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Abstract

In deep learning research, often the focus has been on the input
feature representation while the output representation tends to
receive much less attention. In this paper, three largely separate case
studies are provided to argue for the importance of learning output
representations. In these studies, three ways of designing and/or
learning output representations for the deep-learning approach to
speech recognition are discussed and analyzed. First, the very large
number of output units in the current context-dependent (CD) deep
neural net (DNN) based speech recognizers can be effectively
reduced, without lowering recognition accuracy while improving
decoding efficiency, by performing dimensionality reduction using
low-rank approximation to large DNN output matrices. Second, the
currently popular CD-DNN that uses “beads-on-a-string” or linear-
sequence representations for linguistic speech units in the DNN
output layer can be generalized to structured multi-linear or graph
representations. Temporally overlapping linguistic “features” or
symbols are used as a basis for such phonological design. Third, when a
special type of deep networks, the deep convex network (DCN), is
used as a representational model for speech acoustic patterns, the
output units in each of the DCN modules are designed to be linear,
enabling drastic simplification in learning the parameters of the
entire network.

1. Introduction

In recent years, learning representations using deep models, notably those based on deep neural
networks (DNNs), have largely focused on the sensory input data, such as speech and image
[20][5][22] with visible successes most notably in industry-scale, real-world speech and image
recognition tasks [24][6][7][8][19][23][26][29][31]. Learning output representations, however,
has received relatively less attention. Nevertheless, in applications such as speech recognition, the
linguistic units (e.g., sentences, phrases, words, syllables, phones etc.), which are the output of
speech recognizers, have rich and complex structure and require more principled representations
and learning than what are currently in use in most of the present deep learning based systems. In
almost all state of the art, DNN-based speech recognition systems, the output representation
inherits from the over 20-year-old concept of context-dependent (CD) phonetic states [25][15].
Like the traditional GMM-HMM systems, the new CD-DNN-HMM systems in current popular
commercial use [5][19][31] all have the same “beads-on-a-string” or linear-sequence
representation for the CD phonetic states. (In fact, the discovery that the use of a large
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number of CD phonetic states as the output layer of the DNN is highly effective prompted
the fast industrial adoption of DNN technology in speech recognition, partly because this
would involve minimal change in the run-time decoder algorithms and software [4][5].)

While the use of the CD phonetic states as the output representation for DNN-based
acoustic models in speech recognition significantly reduces recognition errors and allows the
decoding algorithm to remain to be of the Viterbi beam search style permitting fast pruning
of hypotheses, it carries two main disadvantages. First, it introduces a very large number of
DNN parameters in the final weight layer. This makes the online computation very costly
and would limit the applications of the DNN in various scenarios. Second, the flat
representation of speech units based on CD phonetic states coded on the DNN output layer
discards the known phonological structure of speech. Putting such structure back to the deep
models while improving their output representation holds the promise to further reduce
speech recognition errors.

In the remaining part of this paper, some existing and proposed solutions to the two
problems above pertaining to the limitations of the current DNN-based speech recognition
technology in terms of its output representation are reviewed and discussed. Further, an
additional problem arising from a specific type of deep network that has direct bearing on
the output representation issue will be discussed.

2. Handling high dimensionality in the DNN’s output representation

The first example of the benefit of better output representations in the DNN-based speech
recognizers is provided in this section. As discussed in the introduction section, most current
DNN systems use a high-dimensional output representation, each component corresponding
to one CD phonetic state in the top-level HMM receiving the DNN output as its “features”.
In brief, by performing SVD-based dimensionality reduction on the DNN’s high-dimensional
output vectors, the decoding efficiency of running the recognizer in run time can be
drastically improved due to the significantly reduced DNN parameters. We now discuss
details of this technique based on the work published recently in [28][26].

In Fig. 1, we show the general DNN architecture with high-dimensional (m) output
vectors indicated as blue nodes and with the subsequently large weight matrix at the top of
the DNN. We denote this matrix as A € R™*™,
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Figure 1: The basic architecture of DNN, where output layer represents high-dimensional context-
dependent (CD) phonetic states used for HMM decoding; courtesy of authors of [28].

To reduce dimensionality m or n, we perform low-rank matrix factorization via singular
value decomposition (SVD) on matrix A:
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Then, the low rank-k (k<n) approximation to matrix A can be shown by the following steps:
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Thus the total humber of weight parameters in the output matrix is reduced from m x n to k X
(m 4+ n). This seems to be a more principled way of constructing “bottleneck” layers or
features than the earlier work reported in the literature (e.g. [11]).

In the implementation of the dimensionality reduction method reported in [28], the DNN
with high-dimensional output layer was trained first. Next, SVD was performed on the large
output matrix A, which is then approximated by a product of two much smaller matrices. When
applying such approximation back to the DNN, the large single output layer’s weight matrix A is
converted to two layers both with smaller weight matrices U € R™** and W € R*¥*™, The lower
layer is made linear and the upper one is nonlinear as in the original DNN. Finally, the DNN
with reduced dimensionality in the output layer is re-trained. The experimental results
reported in [28][26] both show no speech recognition accuracy reduction with the low-rank
matrix approximation, while the run-time computation is significantly reduced.

3. Structured output representation for symbolic speech target sequences

The second case study presented here concerns structured design of the output representation for
the symbolic or phonological units of speech. The rich phonological structure of symbolic nature
in human speech has been well known for many years [2][3][16][18][13]. Likewise, it has also
been well understood for a long time that the use of phonetic or its finer state sequences, even with
contextual dependency, in engineering speech recognition systems is inadequate in representing
such rich structure [5][12][14][27] and thus leaving a promising open direction to improve the
speech recognition systems’ performance. In this section, | survey the basic theories about the
internal structure of speech sounds and their relevance to speech recognition technology in terms
of the specification, design, and learning of possible output representations of the underlying
speech model for speech target sequences that may be used in training speech recognizers.

3.1 From linear to nonlinear phonological representations

In the traditional phonology [2], a phoneme is represented as an unstructured set of
phonological features, or feature bundles. Likewise, a sequence of phonemes is characterized by a
sequence of feature bundles, resulting in a feature matrix which arranges the feature bundles into
columns. The feature matrix does not concern how features might be organized or structured.
Because phonemes as feature bundles in a word or in word sequences follow each other in strict
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succession, this feature-matrix approach is called the sequential linear model of phonology. In this
regard, the speech units in the “linear” order are often likened to “beads on a string”, as commonly
used in the pronunciation model component of modern speech recognizers including the most
advanced DNN-based ones (see the discussion section in [5]).

While this sequential model of phonological representation is conceptually simple and
analytically tractable, it has a number of serious inadequacies. All features are assumed to have a
positive or negative value for every segment, regardless of whether such features could
conceivably apply to that segment or not. Further, the phonological rules in linear phonology do
not explain why some phonological processes are more natural than others.

The most important inadequacy of the linear phonological model is that it prevents features
from extending over domains greater or lesser than one single phoneme, because each feature
value can characterize only one phoneme and vice versa. This is contrary to ample phonological
evidence that demonstrates “nonlinear” behavior, where strict sequential order is broken and one
feature can occupy a domain significantly greater than a phoneme, or a domain less than a full
phoneme. For example, the [+nasal] feature in some languages including English may occupy only
a fraction of a segment, or it can spread across more than one segment or syllable. This type of
inadequacy of the linear phonology model has been overcome by the theory of autosegmental
phonology where the features that go beyond the segmental limits set by the linear model are
extracted from feature matrices and are placed in separate, independent tiers of their own, hence
the term. Autosegmental phonology establishes a ‘“nonlinear” model of phonological
representation, where the strict “linear" order is replaced by a multi-tiered representation where
feature elements in different tiers often do not follow the linear order but overlap with each other
temporally.

The second inadequacy of the linear sequential model of phonological representation is its
implicit assumption that feature bundles in the feature matrix have no internal structure; i.e. each
feature is equally related to any other feature. This, again, is against a considerable amount of
evidence that suggests that features are grouped into higher-level functional units. In many
languages including English, all place features function together as a unit. To overcome this
challenge, a tree-like model of feature organization is developed, where segments are represented
in terms of hierarchically-organized node configurations with terminal nodes being the feature
values and non-terminal nodes being the feature classes resulting from functional feature
groupings. This tree-like feature organization, together with a set of general properties associated
with the organization and related to phonological rules, is also called feature geometry [3]. Now,
rather than putting features in matrices as in the traditional theory, the features are placed as
terminal nodes in a tree-like diagram, where these terminal nodes are unordered and are on
separate tiers depending on their parent feature classes. This organization permits nonlinear
behavior of feature overlap, as in autosegmental phonology. It also permits strong constraints on
the form and functioning of phonological rules. Feature geometry is a substantial extension of
autosegmental phonology which we discuss next.

3.2 Phonological feature hierarchy

Phonological features are atomic, symbolic specification of the constituent units that make up
of all phonemes of the world languages. They are hierarchically organized into a tree-like structure
in feature geometry theory [3], forming the basis of internal organization of speech sounds.
Compared with the traditional feature theory [2], feature geometry is more heavily grounded on
articulators and their functional roles in producing speech sounds. Fig.2 is an illustration of the
tree structure that is associated with each phone or segment in the phonological representation of
speech.

In Fig. 2, the root node specifies the coherence of the global segmental properties. Popular
proposals assign features [cons] and [son] in the root node. The tier below the root node contains a
non-terminal node called the Laryngeal node. Three laryngeal features [spread] (i.e., spread
glottis, SG), [constr] (or constricted glottis, CG), and [voice] (vc) are grouped under this node.
Under the Place node, we have the place features [labial], [coronal] (together with its dependent
features [anterior], [distributed], [strident]), and [dorsal] (together with its dependent features
[high], [low], and [back]). These phonological features often spread (i.e. temporally overlap) as a
unit. This spread is typically independent of other non-place features such as [cont], [voice],
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[nasal], etc. This regularity is naturally captured by grouping all these place features under a single
place node as shown in the lower part of Fig. 2. The remaining features [lateral], [nasal], and
[cont] do not form sub-groups within themselves or with other features. They are listed separately
under the root node.

Root [cons]
son

MNeode

Laryngeal Node [1at] [nas] [cont]

[SG] [CG] [vel
Place Node
[lak] [cor] [der] [phar]

[rd] [ant] [distr] [strid] [hi] [lo] [ok] [ATR]

Figure 2: Illustration of feature geometry expressed as a tree-like structure.

When several segments form a sequence, each of which has its feature hierarchy as shown in
Fig. 2, we obtain a three-dimensional picture where the feature hierarchy unfolds in time. While
the root node dominates all features for each segment for a sequence of segments, all the
individual root nodes are linked in a sequence as well. One example of the expanded feature
geometry for a three-segment sequence, consisting of /p/, /i/, and /n/, is crafted in Fig. 3.

/pin/

o TS

Figure 3: An example of expanded feature geometry for egment sequence /pin/.

3.3 A computational model for designing output representations of speech

Here we describe a computational model that makes use of the expanded feature geometry
discussed above to construct structure output representations of symbolic speech target sequences.
This model fixes all aspects of inadequacy of the linear “beads-in-a-string” model for target
specification of speech units in a sequence that underlies all current speech recognition system
including the DNN-HMM systems.

A series of “Computational Phonology” models detailed in Chapter 9 of [12] and sketched in
[12] provided a basic framework for designing and learning the structured output representations
of speech. The underlying theory of this framework follows “articulatory phonology,” which links
the expanded feature geometry to its phonetic “implementation” thereby providing a solid
“interface” between symbolic phonology continuous-valued, measurable phonetic variables (e.g.,
articulatory movements and associated acoustic parameters).

Central to this framework is a set of empirically designed symbolic articulatory features with
their respective temporal domains specified, permitting their asynchronous overlapping over time
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with constraints derived from phonetic knowledge as part of articulatory phonology. The
articulatory features and their overlapping and constraining rules for complete American English
are detailed in [14], [27], and [12].

The overlapping articulatory features are designed based on speech recognition considerations
and on theories of phonology. From the theoretical side, they are a mix of, but different from, the
(multi-valued) distinctive features in feature-geometry theory and the gestures in articulatory
theory. Compared with the gestures, the articulatory features share the same key property of
overlapping or blending across tiers. In fact, the tiers are essentially the same between the two
representations. However, one very crucial difference is that unlike the gestures which are defined
in terms of the parameters of the abstract dynamics in the “tract variables,” the articulatory
features are entirely symbolic with no specific reference and association to any continuous
variables. A separate module, which is called the interface between phonology and phonetics and
which can take many different forms, is responsible for the mapping from a symbolic articulatory
feature to some continuous, phonetic variables (articulatory or vocal tract resonance variables in
some practical implementations). The notion of this type of interface simply does not exist in
articulatory phonology and in the gesture.

The second important difference between the gesture and the articulatory feature is that the
former is associated with intrinsic duration due to its connection to an underlying, abstract task-
dynamic system, while the latter is not. The temporal characterization of the articulatory features
is only by way of relative timing among the tiers.

Further, the articulatory features are designed to be phonological units. That is, when serving as
underlying units for describing word pronunciation, they play contrastive roles in distinguishing
meanings of the words. To ensure this property, in the design of the articulatory features,
phoneme-like units are used as the basis and it is made explicit that the different phonemes have
distinctive values of the articulatory features associated with them [14]. From speech recognition
considerations when that computational model was implemented many years ago using statistical
generative models as the theoretical basis [14][27], the articulatory features were designed with
the additional requirement of economy. The articulatory features, with their spatial and temporal
structures in place, were used as the nonlinear atomic speech units for lexical representation. This
was aimed at provide a superior alternative to the popular linear phonetic representation. An
efficient lexical representation of this sort requires the choice of a small set of feature units so that
in terms of these symbols each lexical item can be compactly specified while being made
distinguishable from each other at the same time. In the modern days of big data and big compute,
especially with the clear demonstration of superior performance of the big, discriminative DNN
over the generative GMM [5][20], the requirement of economy in the construction of the
articulatory features and imposition of their overlapping constraints may be reduced or eliminated.
The entire framework deserves serious re-thinking and re-design.

3.4 Implementation detail and examples

To illustrate the computational model for designing structured output representations for
potential use in speech recognition, we provide selected examples here. We use the articulatory
feature design described in [14], where five multi-valued features, Lips, Tongue Blade (TB),
Tongue Dorsum (TD), Velum, and Larynx, are assigned uniquely to each phonemic unit, with
intended “minimal” redundancy and “maximal” separability. Then the major contextual variations
in speech are modeled as a natural result of overlap or asynchronous spread of the “intrinsic”
values of one or more of these features across adjacent phonetic units. Given a fixed feature-
overlap pattern,
a one-to-one mapping is made from such a pattern to a state-transition graph which forms the
topology of the underlying Markov chain of the HMM accomplishing such a mapping. The graph
is constructed in such a way that each node in the graph (or the state in the HMM) represents a
unigue composition of the five features. Each individual lexical item is represented by a distinct
state-transition graph, formed by concatenating a sequence of sub-graphs associated with the
phone sequence in the phonetic transcription according to the feature-overlap patterns constructed
specifically from these phones-in-context. Since each node in this global graph contains a distinct
composition of the features, we can also view the representation of a lexical item described here as
an organized set of feature-bundle collections.
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In Fig. 4, the construction of overlapping patterns across five articulatory features is illustrated
for English word “strong”, together with its spectrogram. The spectrogram is time aligned with
the overlapping patterns. Note the lip-rounding and nasalization features have variable (relative)
durations, and they are represented by two dashed boxes. This type of variability in the duration of
feature overlapping gives rise to alternative feature bundle sequences.
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Figure 4: Phonologically defined articulatory feature overlaps for English word “strong”.

By merging identical feature bundles, a “state transition” network can be constructed using a
technique described on pages 314-315 of [13]. Each state in the network corresponds to a unique
feature bundle. The network constructed by the overlapping feature bundle generator for the word
“strong” in Fig. 4 is shown in Fig. 5, where each state is associated with a set of symbolic features.
The branches in the network result from alternative overlapping durations specified in the feature
overlapping rules. Note that the graph representation of the pronunciation network of English
word “strong” is very different from the left-to-right linear-chain representation used on virtually
all speech recognition systems (e.g. [5][20][25][15]). While both type of representations capture
context dependency, the mechanism and capability of embedding phonetic context are very
different.
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Figure 5: Example of state-transition graph representation for the English word “strong”,
derived from the feature overlapping pattern of Fig. 4.

4. Output representations used in the deep convex network

In this last case study, we show an example of the network output representation in the deep
convex network (DCN), with the benefit of drastic simplification of learning the parameters
of the full DCN via the use linear-transformation units in the network’s output layer [9][10].

Here we show how the use of linear output units in DCN facilitates the learning of the DCN
weights with a single module of DCN. First, it is clear that the upper layer weight matrix U can be
efficiently learned once the activity matrix H over all training samples in the hidden layer is
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known. Denote the training vectors by X = [x,,---, x;,--, x5 ]. The output of a DCN block is y; =
UTh;, where h; = oc(WTx;) is the hidden-layer vector for sample i, U is the weight matrix at the
upper layer of a block. W is the weight matrix at the lower layer of a block.

Given target vectors in the full training set with a total of N samples, T = [t,,---, t;, -, ty],

. T
where each vector is ¢; = [ty;, -, ¢+, tei] , the parameters U and W are learned so as to

minimize the average of the total square error: E = %Zn |Yn — tal|? = %Tr[(Y -T)(Y -T)T],

where the output of the network is: y, = UTh, = UTa(W'x,)) = G, (U, W), which depends
on both weight matrices, as in the standard neural net. Assuming H = [hy,--, h;, -+, hy] is
known, or equivalently, W is known. Then, setting the error derivative with respective to U to zero
gives: U = (HHT)"*HT" = F(W), where h,, = a(W”x,,). This provides an explicit constraint
between U, and W, which would be treated independently in the popular backprop algorithm.

Now, given the equality constraintU = F(W), let’s use Lagrangian multiplier method to solve
the optimization problem in learning W. Optimizing the Lagrangian:

E =% l1Ga(U, W) = £,|12 + 2 ||U = FW))|
We can then derive batch-mode gradient descent learning algorithm where the gradient takes

the following form: g—; =2X [HT o(1—H)" o [HI(HTT)(TH') - TT(THT)]],

where Ht = HT(HH™)~1 is pseudo-inverse of H.

Compared with backprop, the above method has less noise in gradient computation due to the
exploitation of the explicit constraint U = F(W). As such, it was found experimentally that,
unlike backprop, batch training is effective, which aids parallel learning of DCN [10].

5. Summary and conclusions

In this paper, three case studies are presented, all highlighting the importance of designing and
learning output representations in machine learning. That is, the machine learning, especially deep
learning researcher should turn at least part of their emphasis on input representation learning to
the output representation counterpart. Among the three examples, the structured output
representation for speech recognition using overlapping articulatory features was elaborated the
most (Section 3). Given a drastically different way of capturing contexts in representing sequences
of speech classes from the traditional approach, the discussed approach offers a new research
direction for improving current speech recognition technology that has been based so far heavily
on using DNNs to extract input speech features while paying virtually no attention to designing or
learning output representations.

There have been recent advances in output representation learning from the machine learning
community [1][30][17] based on latent variable modeling and large scale multi-label learning.
And there are more challenging practical applications than speech recognition (e.g. Web search
with under-specified output supervision information [21]) which present greater needs for output
representation learning in terms of robustness. It is hoped that the three case studies analyzed in
this paper can help bring both algorithm-oriented and application-focused machine learning
researchers together to advance further the practically useful methods in output representation
learning.
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