longer pose problems, as Fig. 1 illustrates. The (stationary) covariance
matrix shown in Fig. 1(c) was used both as the initial value forK and for the prior covari-
anceS in Eq. (3). While the learned covariance matrix Fig. 1(d) does not fully match the
true covariance, it clearly captures the nonstationary effects.

4.1 A Recommendation Engine

As a testbed for the proposed methods, we consider an information filtering task. The
goal is to predict individual users’ preferences for a large collection of art images5, where

3Note that, also if the true interpolating kernel was known, i.e.,r = k, and withλ = 0, we obtain
l(w, z) = k(w, z)K−1k(w, z) which is the approximate kernel obtained with Nyström.

4A related form of kernel matrix extrapolation has been recently proposed by [10].
5http://honolulu.dbs.informatik.uni-muenchen.de:8080/paintings/index.jsp



(a) Training data (b) True covariance matrix

(c) Initial covariance matrix (d) Covariance matrix learned via EM

Figure 1: Example to illustrate covariance matrix learning via EM. The data shown in
(a) was drawn from a Gaussian process with a nonstationary “neural network” covariance
function. When initialized with the stationary matrix shown in (c), EM learning resulted in
the covariance matrix shown in (d). Comparing the learned matrix (d) with the true matrix
(b) shows that the nonstationary structure is captured well

each user rated a random subset out of a total of 642 paintings, with ratings “like” (+1),
“dislike”(−1), or “not sure” (0). In total, ratings fromM = 190 users were collected,
where each user had rated 89 paintings on average. Each image is also described by a 275-
dimensional feature vector (containing correlogram, color moments, and wavelet texture).

Fig. 2(a) shows ROC curves for collaborative filtering when preferences of unrated items
within the set of 642 images are predicted. Here, our transductive approach (Eq. (4), “GP
with EM covariance”) is compared with a collaborative approach using Pearson correla-
tion [3] (“Collaborative Filtering”) and an alternative nonparametric hierarchical Bayesian
approach [13] (“Hybrid Filter”). All algorithms are evaluated in a 10-fold cross validation
scheme (repeated 10 times), where we assume that ratings for 20 items are known for each
test user. Based on the 20 known ratings, predictions can be made for all unrated items. We
obtain an ROC curve by computing sensitivity and specificity for the proportion of truly
liked paintings among theN top ranked paintings, averaged overN . The figure shows that
our approach is considerably better than collaborative filtering with Pearson correlation and
even gains a (yet small) advantage over the hybrid filtering technique.

Note that the EM algorithm converged6 very quickly, requiring about 4–6 EM steps to learn
the covariance matrixK. Also, we found that the performance is rather insensitive with
respect to the hyperparameters, that is, the choice ofµ, S and the equivalent sample sizes
A andB.

Fig. 2(b) shows ROC curves for the inductive setting where predictions for items outside

6S was set by learning a standard parametric GPR model from the preference data of one ran-
domly chosen user, setting kernel parameters via marginal likelihood, and using this model to gener-
ate a full covariance matrix for all points.



(a) Transductive methods (b) Inductive methods

Figure 2: ROC curves of different methods for predicting user preferences for art images

the training set are to be made (sometimes referred to as the “new item problem”). Shown
is the performance obtained with the generalized Nyström method ( Eq. (8), “GP with
Generalized Nystr̈om”)7, and when predicting user preferences from image features via an
SVM with squared exponential kernel (“SVM content-based filtering”). It is apparent that
the new approach with the learned kernel is superior to the standard SVM approach. Still,
the overall performance of the inductive approach is quite limited. The low-level content
features are only very poor indicators for the high level concept “liking an art image”, and
inductive approaches in general need to rely on content-dependent collaborative filtering.
The purely content-independent collaborative effect, which is exploited in the transductive
setting, cannot be generalized to new items. The purely content-independent collaborative
effect can be viewed as correlated noise in our model.

5 Summary and Conclusions

This article introduced a novel method of learning Gaussian process covariance functions
from multi-task learning problems, using a hierarchical Bayesian framework. In the hierar-
chical framework, the GP models for individual scenarios borrow strength from each other
via a common prior for mean and covariance. The learning task was solved in two steps:
First, an EM algorithm was used to learn the shared mean vector and covariance matrix
on a fixed set of points. In a second step, the learned covariance matrix was generalized
to new points via a generalized form of Nyström method. Our initial experiments, where
we use the method as a recommender system for art images, showed very promising re-
sults. Also, in our approach, a clear distinction is made between content-dependent and
content-independent collaborative filtering.

We expect that our approach will be even more effective in applications where the content
features are more powerful (e.g. in recommender systems for textual items such as news
articles), and allow a even better prediction of user preferences.

AcknowledgementsThis work was supported in part by the IST Programme of the Euro-
pean Union, under the PASCAL Network of Excellence (EU # 506778).

7To obtain the kernelr, we fitted GP user preference models for a few randomly chosen users,
with individual ARD weights for each input dimension in a squared exponential kernel. ARD weights
for r are taken to be the medians of the fitted ARD weights.
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Appendix

To derive an EM algorithm for Eq. (2), we treat the functional valuesf i in each scenario
i as the unknown variables. In each EM iterationt, the parameters to be estimated are
θ(t) = {m(t),K(t), σ2(t)}. In the E-step, the sufficient statistics are computed,

E
( M∑

i=1

f i |yi, θ(t)
)

=
M∑
i=1

f̃
i,(t)

(10)

E
( M∑

i=1

f i(f i)> |yi, θ(t)
)

=
M∑
i=1

(
f̃

i,(t)
(f̃

i,(t)
)> + C̃i

)
(11)

with f̃
i

andC̃i defined in Eq. (4) and (5). In the M-step, the parametersθ are re-estimated
asθ(t+1) = arg maxθ Q(θ | θ(t)), with

Q(θ | θ(t)) = E
[
lp(θ |f ,y) |y, θ(t)

]
, (12)

wherelp stands for the penalized log-likelihood of the complete data,

lp(θ |f ,y) = log Wi−1(K |α, β) + logN (m | ν, η−1K)+

+
M∑
i=1

logN (f̃
i
|m,K) +

M∑
i=1

logN (yi
I(i) | f̃

i

I(i), σ
21) (13)

Updated parameters are obtained by setting the partial derivatives ofQ(θ | θ(t)) to zero.


