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Abstract

Generalised algebraic data types (GADTs), sometimes
known as “guarded recursive data types” or “first-class phan
tom types”, are a simple but powerful generalisation of the
data types of Haskell and ML. Recent works have given com-
pelling examples of the utility of GADTSs, although type in-
ference is known to be difficult.
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One approach, then, is to implement a compiler that takes ad-
vantage of type annotations. If the algorithm succeedd, wel
and good; if not, the programmer adds more annotations un-
til it does succeed. The difficulty with this approach is that
there is no guarantee that another compiler for the same lan-
guage will also accept the annotated program, nor does the
programmer have a precise specification of what programs
are acceptable and what are not. With this in mind, our

Itis time to pluck the fruit. Can GADTSs be added to Haskell, central focus is this: we give a declarative type system for
without losing type inference, or requiring unacceptably a language that includes GADTs and programmer-supplied
heavy type annotations? Can this be done without com- type annotations, which has the property that type infexenc

pletely rewriting the already-complex Haskell type-irfece

is straightforward for any well-typed program. More specif

engine, and without complex interactions with (say) type ically, we make the following contributions:

classes? We answer these questions in the affirmativeggivin
a type system that explains just what type annotations are re
quired, and a prototype implementation that implements it.
Our main technical innovation i&obbly typeswhich ex-
press in a declarative way the uncertainty caused by the in-
cremental nature of typical type-inference algorithms.

1 Introduction

Generalised algebraic data types (GADTS) are a simple but
potent generalisation of the recursive data types that play
central role in ML and Haskell. In recent years they have
appeared in the literature with a variety of names (guarded
recursive data types, first-class phantom types, equality-
qualified types, and so on), although they have a much longer
history in the dependent types community (see Section 6).
Any feature with so many names must be useful — and in-
deed these papers and others give many compelling exam-
ples, as we recall in Section 2.

We seek to turn GADTs from a specialised hobby into a
mainstream programming technique. To do so, we have in-
corporated them as a conservative extension of Haskell (a
similar design would work for ML). The main challenge is
the question ofype inferencea dominant feature of Haskell
and ML. It is well known that GADTs are too expressive
to admit type inference in the absence of any programmer-
supplied type annotations; on the other hand, when enough
type annotations are supplied, type inference is relativel
straightforward.

We describe aexplicitly-typedtarget language, in the
style of System F, that supports GADTs (Section 3).
This language differs in only minor respects from that
of Xi [XCCO03], but our presentation of the type system
is rather different and, we believe, more accessible to
programmers. In addition, some design alternatives dif-
fer and, most important, it allows us to introduce much
of the vocabulary and mental scaffolding to support the
main payload. We prove that the type system is sound.

We describe ammplicitly-typedsource language, that
supports GADTs and programmer-supplied type anno-
tations (Section 4), and explore some design variations,
including lexically-scoped type variables (Section 4.7).
The key innovation in the type system is the notion of
awobbly typewhich models the places where an infer-
ence algorithm would make a “guess”. The idea is that
the type refinementinduced by GADTSs never “looks in-
side” a wobbly type, and hence is insensitive to the or-
der in which the inference algorithm traverses the tree.
We prove various properties of this system, including
soundness.

We have built a prototype implementation of the system
as an extension to the type inference engine described
by Peyton Jones and Shields’s tutorial [PVWSO05]. We
discuss the interesting aspects of the implementation in
Section 5.



Our focus is on typenferencerather thanchecking unlike There are obvious infelicities in both the data type and the
most previous work on GADTs. The exception is an ex- evaluator. The data type allows the construction of noresens
cellent paper by Simonet and Pottier, written at much the terms, such a¢lnc (1fZ (Lit 0))); and the evaluator
same time as this one, and which complements our work does a good deal of fruitless tagging and un-tagging.

very nicely [SPO3]. Their treatment is more general (they
use HM(X) as the type framework), but we solve two prob-
lems they identify as particularly tricky. First, we suppor
lexically-scoped type variables and open type annotations data Terma where

Now suppose that we could instead write the data type dec-
laration like this:

and second we use a single set of type rules for all data types, Lit :: Int -> Termlnt

rather than one set for “ordinary” data types and another for Inc :: Termint -> Termlnt

GADTSs. We discuss this and other important related work in Isz :: Termint -> Term Bool

; [f :: TermBool -> Terma -> Terma -> Terma
Section 6. _
Pair :: Terma -> Termb -> Term (a, b)
Our goal is to design a system thatgeedictableenough Fst :: Term(a,b) -> Terma
to be used by ordinary programmers; asichpleenough to Snd :: Term(a,b) -> Termb

be implemented without heroic efforts. In particular, we
are in the midst of extending the Glasgow Haskell Com-

piler (GHC) to accommodate GADTs. GHC's type checker o o -
ated the constructors, giving each an explicit type sigeatu

is already very large; not only does it support Haskell's h , readv rul h ]
type classes, but also numerous extensions, such as multi] NeSe type signatures already rule out the nonsense terms;

parameter type classes, functional dependencies, sogped t in the exgmple aboviél fz _( Lit 0)) has typeTerm Bool
variables, arbitrary-rank types, and more besides. An ex- and thatis incompatible with the argument type nf.
tension that required all this to be re-engineered would be Furthermore, the evaluator becomes stunningly direct:
a non-starter but, by designing our type system to be type-
inference-friendly, we believe that GADTs can be added as
a more or less orthogonal feature, without disturbing the ex
isting architecture.

Here we have added a type parametefaom which indi-
cates the type of the term it represents, and we have enumer-

eval :: Terma -
eval (Lit i)

eval (Inc t)

eval (lszZt)

More broadly, we believe that the goal of annotation-free eval (If bt e)
(

(

(

a
i

eval t +1

eval t ==

if eval b then eval t else eval e
(eval a, eval b)

fst (eval t)

snd (eval t)

type inference is a mirage; and that expressive languageseval (Pair a b)
will shift increasingly towards type systems that explot{ eval (Fst t)
grammer annotations. Polymorphic recursion and higher- eval (Snd t)

rank types are two established examples, and GADTS is an-( s worth studying this remarkable definition. Note that
other. We need tools to describe such systems, and the WOb'right hand side of the first equation patently has type,

bly types we introduce here seem to meet that need. nota. But, if the argument teval is alLit, then the type
2 Back d parametea must bel nt (for there is no way to construct a
ackgroun Li t term other than to use the typeidt constructor), and so
We begin with a brief review of the power of GADTs —  the right hand side has typealso. Similarly, the right hand
nothing in this section is new. Consider the following data sjde of the third equation has tyjBeol , but in a context in
type for terms in a simple language of arithmetic expres- \yhicha must beBool . And so on. Under the dictum “well

LT I N N | BV

slons. typed programs do not go wrong”, this program is definitely
data Term=Lit Int | Inc Term well-typed.
| I'sZ Term| If Term Term Term
| Fst Term| Snd Term| Pair Term Term The key ideas are these:
We might write an evaluator for this language as follows: e A generalised data type is declared by enumerating its
data Val = Vint Int | VBool Bool | VPr Val Val constructors, giving an explicit type signature for each.
In conventional data types in Haskell or ML, a con-
eval :: Term-> Val structor has a type of the forfx.T — T &, where the
eval (Lit i) =Vint i result type is the type constructérapplied to all the
eval (Inc t) = case eval t of type parameter&. In a generalised data type, the result
Vint i ->Vint (i+1) type must still be an application @t but the argument
eval (IsZt) = case eval t of types are arbitrary. For examglet mentions no type

Vint i -> VBool (i==0)

eval (If bt e) = case eval b of
VBool True -> eval t
VBool False -> eval e

variablesPai r has a result type with structute, b),
andFst mentions some, but not all, of its universally-
quantified type variables.

..etc..



e The data constructors are functions with ordinary poly-

morphic types. There is nothing special about how they|  Variables XY,z
are used to construct terms, apart from their unusua| Type variables o, 3
types. Type constructors T

Data constructors C
e All the excitement lies in pattern matching. Pattern-

matching against a constructor may allowype refine- Programs prog == dt
mentin the case alternative. For example, in the Data types d == dataTawhereCi:Va&o—TE
branch ofeval , we can refina tol nt. Atoms v == x|C

Terms t,u v|iApt|Axt|tu]|to

e Type inference is only practicable when guided by type
annotations. For example, in the absence of the type
signature foeval , a type inference engine would have Patterns P q
to miraculously anti-refine thent result type for the

let x¢g =uint
case(o) tof p->t
xo | CXP

first two equations, and thgmol result type of the third Types 0,p,f == Va.olo—¢|To |«
(etc), to guess that the overall result should be of type| Type contexts NA = e|Mal|NLv:o
a. Such a system would certainly lack principal types. Constraint lists m = =
. . . Constraint T i= 01=02
e The dynamic semantics is unchanged. Pattern{ gypstitutions 0 = 0|L]|0a0

matching is done on data constructors only, and therg

iS no run-time type passing. ftv(o) = ® Free type variables af
. . . ftv(o) = ..standard...
Th|§ S|mple presentatlpn describes GADTs as a modest gen- fv(l) = & Type variables in domain f
eralisation of conventional data types. One can generalise fu(l) = U{ftv(o)| (x:0) €T}

still further, by regarding the constructors as havjoarded
or qualifiedtypes [XCCO03, SP03]. For example:

Figure 1: Syntax of the core language
Lit :Va.(ax=Int) = Terma

describe here is very close to that used by GHC (extended
to support GADTSs). Furthermore, the source-language type
system that we describe in Section 4 gives a type-directed
translation into the core language, and that is the route by
which we prove soundness for the source language.

This use of explicit constraints has the advantage thatit ca
be generalised to more elaborate constraints, such agpsubty
constraints. But it has the disadvantage that it exposes pro
grammers to a much richer and more complicated world. In
keeping with our practical focus, our idea is to see how far
we can get without mentioning constraints to the program- 3.1  Syntax of the core language
mer at all — indeed, they barely show up in the presentation

of the type system. Our approach is less general, but it hasFigure 1 gives the syntax of the core language and its types.
an excellent power-to-weight ratio. As in System F, each binder is annotated with its type, and

o o type abstractiofiA«.t) and applicatiorit o) is explicit. The
Theeval function is a somewhat specialised example, but | ¢t pinding form is recursive. In this paper, every type vari-
earlier papers have given many other applications of GADTS, aple has kind *”; the extension to higher kinds is straight-
including generic programming, modelling programming forward, but increases clutter. The system is impredieativ

languages, maintaining invariants in data structures (edy however; for example, the type applicatioh(Ve.oc — «))
black trees), expressing constraints in domain-specific em g |egitimate.

bedded languages (e.g security constraints), and moglellin
objects [Hin03, XCCO03, CHO3, SP04, She04]. The inter- We use overbar notation extensively. The notatidrmeans
ested reader should consult these works; meanwhile, for thi the sequencex; --- o} the “n” may be omitted when it is

paper we simply take it for granted that GADTSs are useful. unimportant. The notatio # b means that the two se-
quences have no common elements. Although we give the

3 The core language syntax of function types in the conventional curried way, we

' . ) . also sometimes use an equivalent overbar notation, thus:
Our first step is to describe an explicitly-typed language,

in the style of System F, that supports GADTs. This lan- TV d = oo o on—od

guage allows us to introduce much of our terminology and

mental scaffolding, in a context that is relatively simpfela  We will sometimes decompose sequences one element at a
constrained. This so-callecbre languagds more than a  time, using the following grammar.

pedagogical device, however. GHC uses a System-F-style

language as its intermediate language, and the language we a = e€la@



The main typing judgemerntt t: ¢ is absolutely standard.
u (o TT) 0 The auxiliary judgemerit - o checks that is well-kinded:;
- g(a;e) =0 - since all type variables have kirtd the judgement checks
uz(li(fé ;:Uc’gi - :ZE;}EEG JB1) ol v o] only that the type variables af are in scope, and that ap-
pTre - 8 g_i& 8 ;(72 < plications of type constructoiB are saturated. We omit the
U002 BT = (@ ow/Bl)olB - oul details.
_ Bgx,p¢or Pattern-matching is where all the interest lies. The judge-
U(W; 00 — Ol = 0c — 0L, TT) ment
= U(X;00 =0¢c,0,=0L,T) e )
U(X;T 0o =17 Gg,l1) = U(X;00=0¢,IT) pu01 =07
U(o;Vp.0w =Vp.0c,1T) = U(B,X;00 =0¢,IT) checks each alternative ofcase expression. Intuitively,
U(HTo =16, = L botho; ando, should be considered as inputs to this judge-
ment; the former is the type of the scrutinee, while the fatte
Figure 3: Core-language most general unification annotates thease (see rulecAse). The first thing that*
does is to typecheck the (possibly nested) pattern, using a
This notation is used in the declaration of data types (Fig- Judgement of form
ure 1), which are given by explicitly enumerating the con- MA0F p:oiA;0
structors, giving an explicit type signature for each. The-d
laration ofTer min Section 2 was an example. Here, T is the type environment giving the types of the con-

structors,p is the pattern, and is the type of the pattern.
The judgement also takes a mini-environmAndescribing
the type and term variables bound to the left of the pattern

(GHC's intermediate language does not have nested patterns? in the current pattern-match, and extends it with the bind-

H H ! H H . ”
but the source language certainly does, and nested pattern@gdsl'n]lD to g!VEAHThe Emhdmgsﬁ are threaQed tf?p-down
turn out to have interesting interactions with GADTS, s@it i andle t-to-right throug _t € patterns, starting 0 ermftl:,y
worth exploring them here.) in rule ALT. The threading work is done by the auxiliary

judgement®, which simply invokes? successively on a
Notice that a constructor pattef€ & ;) binds type vari-  sequence of patterns. This threading makes it easy to check
ablesx as well as term variables;. For example, here is  for repeated variables — the testdom(A) in rule PVAR —
part of the definition oéval , expressed in the core language: pt our real motivation for threadingy will not be apparent
eval :: forall a. Terma ->a until Section 4.7.
=/\a. \(x:Terma).
case(a) x of
Lit (i:Int) -> i

Pattern-matching over these data types is donealsg ex-
pressions. Each such expressfoase (o) t of p->t) is dec-
orated with its result type, and patterng may be nested.

The least conventional feature of the pattern judgement is a
substitution or type refinemen®, to which we have already

Pair bc (s::Termb) (t::Termoc) referred informally; again, the judgement takes a type eefin
-> (eval b's, eval ct) mento and extends it with type refinements franto give

Fst b ¢ (t:Term(b,c)) 0’. The type refinement is threaded in exactly the same way
-> fst (b,c) (eval (b,c) t) asA, for reasons we discuss in Section 3.4.

...etc...

Let us focus on rulecon, which deals with a constructor
Each constructor pattern binds a (fresh) type variable for patternCx p. First, we look up the type of in T; it has
each universally-quantified type variable in the constist argument type®© (wherec is the arity of the constructor)

type. Then, as we shall see, the same type refinement thahnd result typd Z' (wheret is the arity of T). We require

refinesa to I nt in thelit case will refinea tob (or vice  thatthe binding type variabl@sare not already in scope, and
versa) in thd f case, and will refine to (b, c) in theFst we quietly alpha-rename the constructor’s type to use these
case. Notice, too, the essential use of polymorphicregnrsi  variables. Now comes the interesting bit: we must match up
the recursive calls teval are at different types tham To the constructor’s result typEE with the pattern’s type in the

be useful, a language that offers GADTs must also supportconclusion of the ruled. We do this in two steps. First, the
polymorphic recursion. testd(¢d) =T &/ checks that the result type in the conclusion,

¢, when refined by the type refinements induced by “earlier”
patterns, is an application &fto some types,’. Second, we
Figure 2 gives the type system of the core language. We omitunify the constructor’s result type & with the pattern type
rules for data type declaratiods because they simply pop- T &/, using the functioru that computes the most-general
ulate the environmerit with the types of the constructors. unifier, and use the resulting substitution to extend the typ

3.2 Type system of the core language



| TermsT - t: o]

(vio)erl l-t:o’' o -u:o’ re o M-t:Vo.o’
—— ATOM TERM-APP 7 TYPE-APP
lv:o ltu:o N'tto:o'lo/af
I p->t:0— o’ Nakt:o a#dom(T) Nx:oFu:o Nx:oFt:o’
/TERM-LAM TYPE-LAM LET

F-(Apt):ioc—o TF(Ao.t): V.o I'F(let xg=uin t):o’

Fchrz NEt:oq I‘Fap-Su:cr]—Hrz

CASE
't (case(oy) tof p->u): 0,

Case alternative§ ' p — u: o7 — 03

F;e;@kpp:cr];A;e O(RA)FO(u):0(02) F;e;@kpp:(b;A;J_

- ALT 4 ALT-FAIL
'E"p—u:o)— o) 'NEp—-u:d—o
PatternsT™:A;0H p:o;A’;0’
(C:Vxo > TE)el  w#dom(T,A)
0(p)=T&" ' =u(r& =T1E")
x#dom(A)  0(c)=0(¢d) r:(A,®);0/ 00 proc;A”;0"
- PFAIL = PVAR e g—— Y PCON
A LE piose; L MAOF xg:0;A,(x:0);0 A0 Cap-:d; A”;0

Pattern sequencds A;0 H°

p:o;A;0/

A0 pio;A’;0’

PEMPTY

rA 0 P pro;A”:0”
PCONS

T:A0H° e:A:0

A0 p:opro;A”;0"

Figure 2: Core language typing rules

refinement. The definition of! is given in Figure 3, and
is standard, apart from a straightforward extension to land
polymorphic types.

Returning to rulesLT, oncer’ has type-checked the pattern,
we typecheck the right-hand side of the alternativeynder
the type refinemeigt To achieve this effect, we simply apply
0tol, A, u, and the result type,, before checking the type
of u.

A subtlety of rulepcoN is the separation of the third and
fourth preconditions. It is possible to combine them, to ob-
tain the single conditio®’ = u (0(¢p) = 7 Zu) However,

doing so makes too many programs typeable. For example:

/Va. \x:a. case x of { (a,b) -> (b,a) }

This program would be regarded as ill-typed by ML or
Haskell, because a variable of polymorphic tygois treated

as a pair type, and it is indeed rejected by the third pre-
condition of rulepcoN Under the above modification,
though, it would be regarded as acceptable, becauise
refined to a pair type by; and indeed, such a modifica-
tion is perfectly sound provided the dynamic semantics can
distinguish between constructors of different typEsl 6e
andNi |, say). Precisely this design choice is made by Jay
[JayO4]. Nevertheless, we adopt the Haskell/ML view here,
for reasons both of principle (more errors are discovered at
compile time) and practice (implementation of the new dy-
namic semantics would be difficult).



3.3 Anexample This is an open design choice, and other things being equal
the more refinement the better, so we provide for left-tdrrig
refinement. This is the reason that we “thread” the substi-
tution in our pattern judgement. A consequence is that the
[Va. \(x:Terma). case(a) x of compiler must generate code that matches patterns left-to-
Lit (i:lInt) ->i right. In a lazy language like Haskell, termination conside
ations force this order anyhow, so no new compilation con-
straints are added by our decision. In a strict language; how
ever, one might argue for greater freedom for the compiler,
FELit (i:lnt) ->i:Terma—a and hence less type refinement, as indeed Simonet and Pot-

tier do [SPO3]
In rule PcoN we unify Term I nt (the result type otLit) )
with Ter m a, to obtain the type refinemefat— I nt]. Then 3.5 Meta-theory
rule ALT applies that substitution to the right-hand sidend We have proved that the type system of Figure 2 is sound
result typea, and type-checks the right-hand side, which suc- with respect to the obvious small-step dynamic semantics
ceeds. (omitted here for lack of space).

It is instructive to see how the rules work in an example.
Here is the first part of the body efal :

Sincelit hastypdnt -> Term Int, the pattern binds no
type variables. RuleAsE invokes the judgement

The next alternative is more interesting: THEOREM3.1 (TYPE SOUNDNESS FOR CORE LANGUAGE
Pair bc (t1::Termb) (t2::Term c) If € - t: o thene either evaluates to a value or diverges.

-> (eval b tl, eval c t2) Our dynamic semantics does not depend on type information
at run time — one may erase all types without affecting exe-
cution. Our definition of values is also standard. We prove
type soundness using the standard progress and presarvatio
lemmas.

The pattern binds two new type variableandc, and gen-
erates the type refinemeat— (b, ¢) |; again, the right hand
side type-checks once this substitution is applied to thelte
typea. We discuss just one other construckst,, which has
the interesting property that it has an existential typéaide We have also proved that type checking is decidable. That
(because one of the quantified type variables does not appeais, given a well-formed context and an expressioty it is
in the result type of the constructor): decidable whether there existsvasuch thatl" -t : 0. Be-
Fst b ¢ (t:Term (b,c)) cause our_rules are synt.ax—directed, showing thgt typd.«-:hec
> fst (b,c) (eval (b,c) t) ing is decidable is stra|ghtforw§1rd, given that is decid-
able [Rob71]. The type checking algorithm may be read
As with Pai r, the pattern binds two fresh type variables  from the inference rules.
andc. The result type of the constructor is jurm b —
it does not mentiora — so rulepcoN forms ¢ (Term b =
Term a), yielding either the substitutiofa — b] or [b — a].
The reader may want to confirm that in either case the right
hand side is well typed.

We are more used to seeing unification in typierenceal-
gorithms, and it is unusual to see it in declarative type khec
ing rules. The best way to think about it is this. A successful
pattern match implies the truth of certain equality coristsa
among types, all of forrit £ =T &/, and the case alternative

3.4 Nested patterns should be checked under these constraints. However, rather
Consider these two functions (we omit big lambdas and somethan add a set of constraints to the environment, and reason
type annotations): about type equality modulo those constraints, we solve the

constraints to get their most general unifier, and apply the
resulting substitution. We find that it is much easier to ex-
plain the type system to programmers in terms of an eagerly-

fl (x::Terma) (y::a)
= case(a) x of
Pair p q -> case(a) y of

(r,s) -> (p,s) applied substitution than by speaking of constraint setsd- a
f2 (x::Terma) (y::a) the usual question of whether or not one can abstract over
= case(a) (x,y) of constraints simply does not arise. In effect, we are exploit
(Pair p g, (r,s)) ->(p,s) ing the special case of equality constraints to simplify the
technology.

It should be clear thdtl is well-typed, because the type re-
finement induced by the pattern match)is “seen” by the This use ofu is not new — it was used in essentially the
inner case; in that contexty has a pair type so the case same way by Coquand [Coq92] and by Jay [Jay04] (from
makes sense. If the two cases were reversed, the functiorwhom we learned the trick). Itis essential for soundness tha
would be ill-typed. But what abod2? Here, the two cases the ¢ function indeed delivers thmost generaunifier. (In

are merged into one; but is the left-hand match “seen” by the contrast, in the conventional use of unification for typeimf
right-hand one? ence, any unifier is sound.) Why? Because the constraints



gathered in the patterns are treatedaassin the case alter-

native, and we cannot soundly invent new facts — for exam{  Variables XY,z
ple, we cannot suddenly assume thas | nt . Type constructors T

. . Data constructors C
Technically, the fact that: must be a most general unifier Source type variables a,b, ¢

shows up in the type substitution lemma of the type soundy  Target type variables «,
ness proof. In this case, we must show that even though
a type substitutiord may produce a different refinement Atoms v
for branches of a case alternative, those branches are still Terms tu
well typed after substitution witB and this new refinement.
However, the new refinement composed witlis a unifier

for the original types, and the original refinement was the

x| C
vIiAp.t]tu]|ti:ty
let x =uint
letrec x::ty = uint
casetof p -> t

most general unifier. Therefore, we know that the new refine/ Zattems pd = x| Cp p—

ment and is some substitutioA’ composed with the origi- ource types  ty _‘ fao‘rJzTIJI] -a tfz Ty

nal refinement. We know the branch was well-typed with the Y

original refinement, so by induction, it must be well-typed Polytypes ob = Var

after substitution by’. Monotypes T o= TT|T o1«

Since the most-general unifier contains exactly the same in-

formation as the original constraints, the choice of whetihe Type contexts N r o fe [Tl (\(’j: U)'I‘ ;,a T 47
pass constraints around or apply a unifier is a matter of.taste Constraint lists Ortle' a; * ?(t)rm unused until Section 4.
Both choices lead to languages that type check the same g ciraint o= T =Ty

terms. However, the two choices require different meta-| g pstitutions 0 = 00,0t L

theory — the proofs of type soundness and the decidability

of type checking are a bit different for the two alternatives Figure 4: Syntax of source types and terms

although the proofs for both alternatives seem to be of equiv

alent complexity.
in Haskell 98. A program that uses polymorphic recursion

might in principle have a valid typing derivation, but it is
: _ hard to find it. So we reject the program unless the offend-
et al. [XCCO3] and Cheney and Hinze [CHO3] design nq fnction has a type signature. It follows, of courset tha

explicitly-typed versions of System F that include equalit 543 mmer-supplied type annotations play a key role in the
constraints in the typing environment. These equality con- ynin ' idgements,

straints admit a straightforward type soundness proof. How ~ ) _

ever, showing that type checking is decidable (done by Ch- Slnce our goal is t_ractable mference, we must speak, dt leas
eney and Hinze, but not by Xi et al.) is more difficult. Be- informally, about inference algorithms. A potent source of
cause the typing rules are not syntax directed (one rulwallo ~ confusion is that, as in Section 3, unification forms part of
any expression to be typed with any equivalent type), decid- the specificatiorof the type system (when pattern-matching
able type checking requires putting these typing derivatio ©n GADTS), and also forms part of tiraplementatiorf the

into a normal form, which requires computing their most type inference algorithm. We keep the two rigorously sepa-

Most other authors have chosen the alternative path, of
dealing with constraint sets explicitly. For example, Xi

general unifier. rate. Where confusion may arise we call the formmatch-
unificationand the latteinference-unification We also de-
4 The source language scribe the substitution arising from match-unification as a

. type refinement
We now move on to consider the source language. The lan- P

guage is implicitly typed in the style of Haskell, butthegyp 4.1 Syntax

system is far too rich to permit type inference in the absence The syntax of the source language is in Figure 4. Unlike the
of any help from the programmer, so type inference is guided core language, binders have no compulsory type annotation,
by programmer-supplied type annotations. The type systemnor are type abstractions or applications present. Instead
specifies precisely what annotations are required to make @rogrammer may optionally supply a type annotation on a

program well-typed. term, thus(t: : ty). For example, here is part efal again,
If the type system accepts too many programs, it may be in our source language:

effectively un-implementable, either in theory (by being u eval : forall a. Terma -> a

decidable) or in practice (by being too complicated). Since = \x. case X of

we want to implement it, we must be careful to write typ- Lit i -

ing rules that reject hard-to-infer programs. A good exampl Pair st -> (eval s, eval t)

of this principle is the treatment of polymorphic recursion Fst t -> fst (eval t)

...etc...



ftv(o) x Free type vars of
ftv(T) x Free type vars of
ftv(T) e Free type vars of
ftv(l = U{ftv(o)|(x:0) €T}
S(T) T Strip boxes fromc
S(a) o
S(T7) Ts(t)
Sty —12) = S(t)—s(t2)
s@m = s(1)
s(T) r Strip boxes fronT
Sle) = €
s(Mha) = s(MN),x
s(Lv:a)) = s(N),(vis(o))
S(M(a=1)) = s(IN
push(T) T Push boxes down one level
push(T®) = T@E
rush(fi=10) = mMm]—
push(@) = push(@)
0(1) T Apply a type refinement
fla) = «o if « ¢ dom(0)
= T if [x—Tled
8(TT) = To(r)
O(ty —T2) = 0(t1)—0(12)
om =
o(r) r Apply a type refinement t6
0(e) = €
(M) = 06(T) if x € dom(0)
= 0(I'),« otherwise
(N (v:o)) = 06(I),(v:08(0))
B(h(a=1)) = 06(I),(a=0(1))
0p(t) = 7
By(t) = 6(7)

Figure 5: Functions over types

The syntax of internal types is mostly conventional. It is
stratified intopolytyped(o, ¢), andmonotypegr,v); and it

is predicative type variables range over monotypes (types
with noV's within them), and the argument(s) of a type con-
structor are always monotypes. Predicativity makes type in
ference considerably easier. In our implementation in GHC,
types can also haveigher kinds exactly as in Haskell 98,
and can be ohigher rank[PVWSO05]. These two features
turn out to be largely orthogonal to generalised data types,
so we omit them here to keep the base system as simple as
possible.

There is one brand-new feature, unique to this system: the
“wobbly” monotypesfT]. The intuition is thisthe un-wobbly
parts of a type can all be traced to programmer-supplied
type annotations, whereas the wobbly parts canWdaibbly
types address the following challenge. When we want to type
acase expression that scrutinises a GADT, we must apply
a different type refinement to each alternative, just asén th
explicitly-typed language of Section 3. The most straightf
ward way to do this is to follow the type rules rather liteyall
type-check the pattern, perform the match-unificationyapp
the substitution to the environment and the result type, and
then type-check the right hand side. There are two poten-
tial difficulties for inference: (a) the types to be unifiedyna
not be fully known; and (b) the types to which the substi-
tution is applied may not be fully known. Type inference
typically proceeds by using meta-variables to represent as
yet-unknown monotypes, relying on inference-unification t
fill them out as type inference proceeds. At some interme-
diate point, this filling-out process may not be complete; in
deed, just how it proceeds depends on the order in which the
inference algorithm traverses the syntax tree.

As a concrete example, consider this:
f xy =(case x of { ... }, x==[y])

Initially, x andy will be assigned distinct meta variables,
andp, say. If the algorithm processes the syntax tree right-
to-left, the termx==[y] will force « to be unified tq 3],

and that information might influence how match-unification

Compared to the core-language version of the same functiontakes place in thease expression (if it involved a GADT).

in Section 3, the source language has implicit type abstrac-

On the other hand, if the algorithm works left-to-right,shi

tion and application, and variables are not annotated with information might not be available when examining thse

their types (exceptihetrec).
4.2 Source types and internal types

We distinguish betweesource typesty, andinternal types

o, and similarly between source type variahiegnd internal
type variablesx. The former constitute part of a source pro-
gram, while the latter are used in typing judgemeatisut
the program. The syntax of both is given in Figure 4. An
auxiliary judgement” H ty ~ o checks thatty is well-
kinded, and gives the internal typecorresponding tay.

We omit the details of this judgement which is standard. For
the present, we assume thagtis a closed type, a restriction
we lift in Section 4.7.

expression.

Our goal is that the specification of the type system should
not constrain the inference algorithm to a particular trave
sal order Wobbly types are our mechanism for achieving
this goal. The intuition is this:

¢ In the places where an inference algorithm would have
to “guess” a type, we use a wobbly type to indicate that
fact. For example, if lambda abstractions bound only a
simple variable, the rule for abstraction would look like
this:
Dx:E)kFtim

ME(\x t):(T]— 12)




The argument type is “presciently guessed” by the
rule; an inference algorithm would use a meta type vari-
able. Sointhe typing rule we use a wobfaiy] to reflect
the fact thak's type may be developed gradually by the
inference algorithm.

e When performing match-unification in the alternatives
of case expression scrutinising a GADT, we make no
use of information inside wobbly types. We will see
how this is achieved in Section 4.5.

e When applying the substitution from that match-
unification, to refine the type environment and return
type, we do not apply the substitution to a wobbly type:
0(@) =@ (Figure 5).

Wobbly types ensure the type refinements arising from
GADTs are derived only from, and applied only to, types that
are directly attributable to programmer-supplied typeann
tations. We describe a type with no wobbly types inside it as
rigid.

4.3 Directionality

the other hand, if the type is supplied by the context, the
second rule does not make wobbly — if there is any uncer-
tainty about it, that uncertainty should already be exméss
by wobbly types inside .

The idea of adding a directionality flag to typing judgements
was first published by Pierce & Turner, who calledat

cal type inference We used directionality flags to support

type inference for higher-rank types in [PVWSO05], and it is
a bonus that exactly the same technology is useful here.

4.4 The typing rules

The type rules for the source language are given in Figure 6.
They give a type-directed translation into the core languag
of Section 3. For example, the judgeméht; t ~ t': T
says that term translates into the core terth, with typer.

We begin with ruleaTom, which deals with a variable or
constructor by instantiating its type, usingk;°". The
latter chooses arbitrary, well-kinded wobbly tygesto in-
stantiateo, the wobbliness indicating that the system must

“guess” the type®. Their well-kindedness is checked by

Wobbly types allow us to record where the type system * whose details we omit as usual. In guessing mode we are
“guesses” a type but, to complete the picture, we also need anow done, but in checking mode the wobbliness may get in
way to explain when the type system must guess, and whenthe way. For example, it is perfectly acceptable for a func-
a programmer-supplied type annotation specifies the necestion with type[l'nt ] — Bool to be given an argument of type
sary type. Our intuition is this: when the programmer can | nt, and vice versa. Hence, the auxiliary judgement~ ’/
point to a simple “audit trail” that links the type of a varlab checks for equality modulo wobbliness. The functiofr),

to a programmer-supplied annotation, then the systemdhoul defined in Figure 5, removes wobbliness from an internal
give the variable a rigid type, so that it will participateype type.

refinement. For example, if the programmer writes: . gen .
Rule ANNOT invokes " to “push” the known type signa-
foo:: a->Ta->Ta ture into the term, as discussed in Section 4.3. Rafeis
foo x xs quite conventional, and usé%f“ in guessing mode, while

then he might reasonably expect the system to understandUl€ REC uses checking mode to support polymorphic recur-
that the the type of isa, and the type ofs is T a. To make sion.. The rule for appllcatlomep), isa Iltt!e ur_1usua_l, how-
this intuitive idea precise, we annotate our typing judgerse ~ €Ver- What one normally sees is something like this:

with a directionality flag 6. For example, the judgement
't t: T means “in environmeni the termt has typer,
regardless of context”, whereds- t: T means “in envi-
ronmentl’, the termt in contextt is well-typed”. The up-
arrow 1 suggests pulling a type up out of a term (“guessing
mode”), whereas the down-arraqvsuggests pushing a type
down into a term (“checking mode”). We use checking mode
when we know the expected type for a term, because it is
given by a programmer-supplied type annotation.

N-t:tm1 -1 MN-w:t

N-tu:t

However, in our system, it is possible that the functiomill

turn out to have a wobbly type, or perhaps a doubly-wobbly
type, or more. What we need is that it can be cajoled into
the formt; — T, for some types; andt;, a predicate we
capture in the partial functiopush(t) (see Figure 5). This
function takes a possibly-wobbly type, and guarantees-to re
turn a type with a type constructor (such as a function arrow)
at the outermost level. The functigrnush is partial; for ex-
ample,push(a) gives no result, and therprule fails. Now

we can check that has the desired type, with, . Finally,

we must check that the function’s result typematches the
expected result}, just as we did in rulatom.

To see how the directionality works, here is how we split the
rule for abstraction given in Section 4.2 into two, one for
each direction:

D@ byt
My (\x 1) (@] — 12)

The first rule, used when we do not know the way in which Rule CASE handlescase expressions. First it derives the
the term is to be used, is just as given in Section 4.2. Ontype 17 of the scrutineau, and then it uses the auxiliary

Dx:m) by tim

ey (W t) (11— 12)
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MA0F CP~ Cap' v ;A":0"

PCON

Pattern sequencds A;0 H° prt~» p/;s A0’

"
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Figure 6: Typing rules for the source language



judgement to type-check the alternatives. Since a lambda where the empty substitutioh plainly is not a unifier of
abstraction binds a pattern, it behaves very like a singde ca the input constraints. This amounts to saying that the algo-
alternative, so rulesBs{} andaBs| simply invoke the same  rithm may do less type refinement than would be justified in
auxiliary judgement as farase expressions, the formerwith  an explicitly-typed program. Furthermote;, may succeed

a wobbly type as discussed in Section 4.3. even when theris no unifier of the stripped constraints. For

The judgements”, for alternatives, and its auxiliary judge- example,

mentH for patterns, take a very similar form to those of
the explicitly-typed language (Section 3). One significant
difference is the use gfush in rule PCON, which appears ) i .
for exactly the same reason as in raler. Another impor- T_hls means that the algorlth_m may not detect all inacces-
tant difference, also iRCON, is that we invoke an auxiliary ~ Sible branches of @ase; which is perfectly sound, be-
judgement™* TT ~ @ to unify IT; we discuss this judgement ~ cause such branches are admitted in the core language and
in Section 4.5. The third major difference is that in raler nfed not be well-typed. Another variant of the same sort is
we apply®; to T2, rather thard (Figure 4 define®s). The = (a=[x=Tnt]) ~ [« =[x = TnE]. Again, the stripped

idea is that in guessing mode, we cannot expect to guess &/€rsion would be rejected (by the occurs check), but the
single type that can be refined for each alternative by that SOurce-language type system may not detect the inaccessi-

alternative’s substitution. ble branch.

4.5 Type refinement with wobbly types A delicate point of ruleJNIF is that we are careful to say that
“@’is a most general unifier &f'” rather than 9’ = « (11)",
because it sometimes makes a difference which way around
the unifier chooses to solve trivial constraints of faxrg: 3.

For example, consider this simple Haskell 98 program:

F* (e, I nt ) = (I nt ,[Bool])) ~ e+ I nt]

Rule PcoN uses an auxiliary judgement TT ~» 0 to unify
the constraint$l. The key idea is that this judgement per-
forms a kind of partial unification dff, based only on infor-
mation inTT outside wobbly typesThis simple intuition is

surprisingly tricky to formalise. f = \x. case x of { Just y ->y }

Rule UNIF in Figure 6 gives the details. It split$ into two

parts: a rigidT’, in which arbitrary types withifil have been ~ One valid typing derivation givesc the wobbly type
replaced with fresh type variablgsand a substitutiof that ~ [VBybe o] Now we apply ruleeconto thecase pattern: the
maps they onto the excised types. These two parts fit to- Mybe constructor will bind a fresh type variable, syand
gether, so thad(IT’) is the originallT. Now we find a most ~ We try to find®” such that- (Maybe B = Maybe [a) ~ 6.
general unifier of T/, namely®’. Finally, we re-insert the 10 do this we split the constraints infd’ = (Maybe p =
excised types int®’, by composing it withd, and restrict- ~ Mybe v), and® = [y — [x]. Now here is the subtlety:
ing the domain of the resulting substitution to the free type there are two possible most general unifié's namely
variables oflT — or, equivalently, discarding any substitu- [ — Y] andfy — B]. The former produces the desired re-
tions for the intermediatg. (The notationd | means the ~ Sult®” = (000")[«,p=[B — [. But the latter produces
substitutiond with domain restricted t.) 0" = [y — Bll«,s= 0 which fails to type the program.

The judgement leaves a lot of freedom about how to split Although this is tricky stuff, an inference algorithm carsea
ITinto pieces, but a complete type inference algorithm must jly find a “best” most general unifierwhenever there is a
find a solution if one exists. The way to do this is to split choice, the unification algorithm should substitute for the
IT by replacing the outermost wobbly types with fresh type type variables bound by the patter@pecifically, when solv-
variables, so that as much rigid information as possiblgis € ing a trivial constraintx = 3, wherep is bound by the pattern
posed i1’. This algorithm is quite discerning. For example, ande is not, the unifier should substitutg — «]; and vice

the reader is invited to verify that, using this algorithm, versa. The intuition is that these pattern-bound type bégsa
" ] _ only scope over a single case branch, so we should do all we
= (= ([nt], Bool ), & = (I nt ,[Bool ])) can to refine them into more globally-valid types.

~ [+ (I nt ,Bool )]

A minor difference from Section 3 is that we treat unification

failure as a type error, because rulgiF simply fails if T/

has no unifier. This saves two rules, and makes more sense

Notice that the substitution returned bY is not necessar-  from a programming point of view, but loses subject reduc-

ily a unifier of the constraints. For example, here is a valid tion. We do not mind the latter, because we treat soundness

judgement: by giving a type-directed translation into our core langeiag
rather than by giving a dynamic semantics for the source lan-

F* ((er, p) =[(I'nt ,Bool )]) ~» O guage directly.

where the result has gathered together the least-wobhlit res
that is justified by the evidence.



4.6 Smart function application must not influence the environment. 8f; is a substitution
The rules we have presented will type many programs, but:Efm b'gdfts?mei b.Ut {:)ertr_]atpsﬂ?ot all c_)f Eﬁe .\alf expam(jj
there are still some unexpected failures. Here is an example! > SUDSHIUTLON 10 InStantiale e remainiigviin guesse
(c.f. [BS02]): typespu], yielding ’. Then we check that’ does indeed
satisfy the constraints, modulo wobbliness.
data Equal a b where

Eq :: Equal a a There is a strong duality between rulsoNandAPPN: in

data Rep a where patterns, the type refinement is derived from the result,type
Rl :: Rep Int and is applied to the arguments; in function applicatioms, t
RP:: Repa->Repb->Rep (ahb) type refinement is derived from the argument types, and is

applied to the result.
test :: Rep a -> Rep b -> Maybe (Equal a b) ) )
test R R = Just Eq 4.7 Lexically-scoped type variables
test (RP al bl) (RP a2 b2)

_ case test al a2 of Thus far, all our type annotations have been closed. But

Not hi ng -> Not hi ng in practice, as programs scale up, it is essential to be able
Just Eq -> case test bl b2 of to write open type annotations; that is, ones that mention
Not hi ng -> Not hi ng type variables that are already in scope. In the olden days,
Just Eq -> Eq when type annotations were optional documentation, open

type signatures were desirable but not essential, but natv th
type annotations are sometimes mandatory, it must be possi-
ble to write them.

A non-bottom valueEq of type Equal t1 t2 is a witness
that the types 1 andt 2 are the same; that is why the con-
structor has typ&o.Equal « «. The difficulty with typing
this comes from the guessing involved in function instantia We therefore add lexically scoped type variables as an or-
tion (ruleINsST). Even if we know thak : | nt, say, the term  thogonal addition to the language we have presented so far.
(i d x), wherei d is the identity function, will have typ@ént]. The extensions are these. First, in a type-annotated term
In t est, therefore, no useful information is exposed to type (t:: ty), the source typey may be open. Second, the en-
refinement in thease expressions, because both scrutinise vironmentl™ is extended with a binding forng = T, which

the result of a call to a polymorphic functionest itself), binds a source type variabdeto a typet. These bindings are
which will be instantiated with wobbly types. used in the obvious way when kind-checking an open source

This is readily fixed by treating a function application as a typety. Third, pattems are extended with a new form

whole, thus: p = ...|(p::aty)
g;va-? —> 1/)) el My et , This type-annotated pattern brings into scope the soupee ty
Mo (t=1t)~06 Fz6(v)~v APPN variablesa, with the same scope as the term variables bound
Mes v’ by p, and ensures that has typety. Here is the extra rule

for the pattern judgement:
The idea is that we guess (rather than check) the arguments,

obtaining typest’ that express our certainty (or otherwise) NA Hforall Tty ~ VE.T

about these types. Then we use a new judgeriénto M ®:0(t) = 0(t') ~ 0’

match the function’s expected argument typesgainst the AN=Aad=0(x)

actual types. Finally, we check that the result types match FA 0 pp’:0'(6(1)):A":0"

up. - PANNOT

MA0H (praty)~p 1 ;A";0
The judgement F™ &; TT ~ @ finds an instantiation of the

type variablesx that satisfies1. To maximise information,  We begin by kind-checking the source typg, temporarily
we would like it to find the least-wobbly instantiation that building aforal | 'd source type so that" will generate a

can, something that our existing unification judgemeht  polymorphic typeva.t. Then we use the same judgement

also does: F™ that we introduced in Section 4.6 to instantiate this type
u . , to match the incoming type, being careful to first apply the
FTl~0 THD 0 =la—Dlloblx current type refinement. Finally we check the nested pattern
V=1 eTl, 5(0'(1)) =s(7) MATCH p, in the extended type environment. A lexically-scoped type

TEY&; T~ 0/ variable scopes over all patterns to the right, so that tie pa
tern(x::a. Terma, y::a) makes sense. That is why we
We use-" to solveTl, then restrict the domain of the result, “thread” the environmenA through the pattern judgements
0, because we want a one-way match only: the function type (c.f. Section 3.2).



Notice that a lexically-scoped type variable is simply a Bam generated by, if it succeeds, yields a well-typed core pro-
for an (internal) type, not necessarily a type variable. For gram. The key property is this:

example, the tern\ (x::a.a). x & x) is perfectly ac-
ceptable: the source type varialdeis bound to the type o
Bool . More precisely, it is bound to the tyfiool ], because OC s (”/) has a most general unifié such that

a scoped type variable maybe be bound to a wobbly type,9 =0705(0).

and the type system indeed says thiatype will be wobbly We say thag (0) is apre-unifierof s (TT): itis not necessarily
in this case. a unifier, but it is “on the way” to one (if one exists at all).

LEMMA 4.2. If T ~ 0 then eithers (TT) has no unifier,

This means that pattern type signatures cannot be used tdrurthermore, our system is a conservative extension of
specify a completely rigidoolymorphictype, which is a  vanilla Haskell/ML data types. The latter have types of form
slight pity. For example, if we write V& T — T ®, where thex are distinct. Hence ruleNIF is
guaranteed to succeed, and one possible solution is alfays o
form [ @ 7], where the pattern has tyget. This substi-

the type ofx will be Ter m[y, to reflect the uncertainty about ~tution binds only the pattern-bound type variables (i.eeslo
what typea will ultimately be bound to, and hence no type not refine the rest of the environment) and ensures that the
refinement will take place, and the definition will be rejette  sub-patterns have exactly the expected types. It would be
(at least if. . body. . requires type refinement). The only straightforward, albeit tedious, to formalise this argmme

way to give a completely rigid polymorphic type is using a

type signature on a term, or on at r ec binding: 5 Implementation

eval = \(x::a.Terma). (...body... :: a)

eval :: forall a. Terma ->a =1x. ...body... We have built a prototype type inference engine for the

4.8 Scope and implicit quantification source-language type system, starting from the executable
prototype described by [PVWSO05]. This baseline algorithm
is quite conventional; most of the work is done by a unifier
that implements an ever-growing substitution using side ef
fects. “Guessed” types are implemented by “flexible” meta
variables, which are fleshed out by in-place updates per-
formed by the unifier. There is no constraint gathering; in
eval = \(x::Terma). ...etc... effect, the equality constraints are solved incrementally

) i o ~ they are encountered.
with no “a. ” prefix. The rule we use is this: any type vari-

able that is mentioned in the pattern type annotation, and isBY design, it is quite easy to support our new type system.
not already in scope, is brought into scope by the pattern. Some straightforward extensions are required to parse the
This is the same rule that we use for adding impficital | new data type declarations, and to extéhdith the con-
quantifiers to type signatures on terms. One could imagine Structors they define. Wobbly types are simple to implement:

other Choices' butitis an Orthogona' concern to this paper. they Simplyare the flexible meta variables that the inference
engine already uses, and introduction of a wobbly type in the

inst

A notationally awkward feature of the design we describe is
the “a.” prefix on a pattern type signature, which brings the
type variablest into scope. In our real source language, we
use an implicit-quantification rule that allows us to wrfiar,
example

Haskell allows separate, declaration type signatures; thu

rules (e.g. in=""") corresponds to the allocation of a fresh
eval :: Terma ->a flexible meta variable. Invocations piish in the rules cor-
eval = ... respond to places where the inference algorithm must force

a type to have a certain outermost shape (e.g. be of form
T1 — T2), which sometimes requires the allocation of fur-
ther flexible meta variables. One also has to take care that
the commonly-implemented path-compression optimisation
which elminates chains of flexible meta variables, does not
4.9 Properties of the type system thereby elide the wobbliness altogether.

It is (arguably) attractive to allow the universally-quiiet
type variables of such a signature to scope, lexically, thesr
body ofeval [MC97, SSWO04]. Again this is an orthogonal
concern, but one that readily works with our main design.

Our system is sound, in the sense that any well-typed pro-Match-unification implements the wobbly-type-aware algo-
gram translates to a well-typed core-language program: rithm of Section 4.5, and is implemented entirely sepayatel
from inference-unification. Different type refinements ap-
ply in different case branches, so in-place update is irappr
We have proved this theorem for the system of Figure 6, aug- priate, and the match-unification algorithm instead gemera
mented with the smart function-applicationrule (Sectid)4  a data structure representing the type refinement exglicitl
and lexically-scoped type variables (Section 4.7). Thenmai Rather than applying the type refinement eagerly to the envi-
tricky point in the proofis to show that the partial refinerhen ronment, as the rules do, we perform this substitutionyazil

THEOREM 4.1. If TH; t~ t':tthens(T) Ft/:5(1)



by carrying down a pair of the type environemt and the cur- Their work is much more general than ours: they start from
rent refinement. The inference-unifier consults (but do¢s no the HM(X) constraint framework, and generalise it to a lan-
extend) the type refinement during unification. One wrinkle guage in which arbitrary constraints can be used to guard
that we missed at first is that the unifier must also consult the quantification. Our language corresponds to instantiating
type refinement when performing the occurs check. There theirs with type equality constraints, and exploiting thie-
are also some occasions where we must eagerly apply thecial case seems to make the system considerably simpler. In
type refinement to an entire type, such as when finding thetheir search for tractable inference, they are forced to im-
free variables of a type at a generalisation point. pose two undesirable restrictions: type annotations meist b
On the basis of this experiment, the changes to the infer- closed, a_nd the_wsystem embodies two md_ependgnt rule sets
. . .___one dealing with GADTs and the other with ordinary data
ence algorithm do indeed appear to be extremely localised .
) . types. Our system manages to avoid both these shortcom-
and non-invasive, as we hoped. The only apparently-global.” ™™ : . o
. . ; ' . ings; it would be interesting to get a more detailed insight
change is the requirement to pair up the type refinement with . ) 2
. . into these trade-offs, perhaps by expressing our solution i
the environment, but the monadic framework we use makes

. their framework.
this change local as well.

Our wobbly types correspond very closely to meta-variables
6 Related work in an implementation of type inference. Nanevski, Pientka,
In the dependent types community, GADTs have played a and Pfenning have developed an explicit account of meta-
central role for over a decade, under the namuctive  variables in terms of a modal type system [NPPO3]. It would
families of data type§Dyb91]. Coquand in his work on  be worthwhile to examine whether their language can sub-
dependently typed pattern matching [Coq92] also uses asume our wobbly types. Our wobbly types also propagate
unification based mechanism for implementing the refine- uncertainty in a fashion that has the flavour of coloured
ment of knowledge gained through pattern matching. Thesetypes in Odersky and Zenger's coloured local type infer-
ideas were incoporated in the ALF proof editor [Mag94], ence [0ZZ01].

and have evolved into dependently-typed programming lan-

guages such as Cayenne [Aug98] and Epigram [MMO04]. In .

the form presented here, GADTs can be regarded as aspecial  Conclusion and further work

case of dependent typing, in which the separation of types
from values is maintained, with all the advantages and dis-
advantages that this phase separation brings.

We have much left to do. In this paper we have not formally
presented an inference algorithm and proved it complete wit
respect to our specification. Our claim that wobbly types ac-
Xi, et al.'s work on guarded recursive data types closely cor curately reflect the uncertainty of real algorithms is, €her
responds to our work. They present a language very simi-fore, not formally established. We have built a prototype
lar to our core language [XCCO3], though with a bug that implementation, however, and we are confident that a for-
prevents them from checking some fairly useful classes of mal proof is within reach. Similarly, our claim that wobbly
nested patterns [SP03, Remark 4.27]. Instead of using unifi-types can co-exist smoothly with the other complexities of
cation in the specification of their type system, type-eitiyal  Haskell’s type system is rooted in the authors’ (rather de-
constraints are propagated around the typing rules andaolv tailed) experience of implementing the latter. We are en-
as needed. Their type inference algorithm, like ours, isthas gaged in a full-scale implementation in GHC, which will
upon Pierce and Turner’s local type inference [PT98]. Also provide concrete evidence.

closely related is Zenger’s system of indexed types [Zen97]

and Xi's language Dependent ML [XP99]; in both cases, in- Nevertheless, we believe that this paper takes a significant
stead of constraints over type equalities, the constramt |  step forward. The literature on technical aspects of GADTs
guage is enriched to include, for example, Presburger-arith is not easy going, and the system of Section 3 is the sim-
metic . Finally, Xi generalises both these languages with plest we have seen. There is very little literature on type
what he calls ampplied type systefiXi04]. inference for GADTS, and ours is uniquely powerful. More
Igenerally, we believe that type systems will increasingty e
body a blend of type inference and programmer-supplied
type annotations: polymorphic recursion, higher-ranlegp
and GADTSs, are all examples of this trend, and there are
plenty of others (e.g. sub-typing). Giving a precise, pre-
dictable, and implementable specification of these blended
type systems is a new challenge. Bidirectional type infer-
Most of this work concerns type checking for GADTSs, but ence is one powerful tool, and we believe that wobbly types,
Simonet and Pottier explicitly tackle type inference [SP03 our main contribution, are another.

Cheney and Hinze examine numerous uses of what they cal
first class phantom typd€HO03, Hin03]. Their language is
essentially equivalent to ours in terms of expressivereas,
they achieve type refinement via equality constraint clause
Sheard and Pasalic use a similar design they exgliality-
qualified typesn the languag&mega [SP04].
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