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Abstract. We present a new algorithm for deciding satisfiability of non-
linear arithmetic constraints. The algorithm performs a Conflict-Driven
Clause Learning (CDCL)-style search for a feasible assignment, while
using projection operators adapted from cylindrical algebraic decompo-
sition to guide the search away from the conflicting states.

1 Introduction

From the early beginnings in Persian and Chinese mathematics [24,25,50] until
the present day, polynomial constraints and the algorithmic ways of solving them
have been one of the driving forces in the development of mathematics. Though
studied for centuries due to the natural elegance they provide in modeling the
real world, from resolving simple taxation arguments to modeling planes and
hybrid systems, we are still lacking a practical algorithm for solving a system of
polynomial constraints. Throughout the history of mathematics, many brilliant
minds have studied and algorithmically solved many of the related problems,
such as root finding [15,48,43] and factorization of polynomials [36,19,20]. But, it
was not until Alfred Tarski [44,45,47] showed that the theory of real closed fields
admits elimination of quantifiers that it became clear that a general decision
procedure for solving polynomial constraints was possible. Granted a wonderful
theoretical result of landmark importance, with its non-elementary complexity,
Tarski’s procedure was unfortunately totally impractical.

As one would expect, Tarski’s procedure consequently has been much im-
proved. Most notably, Collins [11] gave the first relatively effective method of
quantifier elimination by cylindrical algebraic decomposition (CAD). The CAD
procedure itself has gone through many revisions [31,22,12,5]. However, even
with the improvements and various heuristics, its doubly-exponential worst-case
behavior has remained as a serious impediment. The CAD algorithm works by
decomposing Rk into connected components such that, in each cell, all of the
polynomials from the problem are sign-invariant. To be able to perform such
a particular decomposition, CAD first performs a projection of the polynomi-
als from the initial problem. This projection includes many new polynomials,
derived from the initial ones, and these polynomials carry enough information
to ensure that the decomposition is indeed possible. Unfortunately, the size of
these projections sets grows exponentially in the number of variables, causing
the projection phase to be a key hurdle to CAD scalability.



We propose a new decision procedure for the existential theory of the reals
that tries to alleviate the above problem. In the spirit of our recent decision
procedure for linear integer arithmetic [26], the new procedure performs a back-
tracking search for a model in R, where the backtracking is powered by a novel
conflict resolution procedure. Our approach takes advantage of the fact that each
conflict encountered during the search is based on the current assignment and
generally involves only a few constraints, a conflicting core. When in conflict, we
project only the polynomials from the conflicting core and explain the conflict
in terms of the current model. This means that we use projection conservatively,
only for the subsets of polynomials that are involved in the conflict, and even
then we reduce it further. As another advantage, the conflict resolution provides
the usual benefits of a Conflict-Driven Clause Learning (CDCL)-style [40,35]
search engine, such as non-chronological backtracking and the ability to ignore
irrelevant parts of the search space. The projection operators we use as part of
the conflict resolution need not be CAD based and, in fact, one can easily adapt
projections based on other algorithms (e.g [32,3]).

Due to the lack of space and the volume of algorithms and concepts involved,
we concentrate on the details of the decision procedure in this paper and refer the
reader to the existing literature for further information [8,9,10,27,3]. Acknowl-
edging the importance that the details of a particular implementation play, we
do include an appendix with the description of particular algorithms we chose
for our implementation.

2 Preliminaries

As usual, we denote the ring of integers with Z, the field of rational numbers
with Q, and the field of real numbers as R. Unless stated otherwise, we assume
all polynomials take integer coefficients, i.e. a polynomial f ∈ Z[y, x] is of the
form

f(y, x) = am · xdm + am−1 · xdm−1 + · · ·+ a1 · xd1 + a0 ,

where 0 < d1 < · · · < dm, and the coefficients ai are in Z[y] with am 6= 0. We call
x the top variable and refer to y as variables of lower levels. The highest degree
dm is the degree of the polynomial f in variable x, and we denote it with deg(f, x).
The set of coefficients of f is denoted as coeff(f, x). We call am the leading
coefficient in variable x, and denote it with lc(f, x). If we exclude the first term of
the polynomial f , we obtain the polynomial R(f, x) = am−1x

dm−1+· · ·+a0, called
the reductum of f . We denote the set of variables appearing in a polynomial f
as vars(f) and call the polynomial univariate if vars(f) = {x} for some variable
x. Otherwise the polynomial is multivariate, or a constant polynomial (if it
contains no variables). Given a set of polynomials A ⊂ Z[x1, . . . xn], we denote
with Ak the subset of polynomials in A that belong to Z[x1, . . . , xk], i.e. Ak =
A ∩ Z[x1, . . . , xk].3

3 We thus have A0 ⊆ A1 ⊆ · · · ⊆ An, with A0 being the constant polynomials of A,
and An = A.



A number α ∈ R is a root of the polynomial p ∈ Z[x] iff f(α) = 0. We call a
real number α ∈ R algebraic iff it is a root of a univariate polynomial f ∈ Z[x],
and we denote the field of all real algebraic numbers by Ralg. We can represent
any algebraic number α as (l, u)f , where α is a root of a polynomial f , and the
only root in the interval (l, u), with l, u ∈ Q.

Example 1. Consider the univariate polynomial f1 = 16x3 − 8x2 + x + 16. This
polynomial has only one root, the irrational number α1 ≈ −0.840661 and we
can represent it as (−0.9,−0.8)f1 .

Given a set of variables X = {x1, . . . , xn}, we call υ a variable assignment if
it maps each variable xk to a real algebraic number υ(xk), the value of xk under
υ. We overload υ, as usual, to obtain the value of a polynomial f ∈ Z[x1, . . . , xn]
under υ and write it as υ(f). We say that a polynomial f vanishes under υ if
υ(f) = 0. We can update the assignment υ to map a variable xk to the value α,
and we denote this as υ[xk 7→ α].

Under a variable assignment υ that interprets the variables y, some coeffi-
cients of a polynomial f(y, x) may vanish. If ak is the first non-vanishing co-
efficient of f , i.e., υ(ak) 6= 0, we write R(f, x, υ) = akxdk + · · · + a0 for the
reductum of f with respect to υ (the non-vanishing part). Given any sequence
of polynomials f = (f1, . . . , fs) and a variable assignment υ we define the van-
ishing signature of f as the sequence v-sig(f , υ) = (f1, . . . , fk), where k ≤ s
is the minimal number such that υ(fk) 6= 0, or s if they all vanish. For the
polynomial f(y, x) as above, we define the vanishing coefficients signature as
v-coeff(f, x, υ) = v-sig(am, . . . , a0).

A basic polynomial constraint F is a constraint of the form f O 0 where f is
a polynomial and O ∈ {<,≤,=, 6=,≥, >}. We denote the polynomial constraint
that represents the negation of a constraint F with ¬F .4 In order to identify the
polynomial f of the constraint F , and the variables of F , we write poly(F ) and
vars(F ), respectively. We normalize all constraints over constant polynomials to
the dedicated constants true and false with the usual semantics. We write υ(F )
to denote the evaluation of F under υ, which is the constraint υ(f) O 0. If f does
not evaluate to a constant under υ, then υ(F ) evaluates to a new polynomial
constraint F ′, where poly(F ′) can contain algebraic coefficients.

Borrowing from the extended Tarski language [4, Chapter 7], in addition to
the basic constraints, we will also be working with extended polynomial con-
straints. An extended polynomial constraint F is of the form

x Or root(f, k) , (1)

where Or ∈ {<r,≤r,=r, 6=r,≥r, >r}, f is a polynomial in Z[y, z̃], with x 6∈
vars(f), and the natural number k ≤ deg(f, x) is the root index. Variable z̃ is a
distinguished free variable that cannot be used outside the root object. To be
able to extract the polynomial of the constraint, we define poly(F ) = f(y, x).
Note that, poly(F ) replaces z̃ with x.

4 For example ¬(x2 + 1 > 0) ≡ x2 + 1 ≤ 0.



The semantics of the predicate (1) under a variable assignment υ is the
following. If the polynomial υ(f) is univariate, and υ assigns x to α, the (Boolean)
value of the constraint can be determined. If the univariate polynomial υ(f) ∈
Ralg[z̃] has the roots β1 < · · · < βn, with k ≤ n, and α O βk holds, then (1)
evaluates to true. Otherwise it evaluates to false. Note that the real roots of
a polynomial in Ralg[z̃] are still algebraic. We denote the number of real roots
of a univariate polynomial f as rootcount(f). Naturally, if F is an extended
polynomial constraint, so is the negation ¬F .5

Example 2. Take the bivariate polynomial f = 2y z̃3−8 z̃2 + z̃ +3y − 8 and the
variables assignment υ1, with υ1(x) = −1 and υ1(y) = 8. Under this assignment
we have that p(y) = 16 z̃3−8 z̃2 + z̃ +16 and, as in Ex. 1, it has only one root
α = (−0.9,−0.8)f . Now consider the constraints

x <r root(f, 1), x ≥r root(f, 1), ¬(x <r root(f, 1)), ¬(x <r root(f, 2)).

The value of the above constraints under υ1 are true, false, false, true, correspond-
ingly. The fourth constraint evaluates to true as f does not have 2 roots, and the
predicate thus evaluates to false. Now consider the assignment υ2 = υ1[y 7→ 0].
Under υ2 we have that p(y) = −8 z̃2 + z̃−8 which now does not have any real
roots. The value of the constraints above under υ2 is therefore false, false, true,
true. Note that the second and third constraint might be mistaken to be equal,
but are not – as can be seen, they have different semantics.

A polynomial constraint is either a basic or an extended one. Given a set of
polynomial constraints F , we say that the variable assignment υ satisfies F if it
satisfies each constraint in F . If there is such a variable assignment, we say that
F is satisfiable, otherwise it is unsatisfiable. A clause of polynomial constraints
is a disjunction C = F1 ∨ . . . ∨ Fn of polynomial constraints. We use literals(C)
to denote the set {F1,¬F1, . . . , Fn,¬Fn}. We say that the clause C is satisfied
under the assignment υ if some polynomial constraint Fj ∈ C evaluates to true
under υ. Finally, a polynomial constraint problem is a set of clauses C, and it is
satisfiable if there is a variable assignment υ that satisfies all the clauses in C.

3 An Abstract Decision Procedure

We describe our procedure as an abstract transition system in the spirit of
Abstract DPLL [37,29]. The crucial difference between the system we present is
that we depart from viewing the Boolean search engine and the theory reasoning
as two separate entities that communicate only through existing literals. Instead,
we allow the model that the theory is trying to construct to be involved in the
search and in explaining the conflicts, while allowing new literals to be introduced
so as to support more complex conflict analyses. Additionally, our presentation
makes the concept of relevancy inherent to procedure (e.g. [13]). The transition

5 Note that, for example, ¬(x <r root(f, k)) is not necessarily equivalent to x ≥r

root(f, k).



system presented here applies to non-linear arithmetic, but it can in general be
applied to other theories.

The states in the transition system are indexed pairs of the form 〈M, C〉n,
where M is a sequence (usually called a trail) of trail elements, and C is a set of
clauses. The index n denotes the current level of the state. Trail elements can
be decided literals, propagated literals, or a variable assignment.

A decided literal is a polynomial constraint F that we assume to be true.
On the other hand, a propagated literal, denoted as E→F , marks a polynomial
constraint F ∈ E that is implied to be true in the current state by the clause E
(the explanation). In both cases, we say that the constraint F appears in M , and
write this as F ∈ M . We denote the set of polynomial constraints appearing in
M with constraints(M). We say M is non-redundant if no polynomial constraint
appears in M more than once. A trail variable assignment, written as x 7→α, is
an assignment of a single variable to a value α ∈ Ralg. Given a trail M , contain-
ing variable assignments xi1 7→α1, . . . , xik

7→αk, in order, we can construct an
assignment

υ[M ] = υ0[xi1 7→ α1] . . . [xik
7→ αk] ,

where υ0 is an empty assignment that does not assign any variables. We say that
the sequence M is increasing in level when the sequence is of the form

M = J
Mk︷ ︸︸ ︷

N1, x1 7→α1, . . . , xk−1 7→αk−1, Nk, xk 7→αk, . . . , xn−1 7→αn−1, NnK ,

where, for each level k, the sequence Nk does not contain any variable assign-
ments, each constraint F ∈ constraints(Nk) contains the variable xk, and (op-
tionally) the variables x1, . . . , xk−1 (and z̃). In such a sequence M , we denote
with level(M) = n the level of the sequence, and identify the subsequence of level
k by writing Mk, as depicted above. Note that Mk does not include the assign-
ment of xk, and in general Mn is different from M if M includes the assignment
of xn.

If a sequence M , of level n, is increasing in level, with F = constraints(M), we
say that it is feasible, when the set of univariate polynomial constraints υ[Mn](F)
has a solution. We write feasible(M) to denote the feasible set of υ[Mn](F).
Given an additional polynomial constraint F ∈ Z[x1, . . . , xn], we say that F
is compatible with the sequence M , when feasible(JM,F K) 6= ∅ and denote this
with a predicate compatible(F,M). In our actual implementation, we represent
feasible sets using a set of intervals with real algebraic endpoints. The predicate
compatible(F,M) is implemented using real root isolation and sign evaluation
procedures. In the Appendix, we sketch the algorithms used to implement these
procedures, and provide references to the relevant literature.

Definition 1 (Well-Formed State). We say a state 〈M, C〉n is well-formed
when M is non-redundant, increasing in level, level(M) = n, and all of the
following hold.

1. Clauses up to level n are satisfied, i.e. we have that υ[Mn](Cn−1) = true.



2. Literals up to level n are satisfied, i.e. for each F ∈ constraints(Mn−1) we
have that that υ[Mn](F ) = true.

3. Literals of level n are consistent, i.e. we have that feasible(M) 6= ∅.
4. Propagated literals E→F are implied, i.e. for all literals F ′ 6= F in E,

υ[Mn](F ′) = false or ¬F ′ ∈ constraints(M).

Intuitively, in a well-formed state we commit to the variable assignment of
lower levels, and we make sure that the current level is still consistent. With
this in mind, given a polynomial constraint F over variables x1, . . . , xn, and a
well-formed state M with level(M) = n, we define the state value of F in M as

value(F,M) =


υ[Mn](F ) xn 6∈ vars(F ) ,

true F ∈ constraints(M) ,

false ¬F ∈ constraints(M) ,

undef otherwise.

Naturally, we overload value to also evaluate clauses of polynomial con-
straints, and sets of clauses, i.e. for a clause C we define value(C,M) to be
true, if any of the literals evaluates to true, false if all literals evaluate to false,
and undef otherwise.

We are now ready to define the transition system. We separate the transition
rules into three groups: the search rules, the clause processing rules, and the
conflict analysis rules. The search rules are the main driver of the procedure,
with the responsibility for selecting clauses to process, creating the variable
assignment while lifting the levels, and detecting Boolean conflicts. The search
rules operate on well-formed states 〈M, C〉n. If the search rules select a clause
C to process, we switch to a state 〈M, C〉n � C, where we can apply the set
of clause processing rules. The notation � C designates that we are performing
semantic reasoning in order to assign a value to a literal of C. If the search rules
detect that in the current state some clause C ∈ C is falsified, we switch to a
state 〈M, C〉n ` C, where we can apply the conflict analysis rules. The notation
` C denotes that we are trying to produce a proof of why C is inconsistent in
the current state.

Finally, given a polynomial constraint problem C, with vars(C) = {x1, . . . , xn},
the overall goal of the procedure is, starting from an initial state 〈JK, C〉1, and
applying the rules, to end up either in a state 〈υ, sat〉, indicating that the initial
set of clauses C is satisfiable where the assignment υ is the witness, or derive
unsat, which indicates that the set C unsatisfiable.

Search Rules. Fig 1 presents the set of search rules. The Select-Clause rule
selects one of the clauses of the current level, whose value is still undetermined,
and transitions into the clause processing mode that will hopefully satisfy the
clause. The Conflict rule detects if there is a clause of the current level that
is inconsistent in the current state, and transitions into the conflict resolution
mode that will explain the conflict and backtrack appropriately. On the other
hand, if all the clauses of the current level are satisfied, we can either transition



to the next level, using the Lift-Level rule, or conclude that our problem is
satisfiable, using the Sat rule. Since at this point the current level is consistent,
in addition to formally introducing the new level, the Lift-Level rule selects
a particular value for the current variable from the feasible set of the current
level. Note that once we move to the next level, all the clauses of previous levels
have values in the state, and can never be selected by the Select-Clause or the
Conflict rules. We conclude this set of rules with the Forget rule that can be
used to eliminate any learned clause (a clause added while analyzing conflicts)
from the current set of clauses.

Select-Clause

〈M, C〉k −→ 〈M, C〉k � C if
C ∈ Ck

value(C, M) = undef

Conflict

〈M, C〉k −→ 〈M, C〉k ` C if
C ∈ Ck

value(C, M) = false

Sat

〈M, C〉k −→ 〈υ[M ], sat〉 if xk 6∈ vars(C)

Lift-Level

〈M, C〉k −→ 〈JM, xk 7→ αK, C〉k+1 if

xk ∈ vars(C)
α ∈ feasible(M)
value(Ck, M) = true

Forget

〈M, C〉k −→ 〈M, C \ {C}〉k if
C ∈ C
C is a learned clause

Fig. 1. The search rules.

Clause Processing Rules. In this set of rules, presented in Fig 2, we are trying
to assign a currently unassigned literal of the given clause C, hoping to satisfy
the clause. When one of the clause processing rules is applied, we immediately
switch back to the search rules. As usual in a CDCL-style procedure, the sim-
plest way to satisfy the clause C is to perform the Boolean unit propagation,
if applicable, by using the B-Propagate rule. We restrict the application of
this rule so that adding the constraint to the state keeps it consistent, i.e., it
is compatible with the current set of constraints. If this is the case, we add the
constraint to the state together with the explanation (clause C itself). To allow
more complex propagations, the ones that are valid in R modulo the current
state, we provide the R-Propagate rule. This rule can propagate a constraint
from the clause, if assuming the negation would be incompatible with the cur-
rent state. The R-Propagate rule is equipped with an explanation function
explain. The explain function, given a polynomial constraint F , and the trail M ,



Decide-Literal

〈M, C〉k � C −→ 〈JM, F1K, C〉k if

F1, F2 ∈ C
∀i : value(Fi, M) = undef
compatible(F1, M)

B-Propagate

〈M, C〉k � C −→ 〈JM, C→F K, C〉k if

C = F1 ∨ . . . ∨ Fm ∨ F
value(F, M) = undef
∀i : value(Fi, M) = false
compatible(F, M)

R-Propagate

〈M, C〉k � C −→ 〈JM, E→F K, C〉k if

F ∈ literals(C)
value(F, M) = undef
¬ compatible(¬F, M)
E = explain(F, M)

Fig. 2. The clause satisfaction rules.

returns the explanation clause E = explain(F,M) that is valid in R, and implies
the constraint F under the current assignment (i.e., F ∈ E, all literals in E but
F are false, and the B-Propagate rule applies to E and F ). The clause E may
contain new literals that do not occur in C, but they can only contain variables
from lower levels. Now, it becomes clear the motivation for the definition of the
state value function value. Given a new literal Fi from E, ¬Fi 6∈ constraints(M),
but value(Fi,M) = false because υ[M ](Fi) = false. In R-Propagate, the clause
E is eagerly generated, this simplification clarifies the presentation, but in our
actual implementation, we compute them only if they are needed during conflict
resolution. Finally, if we cannot deduce the value of an unassigned literal, we
can assume a value for such a literal using the Decide-Literal rule.

Conflict analysis rules. The conflict analysis rules start from an initial proper
state 〈M, C〉n ` C, where C ∈ C is the conflicting clause. The conflict analysis is
a standard Boolean conflict analysis [40] with a model-based twist. As the rules
move the state backwards, the goal is to construct a new resolvent clause R,
that will explain the conflict and ensure progress in the search. This means that,
when we backtrack the sequence M just enough, the addition of R will ensure
progress in the search by eliminating the inconsistent part from the state, and
thus forcing the search rules to change some of the choices made. On the other
hand, if the conflict analysis backtracks the state all the way into an empty state,
this will be a signal that the original problem is unsatisfiable. Once the conflict
analysis backtracks enough and deduces the resolvent R, then we pass it to the
clause processing immediately.6

Termination. Our decision procedure consists of all three sets of rules described
above. Any derivation will proceed by switching amongst the three distinct
6 This is crucial in order to ensure termination.



Resolve-Propagation

〈JM, E→F K, C〉k ` C −→ 〈M, C〉k ` R if
¬F ∈ C
R = resolve(C, E, F )

. resolve returns the standard Boolean resolvent

Resolve-Decision

〈JM, F K, C〉k ` C −→ 〈M, C ∪ {C}〉k � C if ¬F ∈ C

Consume

〈JM, F K, C〉k ` C −→ 〈M, C〉k ` C if ¬F 6∈ C

〈JM, E→F K, C〉k ` C −→ 〈M, C〉k ` C if ¬F 6∈ C

Drop-Level

〈JM, xk+1 7→αK, C〉k+1 ` C −→ 〈M, C〉k ` C if value(C, M) = false

〈JM, xk+1 7→αK, C〉k+1 ` C −→ 〈M, C ∪ {C}〉k � C if value(C, M) = undef

Unsat

〈JK, C〉1 ` C −→ unsat

Fig. 3. The conflict analysis rules.

modes. Proving termination in the basic CDCL(T ) framework is usually a fairly
straightforward task, as the new explanation and conflict clauses always con-
tain only literals from the finite set of literals in the initial set of constraints.
In our case, the main conundrum in proving termination is that we allow the
explanations to contain fresh constraints, which, if we are not careful, could lead
to non-termination. We therefore also require the set of new constraints to be
finite.

We call an explanation function explain a finite basis explanation function
with respect to a set of constraints C, when there is a finite set of polynomial
constraints B such that for any derivation of the proof rules, the clauses returned
by applications of explain always contain only constraints from the basis B. Hav-
ing such an explanation function will therefore provide us with a termination
argument, and we will provide one such explanation function for the theory of
reals in the next section.

Theorem 1. Given a set of polynomial constraints C, and assuming a finite
basis explanation function explain, any derivation starting from the initial state
〈JK, C〉1 will terminate either in a state 〈υ, sat〉, where the assignment υ satisfies
the constraints C, or in the unsat state. In the later case, the set of constraints
C is unsatisfiable in R.

Proof. Assume we have a set of polynomial constraints C0, over the variables
x1, . . . , xn, and a finite-basis explanation function explain. Starting from the
initial state 〈JK, C0〉1, we claim that any derivation of the transition system (finite
or infinite), satisfies the following properties

1. the derivation consists of only well-formed states;



2. the only possible “sink states” are the sat and the unsat states;
3. all ` C clauses are implied by the initial constraints C0;
4. during conflict analysis the ` C clause evaluates to false;

Assuming termination, the above properties the statement can be proven
easily. Since sat and unsat are the only sink states, the derivation will terminate in
one of these states. Since the Lift-Level rule considers the variables x1, . . . , xn

in order, we can only enter the satisfiable state if it is of the form 〈υ, sat〉n+1.
Consequently, by the precondition of the Lift-Level rule, and the fact that
we never remove the original constraints from C0, all the constraints in C0 are
satisfied by υ. Therefore if we terminate in a sat state, the original problem
is indeed satisfiable. On the other hand, if we terminate in the unsat state, by
above properties, the conflicting clause is implied by C0 and evaluates to false
in the state 〈JK, C〉1. But, since there are no assertions in the trail, and variable
assignment υ(JK) does not assign any variables, it must be that the constraint is
trivially false. Having that falsity implied by the original constraints, the initial
constraints themselves must truly be unsatisfiable.

The first two properties in the list above are a fairly easy exercise in case
analysis and induction, so we skip those and concentrate on the more interest-
ing properties. Proving the properties of conflict analysis is also quite straight-
forward, via induction on the number of conflicts, and conflict analysis steps.
Clearly, initially, we have that C evaluates to false (the precondition of the
Conflict rule), and is implied by C by induction. Then, every new clause that
we produce during conflict resolution is obtained by the Boolean resolve rule,
which will produce a valid deduction. Additionally, since the clause we are re-
solving with is a proper explanation, it will have all literals except the one we
are resolving evaluate to false. Therefore, the resolvent also evaluates to false.
As we backtrack down the trail with the conflicting clause, by definition of value
and the preconditions of the rules, the clause still remains false.

Now, let us prove that the system terminates. It is clear that both the clause
processing rules (one step transitions) and the conflict analysis rules (always
removing elements from the trail) always terminate in a finite number of steps,
and return to the search rules (or the unsat state). For the sake of the argument,
let us assume that there is a derivation that does not terminate, and therefore
does not enter the unsat state. We can define a big-step transition relation −→bs

that covers a transition from a search state, applying one or more transitions in
the processing or analysis rules, and returns to a search state.

By assumption, we have a finite-basis explanation function explain, so we can
assume a set of polynomial constraint literals B from which all the clauses that
we can see during the search are constructed. In order to keep progress of the
search, we first define a function search-level that, given the trail M , returns a
pair (k, l), where k is the index of the next variable we are trying to assign,
i.e. k is one more than the number of variable assignments in M , and l is the
number of decided literals (applications of the Decide-Literal rule) in M .
Note that the search-level of any state that we can encounter is always a pair
(k, l) with 1 ≤ k ≤ n and l ≤ |B|. Given such a pair (k, l) we define the function



search-subseq(M,k, l) to be the largest prefix that contains at most k variable
assignments and at most l decided literals, i.e. the largest prefix of M with
search-level(M) ≤ (k, l).

To define the measure of a state, we first define a series of weight functions
ωk that, given of a sequence M , returns

ωk(M) =

{
|{ F ∈ Bk | value(Mk, F ) = undef }| (k, 0) ≤ search-level(M),
∞ otherwise.

In other words, if we are trying to assign the variable xk, where we already
performed a number of literal decisions, this state is as heavy as the number
of literals left in the basis containing only variables x1, . . . , xk that could still
possibly be assigned.

In order to prove termination, we will track the progress of all levels simulta-
neously. We define the function Ω to map a sequence well-formed state 〈M, C〉k
into a n(|B|+ 1) + 2-tuple as

Ω(M) = 〈ω1(search-subseq(M, 1, 0)), . . . , ω1(search-subseq(M, 1, |B|)),
ω2(search-subseq(M, 2, 0)), . . . , ω2(search-subseq(M, 2, |B|)),

...
ωn(search-subseq(M,n, 0), . . . , ωn(search-subseq(M,n, |B|)),
ωn+1(M), |C|〉 .

Given two well-formed states with trails M1 and M2, we write M1 l M2 if
Ω(M1) <lex Ω(M2), where <lex is the natural lexicographical extension of the or-
der < on N∪{∞}. Now consider a transition of the search 〈M1, C1〉k1 −→bs〈M2, C2〉k2

and the following cases.

– If this transition was initiated by the Select-Clause rule, a new literal
was assigned at the current literal decision level, or a new decision was
introduced. In both cases M2 l M1 as either one element of the sequence
decreased by 2 (literal and its negation were assigned), or the next element
of the sequence decreased from ∞ to a finite value.

– If this transition was initiated by the Lift-Level rule, switching to level k,
the first element of row k in Ω(M) decreased from ∞ to a finite value, so
M2 l M1 again.

– If we went into conflict analysis mode via the Conflict rule, we will back-
track accordingly, learn a new clause, and then assign at least one new literal
of the learned clause. Here note that if we used the Decide-Literal to as-
sign this literal, it must be that we stepped out of conflict analysis with an
application of the Drop-Level rule. If not, then we must have used the
Resolve-Decision rule, which would force us to apply the B-Propagate
rule instead. Therefore, in such a case, we didn’t remove any literal decisions
at the level k we backtracked to, but have in fact introduced a new one, again
decreasing an element of the measure from ∞ to a finite value. Otherwise,



if the value of the literal is assigned by one of the propagation rules, the
measure decreases as in the first case. In both cases, it follows, we have that
M2 l M1 again.

– If we applied the Forget rule, it is clear that only last element of the
measure decreases, and hence also M2 l M1.

Since, we covered all cases, the function Ω is always decreasing, and termination
of the system follows. ut

Example 3. First, for the sake of this example, let us restrict ourselves to the
case of linear constraints. When solving a set of linear constraints C, one can use
the Fourier-Motzkin elimination rule to define the explain function. As shown in
[33,28], this will give a finite-basis B with respect to C that is obtained by closing
C under the application of Fourier-Motzkin elimination step. It is fairly easy to
show that the closure is a finite set, since we always produce constraints with
one variable less.

We explain the search rules by applying them to the following set of linear
polynomial constraints

C = { (x + 1 ≤ 0 ∨ x− 1 ≥ 0︸ ︷︷ ︸
C1

), x + y > 0︸ ︷︷ ︸
C2

, x− y > 0︸ ︷︷ ︸
C3

} .

During the search, we associate x with level 1, and y with level 2. Therefore
the constraints of level 1 are C1 = {C1}, and the constraints of level 2 are
C2 = {C2, C3}. The following is a derivation of the transition system, starting
from the initial state 〈JK, C〉, applying the rules until we encounter a conflict.

〈JK, C〉1
↓ Select-Clause (x + 1 ≤ 0) ∨ (x− 1 ≥ 0), Decide-Literal (x + 1 ≤ 0)

〈J(x + 1 ≤ 0)K, C〉1
↓ Lift-Level

〈J(x + 1 ≤ 0), x 7→−1K, C〉2
↓ Select-Clause (x + y > 0), B-Propagate (x + y > 0)

〈J(x + 1 ≤ 0), x 7→−1, C2→(x + y > 0)K, C〉2???ySelect-Clause (x− y > 0)
R-Propagate (x− 1 ≤ 0) with E1 ≡ (x + y ≤ 0) ∨ (x− y ≤ 0) ∨ (x > 0)

〈J(x + 1 ≤ 0), x 7→−1, C2→(x + y > 0), E1→(x− y ≤ 0)K, C〉2
↓ Conflict

〈J(x + 1 ≤ 0), x 7→−1, C2→(x + y > 0), E1→(x− y ≤ 0)K, C〉2 ` (x− y > 0)

The derivation above assigns the first literal of C1 to true, and then selects the
value of −1 for x. With this value we go to the next level, and we then propagate
C2 to true by unit propagation. We continue by processing the clause x− y > 0.
But, under the assignment υ[M2](x) = −1 the constraints x+y > 0 and x−y > 0
evaluate to y − 1 > 0 and −y − 1 > 0, respectively, which taken together are
inconsistent. This means that x− y > 0 is incompatible with the current state,



and we use the R-Propagate rule to propagate ¬(x − y > 0) ≡ x − y ≤ 0.
In order to explain the propagation of x − y ≤ 0, we use a Fourier-Motzkin
elimination step to obtain E1 ≡ (x + y > 0) ∧ (x − y > 0) =⇒ (x > 0) As
soon as we propagate x− y ≤ 0, we enter a conflict with the clause C3, and we
continue to conflict analysis mode.

Below is the continuation of the derivation that uses the conflict analysis
rules to explain the conflict and backtrack.

〈J(x + 1 ≤ 0), x 7→−1, C2→(x + y > 0), E1→(x− y ≤ 0)K, C〉2 ` (x− y > 0)???yResolve-Propagation
resolve(x− y > 0, E1, (x− y ≤ 0)) = (x + y ≤ 0) ∨ (x > 0)

〈J(x + 1 ≤ 0), x 7→−1, C2→(x + y > 0)K, C〉2 ` (x + y ≤ 0) ∨ (x > 0)???yResolve-Propagation
resolve((x + y ≤ 0) ∨ (x > 0), (x + y > 0), (x + y > 0)) = (x > 0)

〈J(x + 1 ≤ 0), x 7→−1K, C〉2 ` (x > 0)

↓ Drop-Level

〈J(x + 1 ≤ 0)K, C ∪ {x > 0}〉1 � (x > 0)

↓ R-Propagate (x ≤ 0) with E2 ≡ (x + 1 > 0) ∨ (x ≤ 0)

〈J(x + 1 ≤ 0), E2→(x ≤ 0)K, C ∪ {x > 0}〉1
↓ Conflict

〈J(x + 1 ≤ 0), E2→(x ≤ 0)K, C ∪ {x > 0}〉1 ` (x > 0)???yResolve-Propagation
resolve((x > 0), E2, (x ≤ 0)) = (x + 1 > 0)

〈J(x + 1 ≤ 0)K, C ∪ {x > 0}〉1 ` (x + 1 > 0)

↓ Resolve-Decision (x + 1 ≤ 0)

〈JK, C ∪ {x > 0, x + 1 > 0}〉1 � (x + 1 > 0)

↓ B-Propagate (x + 1 > 0)

〈J(x + 1 > 0)→(x + 1 > 0)K, C ∪ {x > 0, x + 1 > 0}〉1

4 Producing Explanations

Given a polynomial constraint F s.t. poly(F ) ∈ Z[y, x], and a trail M such
that ¬F is not compatible with M , the procedure explain(F,M) returns an
explanation clause E that implies F under the current assignment. This clause
is of the form E∧F =⇒ F , where E and F are sets of literals with poly(E) ⊂ Z[y]
and poly(F) ⊂ Z[y, x]. All literals in F occur in M , and all literals in E evaluate
to true in the current assignment. Note that E may contain new literals, so we
must ensure that the new literals in poly(E) are a subset of some finite basis.

In principle, for any theory that admits elimination of quantifiers, it is possi-
ble to construct an explanation function explain. In this section, we describe how
to produce an explain procedure based on cylindrical algebraic decomposition
(CAD). Before that, we first make a short interlude into the world of CAD.



4.1 Cylindrical Algebraic Decomposition

Delineability plays a crucial role in the theory of CADs and in the construction
of our explain procedure. Following the terminology used in CAD, we say a
connected subset of Rk is a region. Given a region S, the cylinder Z over S is
S × R. A θ-section of Z is a set of points 〈α, θ(α)〉, where α is in S and θ is
a continuous function from S to R. A (θ1, θ2)-sector of Z is the set of points
〈α, β〉, where α is in S and θ1(α) < β < θ2(α) for continuous functions θ1 < θ2

from S to R. Sections and sectors are also regions. Given a subset of S of Rk,
a decomposition of S is a finite collection of disjoint regions S1, . . . , Sn such
that S1 ∪ . . . ∪ Sn = S. Given a region S, and a set of continuous functions
θ1 < . . . < θn from S to R, we can decompose the cylinder S × R into the
following regions:

– the θi-sections, for 1 ≤ i ≤ n, and
– the (θi, θi+1)-sectors, for 0 ≤ i ≤ n,

where, with slight abuse of notation, we define θ0 as the constant function that
returns −∞ and θn+1 the constant function that returns ∞.

A set of polynomials {f1, . . . fs} ⊂ Z[y, x], y = (y1, . . . , yn), is said to be
delineable in a region S ⊂ Rn if the following conditions hold:

1. For every 1 ≤ i ≤ s, the total number of complex roots of fi(α, x) remains
invariant for any α in S.

2. For every 1 ≤ i ≤ s, the number of distinct complex roots of fi(α, x) remains
invariant for any α in S.

3. For every 1 ≤ i < j ≤ s, the number of common complex roots of fi(α, x)
and fj(α, x) remains invariant for any α in S.

Theorem 2 (Corollary 8.6.5 of [34]). Let A be a set of polynomials in Z[y, x],
delineable in a region S ⊂ Rn. Then, the real roots of A vary continuously over
S, while maintaining their order.

Example 4. Consider the polynomial f = x2+y2+z2−1, with zeros of f depicted
in Fig 4(a) together with two squiggly regions of R2. In the region S1 that does
not intersect the sphere, polynomial f is delineable, as the number of complex
(and real) roots of f(α, x) is 2 for any α in S1. In the region S2 that intersects
the sphere, f is not delineable, as the number of real roots of f varies from 0
(α’s outside the unit circle), 1 (on the circle), and 2 (inside the unit circle).

We will call a projection operator any map P that, given a variable x and set
of polynomials A ⊂ Z[y, x], transforms A into a set of polynomials P(A, x) ⊂
Z[y]. We call P(A, x) the projection of A under P with respect to variable x.
In his seminal paper [11], Collins introduced a projection operator which we
denote with Pc. In order to define the operator Pc, we first need to define some
“advanced” operations on polynomials, and we refer the reader to [30,3,7] for a
more detailed exposition.

Let f, g ∈ Z[y, x] be two polynomials with n = min(deg(f, x), deg(g, x)). For
k = 0, . . . , n−1, we denote with Sk(f, g, x) the k-th subresultant of f and g. The



k-th subresultant is defined as the determinant of the k-th Sylvester-Habicht
matrix of f and g, and is a polynomial of degree ≤ k in x with coefficients in
Z[y]. The matrix in question is a particular matrix containing as elements the co-
efficients of f and g. Additionally, we denote with psck(f, g, x) the k-th principal
subresultant coefficient of f and g, which is the coefficient of xk in the polyno-
mial Sk(f, g, x), and define pscn(f, g, x) = 1. We denote the sequence of principle
subresultant coefficients as psc(f, g, x) = (psc0(f, g, x), . . . , pscn(f, g, x)).

Theorem 3 (Theorem 2 in [11]). Let f, g ∈ Z[y, x] be non-zero polynomials.
Then deg(gcd(A,B), x) = k if and only if k is the least j such that pscj(f, g) 6= 0.

Since the number of common complex roots of two polynomials corresponds
to the degree of their gcd, the previous theorem provides us with a way to
describe this number.

Definition 2 (Collins Projection). Given a set of polynomials A = {f1, . . . , fm} ⊂
Z[y, x] the Collins projector operator Pc(A, x) is defined as⋃

f∈A

coeff(f, x) ∪
⋃
f∈A

g∈R(f,x)

psc(g, g′x, x) ∪
⋃
i<j

gi∈R(fi,x)
gj∈R(fj,x)

psc(gi, gj , x) ,

In order to denote the individual parts of the projection, in order, we designate
them as P1

c(A, x), P2
c(A, x) and P3

c(A, x).

Let A = {f1, . . . , fm} ⊂ Z[y] be a set of polynomials, where y = (y1, . . . , yn),
and S be a region of Rn. If for any assignment υ such that υ(y) = α ∈ S, the
polynomials in A have the same sign under υ, we say that A is sign-invariant
on S.

Theorem 4 (Theorem 4 in [11]). Given a finite set of polynomials A ⊂
Z[y, x], where y = (y1, . . . , yn), and let S be a region of Rn. If Pc(A) is sign
invariant on S, then A is delineable over S.

The projection operator Pc guarantees delineability on any region S where the
projection set Pc(A, x) is sign-invariant, due to the following:

1. The degree of fi(α, x) (and the total number of complex roots) remains
invariant for any α in S, by P1

c(A, x) being sign-invariant.
2. The multiplicities of complex roots of fi(α, x) remains invariant for any α in

S, by P2
c(A, x) being sign-invariant and Theorem 3

3. The number of common complex roots of fi(α, x) and fj(α, x) remain in-
variant for any α in S, by P3

c(A, x) being sign-invariant and Theorem 3.

A sign assignment for a set of polynomials A is a mapping σ, from polynomials
in A to {−1, 0, 1}. Given a set of polynomials A ⊂ Z[y, x], we say a sign as-
signment σ is realizable with respect to some α in Rn, if there exists a β ∈ R
such that every f ∈ A takes the sign corresponding to its sign assignment, i.e.,
sgn(f(α, β)) = σ(f). The function sgn maps a real number to its sign {−1, 0, 1}.
We use signs(A,α) to denote the set of realizable sign assignments of A with
respect to α.



Lemma 1. If a set of polynomials A ⊂ Z[y, x] is delineable over a region S,
then signs(A,α) is invariant over S.

Proof. Since A is delineable over S, by Theorem 2, there are real functions θi,
continuous on S and ordered, corresponding to roots of polynomials in A. We
can therefore decompose the cylinder S×R into θi-sections and (θi, θi+1)-sectors,
where each of these regions is connected and the signs of polynomials from A do
not change. Let σ1 ∈ signs(A,α1) be a realizable sign assignment, with β1 ∈ R,
such that at (α1, β1) every polynomial f ∈ A takes a sign corresponding to
signs(A,α1). Lets pick an arbitrary other other α2 ∈ S, and show that we realize
σ1 at α2. We can pick an arbitrary point β2 in the same sector (or section) R
where β1 came from. We claim that at 〈α2, β2〉 the polynomials in A have the
signs required by σ1.

Assume the opposite, i.e. that there is a polynomial f ∈ A with σ1(f) =
sgn(f(α1, β1)) 6= sgn(f(α2, β2)). Since R is connected we can connect 〈α1, β1〉
and 〈α2, β2〉 with a path π that does not leave R. Having that the sign of f is
different at the endpoints of π, it must be that there is a point 〈α3, β3〉 on the
path, where the sign of f is 0, and at least another point where the sign of f is
not 0. Now we distinguish the following cases

– If R is a (θi, θi+1)-sector, then we have isolated a root of a polynomial in A
that is between θi(α3) and θi+1(α3), which is impossible by the construction
of the decomposition.

– If R is a θi-section, then the polynomial f(α3) has a root, and this root
diverges from θi on R, which is impossible due to delineability.

4.2 Projection-Based Explanations

Suppose that we need to produce an explanation for propagating a polynomial
constraint F , i.e. we are in a state such that ¬ compatible(¬F,M), with poly(F ) ∈
Z[y, x], where y = (y1, . . . , yn). To simplify the presentation, in the following, we
write υ for υ[M ]. A model-based explanation procedure explain(F,M) consists
of the following steps:

1. Find a minimal set F of literals in M , with poly(F) ⊂ Z[y, x], such that υ(F)
still does not allow a solution for x. We call this set (not necessarily unique)
a conflicting core. Let A be the set of polynomials poly(F) ∪ { poly(F ) }.

2. Construct a region S of Rn where A is delineable, and υ(y) is in S. Note
that, ¬F is incompatible with F for any other α′ in S. This follows from
the fact that signs(A,α) remains invariant for any α in S.

3. Define S using extended polynomial constraints, obtaining a new set of con-
straints E . Then, we define explain(F,M) = E ∧ F =⇒ F .

We later explain how we obtain the minimal set F . We now focus on the
second step of the procedure. We first observe that our procedure just requires
a connected subset S which contains the current assignment υ(y) = α. We
therefore add the assignment υ as an additional argument to the projection



operator, and call such a projection operator model-based. Given a variable as-
signment υ, we denote the vanishing signature of a principle subresultant se-
quence as v-psc(f, g, x, υ) = v-sig(psc0(f, g, x), . . . , pscn(f, g, x)). Now, we define
our model-based projection operator Pm(A, x, υ) as follows.

Definition 3 (Model-Based Projection). Given a set of polynomials A =
{f1, . . . , fm} ⊂ Z[y, x] and a variable assignment υ, the modified model-based
Collins projector operator Pm(A, x, υ) is defined as⋃

f∈A

v-coeff(f, υ, x) ∪
⋃
f∈A

g=R(f,x,υ)

v-psc(g, g′x, x, υ) ∪
⋃
i<j

gi=R(fi,x,υ)
gj=R(fj,x,υ)

v-psc(gi, gj , x, υ) .

We use the projection operator Pm to compute the region S which contains the
current assignment υ(y), and show that A is delineable in S. Assume A is a
set of polynomials in Z[y1, . . . , yn, x]. First, we will close the set of polynomials
A under the application of a projection operator Pm. We compute this closure
by computing sets of polynomials Pn, . . . ,P1 iteratively, starting from Pn =
Pm(A, υ, x), and then for k = n, . . . , 2, compute the subsequent ones as

Pk−1 = Pm(Pk, yk, υ) ∪ (Pk ∩ Z[y1, . . . , yk−1]) .

Each set of polynomials Pk ⊆ Z[y1, . . . , yk] is obtained by projecting the previous
set Pk+1 and adding all the polynomials from Pk+1 that do not involve the
variable yk.

With the projection closure of A computed, we can now start building the
region S inductively, in a bottom up fashion, by constructing a sequence of
regions Sk ⊂ Rk s.t. Pk is sign invariant in Sk, and Pk+1 is delineable in Sk.
For each k = 1, . . . , n − 1, assume that Sk−1, and its defining constraints Ek,
have already been constructed. Let us now consider the set of root objects

Rk =
{

root(f, i) | f ∈ Pk, 1 ≤ i ≤ rootcount(υ(f))
}

.

Under the assignment υ each of the root objects root(f, i) is defined and evaluates
to some value ωi

f ∈ Ralg. Moreover, since the polynomials in Pk are delineable
over Sk−1, for any other assignment υ′ that maps y1, . . . , yk−1 into Sk−1, the
polynomials f ∈ Pk will have the same number of roots, and the same number
of common roots. Therefore, the root objects in Rk will also be defined under
any such υ′, and will evaluate to values that are in the same exact order.

The values ωi
f partition the real line into intervals where in each interval, the

polynomials f ∈ Pk are sign invariant. We will pick the interval that contains
υ(yk) = αk to construct Sk by selecting one of the appropriate cases

αk ∈ (ωi
f , ωj

g) =⇒ Ek = Ek−1 ∪ { yk >r root(f, i), yk <r root(g, j) } ,

αk ∈ (−∞, ωi
f ) =⇒ Ek = Ek−1 ∪ { yk <r root(f, i) } ,

αk ∈ (ωi
f ,+∞) =⇒ Ek = Ek−1 ∪ { yk >r root(f, i) } ,

αk = ωi
f =⇒ Ek = Ek−1 ∪ { yk =r root(f, i) } .



Finally, we guarantee that Pk+1 is delineable in Sk because the set of poly-
nomials P∗ = P1 ∪ . . . ∪ Pk is sign invariant in Sk, and Pm(Pk+1, υ, yk+1) is a
subset of P∗. Now, it becomes clear why Pm is sufficient. Pm does not need to
include all coefficients, reductums, and the whole psc chain, like Pc does, because
the current assignment indicates which coefficients will (and will not) vanish in
any element of Ek. This follows from the fact that (υ(y1) = α1, . . . , υ(yk) = αk)
is in Ek, and all polynomial ins P∗ are sign invariant in Ek.

Once we have computed the regions S1, . . . , Sn, we can use the region S = Sn

and the corresponding constraints E = En to explain why ¬F is incompatible
with F . Thus, we set explain(F,M) ≡ E ∧ F =⇒ F .

Theorem 5. The explanation function explain(F,M) is a finite-basis explana-
tion function for the existential theory of real closed fields.

Proof. The key observation is that Pm(A, x, υ) ⊆ Pc(A, x), for any A, x and υ.
Let A0 ⊂ Z[x1, . . . , xn] be the set of polynomials in the initial set of constraints
C0. Using Collins projection operator Pc(A, x) we define the sets of polynomials
An, . . . ,A1 iteratively, starting from An = A0, and then for k = n, . . . , 2,

Ak−1 = Pc(Ak, xk) ∪ (Ak ∩ Z[x1, . . . , xk−1])

Now, let Ac be the set An ∪ . . . ∪ A1. The set Ac is finite and for any A ⊆ Ac

and variable x, we have Pc(A, x) ⊆ Ac. Consequently, for any A ⊆ Ac, variable
x, and assignment υ, Pm(A, x, υ) ⊆ Ac.

Given a finite set of polynomials A, we have finitely many different polyno-
mial constraints F s.t. poly(F ) ∈ A. This is clear for basic constraints, there are
6× |A| different basic constraints. For extended constraints x Or root(f, k), we
recall that k ≤ deg(f, x). Let Bc be the set {F | poly(F ) ∈ Ac}. Thus, Bc is
finite.

Now, it is clear that explain(F,M) is a finite basis explanation function.
Given an initial set of constraints C0, for any application of Pm(A, x, υ) in any
application of explain(F,M) in any derivation of our procedure, we have that
Pm(A, x, υ) ⊆ Ac, and consequently Bc is a finite basis for explain(F,M).

Example 5. Consider the variable assignment υ, with υ(x) = 0, and the set A
containing two polynomials polynomials f2 = x2 + y2− 1 and f3 = −4xy− 4x+
y − 1. The projection operator Pm maps the set A into Pm(A, y, υ)

{ (16x3 − 8x2 + x + 16︸ ︷︷ ︸
f1

)x, −4x + 1, 4(x + 1)(x− 1), 2, 1 } , (2)

where f1 is the polynomial from Ex. 1. The zeros of f2 and f3 are depicted in
Fig. 4(b), together with a set of important points {−1, α1, 0, 1

4 , 1}, where α1 is
the algebraic number from Ex. 1. These are exactly the roots of the projection
polynomials (2). It is easy to see from Fig. 4(b) that both f2 and f3 are delineable
in the intervals defined by these points. Since, in this case, A is delineable on
any region of R where the projection set is sign invariant, A is also delineable



-1

0

1

-1

0

1

-1.0

- 0.5

0.0

0.5

1.0

(a)

- 2 -1 1 2

- 2

-1

1

2

(b)

Fig. 4. (a) The sphere corresponding to the roots of x2+y2+z2−1, and regions of Ex 4
and Ex 6. (b) Solutions of f2 = x2 +y2−1 = 0 and f3 = −4xy−4x+y−1 = 0 in blue,
solutions of f4 = x3+2x2+3y2−5 = 0 in orange. Solution set of {f2 < 0, f3 > 0, f4 < 0
in green. The dashed lines represent the zeros of the projection set (2).

.

in the region [0, 0] containing υ(x) = 0. But, considering another polynomial
f4 = x3 + 2x2 + 3y2 − 5, we can see that it is not delineable on the interval
(1,+∞).

Example 6. Consider the polynomial f = x2 + y2 + z2 − 1, from Ex. 4, and the
constraint f < 0 corresponding to the interior of the sphere in Fig. 4(a). Under
an assignment υ with υ(x) = 3

4 and υ(y) = − 3
4 (the red point in Fig 4(a)) this

constraint does not allow a solution for z (it evaluates to z2 < − 1
8 ). In order

to explain it, we can compute the projection closure of A = {f}, using Pm,
obtaining P3 = A and

P2 = Pm(P3, υ, z) = { 4x2 + 4y2 − 4, 2, 1 } ,

P1 = Pm(P2, υ, y) = { 256x2 − 256, 8, 4, 2, 1 } .

The sets of root objects under υ are then

R2 = { root(z̃2 +x2 − 1, 1), root(z̃2 +x2 − 1, 2) } ,

R1 = { root(z̃2−1, 1), root(z̃2−1, 2) } .

Since υ(x) = 3
4 = 0.75 and the root objects of R1 evaluate to −1 and 1,

respectively, we need to fit x between the two of them, and so the constraints
corresponding to the region S1 are (x > −1) and (x < 1). The root objects of
R2 evaluate to −

√
7

4 ≈ −0.6614 and
√

7
4 ≈ 0.6614. Since υ(y) = − 3

4 = −0.75,
which is below the first root, the single constraint corresponding that we add
to describe the region S2 is (y < root(z̃2−x2 − 1, 1)). Having computed S2, we



have obtained the region of delineability that contains the assignment υ, and we
are ready to construct the explanation explain[Pm](f < 0, υ) as

(x ≤ −1) ∨ (x ≥ 1) ∨ ¬(y < root(z̃2−x2 − 1, 1)) ∨ (f ≥ 0) .

The explanation clause states that, in order to fix the conflict under the
assignment υ, we must change υ so as to exit the region −1 < x < 1 below (in y)
the unit circle. This is the region in Fig 4(a) containing (x, y) = ( 3

4 ,− 3
4 ), colored

red.

Isolating the conflicting core. Given a constraint F incompatible with a trail M ,
we now discuss how to compute a minimal set of constraints F from M that
is not compatible with F . We start with an approximated method. It is based
on the observation that every polynomial constraint F in M can be associated
with a finite set of infeasible intervals infset(F, υ) for its maximal variable. For
example, assume the constraint F = x2

2 − x1 < 0 is in M , and x1 is assigned to
2, then infset(F, υ) = {(−∞,−

√
2), (

√
2,∞)}. Additionally, for each variable xk,

we maintain a disjoint set of infeasible intervals infset(xk), where each interval
I is tagged with a constraint in M that implies I. Whenever a constraint F is
added to M , we update infset(xk). Let F be a a new constraint with poly(F ) ∈
[x1, . . . , xk]. If infset(¬F, υ)∪infset(xk) contains the whole real line, then we know
F is incompatible with M , and the constraints tagging the intervals in infset(xk)
are a superset of the minimal set. We now can refine this approximation by trying
to eliminate constraints from the check while checking whether the infeasible sets
of each remaining constraints still cover the whole real line.

Example 7. Consider the set of polynomial constraints C = {f2 < 0, f3 > 0, f4 <
0}, where the polynomials f2 and f3 are from Ex. 5. The roots of these polynomi-
als and the feasible region of C are depicted in Fig. 4(b). Our decision procedure
could choose 0 as the first value for x, and end up in a state

〈Jx 7→0, (f2 < 0), (f4 < 0), E→(f3 ≤ 0)K, C〉2

We now need to compute the explanation E to explain the propagation. But,
although the propagation was based on the inconsistency of C under M , we can
pick the subset {f2 < 0, f3 > 0} to produce the explanation. It is a smaller
set, but sufficient, as it is also inconsistent with M . Doing so we reduced the
number of polynomials we need to project, which, in CAD settings, is always an
improvement.

5 Related Work and Experimental Results

In addition to CAD, a number of other procedures have been developed and
implemented in working tools since the 1980s, including Weispfenning’s method
of virtual term substitution (VTS) [49] (as implemented in Reduce/Redlog),
and the Harrison-McLaughlin proof producing version of the Cohen-Hörmander



method [32]. Abstract Partial Cylindrical Algebraic Decomposition [38] com-
bines fast, sound but incomplete procedures with CAD. Tiwari [46] presents
an approach using Gröbner bases and sign conditions to produce unsatisfiabil-
ity witnesses for nonlinear constraints. Platzer, Quesel and Rümmer combine
Gröbner bases with semidefinite programming [39] for the real Nullstellensatz.

In order to evaluate the new decision procedure we have implemented a
new solver nlsat, the implementation being a clean translation of the decision
procedure described in this paper. We compare the new solver to the following
solvers that have been reported to perform reasonably well on fragments of non-
linear arithmetic: the z3 3.2 [14], cvc3 2.4.1 [2], and MiniSmt 0.3 [51] SMT solvers;
the quantifier elimination based solvers Mathematica 8.0 [42,41], QEPCAD 1.65
[6], Redlog-CAD and Redlog-VTS [16]; and the interval based iSAT [17] solver.7

We ran all the solvers on several sets of benchmarks, where each bench-
mark set has particular characteristics that can be problematic for a non-linear
solver. The meti-tarski benchmarks are proof obligations extracted from the Meti-
Tarski project [1], where the constraints are of high degree and the polynomials
represent approximations of the elementary real functions being analyzed. The
keymaera benchmark set contains verification conditions from the Keymaera ver-
ification platform [39]. The zankl set of problems are the benchmarks from the
QF NRA category of the SMT-LIB library, with most problems originating from
attempts to prove termination of term-rewrite systems [18]. We also have two
crafted sets of benchmarks, the hong benchmarks, which are a parametrized gen-
eralization of the problem from [23], and the kissing problems that describe some
classic kissing number problems, both sets containing instances of increasing di-
mensions.

Table 1. Experimental results.

meti-tarski (1006) keymaera (421) zankl (166) hong (20) kissing (45) all (1658)

solver solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

nlsat 1002 343.48 420 5.73 89 234.57 10 170.33 13 95.62 1534 849.73

Mathematica 1006 796.90 420 171.96 50 366.10 9 208.04 6 29.01 1491 1572.01

QEPCAD 991 2616.94 368 1331.67 21 38.85 6 43.56 4 5.80 1390 4036.82

Redlog-VTS 847 28640.26 419 78.58 42 490.54 6 3.31 10 275.44 1324 29488.13

Redlog-CAD 848 21706.75 363 730.25 21 173.15 6 2.53 4 0.81 1242 22613.49

z3 266 83.18 379 1216.04 21 0.73 1 0.00 0 0.00 667 1299.95

iSAT 203 122.93 291 16.95 21 24.52 20 822.01 0 0.00 535 986.41

cvc3 150 13.52 361 5.45 12 3.11 0 0.00 0 0.00 523 22.08

MiniSmt 40 697.46 35 0.00 46 1370.14 0 0.00 18 44.67 139 2112.27

All tests were conducted on an Intel Pentium E2220 2.4 GHz processor,
with individual runs limited to 2GB of memory and 900 seconds. The results of
7 We ran the solvers with default settings, using the Resolve command of Mathemat-

ica, the rlcad command for Redlog-CAD, and the rlqe for Redlog-VTS.



our experimental evaluation are presented in Table 1. The rows are associated
with the individual solvers, and columns separate the problem sets. For each
problem set we write the number of problems that the solver managed to solve
within the time limit, and the cumulative time for the solved problems. A plot
of solver behavior with respect to solved problems is presented in Fig 5. All the
benchmarks, with versions corresponding to the input languages of the solvers,
the accompanying experimental data, are available from the authors website.8

Fig. 5. Number of problems solved by each solver against the cumulative time of the
solver (logarithmic time scale).

The results are both revealing and encouraging. On this set of benchmarks,
except for nlsat and the quantifier elimination based solvers, all other solvers
that we’ve tried have a niche problem set where they perform well (or reasonably
well), whereas on others they perform poorly. The new nlsat solver, on the other
hand, is consistently one of the best solvers for each problem set, with impressive
running times, and, overall manages to solve the most problems, in much faster
time.

6 Conclusion

We proposed a new procedure for solving systems of non-linear polynomial con-
straints. The new procedure performs a backtracking search for a model, where
the backtracking is powered by a novel conflict resolution procedure. In our ex-
periments, our first prototype was consistently one of the best solvers for each
8 http://cs.nyu.edu/∼dejan/nonlinear/

http://cs.nyu.edu/~dejan/nonlinear/


problem set we tried, and, overall manages to solve the most problems, in much
faster time. We expect even better results after several missing optimizations
in the core algorithms are implemented. For example, our implementation does
yet support full factorization of multivariate polynomials, or algebraic number
computations using extension fields.

We see many possible improvements and extensions to our procedure. We
plan to design and experiment with different explain procedures. One possible
idea is to try explain procedures that are more efficient, but do not guarantee
termination. Heuristics for reordering variables and selecting a value from the
feasible set should also be tried. Integrating our solver with a Simplex-based
procedure is another promising possibility.

Acknowledgements. We would like to thank Grant Passmore for providing valu-
able feedback, the Meti-Tarski benchmark set, and so many interesting technical
discussions. We also would like to thank Clark Barrett for all his support.
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A Implementation Details

Acknowledging the importance that the details of a particular implementation
play, in this section we describe which particular algorithms we used in our
implementation, provide additional references, discuss alternatives, and analyze
the impact of different optimizations we tried. Our procedure is based on several
algorithms for manipulating polynomials and real algebraic numbers. Although
most of the operations in these two modules have polynomial time complexity,
they are the main bottleneck of our procedure. In our set of benchmarks, we
identified two clear bottlenecks: the computation of principal subresultant coeffi-
cients (psc); and checking the sign of a multivariate polynomial in an irrational
coordinate. In all benchmarks our prototype failed to solve, the computation
was “stuck” in one of these two procedures.



A.1 Polynomials

We represent a multivariate polynomial using a sparse representation based on
the sum-of-monomials normal form. Each monomial is basically a sorted vector
of pairs: variable and degree. For example, the monomial x3

1x
2
3x4 is represented as

(〈1, 3〉, 〈3, 2〉, 〈4, 1〉). A monomial also has a unique integer identifier that is used
to implement mappings from monomials to values of some type T as vectors.
We store monomials in a hash-table in order to have a unique reference for each
monomial. A multivariate polynomial consists of two vectors: monomials and
coefficients. The coefficients are arbitrary precision integers. The first monomial
m in every non constant polynomial p always contain the maximal variable x
in p, and deg(p, x) = deg(m,x). Thus, the maximal variable of a polynomial
and its degree can be quickly retrieved. Moreover, each polynomial has a unique
integer identifier and a flag for marking whether the monomials are sorted using
lexicographical order or not. Univariate polynomials are represented as a dense
vector of coefficients. For example, the polynomial 2x5 + 3x + 1 is represented
using the vector (1, 3, 0, 0, 0, 2).

The polynomial arithmetic operations are implemented using the straight-
forward algorithms. Faster polynomial multiplication algorithms based on Fast-
Fourier Transforms only outperforms the näıve algorithms for polynomials that
are well beyond the current capabilities of our decision procedure. We use the
standard polynomial pseudo-division algorithm ([10,27]). In many algorithms
(GCD, resultant, psc), exact multivariate polynomial division is used. We say the
division of a polynomial p by a polynomial q is exact when there is a polynomial
h such that p = qh. We use the exact division algorithm described at [3] (Algo-
rithm 8.6) . We implemented three different multivariate polynomial GCD algo-
rithms: subresultant GCD (Chapter 3 [10]), Brown’s modular GCD and Zippel’s
sparse modular probabilistic GCD (Chapter 7 [21]). Although the resultant of
two polynomials is formally defined as the determinant of the Sylvester-Habicht
Matrix, we used the algorithm based on polynomial pseudo-division, GCD and
exact division described at [10] (Algorithm 3.3.7). We also implemented the prin-
cipal subresultant coefficient algorithm in a similar fashion. The resultant of two
polynomials can also be computed using modular techniques similar to the ones
used to compute the GCD of two polynomials. However, we did not implement
the modular resultant procedure yet. To the best of our knowledge, QEPCAD
uses this modular algorithm to control the coefficient growth in the resultant
computation.

Regarding polynomial factorization, we perform square-free factorization of
a polynomial f using the GCD and its derivative with respect to some variable
in f . The polynomial is then put into the form

∏
fk

k , where each fk is the
product of all factors of degree k. We extract content and primitive parts of a
polynomial using the GCD and exact division. We use the standard approach
for univariate factorization, where we first factor a square free polynomial in a
finite field GF (p) for some small prime p s.t. the factorization is also square free.
Then, the factorization is lifted using Hensel’s lemma, and finally we search for



factors in the result set of polynomials. Further details can be found in [10,27]. In
the current prototype, we do not have support for full multivariate factorization.

We implemented two algorithms for root isolation of univariate polynomials
with integer coefficients. One is based on Sturm sequences, and another on the
Descartes’ rule of signs [8]. In both cases, the computations are performed using
binary rational numbers [9], also known as dyadic rationals. The ring Z[1/2] of
binary rational numbers is the smallest subring of Q that contains Z and 1/2.
Binary rationals are rational numbers of the for a/2k. Z[1/2] is not a field, but
it is closed under division by 2. We represent binary rationals using an arbitrary
precision integer for a, and a machine unsigned integer for k. The procedures for
computing with binary rational numbers are more efficient than the equivalent
ones for rational numbers.

A.2 Real algebraic numbers

In our implementation, a real algebraic number is a rational number or a square
free polynomial f in Z[x] and an isolating interval of binary rational numbers.
Moreover, zero is not a root of f , and the isolating interval does not contain
zero. Several algorithms for manipulating algebraic numbers are greatly simpli-
fied when square free polynomials are used. Recall that a square free polyno-
mial for f can be computed using exactdiv(f, gcd(f, f ′)), where f ′ is the first
derivative of f . The arithmetical operations +, −, ×, / on algebraic numbers
are implemented using resultants [10,34]. To evaluate the sign of a polynomial
p(x1, . . . , xk) at (α1, . . . , αk), we first use interval arithmetic. If the result inter-
val does not contain zero, we are done. Otherwise, we replace all rational αi’s,
and try to use interval arithmetic again. We also refine the intervals of each
irrational algebraic number until the result interval does not contain zero or the
αi’s intervals have size less that 1/232. If the result interval still contains zero,
let us assume without loss of generality that none of the αi’s are rationals. Then,
we compute

R1 = Res(y − p(x1, . . . , xn), q1, x1)
. . .

Rk = Res(Rk−1, qk, xk)

where Res(p, q, x) is the resultant of polynomials p and q with respect to variable
x, and qi is the defining polynomial for αi. Rk is a polynomial in y, by resultant
theory, p(α1, . . . , αk) is a root of Rk. Now, we compute a lower bound for the
nonzero roots of Rk. This can be accomplished using the same algorithm used to
compute a upper bound for the roots of a polynomial. We use the polynomial root
upper bound algorithm described in [9]. Using this bound we can keep refining
the αi’s intervals until the result interval for p(α1, . . . , αk) does not contain zero,
or it is smaller than the lower bound for nonzero roots. In the second case, we
have show that p(α1, . . . , αk) is zero.



For isolating the roots of p(α1, . . . , αk, y), we use a similar approach. We
compute

R1 = Res(p(x1, . . . , xk, y), q1, x1)
. . .

Rk = Res(Rk−1, qk, xk)

However, Rk vanishes if p(x1, . . . , xn, y) vanishes for some roots of q1, . . . , qk.
Example, p(x1, x2, y) = x1y + x2y, and α1 = α2 = (x2 − 2, (0, 2)). That is, α1

and α2 are the
√

2. However, p vanishes for p(
√

2,−
√

2, y). Thus, R2 is the zero
polynomial. To cope with this issue, we use a technique described in [41]. The
basic idea is to use algebraic number arithmetic to evaluate the coefficients of p
until we find one that does not vanish, or we prove that p(α1, . . . , αn, y) is the
zero polynomial.

Finally, computation with algebraic numbers can be greatly improved if they
are all elements of the extension field Q(α), if we know the minimal polynomial
for the algebraic number α. QEPCAD and Mathematica have support for ex-
tension fields. Moreover, given a set of algebraic numbers {α1, . . . , αn}, there is
a procedure for computing an algebraic number α s.t. α1, . . . , αn ∈ Q(α) [8,10].
Our prototype currently has no support for Q(α).

A.3 Analysis

In this section, we analyze the impact of different algorithms and optimizations
we tried. For that, we used an extended set of benchmarks containing 8928
problems. It was not computationally feasible to execute all other systems in
this extended set. We remark that all benchmarks that our procedure could
not solve or took more than one millisecond to solve are included in the results
described in Section 5.

Benchmarks. The first observation is that most benchmarks can be solved with
very few conflict resolution steps. Only 23 problems required more than 1000
conflict resolutions to be solved. The number of psc chain computations is also
very small. Only 17 problems required more than 1000 psc computations. In
our prototype, if possible we select a rational number in the rule Lift-Level.
Therefore, many benchmarks can be solved without using any irrational alge-
braic number computation. Only 1826 benchmarks required irrational algebraic
number computations to be solved.

Sparse modular GCD. The use of the sparse modular GCD algorithm instead of
the subresultant GCD greatly improved the performance of our procedure. For
43 Meti-Tarski and Zankl benchmarks, we observed a two order of magnitude
speedup.



Factorization. A standard technique used in CAD consists in factoring the poly-
nomials obtained using the projection operator. If we disable factoring, 30 bench-
marks from Meti-Tarski, Zankl and Hong families cannot be solved anymore, and
another 18 benchmarks suffer from a two orders of magnitude slowdown. This
suggests we may obtain even better performance results after we implement full
multivariate polynomial factorization in our procedure.

Minimal polynomials. The minimal polynomial f of an algebraic number α is the
unique irreducible polynomial of smallest degree with integer coefficients such
that f(α) = 0. Minimal polynomials are obtained using univariate polynomial
factorization. Note that every minimal polynomial is square-free. By default,
we use minimal polynomials for representing algebraic numbers. If we just use
arbitrary square-free polynomials (that are not necessarily minimal) for encoding
algebraic numbers, our procedure fails to solve 5 Meti-Tarski benchmarks, and
suffers a two orders of magnitude slowdown in 12 other Meti-Tarski benchmarks.

Root isolation. By default, our procedure uses the Descartes’ rule of signs proce-
dure for isolating the roots of univariate polynomials. If we switch to a procedure
based on Sturm sequences, the performance impact is negligible. Only one Meti-
Tarski benchmark suffers from one order of magnitude slowdown.

Full dimensional. We say a problem is full dimensional if it contains only strict
inequalities. A satisfiable full dimensional problem always has rational solutions.
A standard optimization used in CAD-based procedures consists in ignoring
sections when processing existential problems. This optimization is justified by
the fact that in a full dimensional problem adding a constraint of the form
f 6= 0, for some nonzero polynomial f , does not change the satisfiability of the
problem. To the best of our knowledge, both QEPCAD and Mathematica use
this optimization. We implement this approach in our procedure by simply using
polynomial constraints of the form yk ≤r root(f, i) and yk ≥r root(g, j) instead
of yk <r root(f, i) and yk <r root(g, j) when a problem is in the full dimensional
fragment. With this optimization our prototype solved extra 12 problems.

Variable reordering. Variable order has a dramatic impact on CAD-based proce-
dures. Mathematica uses heuristics for ordering variables, but we could not find
any reference describing the actual heuristics used. We used a simple variable re-
ordering heuristic, we compute the maximal degree maxdeg of each variable in the
initial set of constraints. Then, before starting our procedure, we sort the vari-
ables using the total order xi ≺ xj iff maxdeg(xi) > maxdeg(xj)∨ (maxdeg(xi) =
maxdeg(xj) ∧ i < j). With this simple heuristic, our prototype can solve 54 (35
from the Meti-Tarski, and 15 from the Zankl set) problems that it could not
solve. However, the heuristic also prevents our procedure from solving 3 (2 from
Meti-Tarski, and 1 from the Zankl set) that could be solved without using it.
These results suggest that further work should be invested in developing vari-
able reordering techniques. Dynamically variable reordering during the search
is also a promising possibility. However, to guarantee termination it should be
eventually disabled.
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