
Probabilistic Inference Using Program Analysis

Andrew D. Gordon
Microsoft Research Cambridge

adg@microsoft.com

Aditya V. Nori
Microsoft Research India
adityan@microsoft.com

Sriram K. Rajamani
Microsoft Research India

sriram@microsoft

1. Introduction
Though probabilistic model checkers such as PRISM [10] have
been built to analyze a variety of probabilistic models such as dis-
crete and continuous Markov chains, they primarily check for con-
formance of satisfaction of probabilistic temporal logic formulas
(such as PCTL or PLTL) by these models, which limits their appli-
cations to the formal methods community, and in analyzing system
reliability and performance. In contrast, the machine learning com-
munity at large has focused on computing quantities such as maxi-
mum likelihood estimates or posterior probabilities for models, and
such inferences have applications in a variety of domains such as
information retrieval, speech recognition, computer vision, coding
theory and biology. In this paper, we argue that static and dynamic
program analysis techniques can indeed be used to infer such quan-
tities of interest to the machine learning community, thereby pro-
viding a new and interesting domain of application for program
analysis.

Probabilistic models, particularly those with causal dependen-
cies, can be succinctly written as probabilistic programs. Recent
years have seen a proliferation of languages for writing such prob-
abilistic programs, as well as tools and techniques for performing
inference over these programs [5, 6, 8, 9, 11, 13]. Inference ap-
proaches can be broadly classified as static or dynamic —static ap-
proaches compile the probabilistic program to a probabilistic model
such as a graphical model and then perform inference over the
graphical model [8, 9, 11] exploiting its structure. On the other
hand, dynamic approaches work by running the program several
times using sampling to generate values, and perform inference by
computing statistics over the results of several such runs [6, 13]. We
believe that ideas from the areas of static and dynamic analysis of
programs can be profitably used for the purpose of inference over
probabilistic programs, and hence can find applications in inference
for machine learning.

2. Probabilistic Programs
We first introduce probabilistic programs and probabilistic infer-
ence in this section. The next section argues that inference can be
performed using static and dynamic program analysis.

Probabilistic programs are imperative programs with two added
constructs (1) the ability to draw values at random from distribu-
tions, and (2) the ability to condition values of variables in a pro-

[Copyright notice will appear here once ’preprint’ option is removed.]

bool c1, c2;
c1 := Bernoulli(0.5);
c2 := Bernoulli(0.5);

bool c1, c2;
c1 := Bernoulli(0.5);
c2 := Bernoulli(0.5);
observe(c1 || c2);

Example 1. Example 2.

Figure 1. Two probabilistic programs.

bool b, c;
b := true;
c := Bernoulli(0.5);
while (c){

b := !b;
c := Bernoulli(0.5);

}

bool c1, c2;
c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);
while !(c1 || c2) {

c1 = Bernoulli(0.5);
c2 = Bernoulli(0.5);

}

Example 3. Example 4.

Figure 2. Probabilistic programs with loops.

gram through observations. We introduce probabilistic programs
and inference using a series of examples.

Consider Example 1 in Figure 1. Intuitively, this program tosses
two fair coins (simulated by drawing from a Bernoulli random vari-
able with mean 0.5), assigns the outcomes of these coin tosses to
c1 and c2 respectively, and returns the values of the two variables
c1 and c2. The program represents a probability distribution over
Bernoulli variables c1 and c2, where Pr(c1=false,c2=false) =
Pr(c1=false,c2=true) = Pr(c1=true,c2=false) =
Pr(c1=true,c2=true) = 1/4.

Next, consider Example 2 in Figure 1. In this program, in ad-
dition to tossing the two coins and assigning the outcomes to c1
and c2, we have the statement observe(c1||c2). The semantics
of the observe statement classifies runs which satisfy the boolean
expression c1||c2 as valid runs. Runs that do not satisfy c1||c2
are classified as invalid runs. The program specifies the gener-
ated distribution over the values of the variables (c1, c2) condi-
tioned over valid runs, which is given by Pr(c1=false,c2=false)
= 0, and Pr(c1=false,c2=true) = Pr(c1=true,c2=false) =
Pr(c1=true,c2=true) = 1/3.

Next, we consider probabilistic programs with loops. Con-
sider Example 3 in Figure 2. This program initializes b to true
and c to the outcome of tossing a coin. Then, it loops un-
til c becomes false, toggling b and assigning to c the re-
sult from a fresh coin-toss in every iteration of the loop. The
while-loop terminates with probability 1, since for the loop
to not terminate, c should be always assigned true from the
coin toss, the probability of which decreases exponentially with
the number of iterations. The program specifies the generated
distribution over the values of the variables (b, c) given by:
Pr(b=true,c=true) = 0, and Pr(b=false,c=true) = false, and
Pr(b=true,c=false) = 2/3, and Pr(b=true,c=false) = 1/3. The
probability Pr(b = true, c = false) is the probability that the

1 2012/11/15

program executes the while loop an even number of times, given
the summation (1/2) + (1/8) + (1/32) + · · · , which converges
to 2/3, and the probability Pr(b = true, c = false) is the prob-
ability that the program executes the while loop an odd number of
time, given by the summation (1/4) + (1/16) + (1/64) + · · · ,
which converges to 1/3.

Consider Example 4 in Figure 2. This program repeatedly as-
signs to c1 and c2 outcomes of fair coin tosses, in a loop, un-
til the condition (c1||c2) becomes true. Thus, this program spec-
ifies the generated distribution over the variables (c1, c2) given
by: Pr(c1=false,c2=false) = 0, and Pr(c1=false,c2=true) =
Pr(c1=true,c2=false) = Pr(c1=true,c2=true) = 1/3. The alert
reader would notice that this distribution is identical to the distri-
bution specified by Example 2. Though observe statements can
be equivalently represented using while loops using a simple pro-
gram transformation illustrated in this example, our inference al-
gorithm handles observe statements more efficiently, when com-
pared to loops. Also, there is no simple transformation that converts
any while loop to an observe statement. Consequently, we have
both observe statements and while loops in our language.

2.1 Inference
Calculating the distribution specified by a probabilistic program
is called inference. The inferred probability distribution is called
posterior probability distribution, and the initial guess made by
the program is called the prior probability distribution. One way
to perform inference is to compile the probabilistic program to a
probabilistic model [9] over which inference is performed using
message passing algorithms such as belief propagation and its vari-
ants [12]. Alternatively, one can execute the program several times
using sampling to execute probabilistic statements, and observe the
values of the desired variables in valid runs [6], and compute statis-
tics on the data to infer an approximation to the desired distribution.

3. Inference is analysis of probabilistic programs
Our key message is: inference is analysis of probabilistic programs.
We propose new directions for efficient inference of probabilistic
programs based on techniques from static and dynamic analysis of
programs:

Static analysis The semantics of a probabilistic program can be
calculated exactly via the classic idea of symbolic execution. To
achieve efficiency, we use Algebraic Decision Diagram (ADD) [1],
a graphical data structure for compactly representing finite func-
tions. Our algorithm consists of doing symbolic execution of the
probabilistic program, maintaining at each step a symbolic repre-
sentation of the joint distribution. Prior techniques for static infer-
ence are restricted to loop-free programs [4]. We are able to stat-
ically analyze probabilistic programs with loops using the idea of
fixpoints from the program analysis and verification communities.
Even for loop-free programs, we show that symbolic execution of-
fers performance benefits over existing techniques. We are able to
perform exact inference, and hence compute an answer with bet-
ter precision than current techniques which use marginal distribu-
tions to scale. For very large programs, we show how to perform
symbolic execution approximately and scale, retaining the scaling
benefits of approximate techniques, and in many cases obtaining
answers with better precision [3, 7].

Dynamic analysis Dynamic approaches (which are also called
sampling based approaches) are widely used, since running a prob-
abilistic program is natural, regardless of the programming lan-
guage used to express the program. However, there are two main
challenges with sampling based approaches. The first challenge is
the quality and diversity of samples obtained from the joint prob-
ability distribution represented by the program. The main issue

here is that there are many interdependent choices to be made dur-
ing sampling, and choices that are unlikely apriori, may be highly
likely aposteriori in light of observations or evidence. In the con-
text of probabilistic programs, these choices correspond to explor-
ing distinct paths in the program. Straightforward sampling of the
program fails to sufficiently explore these paths, leading to poor
estimated results. The second challenge for sampling from proba-
bilistic programs (even along a single path) is that many samples
that are generated during execution are ultimately rejected for not
satisfying the observations. This is analogous to rejection sampling
algorithms. In order to improve efficiency, it is desirable to avoid
generating samples that are later rejected, to the extent possible.
Our sampling algorithm uses program analysis in order to address
both the above challenges. We choose paths using a path selection
heuristic, which ensures that as we explore more paths the residual
probability mass converges to zero. We show how to hoist obser-
vations using Dijkstra’s weakest preconditions to sampling state-
ments, in order to avoid generating samples that are later rejected.
Together, these techniques enable us to improve the quality and ef-
ficiency of sampling based estimation [2].

References
[1] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,

A. Pardo, and F. Somenzi. Algebraic decision diagrams and their
applications. Formal Methods in System Design, 10(2/3):171–206,
1997.

[2] A. T. Chaganty, A. V. Nori, and S. K. Rajamani. Efficiently sampling
probabilistic programs via program analysis. In NIPS Workshop on
Probabilistic Programming (to appear), 2012.

[3] G. Claret, S. K. Rajamani, A. V. Nori, A. D. Gordon, and J. Borgström.
Bayesian inference for probabilistic programs via symbolic execution.
Technical Report MSR-TR-2012-86, Microsoft Research, 2012.

[4] A. Darwiche. SamIam. Software available from
http://reasoning.cs.ucla.edu/samiam.

[5] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language and
program for complex Bayesian modelling. The Statistician, 43(1):
169–177, 1994.

[6] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: a language for generative models. In Uncertainty
in Artificial Intelligence (UAI), pages 220–229, 2008.

[7] A. D. Gordon, M. Aizatulin, J. Borgstrom, G. Claret, T. Graepel,
A. Nori, S. Rajamani, and C. Russo. A model-learner pattern for
bayesian reasoning. In Principles of Programming Languages (POPL
2013, to appear).

[8] S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd,
and P. Domingos. The Alchemy system for statistical rela-
tional AI. Technical report, University of Washington, 2007.
http://alchemy.cs.washington.edu.

[9] D. Koller, D. A. McAllester, and A. Pfeffer. Effective Bayesian
inference for stochastic programs. In National Conference on Artificial
Intelligence (AAAI), pages 740–747, 1997.

[10] M. Z. Kwiatkowska. Model checking for probability and time: from
theory to practice. In LICS, pages 351–. IEEE Computer Society,
2003. ISBN 0-7695-1884-2.

[11] T. Minka, J. Winn, J. Guiver, and A. Kannan. In-
fer.NET 2.3, Nov. 2009. Software available from
http://research.microsoft.com/infernet.

[12] J. Pearl. Probabilistic reasoning in intelligent systems – networks of
plausible inference. I-XIX. Morgan Kaufmann, 1989.

[13] A. Pfeffer. Statistical Relational Learning, chapter The design and
implementation of IBAL: A General-Purpose Probabilistic Language.
MIT Press, 2007.

2 2012/11/15

