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Abstract 2 

In deep learning research, often the focus has been on the input 3 

feature representation while the output representation tends to 4 

receive much less attention. In this paper, three largely separate case 5 

studies are provided to argue for the importance of learning output 6 

representations. In these studies, three ways of designing and/or 7 

learning output representations for the deep-learning approach to 8 

speech recognition are discussed and analyzed. First, the very large 9 

number of output units in the current context-dependent (CD) deep 10 

neural net (DNN) based speech recognizers can be effectively 11 

reduced, without lowering recognition accuracy while improving 12 

decoding efficiency, by performing dimensionality reduction using 13 

low-rank approximation to large DNN output matrices. Second, the 14 

currently popular CD-DNN that uses “beads-on-a-string” or linear-15 

sequence representations for linguistic speech units in the DNN 16 

output layer can be generalized to structured multi-linear or graph 17 

representations. Temporally overlapping linguistic “features” or 18 

symbols are used as a basis for such phonological design. Third, when a 19 

special type of deep networks, the deep convex network (DCN), is 20 

used as a representational model for speech acoustic patterns, the 21 

output units in each of the DCN modules are designed to be linear, 22 

enabling drastic simplification in learning the parameters of the 23 

entire network. 24 

 25 

1. Introduction 26 

 27 

In recent years, learning representations using deep models, notably those based on deep neural 28 

networks (DNNs), have largely focused on the sensory input data, such as speech and image 29 

[20][5][22] with visible successes most notably in industry-scale, real-world speech and image 30 

recognition tasks [24][6][7][8][19][23][26][29][31]. Learning output representations, however, 31 

has received relatively less attention. Nevertheless, in applications such as speech recognition, the 32 

linguistic units (e.g., sentences, phrases, words, syllables, phones etc.), which are the output of 33 

speech recognizers, have rich and complex structure and require more principled representations 34 

and learning than what are currently in use in most of the present deep learning based systems. In 35 

almost all state of the art, DNN-based speech recognition systems, the output representation 36 

inherits from the over 20-year-old concept of context-dependent (CD) phonetic states [25][15]. 37 

Like the traditional GMM-HMM systems, the new CD-DNN-HMM systems in current popular 38 

commercial use [5][19][31] all have the same “beads-on-a-string” or linear-sequence 39 

representation for the CD phonetic states. (In fact, the discovery that the use of a large 40 



number of CD phonetic states as the output layer of the DNN is highly effective   prompted 41 

the fast industrial adoption of DNN technology in speech recognition, partly because this 42 

would involve minimal change in the run-time decoder algorithms and software [4][5].) 43 

     While the use of the CD phonetic states as the output representation for DNN-based 44 

acoustic models in speech recognition significantly reduces recognition errors and  allows the 45 

decoding algorithm to remain to be of the Viterbi beam search style permitting fast pruning 46 

of hypotheses, it carries two main disadvantages. First, it introduces a very large number of 47 

DNN parameters in the final weight layer. This makes the online computation very costly 48 

and would limit the applications of the DNN in various scenarios. Second, the flat 49 

representation of speech units based on CD phonetic states coded on the DNN output layer 50 

discards the known phonological structure of speech. Putting such structure back to the deep 51 

models while improving their output representation holds the promise to further reduce 52 

speech recognition errors.  53 

     In the remaining part of this paper, some existing and proposed solutions to the two 54 

problems above pertaining to the limitations of the current DNN-based speech recognition 55 

technology in terms of its output representation are reviewed and discussed. Further, an 56 

additional problem arising from a specific type of deep network that has direct bearing on 57 

the output representation issue will be discussed. 58 

 59 

2. Handling high dimensionality in the DNN’s output representation 60 

 61 

The first example of the benefit of better output representations in the DNN-based speech 62 

recognizers is provided in this section. As discussed in the introduction section, most current 63 

DNN systems use a high-dimensional output representation, each component corresponding 64 

to one CD phonetic state in the top-level HMM receiving the DNN output as its “features”.  65 

In brief, by performing SVD-based dimensionality reduction on the DNN’s high-dimensional 66 

output vectors, the decoding efficiency of running the recognizer in run time can be 67 

drastically improved due to the significantly reduced DNN parameters. We now discuss 68 

details of this technique based on the work published recently in [28][26]. 69 

     In Fig. 1, we show the general DNN architecture with high-dimensional (m) output 70 

vectors indicated as blue nodes and with the subsequently large weight matrix at the top of 71 

the DNN. We denote this matrix as 𝐴 ∈ 𝑅𝑚×𝑛.  72 

 73 
Figure 1: The basic architecture of DNN, where output layer represents high-dimensional context-74 

dependent (CD) phonetic states used for HMM decoding; courtesy of authors of [28]. 75 

 76 

     To reduce dimensionality 𝑚 or n, we perform low-rank matrix factorization via singular 77 

value decomposition (SVD) on matrix A: 78 

𝐴 ∈ 𝑅𝑚×𝑛 



𝐴𝑚×𝑛 = 𝑈𝑚×𝑛∑𝑛×𝑛𝑉𝑛×𝑛
𝑇  79 

 80 

Then, the low rank-k (k<n) approximation to matrix A can be shown by the following steps: 81 

 82 

 83 
Thus the total number of weight parameters in the output matrix is reduced from 𝑚 × 𝑛 to 𝑘 ×84 

(𝑚 + 𝑛). This seems to be a more principled way of constructing “bottleneck” layers or 85 

features than the earlier work reported in the literature (e.g. [11]). 86 

    In the implementation of the dimensionality reduction method reported in [28], the DNN 87 

with high-dimensional output layer was trained first. Next, SVD was performed on the large 88 

output matrix A, which is then approximated by a product of two much smaller matrices.  When 89 

applying such approximation back to the DNN, the large single output layer’s weight matrix A is 90 

converted to two layers both with smaller weight matrices 𝑈 ∈ 𝑅𝑚×𝑘 and 𝑊 ∈ 𝑅𝑘×𝑛. The lower 91 

layer is made linear and the upper one is nonlinear as in the original DNN. Finally, the DNN 92 

with reduced dimensionality in the output layer is re-trained. The experimental results 93 

reported in [28][26] both show no speech recognition accuracy reduction with the low-rank 94 

matrix approximation, while the run-time computation is significantly reduced. 95 

 96 

3. Structured output representation for symbolic speech target sequences 97 

 98 

The second case study presented here concerns structured design of the output representation for 99 

the symbolic or phonological units of speech. The rich phonological structure of symbolic nature 100 

in human speech has been well known for many years [2][3][16][18][13]. Likewise, it has also 101 

been well understood for a long time that the use of phonetic or its finer state sequences, even with 102 

contextual dependency, in engineering speech recognition systems is inadequate in representing 103 

such rich structure [5][12][14][27] and thus leaving a promising open direction to improve the 104 

speech recognition systems’ performance. In this section, I survey the basic theories about the 105 

internal structure of speech sounds and their relevance to speech recognition technology in terms 106 

of the specification, design, and learning of possible output representations of the underlying 107 

speech model for speech target sequences that may be used in training speech recognizers.  108 

 109 

3.1 From linear to nonlinear phonological representations 110 

In the traditional phonology [2], a phoneme is represented as an unstructured set of 111 

phonological features, or feature bundles. Likewise, a sequence of phonemes is characterized by a 112 

sequence of feature bundles, resulting in a feature matrix which arranges the feature bundles into 113 

columns. The feature matrix does not concern how features might be organized or structured. 114 

Because phonemes as feature bundles in a word or in word sequences follow each other in strict 115 



succession, this feature-matrix approach is called the sequential linear model of phonology. In this 116 

regard, the speech units in the “linear” order are often likened to “beads on a string”, as commonly 117 

used in the pronunciation model component of modern speech recognizers including the most 118 

advanced DNN-based ones (see the discussion section in [5]).  119 

While this sequential model of phonological representation is conceptually simple and 120 

analytically tractable, it has a number of serious inadequacies. All features are assumed to have a 121 

positive or negative value for every segment, regardless of whether such features could 122 

conceivably apply to that segment or not. Further, the phonological rules in linear phonology do 123 

not explain why some phonological processes are more natural than others.  124 

The most important inadequacy of the linear phonological model is that it prevents features 125 

from extending over domains greater or lesser than one single phoneme, because each feature 126 

value can characterize only one phoneme and vice versa. This is contrary to ample phonological 127 

evidence that demonstrates “nonlinear” behavior, where strict sequential order is broken and one 128 

feature can occupy a domain significantly greater than a phoneme, or a domain less than a full 129 

phoneme. For example, the [+nasal] feature in some languages including English may occupy only 130 

a fraction of a segment, or it can spread across more than one segment or syllable. This type of 131 

inadequacy of the linear phonology model has been overcome by the theory of autosegmental 132 

phonology where the features that go beyond the segmental limits set by the linear model are 133 

extracted from feature matrices and are placed in separate, independent tiers of their own, hence 134 

the term. Autosegmental phonology establishes a “nonlinear” model of phonological 135 

representation, where the strict ``linear'' order is replaced by a multi-tiered representation where 136 

feature elements in different tiers often do not follow the linear order but overlap with each other 137 

temporally.  138 

The second inadequacy of the linear sequential model of phonological representation is its 139 

implicit assumption that feature bundles in the feature matrix have no internal structure; i.e. each 140 

feature is equally related to any other feature. This, again, is against a considerable amount of 141 

evidence that suggests that features are grouped into higher-level functional units. In many 142 

languages including English, all place features function together as a unit. To overcome this 143 

challenge, a tree-like model of feature organization is developed, where segments are represented 144 

in terms of hierarchically-organized node configurations with terminal nodes being the feature 145 

values and non-terminal nodes being the feature classes resulting from functional feature 146 

groupings. This tree-like feature organization, together with a set of general properties associated 147 

with the organization and related to phonological rules, is also called feature geometry [3]. Now, 148 

rather than putting features in matrices as in the traditional theory, the features are placed as 149 

terminal nodes in a tree-like diagram, where these terminal nodes are unordered and are on 150 

separate tiers depending on their parent feature classes. This organization permits nonlinear 151 

behavior of feature overlap, as in autosegmental phonology. It also permits strong constraints on 152 

the form and functioning of phonological rules. Feature geometry is a substantial extension of 153 

autosegmental phonology which we discuss next. 154 

 155 

3.2 Phonological feature hierarchy 156 

     Phonological features are atomic, symbolic specification of the constituent units that make up 157 

of all phonemes of the world languages. They are hierarchically organized into a tree-like structure 158 

in feature geometry theory [3], forming the basis of internal organization of speech sounds. 159 

Compared with the traditional feature theory [2], feature geometry is more heavily grounded on 160 

articulators and their functional roles in producing speech sounds. Fig.2 is an illustration of the 161 

tree structure that is associated with each phone or segment in the phonological representation of 162 

speech.    163 

     In Fig. 2, the root node specifies the coherence of the global segmental properties. Popular 164 

proposals assign features [cons] and [son] in the root node. The tier below the root node contains a 165 

non-terminal node called the Laryngeal node. Three laryngeal features [spread] (i.e., spread 166 

glottis, SG), [constr] (or constricted glottis, CG), and [voice] (vc) are grouped under this node. 167 

Under the Place node, we have the place features [labial], [coronal] (together with its dependent 168 

features [anterior], [distributed], [strident]), and [dorsal] (together with its dependent features 169 

[high], [low], and [back]).  These phonological features often spread (i.e. temporally overlap) as a 170 

unit. This spread is typically independent of other non-place features such as [cont], [voice], 171 



[nasal], etc. This regularity is naturally captured by grouping all these place features under a single 172 

place node as shown in the lower part of Fig. 2. The remaining features [lateral], [nasal], and 173 

[cont] do not form sub-groups within themselves or with other features. They are listed separately 174 

under the root node. 175 

 176 
Figure 2: Illustration of feature geometry expressed as a tree-like structure. 177 

 178 

     When several segments form a sequence, each of which has its feature hierarchy as shown in 179 

Fig. 2, we obtain a three-dimensional picture where the feature hierarchy unfolds in time. While 180 

the root node dominates all features for each segment for a sequence of segments, all the 181 

individual root nodes are linked in a sequence as well. One example of the expanded feature 182 

geometry for a three-segment sequence, consisting of /p/, /i/, and /n/, is crafted in Fig. 3. 183 

 184 
Figure 3: An example of expanded feature geometry for egment sequence /pin/. 185 

 186 

3.3 A computational model for designing output representations of speech  187 

Here we describe a computational model that makes use of the expanded feature geometry 188 

discussed above to construct structure output representations of symbolic speech target sequences. 189 

This model fixes all aspects of inadequacy of the linear “beads-in-a-string” model for target 190 

specification of speech units in a sequence that underlies all current speech recognition system 191 

including the DNN-HMM systems. 192 

     A series of “Computational Phonology” models detailed in Chapter 9 of [12] and sketched in 193 

[12] provided a basic framework for designing and learning the structured output representations 194 

of speech. The underlying theory of this framework follows “articulatory phonology,” which links 195 

the expanded feature geometry to its phonetic “implementation” thereby providing a solid 196 

“interface” between symbolic phonology continuous-valued, measurable phonetic variables (e.g., 197 

articulatory movements and associated acoustic parameters).   198 

     Central to this framework is a set of empirically designed symbolic articulatory features with 199 

their respective temporal domains specified, permitting their asynchronous overlapping over time 200 



with constraints derived from phonetic knowledge as part of articulatory phonology. The 201 

articulatory features and their overlapping and constraining rules for complete American English 202 

are detailed in [14], [27], and [12].  203 

     The overlapping articulatory features are designed based on speech recognition considerations 204 

and on theories of phonology. From the theoretical side, they are a mix of, but different from, the 205 

(multi-valued) distinctive features in feature-geometry theory and the gestures in articulatory 206 

theory. Compared with the gestures, the articulatory features share the same key property of 207 

overlapping or blending across tiers. In fact, the tiers are essentially the same between the two 208 

representations. However, one very crucial difference is that unlike the gestures which are defined 209 

in terms of the parameters of the abstract dynamics in the “tract variables,” the articulatory 210 

features are entirely symbolic with no specific reference and association to any continuous 211 

variables. A separate module, which is called the interface between phonology and phonetics and 212 

which can take many different forms, is responsible for the mapping from a symbolic articulatory 213 

feature to some continuous, phonetic variables (articulatory or vocal tract resonance variables in 214 

some practical implementations). The notion of this type of interface simply does not exist in 215 

articulatory phonology and in the gesture.  216 

     The second important difference between the gesture and the articulatory feature is that the 217 

former is associated with intrinsic duration due to its connection to an underlying, abstract task-218 

dynamic system, while the latter is not. The temporal characterization of the articulatory features 219 

is only by way of relative timing among the tiers. 220 

     Further, the articulatory features are designed to be phonological units. That is, when serving as 221 

underlying units for describing word pronunciation, they play contrastive roles in distinguishing 222 

meanings of the words. To ensure this property, in the design of the articulatory features, 223 

phoneme-like units are used as the basis and it is made explicit that the different phonemes have 224 

distinctive values of the articulatory features associated with them [14]. From speech recognition 225 

considerations when that computational model was implemented many years ago using statistical 226 

generative models as the theoretical basis [14][27], the articulatory features were designed with 227 

the additional requirement of economy. The articulatory features, with their spatial and temporal 228 

structures in place, were used as the nonlinear atomic speech units for lexical representation. This 229 

was aimed at provide a superior alternative to the popular linear phonetic representation. An 230 

efficient lexical representation of this sort requires the choice of a small set of feature units so that 231 

in terms of these symbols each lexical item can be compactly specified while being made 232 

distinguishable from each other at the same time. In the modern days of big data and big compute, 233 

especially with the clear demonstration of superior performance of the big, discriminative DNN 234 

over the generative GMM [5][20], the requirement of economy in the construction of the 235 

articulatory features and imposition of their overlapping constraints may be reduced or eliminated. 236 

The entire framework deserves serious re-thinking and re-design. 237 

 238 

3.4 Implementation detail and examples  239 

     To illustrate the computational model for designing structured output representations for 240 

potential use in speech recognition, we provide selected examples here. We use the articulatory 241 

feature design described in [14], where five multi-valued features, Lips, Tongue Blade (TB), 242 

Tongue Dorsum (TD), Velum, and Larynx, are assigned uniquely to each phonemic unit, with 243 

intended “minimal” redundancy and “maximal” separability. Then the major contextual variations 244 

in speech are modeled as a natural result of overlap or asynchronous spread of the “intrinsic” 245 

values of one or more of these features across adjacent phonetic units. Given a fixed feature-246 

overlap pattern,  247 

a one-to-one mapping is made from such a pattern to a state-transition graph which forms the 248 

topology of the underlying Markov chain of the HMM accomplishing such a mapping. The graph 249 

is constructed in such a way that each node in the graph (or the state in the HMM) represents a 250 

unique composition of the five features. Each individual lexical item is represented by a distinct 251 

state-transition graph, formed by concatenating a sequence of sub-graphs associated with the 252 

phone sequence in the phonetic transcription according to the feature-overlap patterns constructed 253 

specifically from these phones-in-context. Since each node in this global graph contains a distinct 254 

composition of the features, we can also view the representation of a lexical item described here as 255 

an organized set of feature-bundle collections.  256 



     In Fig. 4, the construction of overlapping patterns across five articulatory features is illustrated 257 

for English word “strong”, together with its spectrogram. The spectrogram is time aligned with 258 

the overlapping patterns. Note the lip-rounding and nasalization features have variable (relative) 259 

durations, and they are represented by two dashed boxes. This type of variability in the duration of 260 

feature overlapping gives rise to alternative feature bundle sequences.  261 

 262 
Figure 4: Phonologically defined articulatory feature overlaps for English word “strong”. 263 

 264 

     By merging identical feature bundles, a “state transition” network can be constructed using a 265 

technique described on pages 314-315 of [13]. Each state in the network corresponds to a unique 266 

feature bundle. The network constructed by the overlapping feature bundle generator for the word 267 

“strong” in Fig. 4 is shown in Fig. 5, where each state is associated with a set of symbolic features. 268 

The branches in the network result from alternative overlapping durations specified in the feature 269 

overlapping rules. Note that the graph representation of the pronunciation network of English 270 

word “strong” is very different from the left-to-right linear-chain representation used on virtually 271 

all speech recognition systems (e.g. [5][20][25][15]). While both type of representations capture 272 

context dependency, the mechanism and capability of embedding phonetic context are very 273 

different.  274 

 275 
Figure 5: Example of state-transition graph representation for the English word “strong”, 276 

derived from the feature overlapping pattern of Fig. 4. 277 

 278 

4. Output representations used in the deep convex network 279 

 280 
In this last case study, we show an example of the network output representation in the deep 281 

convex network (DCN), with the benefit of drastic simplification of learning the parameters 282 

of the full DCN via the use linear-transformation units in the network’s output layer [9][10]. 283 

     Here we show how the use of linear output units in DCN facilitates the learning of the DCN 284 

weights with a single module of DCN. First, it is clear that the upper layer weight matrix U can be 285 

efficiently learned once the activity matrix H over all training samples in the hidden layer is 286 



known. Denote the training vectors by 𝐗 = [𝒙1, ⋯ , 𝒙𝑖 , ⋯ , 𝒙𝑁]. The output of a DCN block is 𝒚𝑖 =287 

𝑼𝑇𝒉𝑖 , where 𝒉𝑖 = 𝜎(𝑾𝑇𝒙𝑖) is the hidden-layer vector for sample i, 𝑼 is the weight matrix at the 288 

upper layer of a block. 𝑾 is the weight matrix at the lower layer of a block. 289 

     Given target vectors in the full training set with a total of N samples, 𝑻 = [𝒕1, ⋯ , 𝒕𝑖 , ⋯ , 𝒕𝑁], 290 

where each vector is 𝒕𝑖 = [𝑡1𝑖 , ⋯ , 𝑡𝑗𝑖 , ⋯ , 𝑡𝐶𝑖]
𝑇
, the parameters 𝑼 and 𝑾 are learned so as to 291 

minimize the average of the total square error: E =
1

2
∑ ||𝒚𝑛 −𝑛 𝒕𝑛||2 =

1

2
Tr[(𝐘 − 𝐓)(𝐘 − 𝐓)T],  292 

where the output of the network is: 𝒚𝑛 = 𝑼𝑇𝒉𝑛 = 𝑼𝑇𝜎(𝑾𝑇𝒙𝑛) = 𝐺𝑛(𝑼,  𝑾), which depends 293 

on both weight matrices, as in the standard neural net. Assuming 𝑯 = [𝒉1, ⋯ , 𝒉𝑖 , ⋯ , 𝒉𝑁] is 294 

known, or equivalently, 𝑾 is known. Then, setting the error derivative with respective to U to zero 295 

gives: 𝑼 = (𝑯𝑯𝑻)−1𝑯𝑻𝑇 = F(𝑾), where 𝒉𝑛 = 𝜎(𝑾𝑇𝒙𝑛). This provides an explicit constraint 296 

between 𝑼, and  𝑾, which would be treated independently in the popular backprop algorithm.  297 

     Now, given the equality constraint𝑼 =  F(𝑾), let’s use Lagrangian multiplier method to solve 298 

the optimization problem in learning 𝑾. Optimizing the Lagrangian:  299 

𝐸 =
1

2
∑ ||𝐺𝑛(𝑼,  𝑾) −𝑛 𝒕𝑛||2 + 𝜆 ||U − F(𝑾)|| 300 

We can then derive batch-mode gradient descent learning algorithm where the gradient takes 

the following form:  
𝜕𝐸

𝜕𝑾
= 𝟐𝑿 [𝑯𝑇 ∘ (𝟏 − 𝑯)𝑇 ∘ [𝑯†(𝑯𝑻𝑇)(𝑻𝑯†) − 𝑻𝑇(𝑻𝑯†)]],   

where 𝑯† = 𝑯𝑇(𝑯𝑯𝑇)−𝟏 is pseudo-inverse of 𝑯. 301 

     Compared with backprop, the above method has less noise in gradient computation due to the 302 

exploitation of the explicit constraint 𝑼 =  F(𝑾). As such, it was found experimentally that, 303 

unlike backprop, batch training is effective, which aids parallel learning of DCN [10]. 304 

           305 

5. Summary and conclusions 306 

 307 

In this paper, three case studies are presented, all highlighting the importance of designing and 308 

learning output representations in machine learning. That is, the machine learning, especially deep 309 

learning researcher should turn at least part of their emphasis on input representation learning to 310 

the output representation counterpart. Among the three examples, the structured output 311 

representation for speech recognition using overlapping articulatory features was elaborated the 312 

most (Section 3). Given a drastically different way of capturing contexts in representing sequences 313 

of speech classes from the traditional approach, the discussed approach offers a new research 314 

direction for improving current speech recognition technology that has been based so far heavily 315 

on using DNNs to extract input speech features while paying virtually no attention to designing or 316 

learning output representations. 317 

     There have been recent advances in output representation learning from the machine learning 318 

community [1][30][17] based on latent variable modeling and large scale multi-label learning. 319 

And there are more challenging practical applications than speech recognition (e.g. Web search 320 

with under-specified output supervision information [21]) which present greater needs for output 321 

representation learning in terms of robustness. It is hoped that the three case studies analyzed in 322 

this paper can help bring both algorithm-oriented and application-focused machine learning 323 

researchers together to advance further the practically useful methods in output representation 324 

learning.  325 
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