
Cooperative Cache Scrubbing

Jennifer B. Sartor
Ghent University

Belgium

Wim Heirman
Intel ExaScience Lab∗

Belgium

Stephen M. Blackburn
Australian National University

Australia

Lieven Eeckhout
Ghent University

Belgium

Kathryn S. McKinley
Microsoft Research
Washington, USA

ABSTRACT
Managing the limited resources of power and memory bandwidth
while improving performance on multicore hardware is challeng-
ing. In particular, more cores demand more memory bandwidth,
and multi-threaded applications increasingly stress memory sys-
tems, leading to more energy consumption. However, we demon-
strate that not all memory traffic is necessary. For modern Java pro-
grams, 10 to 60% of DRAM writes are useless, because the data on
these lines are dead - the program is guaranteed to never read them
again. Furthermore, reading memory only to immediately zero ini-
tialize it wastes bandwidth. We propose a software/hardware coop-
erative solution: the memory manager communicates dead and zero
lines with cache scrubbing instructions. We show how scrubbing
instructions satisfy MESI cache coherence protocol invariants and
demonstrate them in a Java Virtual Machine and multicore simula-
tor. Scrubbing reduces average DRAM traffic by 59%, total DRAM
energy by 14%, and dynamic DRAM energy by 57% on a range
of configurations. Cooperative software/hardware cache scrubbing
reduces memory bandwidth and improves energy efficiency, two
critical problems in modern systems.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Hard-
ware/software interfaces, instruction set design; D.3.4 [Pro-
gramming Languages]: Processors—Memory management
(garbage collection), optimization, runtimes

1. INTRODUCTION
Historically, improvements in processor speeds have outpaced im-
provements in memory speeds and current trends exacerbate this
memory wall. For example, as multicore processors add cores, they
rarely include commensurate memory or bandwidth [43]. Today,

∗Wim Heirman was a post-doctoral researcher at Ghent University
while this work was being done.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628083.

the memory wall translates into a power wall. More cores need big-
ger memories to store all of their data, which requires more power.
The limits on total power due to packaging and temperature con-
strain system design and consequently, the fraction of total system
power consumed by main memory is expected to grow. For some
large commercial servers, memory power already dominates total
system power [31].

Software trends exacerbate memory bandwidth problems.
Evolving applications have seemingly insatiable memory needs
with increasingly larger working set sizes and irregular memory
access patterns. Recent studies of managed and native programs on
multicore processors show that memory bandwidth limits perfor-
mance and scaling [21, 43, 55]. Two factors in managed languages
pose both opportunities and challenges for memory bandwidth op-
timization: (1) rapid object allocation and (2) zero initialization.

(1) Many applications rapidly allocate short-lived objects, re-
lying on garbage collection or region memory managers to clean
up. This programming style creates an object stream with excellent
temporal locality, which the allocator exploits to create spatial lo-
cality [5, 6, 7]. Unfortunately, short-lived streams displace useful
long-lived objects, leave dead objects on dirty cache lines, and in-
crease bandwidth pressure. The memory system must write dirty
lines back to memory as they are evicted, but many writes are use-
less because they contain dead objects that the program is guaran-
teed to never read again. Our measurements of Java benchmarks
show that 10 to 60% of write backs are useless!

(2) Managed languages and safe C variants require zero initial-
ization of all fresh allocation. With the widely used fetch-on-write
cache policy, writes of zeroes produce useless reads from memory
that fetch cache lines, only to immediately over-write them with
zeroes. Prior work shows memory traffic due to zeroing ranges
between 10 and 45% [54].

While prodigious object allocation and zero initialization present
challenges to the memory system, they also offer an opportunity.
Because the memory manager identifies dead objects and zero ini-
tializes memory, software can communicate this semantic informa-
tion to hardware to better manage caches, avoid useless traffic to
memory, and save energy.

These observations motivate software/hardware cooperative
cache scrubbing. We leverage standard high-performance gener-
ational garbage collectors, which allocate new objects in a region
and periodically copy out all live objects, at which point the col-
lector guarantees that any remaining objects are dead – the pro-
gram will never read from the region before writing to it. However,
any memory manager that identifies dead cache-line sized blocks,
including widely used region allocators in C programs [4], can

15

use scrubbing to eliminate writes to DRAM. The memory man-
ager communicates dead regions to hardware. We explore three
cache scrubbing instructions: clinvalidate invalidates the cache-
line, clundirty unsets the dirty bit, and clclean unsets the dirty bit
and moves the cache line to the set’s least-recently-used (LRU)
position. While clinvalidate is similar to PowerPC’s discontinued
dcbi instruction [20], and ARM’s privileged cache invalidation in-
struction [3], clundirty and clclean are new contributions. We also
use clzero, which is based on existing cache zeroing instructions
[20, 32, 47] to eliminate read traffic. We extend the widely used
MESI cache coherence protocol to handle these instructions and
show how they maintain MESI invariants [14, 20, 22, 24, 37, 41].
After each collection, the memory manager issues one of the three
scrubbing instructions for each dead cache line. During application
execution, the memory manager zero initializes memory regions
with clzero.

To evaluate cache scrubbing, we modify Jikes RVM [2, 7], a
Java Virtual Machine (JVM), and the Sniper multicore simula-
tor [11] and execute 11 single and multi-threaded Java applica-
tions. Because memory systems hide write latencies relatively well,
simulated performance improvements are modest, but consistent:
4.6% on average across a range of configurations. However, scrub-
bing dramatically improves the efficiency of the memory system.
Scrubbing and zeroing together reduce DRAM traffic by 59%, to-
tal DRAM energy by 14%, and dynamic DRAM energy by 57%,
on average. Across the three scrubbing instructions, we find that
clclean, which suppresses the write back and puts the cache line in
the LRU position, performs best.

While we focus on managed languages, prior work by Isen et
al. identifies and reduces useless write backs in explicitly managed
sequential C programs [23]. They require a map of the live/free
status of blocks of allocated memory, which hardware stores af-
ter software communicates the information. Their approach is not
practical since (1) it requires a 100 KB hardware lookup table and a
mark bit on every cache line, (2) it exacerbates limitations of the C
memory model on undefined references, and (3) the separate map
breaks cache coherence on multicore processors.

Our paper proposes a practical approach to save memory band-
width and energy on multicore processors. While we leverage
region allocation semantics, any memory manager that identifies
dead cache lines can save traffic with cache scrubbing instructions.
Our instructions require only small changes to the widely used
MESI coherence protocol [20, 22] for multicore hardware. In sum-
mary, our contributions are:

• We identify an enormous opportunity to eliminate memory
traffic in managed languages and region allocators.

• We design a practical cooperative software/hardware ap-
proach with the necessary modifications to the MESI cache
coherence protocol to scrub cache lines.

• We quantify how cooperative scrubbing, used together with
zeroing instructions, significantly reduces memory traffic
and DRAM energy.

• We develop a novel multicore architectural simulation tech-
nology to simulate multi-threaded Java workloads on multi-
core hardware in reasonable amounts of time.

By exploiting the semantics of programming languages, software
and hardware can cooperate to tackle some of the hardest bottle-
necks in modern computer systems related to energy, power, and
memory bandwidth.

2. BACKGROUND AND MOTIVATION
We first present background on the bandwidth bottleneck and mem-
ory management. We then characterize the opportunity due to use-
less write backs. In our Java benchmarks, from 10 to 60% of write
backs are useless, i.e., the garbage collector has determined that
the data is dead before the cache writes it back. We then describe
why existing cache hint instructions are insufficient to solve this
problem.

2.1 Bandwidth and Allocation Wall
Much prior research shows that bandwidth is increasingly a per-
formance bottleneck as chip-multiprocessor machines scale up the
number of cores, both in hardware and software [10, 21, 35, 40,
43, 55]. Rogers et al. show that the bandwidth wall between off-
chip memory and on-chip cores is a performance bottleneck and
can severely limit core scaling [43]. Molka et al. perform a de-
tailed study on the Nehalem microarchitecture [40], showing that
on the quad-core Intel X5570 processor, memory read bandwidth
does not scale beyond two cores, while write bandwidth does not
scale beyond one core.

On the software side, Zhao et al. show that allocation-intensive
Java programs pose an allocation wall which quickly satu-
rates memory bandwidth, limiting application scaling and perfor-
mance [55]. Languages with region allocators and garbage collec-
tion encourage rapid allocation of short-lived objects, which some-
times interact poorly with cache memory designs. Scrubbing ad-
dresses this issue by communicating language semantics down to
hardware.

2.2 Memory Management
The best performing memory managers for explicit and managed
languages have converged on a similar regime. Explicit memory
managers use region allocators when possible [4, 21] and high-
performance garbage collectors use generational collectors with a
copying nursery [5, 55]. Both allocate contiguously into large re-
gions of memory, putting objects allocated together in time adja-
cent in memory, creating spatial locality based on the program’s
temporal locality [5]. Region allocation is only applicable when
all the objects in the region die together, but this case is relatively
frequent [4, 21], especially in transactional workloads, such as web
services.

A standard copying generational garbage collector puts all fresh
allocation into the nursery, i.e., a large region of contiguous mem-
ory. When the region is full, the collector copies out the survivors
into the old space. Most managed programs follow the weak gener-
ational hypothesis, i.e., most objects die young [33, 48]. Therefore,
frequent nursery collections copy small amounts of live objects, yet
yield a large free region for subsequent fresh allocation.

Safe C dialects and managed languages, such as Java, PHP,
JavaScript, and C#, require the runtime to zero initialize all fresh
allocation. Prior work shows that zeroing incurs time overheads of
3 to 5% on average and produces 10 to 45% of memory traffic [54].

Sizing nurseries. Memory management is a time-space trade-
off. Smaller nurseries and heap sizes induce more frequent col-
lections and higher collection costs, but consume less memory. In
particular, small nursery sizes repeatedly incur fixed per-collection
costs (e.g., scanning the thread stacks and coordinating application
threads). Applications that allocate a lot, or have many threads, or
have high nursery survival rates, need large nursery sizes to min-
imize garbage collection time. Prior work established that large
nurseries offer the best performance on average, with the advan-
tage tapering off at nursery sizes twice the size of the last-level

16

0%

20%

40%

60%

80%

100%

a
n
tl
r

a
v
ro

ra
b
lo

a
t

fo
p

jy
th

o
n

lu
in

d
e
x

lu
s
e
a
rc

h
lu

s
e
a
rc

h
.f
ix

p
m

d
s
u
n
fl
o
w

x
a
la

n

M
e
a
n

C
a
c
h
e
 l
in

e
s
 (

%
)

Dead lines in LLC

0%

20%

40%

60%

80%

100%

a
n
tl
r

a
v
ro

ra
b
lo

a
t

fo
p

jy
th

o
n

lu
in

d
e
x

lu
s
e
a
rc

h
lu

s
e
a
rc

h
.f
ix

p
m

d
s
u
n
fl
o
w

x
a
la

n

M
e
a
n

W
ri
te

 b
a
c
k
s
 (

%
)

Useless write backs

0%

20%

40%

60%

80%

100%

a
n
tl
r

a
v
ro

ra
b
lo

a
t

fo
p

jy
th

o
n

lu
in

d
e
x

lu
s
e
a
rc

h
lu

s
e
a
rc

h
.f
ix

p
m

d
s
u
n
fl
o
w

x
a
la

n

M
e
a
n

D
e
a
d
 l
in

e
s
 (

%
)

Dead lines written in place

4M 8M 16MNursery size:

Figure 1: Dead data in last-level cache after nursery collections. (a) Percent of last-level cache lines that are dead. (b) Percent of
write backs that are useless. (c) Percent of dead lines in last-level cache that are written in cache. Dirty cache lines are often dead and
many dead lines are uselessly written to memory.

cache [5, 55]. We confirmed this result on modern hardware and
applications by running the DaCapo Java benchmarks [8], using the
default generational Immix garbage collector in Jikes RVM [2, 7].
We found that a nursery size of 16 MB offered close to optimal per-
formance on a Bloomfield processor with 8 MB of last-level cache,
with 8 MB and 4 MB nurseries showing average overall slowdowns
of 3 to 8%.

Since nursery sizes are adjustable and, in part, sized to coordi-
nate with memory systems for responsiveness, in the remainder of
this paper we explore a range of practical nursery sizes (4, 8, and
16 MB) that pivot around the last-level cache size (8 MB), which
we keep constant.

2.3 Useless Write Backs
Allocation in both garbage collected and region allocation settings
produce an object stream, a small irregular window of temporal and
spatial reuse [6]. Object streams march linearly through the cache,
displace other useful data, and have a short window of use. When
the cache later evicts these lines, they are dirty and must be written
to memory. Because these objects and their cache lines are mostly
short-lived, the objects on the line are often dead; i.e., the program
never reads them again.

A lot of this write traffic is useless, wasting bandwidth and en-
ergy. To explore this opportunity, we executed single and multi-
threaded DaCapo Java benchmarks [8], using the default genera-
tional Immix garbage collector in Jikes RVM [2, 7]. We execute
them with the Sniper simulator [11], which models a multicore
processor with four cores, inclusive caches, and a shared 8 MB L3
cache. (Section 4 has more methodological details.) After each
nursery collection, the memory manager communicates the address
range of the dead nursery to the simulator. The simulator marks
resident cache lines in this range as dead. When the program sub-
sequently writes a new object on a dead line, the simulator unmarks
the line.

Figure 1 presents ‘dead lines in last-level cache’, the average
fraction of the last-level cache that contains dead lines immediately
after each nursery collection. ‘Useless write backs’ shows the frac-
tion of all lines written to DRAM that exclusively contain dead
objects and are thus useless. ‘Dead lines written in place’ shows
the fraction of lines marked dead, but later written while in cache
when the application allocates new objects on these lines.

Figure 1 shows that at the end of each collection, the last-level
cache is dominated by dead lines (49 to 73% on average), and the
fraction is a function of the nursery size.

A small nursery (4 MB) that fits in cache performs collections
more often, degrading total time. However, because dead lines re-
main cache resident, this nursery size has very few useless write

backs and around 95% of subsequent writes to these lines hit in the
cache. Larger nurseries (8 and 16 MB) generate a substantial num-
ber of useless write backs (61% and 36% on average). Since the
program takes longer to reuse a given line, the cache evicts more
dead lines. Likewise, larger nurseries are less likely to write (28%
and 16%) to the dead lines while they are still cache resident.

For 8 MB and 16 MB nursery sizes, over 70% of the last-level
cache contains dead lines and the cache generates many useless
write backs. For instance, over 75% of write backs are useless for
bloat, jython, lusearch, lusearch.fix, and sunflow with an 8 MB
nursery and can be eliminated. However, even in these cases, over
23% of the lines marked dead are written while still cache resi-
dent. These writes to dead lines in cache motivate using a scrubbing
instruction that does not preemptively evict all dead cache lines,
which will result in subsequent useless memory fetches, but in-
stead motivates delaying the decision to evict based on program
cache demand. In summary, there is a significant opportunity for
saving traffic and improving memory efficiency.

2.4 Cache Hint Instructions
Scrubbing is, in part, inspired by prior instruction-set architectures
(ISAs). For instance, the PowerPC ISA [20] contains a data cache
block flush (dcbf) instruction, which writes a line back to memory.
Prior to 2005, it contained a supervisor-level data cache block in-
validate (dcbi), which invalidated a cache line and suppressed write
backs. However, dcbi was never included in multicore processors.
The ARM ISA also includes supervisor-level instructions to inval-
idate a cache line and clean a cache line, but the latter does not
avoid the write back [3]. Section 3.1 describes how to implement
user-level cache line invalidate instructions that avoid writing back
data, including required changes to the cache coherence protocol
for multicore processors.

The Intel Xeon Phi’s ISA [22] introduces two instructions, cle-
vict0 and clevict1, which suggest cache lines to evict from the L1
and L2 cache, respectively. These instructions are local hints. The
intent of these instructions is to remove lines from the cache that are
no longer needed, but, like dcbf, they do not suppress write backs.

The current PowerPC ISA also includes a data cache block zero
(dcbz) instruction that forgoes fetching from memory to zero a
cache line directly, eliminating the default fetch on write [20, 47].
However, none of IBM’s J9, Oracle HotSpot, or Jikes RVM uses
it to perform zero initialization. Azul Systems, which built custom
hundreds-of-core hardware for Java applications, used a cache line
zero (CLZ) instruction to zero in place without fetching in order to
save bandwidth. Azul states that CLZ avoided the fencing overhead
of dcbz [13]. Our contribution is showing that zeroing works well
and synergistically with scrubbing instructions.

17

Scrub Instructions Description

clinvalidate(addr) Set cache line state to invalid, no write back
clundirty(addr) Unset cache line dirty bit
clclean(addr) Unset dirty bit and move to LRU position

Zero Instruction Description

clzeroX(addr) Allocate and zero cache line in level X

Table 1: Each scrubbing and zeroing instruction takes an ad-
dress and operates on one cache line.

3. COOPERATIVE SCRUBBING
This section describes cache scrubbing instructions that eliminate
write backs to relieve off-chip memory bandwidth pressure, includ-
ing the required changes to the cache coherence protocol and how
we maintain its invariants. We then describe our software approach
for inserting scrub instructions in any region allocator and, in par-
ticular, in a copying generational garbage collector.

3.1 ISA Modifications

Scrubbing instructions. We propose simple yet powerful in-
structions in which software conveys to hardware that the data in
the specified cache line is dead, and that its contents can safely be
discarded. Table 1 summarizes these instructions. The scrubbing
variants differ in the expected distance until the program will next
write the cache line to explore the space. The immediate or even-
tual eviction of the cache line will forgo the write back to main
memory, saving off-chip write bandwidth.

The clinvalidate (cache line invalidate) instruction immediately
invalidates the respective cache line from the cache. A subsequent
access to the line will trigger a memory fetch, assuming the widely
implemented fetch-on-write allocation policy. This instruction will
be effective when the program does not write the line for a long
time.

The clundirty (cache line unset dirty bit) instruction keeps the
line in cache but clears its dirty bit. If the program writes to the line
soon, it is still in cache and will not require a read and fetch from
memory. If the line is evicted from the cache, clundirty eliminates
the useless write to main memory.

The clclean instruction clears the dirty bit and moves the line
into the LRU position, making the line the preferred candidate for
replacement. This instruction is a flexible middle ground between
clinvalidate and clundirty. If the program writes the line again
soon, it will still be in cache. If instead the program needs capacity
for other lines, the hardware will evict this line and forego a useless
write back to main memory. Section 5.1 shows that this flexibility
pays off: clclean is the most effective of the three at reducing main
memory traffic.

Zeroing instructions. The semantics of many languages guar-
antee zero initialization of newly allocated memory, which can
waste read memory bandwidth. Typical cache policies, fetch-on-
write and write-allocate, cause the memory system to read data
from main memory in large blocks, only to overwrite it with ze-
roes immediately, thus consuming unnecessary read bandwidth. As
discussed in Section 2.4, the PowerPC ISA and others already in-
clude a data cache block zero instruction which forgoes fetching
from memory and allocates a cache line filled with zeroes in the
L1 cache. In this paper, we explore variants of existing zeroing
instructions, and show that they are synergistic with scrubbing in-

structions. We evaluate clzero1, clzero2 and clzero3, which allocate
cache lines in the L1, L2 and L3 cache, respectively, to optimize for
block size and expected reuse distance.

3.2 Cache Coherence
Each scrubbing or zeroing instruction operates on a single cache
line and updates cache status bits and coherence states. With re-
spect to memory consistency, both scrubbing and zeroing instruc-
tions potentially change memory contents. The processor core
therefore treats them as writes with respect to ordering and seri-
alization. Zeroing instructions target a specific level of cache, as
defined by the instruction. We perform scrubbing instructions at the
last level of cache, L3, and rely on existing mechanisms to propa-
gate invalidations to the L1 and L2 caches sharing each L3. In our
implementation, the software issues many scrubbing instructions in
a row and thus the hardware can perform them in parallel.

Scrubbing instructions do not affect program correctness, and
hardware may ignore them. The hardware is free to return unde-
fined values if the software violates scrubbing instruction guaran-
tees. In a memory-safe language, the garbage collector guarantees
that the program will never read a dead line before writing it and
communicates this fact to hardware. The correctness of memory-
safe languages and region allocators depends on this guarantee.

Scrubbing instructions require minor changes to cache coherence
protocols. We describe changes to a MESI protocol with inclusive
last-level caches and then show how these changes do not violate
key protocol invariants proved in prior work [14, 24, 37, 41]. Many
multicore processors use MESI or close variants, such as MESIF
(Intel [22]) or MERSI (IBMs PowerPC [20]).

Each letter in the MESI protocol name stands for a cache-line
state: Modified, Exclusive, Shared, and Invalid. A finite state ma-
chine describes the transitions between states on bus and processor
actions. Table 2 shows the transitions that occur in the MESI pro-
tocol at the last-level cache in response to each scrubbing or zero-
ing instruction. Each row shows the initial state and each column
header shows the instruction. Given the current state (row) and the
scrubbing instruction (column), the row-column intersection shows
the resulting state and actions.

Scrubbing instructions. Scrubbing instructions operate at the
last-level cache of the core that issues the scrubbing instruction. On
systems with multiple last-level caches, such as multi-socket sys-
tems and cache-coherent multiprocessors, scrubbing instructions
do not generate off-chip coherence traffic since all transitions hap-
pen locally. As shown in Table 2, starting from the M (modified)
state, the clinvalidate instruction transitions cache lines in the last-
level cache to I (invalid), as would a bus write request. Remember
that a line in the M state in one last-level cache is not present in
any other last-level cache. With inclusive caching, the protocol
invalidates other cache levels that replicate this line, suppressing
all write backs to memory. The clclean and clundirty instructions
transition lines from M to E (exclusive), suppress the write, and
invalidate other cache levels that contain this line. We choose to
invalidate lines in the other cache levels (as opposed to undirty-
ing them) because this uses existing hardware mechanisms. We
did explore undirtying lines in the other cache levels and found no
significant performance difference.

Starting from the E and S states, clinvalidate transitions the line
to I (invalid) and invalidates copies of the line in the other levels of
the cache hierarchy. The clundirty and clclean instructions do not
change the state from E or S, but do trigger invalidations of the line
in other cache levels. From all M, E, or S states, clclean modifies

18

State clinvalidate clundirty/clclean clzero BusInvalidate

M modified invalidate L1/L2 (no WB) invalidate L1/L2 (no WB) — invalidate L1/L2 (no WB)
→ I → E (clclean: → LRU) → I

E exclusive invalidate L1/L2 invalidate L1/L2 → M invalidate L1/L2
→ I (clclean: → LRU) → I

S shared invalidate L1/L2 invalidate L1/L2 BusInvalidate invalidate L1/L2
→ I (clclean: → LRU) → M → I

I invalid — — BusInvalidate —
→ M

Table 2: Coherence state transitions for scrubbing instructions in the last-level cache.

the LRU position of the line, a cache-local property. Clinvalidate,
clundirty, and clclean do nothing if the line is invalid.

Our simulator implements this protocol and scrubbing in the
context of a multi-socket multicore system with snooping coher-
ence and a single shared inclusive last-level cache per proces-
sor socket. However, scrubbing instructions will work with non-
inclusive cache hierarchies by using their snoop filter, but fleshing
out this design is left for future work.

Zeroing instructions. Zeroing instructions operate at the spe-
cific cache level encoded in the instruction. If the cache block is in a
modified or exclusive state, the lines are instantiated with zeros, and
an exclusive line transitions to M. Otherwise (from an S or I state),
the access is propagated to the next-level caches, through to the
last-level cache, using a special zeroing request. At the last-level
cache, the protocol delivers a BusInvalidate message off-chip to the
coherence network to obtain exclusive access, which is similar to
the existing BusRdX request but elides the write back from other
last-level caches if the line is in a modified state. This step prevents
dirty but soon to be overwritten data from being sent across the off-
chip coherence network. If the cache line started in the S or I states,
it transitions to the M state upon a clzero instruction.

Maintaining protocol invariants. Proofs of the multiproces-
sor cache coherence protocols establish properties such as deadlock
freedom, the fact that requests for cache lines are satisfied correctly,
and consistency of cache line contents between caches and mem-
ory [14, 24, 37, 41]. We assume a proof of existing MESI invari-
ants and show the effect of each of our instructions. We focus on
the following key invariants for cache line states and contents.

1. Given a line in the M state in one cache, the line will be in
the I state or not present in other caches.

2. Given a line in the E state in one cache, the line will be in I
state or not present in other caches.

3. If a line is in the S state in one cache, the line will be in the
S or I state or not present in other caches.

4. If a line is in the I state in one cache (or not present), the line
may be in any other state in other caches.

5. When a cache requests a line, another cache will satisfy the
request if it contains the line in the M state. Otherwise, mem-
ory will satisfy the request.

The simplest case is the clzero instruction. All five invariants are
easily established, since clzero is the same as any other write. In-
variants 2, 3, and 5 are trivially maintained. For invariants 1 and 4,
when the protocol finds and invalidates copies of the line in other

caches (taking invalidation and bus actions to re-establishing invari-
ants 1 and 4), it suppresses fetches from both caches and memory.
A subsequent request for the line will use this copy, since it is in
the M state.

The clinvalidate instruction easily maintains these key five in-
variants. Transitioning any line in the M, E, and S states to I triv-
ially maintains the first four invariants. Invariant 5 is maintained
because in all cases, no cache contains a valid copy (M, E, or S
state) of the line. For the purposes of validation, it is as if the sys-
tem writes the original data to memory.

The clundirty/clclean instructions are the most subtle because
they transition a line from M to E. Since invariant 1 holds before
this transition, invariant 2 must hold afterward. Invariants 1, 3, and
4 are unaffected in this case. In the case where the line starts in
the E, S, or I state, the line stays in the same state and, as such,
maintains all five invariants.

Optimizations of invariant 5 where caches may satisfy read re-
quests for data they have in the E or S state are affected because
the cache and main memory may contain different data values due
to scrubbing. However, the correctness of the programming lan-
guage implementation guarantees that the application cannot gen-
erate any such subsequent read for the line after a scrubbing in-
struction. However for the purposes of completeness, if such a read
were to occur, the response is undefined.

3.3 Security Implications of Scrubbing
Our premise for the correctness of the application is that the pro-
gramming language implementation only uses scrubbing instruc-
tions on data that is in fact never subsequently read. If the ap-
plication were somehow to violate this guarantee, it will read an
undefined value. Such misuse does not constitute a security viola-
tion because the application is never made privy to another process’
data. However, without correct support from the OS, scrubbing can
open up an attack. When process A gives up a physical page, the
OS may subsequently make it available to process B. Before mak-
ing the page available to B, the OS will initialize the page, either
zeroing it, when B requests a fresh page, or populating the page
when B pages in from a swap. In either case, unless the OS ensures
that the writes that it performs are propagated to main memory, B
may use clinvalidate, discarding the data written by the OS, before
reading from the page to reveal A’s data. The OS can avoid this
problem by using a non-temporal store instruction, which invali-
dates all copies of the relevant cache line throughout the memory
hierarchy, and writes the data straight into main memory — effec-
tively destroying all remaining copies of the previous owner’s data.
To ensure that scrubbing instructions are only used in the presence
of safe OS support, the instructions are disabled by default, and
the OS only enables them by issuing a privileged instruction or set-
ting a bit in a model-specific register. If disabled, the system safely
ignores scrubbing instructions, requiring no change to existing op-
erating systems.

19

3.4 Software Responsibilities
This section describes modifications to the memory manager to en-
able it to eliminate useless reads and writes to main memory using
scrubbing instructions. A region allocator or a garbage collector
may only reclaim memory if it determines that the region is dead
and the program will never read from the region again. We imple-
ment scrubbing in a stop-the-world high-performance generational
Immix collector [7]. At the end of each nursery collection, the
collector has copied all reachable objects from the nursery region
to the mature space. The collector thus guarantees that the entire
nursery is dead. We modify the collector to iterate over the entire
nursery’s contiguous address range, calling a scrubbing instruction
(clinvalidate, clundirty, or clclean) for each cache-line-sized block.
We also modify the memory manager to issue our zeroing instruc-
tions to zero initialize regions during regular program execution, re-
placing the store instructions normally used. Our memory manager
manages memory, and in particular the nursery, in 32 KB regions,
zeroing a region on demand when the program first allocates into it.
We modify the allocator to iterate over each cache-line-sized block
in the 32 KB region, calling clzero2 to initialize each line without
fetching from memory. We evaluated zeroing at all three cache lev-
els, but found L2 to be most effective because of the granularity of
zeroing.

We also explored instructions that perform invalidations at larger
granularities with similar results [44], but choose cache-line granu-
larity instructions because they better correspond to existing mem-
ory instructions, easing their hardware implementation. Cache-line
granularity is also more suitable for other memory managers, such
as free-lists and Immix’s line and block organization [7]. We leave
exploration of larger granularities to future work.

4. METHODOLOGY
This section describes our software and simulator methodology, in-
cluding the processor and memory architecture model, simulator
extensions, JVM, and benchmarks.

4.1 Simulation Methodology

Sniper simulator. We modify Sniper [11], a parallel, high-
speed, and cycle-level x86 simulator for multicore systems. We
are unaware of any other publicly available cycle-level simula-
tor that executes Java workloads on multicore hardware, which is
required to evaluate scrubbing. Sniper uses a higher abstraction
level than most cycle-level simulators and exploits parallelism on
modern multicore hardware to achieve simulation speeds of up to
2 MIPS. Sniper can transition between a fast functional-only simu-
lation model and a fully detailed simulation mode with timing and
microarchitectural state changes. Sniper is validated against Intel
Core2 and Nehalem class hardware with average absolute errors of
around 20% for performance compared to real hardware, which is
in line with other academic architectural simulators. In addition to
performance, Sniper models and predicts power consumption using
the McPAT framework [17].

Processor architecture. Sniper models a multicore processor
with four superscalar out-of-order cores. Table 3 describes the
basic architecture characteristics, including the private L1-I, L1-
D and L2 caches, and shared last-level cache, which is similar
to Intel’s Nehalem machine. We model a 32-entry store queue
which tracks architecturally committed stores while they are is-
sued to the memory hierarchy; stores do not block commit until
this store buffer fills up. Memory writes use a write-fetch write-

Component Parameters

Processor 1 socket, 4 cores
Core 2.66 GHz, 4-way issue, 128-entry ROB
Branch predictor hybrid local/global predictor
Max. outstanding 48 loads, 32 stores, 10 L1-D misses
Cache line size 64 B, LRU replacement
L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache shared 8 MB, 16 way, 30 cycle
Coherence protocol MESI
Memory controller FR-FCFS scheduling, line-interleaved

mapping, open-page policy
DRAM organization 32 GB, 2 channels, 4 ranks/channel,

8 banks/rank, 64 K rows/bank, 8 KB rows
DRAM device Micron DDR3 [39]

Table 3: Architecture model.

allocate write-back caching policy. We model write buffers in front
of DRAM and simulate a DDR3 DRAM main memory based on
specifications from Micron [39].

Extensions for Java. We use Jikes RVM [2, 7] and modified
Sniper to work with its Just-In-Time (JIT) compilers that generate
code during execution. To faithfully simulate multicore hardware
running Java workloads, we extended Sniper in a number of ways
that are detailed in the following paragraphs.

System call emulation. Because Sniper is a user-level simu-
lator, it may emulate or natively run system calls made by either
the application or Jikes RVM. In an initial study, we measured sys-
tem time with the strace and time utilities, and found that the
benchmarks spend between 1 to 93% of time in system calls on an
Intel Nehalem machine. We measured these numbers on the first
iteration with replay compilation [9, 16] to reflect system calls dur-
ing JVM start-up. We found that only two system calls contribute
to almost all system time (all others are less than 0.5% of system
time), those relating to synchronization: futex and nanosleep.

Consequently in all the experiments in this paper, we emulate
these two system calls in Sniper and run other system calls na-
tively. Sniper emulates futex-based synchronization calls by mak-
ing threads wait and wake each other up at the correct simulated
times. Emulation thus ensures that Sniper accounts for 99.5% of
the total execution time. Since Java virtual machines use sepa-
rate threads for GC, JIT, profiling, and application threads, even
single-threaded applications are implicitly multi-threaded and the
number of threads almost always exceeds the four cores we model.
Because Sniper is a user-level simulator, we add a simple round-
robin thread scheduler to Sniper. Sniper selects an available thread
for a core once the running thread’s time quantum expires (after
1 millisecond), or when the running thread blocks on a synchro-
nization event.

JVM-simulator communication. Simulating cooperative
hardware/software mechanisms requires communication between
the JVM and hardware simulator. Sniper defines the magic instruc-
tion xchg %bx, %bx for this purpose, which is an x86 instruction
that in normal execution has no effect. The simulator intercepts the
magic instruction and reads the %eax and %ebx registers, which
specify the type of scrubbing or zeroing instruction and the address.

20

0%

20%

40%

60%

80%

100%

120%

a
n

tl
r

a
v
ro

ra

b
lo

a
t

fo
p

jy
th

o
n

lu
in

d
e

x

lu
s
e

a
rc

h

lu
s
e

a
rc

h
.f

ix

p
m

d

s
u

n
fl
o

w

x
a

la
n

M
e

a
n

W
ri
te

s
 /

 b
a

s
e

lin
e

 (
%

)
DRAM Writes

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%
220%

a
n

tl
r

a
v
ro

ra

b
lo

a
t

fo
p

jy
th

o
n

lu
in

d
e

x

lu
s
e

a
rc

h

lu
s
e

a
rc

h
.f

ix

p
m

d

s
u

n
fl
o

w

x
a

la
n

M
e

a
n

R
e

a
d

s
 /

 b
a

s
e

lin
e

 (
%

)

DRAM Reads

antlr avrora bloat fop jython luindex lusearch lusearch.fix pmd sunflow xalan Mean

clzero2 clinvalidate clundirty clclean clinvalidate+clzero2 clundirty+clzero2 clclean+clzero2

Figure 2: Relative number of DRAM reads and writes for an 8 MB nursery. All scrubbing instructions eliminate a large fraction of
useless writes and clclean also eliminates reads. Zeroing instructions eliminate most DRAM reads. Together they effectively eliminate
most useless memory traffic.

We use Jikes RVM’s low-level, low-overhead syscall mechanism to
invoke Sniper’s magic instructions. At the appropriate time, Jikes
RVM invokes a scrubbing or zeroing instruction for each of the ap-
propriate cache lines. Sniper models each instruction’s effect in
hardware, fully accounting for all overheads (including coherence
and propagation events to other cache levels).

4.2 Software
Java virtual machine. We modify version 3.1.2 of Jikes
RVM [2] to communicate with Sniper when it zeroes and scrubs
memory. We specify four garbage collection threads, and for con-
figurable multi-threaded workloads, we specify four application
threads. All application and JVM service threads migrate between
the four cores (on one socket) using Sniper’s scheduler. This con-
figuration works well, as measured by prior work [45].

We use the default production Jikes RVM configuration which
uses a generational collector with an Immix mature space [7]. We
use a practical heap size of 2× the minimum required for each
benchmark. This configuration reflects moderate heap pressure.
We use the default boundedNursery, which initializes the nurs-
ery to the bound size, but when the mature space is too limited
to accommodate all nursery survivors, it reduces the nursery size
accordingly, down to a minimum size of 1 MB. We eliminate the
non-determinism of the adaptive compiler by performing replay
compilation [9, 16]. The replay JIT compiler applies a fixed op-
timization plan when it first compiles each method [9, 19]. The
plan includes a mix of optimization levels, which is calculated
offline from recorded profiling information from numerous execu-
tions. We select the plan that gives the best performance, producing
a highly optimized base configuration. We report the second invo-
cation of the application, further limiting non-determinism and ex-
cluding JIT time to measure application steady-state behavior. We
repeat this process three times and report averages and standard
deviations in all graphs.

Java benchmarks. We execute 11 benchmarks from the Da-
Capo suite, taken from versions 2006-10-MR2 and 9.12-bach [8].
We use seven benchmarks from the 9.12-bach DaCapo release:
those that work on our version of Jikes RVM and with our sim-
ulator. We use two versions of lusearch: the original lusearch

and lusearch.fix which eliminates needless allocation (identified
by [54]). We use three benchmarks from the 2006-10-MR2 Da-
Capo suite: antlr, bloat, and fop. Five benchmarks (antlr, bloat,
fop, jython, luindex) are single-threaded and six (avrora, lusearch,
lusearch.fix, pmd, sunflow, xalan) are multi-threaded.

5. EVALUATION
This section first evaluates the DRAM bandwidth, energy, and per-
formance savings of scrubbing with the 8 MB nursery in detail. We
then study the relationship of the nursery size to the last-level cache
size, showing that scrubbing is effective at all ratios. The best per-
forming scrubbing instruction alone is clclean because it saves both
write and read traffic. Combining clclean with clzero2 is the most
effective at saving critical off-chip bandwidth and DRAM energy.

5.1 Reduction in DRAM Bandwidth Demand
Figure 2 plots the percentage of DRAM writes and reads saved with
clzero2, clinvalidate, clundirty, and clclean, individually, and then
each scrubbing instruction plus clzero2. The results for an 8 MB
nursery are normalized to unoptimized runs for each benchmark.

On average, scrubbing alone saves about 60% of DRAM writes
as compared with an unoptimized run, as predicted in Section 2.3.
In particular, bloat, jython, lusearch, lusearch.fix, and sunflow
substantially benefit from scrubbing, saving around 80% of off-
chip writes. As expected, clzero2 has a small effect on DRAM
writes, but saves about 86% of DRAM reads.

All three scrubbing instructions (second, third, and fourth bars in
Figure 2) are similarly highly effective at reducing DRAM writes.
However, differences emerge when we analyze their impact on
DRAM reads. The clinvalidate instruction increases the number
of reads because it evicts all dead lines from cache. Using the com-
mon fetch and write-allocate cache policy, a subsequent write (to
zero initialize the address upon fresh allocation) must fetch the data
again from memory. The clundirty instruction does not change the
number of reads from memory, since it has no effect on cache re-
placement.

The best performing scrubbing instruction is clclean. It elimi-
nates both useless writes and reads, reducing DRAM reads by about
40% on average. The clclean instruction unsets the dirty bit and

21

-20%

0%

20%

40%

60%

a
n

tl
r

a
v
ro

ra

b
lo

a
t

fo
p

jy
th

o
n

lu
in

d
e

x

lu
s
e

a
rc

h

lu
s
e

a
rc

h
.f

ix

p
m

d

s
u

n
fl
o

w

x
a

la
n

M
e

a
nE
n

e
rg

y
 r

e
d

u
c
ti
o

n
 (

%
) Total DRAM Energy

-20%
0%

20%
40%
60%
80%

100%

a
n

tl
r

a
v
ro

ra

b
lo

a
t

fo
p

jy
th

o
n

lu
in

d
e

x

lu
s
e

a
rc

h

lu
s
e

a
rc

h
.f

ix

p
m

d

s
u

n
fl
o

w

x
a

la
n

M
e

a
nE
n

e
rg

y
 r

e
d

u
c
ti
o

n
 (

%
) Dynamic DRAM Energy

antlr avrora bloat fop jython luindex lusearchlusearch.fix pmd sunflow xalan Mean

clzero2

clinvalidate

clundirty

clclean

clinvalidate+clzero2

clundirty+clzero2

clclean+clzero2

Figure 3: Reduction in DRAM total energy and DRAM dy-
namic energy for an 8 MB nursery. Cooperative cache scrubbing
improves total DRAM energy and dramatically improves dynamic
DRAM energy.

moves the line to the LRU position, such that if this set requires
a subsequent eviction, the cache will evict the line. The dead and
unreachable data is evicted lazily if necessary, and the cache re-
tains more likely useful, live data. Furthermore, clclean moves
nursery data to the LRU position in a sequential order, from the
beginning to the end of the nursery address range, which puts ad-
dresses from the end of nursery to be evicted next and keeps early
nursery addresses, which will be used again soon for allocation. In
contrast, clundirty evicts nursery data based on last-touch, which
is less likely to retain early nursery addresses. The clclean instruc-
tion thus hits a sweet spot, improving beyond the overly aggressive
eviction policy with clinvalidate and no change to the eviction pol-
icy with clundirty.

We next evaluate the impact of each scrubbing instruction when
combined with cache-line zeroing and we show that they perform
synergistically together. The right three bars of each grouping in
Figure 2 show that adding zeroing to scrubbing has little additional
effect on writes to DRAM. However, DRAM reads are signifi-
cantly reduced by adding clzero2 to scrubbing. Combining zero-
ing with clinvalidate is especially advantageous as it results in a
significant decrease in DRAM reads instead of an increase. Clin-
validate alone kicks dead data out of cache, and thus requires a
fetch on subsequent access. Because the zeroing instruction, how-
ever, avoids this fetch by instantiating the data directly in cache,
clinvalidate+clzero2 saves around 86% of DRAM reads. Adding
clzero2 to either clundirty or clclean similarly saves the DRAM
fetch for zeroing nursery data, equalizing the scrubbing instructions
that keep nursery data in cache but evict it in different orders. All
benchmarks save at least 65% of reads from DRAM. Using scrub-
bing and zeroing together, we save on average 86% of reads, and
overall 75% of DRAM traffic (see Table 4).

5.2 DRAM Energy Reduction
The graphs in Figure 3 plot total and dynamic DRAM energy. The
average reduction in dynamic DRAM energy is substantial at 73%.
Because the majority of DRAM energy is currently static [39], the
average total energy reduction is 20%. Energy reduction is larger
than, but mirrors, the performance improvements in Figure 4. Be-
cause modern memory systems hide the latency of writes and some
reads, reducing memory traffic does not always translate directly
into performance. Optimizing with clclean+clzero2 leads to an
overall 20% reduction in total DRAM energy, larger than the av-
erage 12% for clzero2 alone or 14% for clclean alone. For luse-
arch, clclean is particularly effective: it saves 45% of total DRAM
energy by itself and together with clzero2, it saves 58%.

The bottom graph of Figure 3 shows that scrubbing dramati-
cally saves dynamic DRAM energy. Alone, clzero2 saves 41% of
dynamic energy on average. Clinvalidate saves 20% on average,
while clundirty and clclean save 32% and 50% of dynamic energy,
respectively. Adding clzero2 to scrubbing improves dynamic en-
ergy savings even more: 73% on average. The large savings of
both DRAM reads and writes correspond to large reductions in dy-
namic and total DRAM energy, which will only become a more
precious commodity in future systems.

-10%

0%

10%

20%

30%

a
n

tl
r

a
v
ro

ra

b
lo

a
t

fo
p

jy
th

o
n

lu
in

d
e

x

lu
s
e

a
rc

h

lu
s
e

a
rc

h
.f

ix

p
m

d

s
u

n
fl
o

w

x
a

la
n

M
e

a
n

E
x
e

c
u

ti
o

n
 t

im
e

 r
e

d
u

c
ti
o

n Execution time

antlr avrora bloat fop jython luindex lusearchlusearch.fix pmd sunflow xalan Mean

clzero2

clinvalidate

clundirty

clclean

clinvalidate+clzero2

clundirty+clzero2

clclean+clzero2

Figure 4: Reduction in execution time for an 8 MB nursery.
Cooperative cache scrubbing improves performance.

5.3 Performance
Figure 4 shows the reduction in total execution time for each bench-
mark when using zeroing, scrubbing, and both optimizations to-
gether. Table 4 shows that scrubbing not only reduces memory traf-
fic, it also reduces the average last-level cache (LLC) misses sub-
stantially: 86% for the 8 MB nursery. Reductions in memory traf-
fic and decreases in last-level cache misses explain execution time
improvements. Because the popular write-back policy coalesces
writes and writes generally do not stall the instruction pipeline, per-
formance improvements are modest.

By itself, clzero2 improves performance by 5%, because of its
large reduction in DRAM reads and in last-level cache misses.Even
though non-blocking writes should achieve some of the benefits of
clzero2, we found that the bursts of initializing writes for 32 KB re-
gions overwhelmed the 32 entry store queues on occasion. Avoid-
ing these DRAM-related stalls with clzero2 removes stalls due to
full store queues that occur with normal zeroing store instructions.

Scrubbing with clinvalidate, clundirty, and clclean each alone
improves performance on average by 0.5%, 2%, and 3.3%, respec-
tively. Clclean reduces execution time by saving reads and writes
to memory, as well as reducing last-level cache misses by 39%,
proving itself to be the most effective scrubbing instruction. In par-

22

-20%

0%

20%

40%

60%

80%

4MB 8MB 16MB

T
ra

ff
ic

 r
e
d
u
c
ti
o
n
 (

%
)

Nursery size

Total DRAM Traffic

14x
-5%

0%

5%

10%

15%

20%

25%

4MB 8MB 16MB

E
n
e
rg

y
 r

e
d
u
c
ti
o
n
 (

%
)

Nursery size

Total DRAM Energy

-22%

4M 8M 16M

clzero2 clinvalidate clundirty clclean clinvalidate+clzero2 clundirty+clzero2 clclean+clzero2

Figure 5: Reduction in DRAM traffic and energy for 4, 8, and 16 MB nurseries, normalized to unoptimized for each nursery size.
Scrubbing saves DRAM traffic and energy at all nursery sizes, and is particularly effective at nursery sizes equal to or larger than the
last-level cache.

Nursery size 4 MB 8 MB 16 MB

DRAM Reads -57.54% -86.10% -86.35%
DRAM Writes -12.54% -61.50% -35.52%
Total DRAM Traffic -40.86% -74.65% -62.46%
LLC misses -57.54% -86.10% -86.35%
Execution time -0.84% -5.92% -6.93%
Dynamic DRAM Energy -38.80% -73.45% -59.98%
Total DRAM Energy -3.09% -20.30% -19.17%

Table 4: Improvements for all metrics normalized to unopti-
mized at the same nursery size due to clclean+clzero2. Coopera-
tive cache scrubbing is very effective at reducing DRAM accesses
and improving energy efficiency.

ticular, clclean improves the performance of lusearch by 13% be-
cause lusearch stresses DRAM bandwidth more than other bench-
marks. We recommend clclean since it performs best by itself and
all scrubbing instructions perform similarly with clzero2, saving
6% of execution time by saving substantial DRAM traffic.

5.4 Varying the Nursery Size
The effectiveness of scrubbing is influenced by the ratio of the last-
level cache and the nursery size, particularly because we scrub at
the last level of cache (which propagates to all levels in an inclu-
sive cache hierarchy). This section presents results for three nurs-
ery sizes, and shows that scrubbing is effective on all of them. We
expect these results to hold for other similar ratios of nursery and
last-level cache sizes. Figure 5 compares both the overall reduc-
tion in DRAM traffic and total DRAM energy averaged over all
benchmarks on 4 MB, 8 MB, and 16 MB nurseries normalized to no
scrubbing for each nursery size. Dynamic DRAM energy savings
follow the same trends as traffic, and execution time reductions fol-
low the same trends as total DRAM energy (results omitted due to
space limitations). Scrubbing is less effective on very small nursery
sizes such as 4 MB, half the size of our 8 MB last-level cache.

The left side of Figure 5 shows that clinvalidate saves the least
DRAM traffic. In fact, for a 4 MB nursery, which fits in the 8 MB
last-level cache, kicking dead cache lines out of the last-level cache
after collection increases DRAM traffic by 14× over the unopti-
mized version due to extra reads from memory. This phenomenon
is especially a problem for bloat, jython, lusearch.fix and sunflow,
as they incur 22×, 90×, 50×, and 49× increases, respectively, in

DRAM reads. (We do not show individual program results due
to space limitations.) This increase is large because the unopti-
mized baseline number of reads is very low. Figure 1 confirms
these results by showing that for a 4 MB nursery, almost 100% of
dead lines are written to while in cache. With a 16 MB nursery,
clinvalidate slightly increases DRAM reads (by 5.6%), and lowers
DRAM writes (by 36%), leading to an overall 14% reduction in
traffic. Results show, however, that when combined with clzero2,
all scrubbing instructions perform well.

All scrubbing configurations improve DRAM traffic over the un-
optimized version (besides clinvalidate with the small nursery).
With a 4 MB nursery, DRAM traffic is reduced slightly or kept
the same for scrubbing, improves by 37% for zeroing, and 40%
for both together. With the more realistic 16 MB nursery, scrub-
bing instructions alone reduce traffic by 14 to 19% from the un-
optimized 16 MB amount. While zeroing the 16 MB nursery saves
45% of unoptimized traffic, together scrubbing and zeroing save
62%. Scrubbing and zeroing work together synergistically to save
significantly more traffic than either alone, at all nursery sizes.

The right side of Figure 5 shows that all scrubbing configura-
tions improve DRAM energy, except for the degradation for clin-
validate with a 4 MB nursery, which reflects the increase in traffic
experienced by that configuration. The 8 MB and 16 MB nurseries
obtain similar energy improvements with our optimizations, while
the smaller nursery sees smaller reductions. With a 4 MB nursery,
clzero with scrubbing sees an energy reduction of 3 to 3.7%. While
clclean is most effective at reducing energy with an 8 MB nurs-
ery (14%), with the largest nursery it reduces energy by 7%, while
speeding up execution time by 2% (not shown). Zeroing alone on
a 16 MB nursery reduces energy by 13%, which corresponds to a
6% execution time savings (not shown). Together, scrubbing and
zeroing save on average 19% of DRAM energy with a 16 MB nurs-
ery, compared to 20% with 8 MB (see Table 4). The larger nursery
size with both optimizations achieves the smallest overall execution
time across our benchmarks, and a 7% execution time savings over
unoptimized. Scrubbing and zeroing together can save significant
energy, especially at larger nursery sizes, which are preferred by
many JVMs.

Results summary. Table 4 presents savings averaged over the
benchmarks for the best configuration, clclean+clzero2, for all
three nursery sizes, normalized to each nursery size’s unoptimized
run. The dynamic energy savings have similar trends as DRAM

23

traffic savings. Last-level cache miss savings are the same as
DRAM read savings. The results for execution time are smaller
than, but follow similar trends as, the total DRAM energy results in
Figure 5. While using a small 4 MB nursery saves less traffic and
less energy, we still see benefits due to scrubbing. We see the most
improvements on larger nursery sizes. While the 16 MB nursery
saves less total DRAM traffic than with 8 MB, 62% versus 75%,
and less total DRAM energy, 19% versus 20%, the larger nursery
saves slightly more last-level cache misses, and leads to a larger
performance improvement of 6.9%. Averaging savings across the
three nursery sizes, we get improvements of 59% for traffic and
14% and 57% for total and dynamic DRAM energy, respectively.
Scrubbing is very effective and robust across nursery sizes, and
will likely work well on nurseries larger than the last-level cache
in future machines. Furthermore, in multiprogrammed workloads
where programs must share the last-level cache, we believe that
scrubbing will also improve cache management and decrease com-
petition for bandwidth to main memory, while reducing energy.

6. RELATED WORK
This section surveys work that optimizes cache behavior by us-
ing software-hardware cooperation, prefetching, by designing a
new architecture, by identifying dead cache lines, and by chang-
ing cache set replacement policies.

Cooperative cache management. The ESKIMO system is
most closely related to our work [23]. They identify useless write
backs in C programs. They propose changes to hardware includ-
ing a 100 KB map in memory, cache line tags, and instructions for
communication between software and hardware. Software com-
municates allocated and freed data blocks, which may be smaller
or larger than the cache line granularity, to hardware to reduce en-
ergy and power requirements for DRAM. To optimize cache per-
formance as well as memory performance, they reimplement pre-
vious work by Lewis et al. [32] to avoid fetching from memory
for writes to addresses in this map. The large hardware map, fine-
grained changes to the allocation and free software interfaces, and
lack of a memory coherence approach for multicore processors
make this work impractical. Whereas ESKIMO targets sequential
C programs, our approach works for parallel programs on multicore
hardware with small changes to cache coherence mechanisms. On
the software side, we exploit contiguous region allocators that iden-
tify a large region of memory that is dead at one time, and present
an opportunity for en-masse scrubbing of those cache lines. Re-
ducing memory traffic is more important for managed languages,
as we consider in this paper, than for explicitly-managed C pro-
grams because of the higher allocation rates typically observed in
these applications [8]. In summary, our scrubbing instructions are
simple, practical to implement, and work well with multicore cache
coherence policies.

Prior work extensively analyzed the cost of zero initializa-
tion [54], which is required by Java and essentially all managed lan-
guage specifications. They report that zeroing consumes 2.7-4.5%
of execution time on average across several architectures, causes
cache pollution, and is responsible for 25% of memory traffic. They
propose non-temporal writes of zeroes that go directly to memory,
bypassing the cache entirely. This software-only technique and an-
other that spawns a concurrent thread to perform zeroing reduce
both the performance overhead due to zeroing instructions and the
perturbation in the cache. However, without the hardware support
of an in-cache zeroing instruction, their non-temporal zeroing in-
creases traffic to memory and bandwidth usage significantly, some-
times doubling the bandwidth over normal temporal stores [54].

We instead zero cache lines directly without fetching them from
memory to save the critical resource of off-chip bandwidth, while
minimizing cache displacement.

Prefetching. Prior work proposes a cooperative software-
hardware technique to improve cache replacement decisions and
prefetching based on program data usage [46, 49, 50]. Static anal-
ysis identifies data that both will and will not be reused again and
passes this information to hardware as hints on memory instruc-
tions. The hardware has one extra bit per cache line to optimize the
choice of what to evict from the cache for C and Fortran programs.
While this research focuses on software-hardware cooperation, the
hints are based on static program information and do not guarantee
that the data that should be evicted is dead or will not be used again
by the program. Other work has used software-only prefetching to
improve garbage collection performance [12, 15].

Co-designed architecture. Prior works propose new memory
architectures that are co-designed with the JVM, directly support-
ing objects and/or garbage collection [38, 51, 53]. While such an
architecture can improve memory performance, it requires a radi-
cal re-design, whereas our technique works with minimal changes
to existing hardware and is language-agnostic.

Write policies. Jouppi investigated cache policies and their ef-
fect on performance [26]. The best write-validate policy com-
bines no-fetch-on-write and write-allocate for good performance.
This prior work motivates zeroing cache lines without reading from
memory and limiting write-back traffic to memory, both of which
we target in this paper.

Cache replacement and dead cache line prediction. A
large body of work focuses on changing the order of replacement
for cache lines within a cache set to improve performance, see
for example [6, 25, 27, 42, 52]. Hardware approaches also pre-
dict which blocks in cache can be evicted based on usage pat-
terns, mainly for more agressive prefetching [1, 18, 28, 29, 30,
34, 36]. This work uses the cache hierarchy more efficiently by re-
placing cache lines the program will not reference again soon. Any
hardware-only approach suffers from mispredictions, and because
they lack semantic information about future program accesses, they
must always write modified data to other levels of the memory hi-
erarchy.

7. CONCLUSION
This paper introduces cache scrubbing, a software/hardware coop-
erative technique to reduce memory bandwidth demand. We iden-
tify useless write backs in modern Java benchmarks running on a
modern JVM. We find that 10 to 60% of all write backs to mem-
ory, depending on the nursery size, contain dead data in the highly-
mutated, short-lived nursery address range. We propose cache
scrubbing instructions to remove these useless write backs. Scrub-
bing requires modest changes to both software and hardware. The
Java virtual machine calls scrubbing and zeroing instructions, for
regions that are dead or being zeroed, to communicate program se-
mantics to hardware. In order for hardware to scrub and zero lines
in cache, we present minor changes to the popular MESI cache
coherence protocol, showing how our instructions maintain its in-
variants.

We explore three simple cache line scrubbing instructions, and
evaluate them with an existing zeroing instruction. Our scrubbing
instructions may be used by any programming language implemen-

24

tation to reduce memory traffic at the point the runtime identifies
cache-line-sized blocks of dead data and this paper shows they are
very effective when used with region allocators. We also show that
in-cache zeroing is particularly effective for languages that require
zero initialization; many current architectures fetch lines that will
be completely overwritten with zeroes, wasting a lot of bandwidth
and computing resources.

To evaluate these instructions, we built a new simulation method-
ology and followed existing best practices to simulate multi-
threaded Java workloads relatively quickly on multicore hardware.
We reveal that while the best scrubbing instruction is clclean, which
undirties cache lines and moves them to the LRU position, adding
clzero2 to clclean overall is the most effective at saving substan-
tial amounts of DRAM traffic, DRAM energy, and execution time
across a range of nursery sizes.

In summary, scrubbing effectively diminishes the use of two of
the most critical system resources in multicore systems: bandwidth
and power. Cooperating between software and hardware will only
become more important as future multiprocessors demand increas-
ing levels of efficiency.

Acknowledgements
This work was supported in part by the European Research Council
under the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC Grant agreement no. 259295 and by NSF
grant SHF-0910818. We would like to thank Karin Strauss for her
help on the cache coherence protocol invariants and how scrubbing
can maintain them. Also, thank you to Jeff Stuecheli and John
Carter for their help on understanding the PowerPC instructions.

8. REFERENCES
[1] J. Abella, A. Gonzalez, X. Vera, and M. O’Boyle. IATAC: A

smart predictor to turn-off L2 cache lines. ACM Transactions
on Architecture and Code Optimization (TACO), 2(1):55–77,
2005.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapeño virtual machine. IBM Systems
Journal, 39(1):211–238, 2000.

[3] ARM. ARM946E-S Revision: r1p1 Technical Reference
Manual, 2007.

[4] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering
custom memory allocation. In ACM Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 1–12, Nov. 2002.

[5] S. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. In
Measurement and Modeling of Computer Systems
(SIGMETRICS), pages 25–36, 2004.

[6] S. Blackburn and K. S. McKinley. Transient caches and
object streams. Technical Report TR-CS-06-03, Australian
National University, Department of Computer Science,
October 2006.

[7] S. Blackburn and K. S. McKinley. Immix: A mark-region
garbage collector with space efficiency, fast collection, and
mutator performance. In ACM Programming Language
Design and Implementation (PLDI), pages 22–32, 2008.

[8] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, F. D., S. Z.

Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In ACM
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 169–190, 2006.

[9] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffman,
A. M. Khan, R. Bentzur, A. Diwan, D. Feinberg,
D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump,
H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. Wake
Up and Smell the Coffee: Evaluation Methodology for the
21st Century. Communications of the ACM, 51(8):83–89,
Aug. 2008.

[10] D. Burger, J. R. Goodman, and A. Kagi. Memory bandwidth
limitations of future microprocessors. In International
Symposium on Computer Architecture (ISCA), pages 78–89,
1996.

[11] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper:
Exploring the level of abstraction for scalable and accurate
parallel multi-core simulation. In Conference on High
Performance Computing Networking, Storage and Analysis
(Supercomputing – SC), number 52, 2011.

[12] C.-Y. Cher, A. L. Hosking, and T. N. Vijaykumar. Software
prefetching for mark-sweep garbage collection: Hardware
analysis and software redesign. In International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 199–210, 2004.

[13] C. Click. Azul’s experiences with hardware/software
co-design. Keynote at ECOOP ’09, July 2009.

[14] D. I. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol
verification as a hardware design aid. In IEEE International
Conference on Computer Design, pages 522–525, 1992.

[15] R. Garner, S. M. Blackburn, and D. Frampton. Effective
prefetch for mark-sweep garbage collection. In The 2007
International Symposium on Memory Management (ISMM),
pages 43–54, Oct 2007.

[16] J. Ha, M. Gustafsson, S. Blackburn, and K. S. McKinley.
Microarchitectural characterization of production JVMs and
Java workloads. In IBM CAS Workshop, 2008.

[17] W. Heirman, S. Sarkar, T. E. Carlson, I. Hur, and
L. Eeckhout. Power-aware multi-core simulation for early
design stage hardware/software co-optimization. In
International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 3–12, Sept. 2012.

[18] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the
memory system: Predicting and optimizing memory
behavior. In International Symposium on Computer
Architecture (ISCA), pages 209–220, 2002.

[19] X. Huang, Z. Wang, S. Blackburn, K. S. McKinley, J. E. B.
Moss, and P. Cheng. The garbage collection advantage:
Improving mutator locality. In ACM Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 69–80, 2004.

[20] IBM. Power ISA Version 2.06 Revision B, 2010.
[21] H. Inoue, H. Komatsu, and T. Nakatani. A study of memory

management for web-based applications on multicore
processors. In ACM Programming Language Design and
Implementation (PLDI), pages 386–396, 2009.

[22] Intel. Intel Xeon Phi coprocessor instruction set architecture
reference manual, 2012.

25

[23] C. Isen and L. John. ESKIMO: Energy savings using
semantic knowledge of inconsequential memory occupancy
for DRAM subsystem. In ACM/IEEE International
Symposium on Microarchitecture, pages 337–346, 2009.

[24] L. Ivanov and R. Nunna. Modeling and verification of cache
coherence protocols. In IEEE International Symposium on
Circuits and Systems, pages 129–132, 2001.

[25] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. Emer. High
performance cache replacement using re-reference interval
prediction (RRIP). In International Symposium on Computer
Architecture (ISCA), pages 60–71, 2010.

[26] N. P. Jouppi. Cache write policies and performance. In
International Symposium on Computer Architecture (ISCA),
pages 191–201, 1993.

[27] M. Kampe, P. Stenstrom, and M. Dubois. Self-correcting
LRU replacement policies. In Conference on Computing
Frontiers, pages 181–191, 2004.

[28] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache leakage
power. In International Symposium on Computer
Architecture (ISCA), pages 240–251, 2001.

[29] M. Kharbutli and Y. Solihin. Counter-based cache
replacement and bypassing algorithms. IEEE Transactions
on Computers, 57(4):433–447, 2008.

[30] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction &
dead-block correlating prefetchers. In International
Symposium on Computer Architecture (ISCA), pages
144–154, 2001.

[31] C. Lefurgy, K. Rajamani, F. L. Rawson III, W. M. Felter,
M. Kistler, and T. W. Keller. Energy management for
commercial servers. IEEE Computer, 36(12):39–48, 2003.

[32] J. A. Lewis, B. Black, and M. H. Lipasti. Avoiding
initialization misses to the heap. In International Symposium
on Computer Architecture (ISCA), pages 183–194, 2002.

[33] H. Lieberman and C. E. Hewitt. A real time garbage
collector based on the lifetimes of objects. Communications
of the ACM (CACM), 26(6):419–429, 1983.

[34] W.-F. Lin, S. K. Reinhardt, and D. Burger. Designing a
modern memory hierarchy with hardware prefetching. IEEE
Transactions on Computers, 50(11):1202–1218, 2001.

[35] F. Liu, X. Jiang, and Y. Solihin. Understanding how off-chip
memory bandwidth partitioning in chip multiprocessors
affects system performance. In International Symposium on
High-Performance Computer Architecture (HPCA), pages
57–68, 2010.

[36] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts: A
new approach for eliminating dead blocks and increasing
cache efficiency. In ACM/IEEE International Symposium on
Microarchitecture, pages 222–233, 2008.

[37] K. McMillan. Symbolic model checking. Technical Report
CMU-CS-92-131, Carnegie Mellon University, 1992.

[38] M. Meyer. An on-chip garbage collection coprocessor for
embedded real-time systems. In Proceedings of the 11th
IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages
517–524, Washington, DC, USA, 2005.

[39] Micron. TN-41-01: Calculating memory system power for
DDR3, 2007.

[40] D. Molka, D. Hackenberg, R. Schone, and M. Muller.
Memory performance and cache coherency effects on an
Intel Nehalem multiprocessor system. In Parallel

Architectures and Compilation Techniques (PACT), pages
261–270, 2009.

[41] M. S. Papamarcos and J. H. Patel. A low-overhead coherence
solution for multiprocessors with private cache memories. In
International Symposium on Computer Architecture (ISCA),
pages 348–354, 1984.

[42] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and
J. Emer. Adaptive insertion policies for high performance
caching. In International Symposium on Computer
Architecture (ISCA), pages 381–391, 2007.

[43] B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang, and
Y. Solihin. Scaling the bandwidth wall: Challenges in and
avenues for CMP scaling. In International Symposium on
Computer Architecture (ISCA), pages 371–382, 2009.

[44] J. B. Sartor. Exploiting Language Abstraction to Optimize
Memory Efficiency. PhD thesis, The University of Texas at
Austin, 2010.

[45] J. B. Sartor and L. Eeckhout. Exploring multi-threaded Java
application performance on multicore hardware. In
Proceedings of the ACM international conference on Object
oriented programming systems languages and applications
(OOPSLA), pages 281–296, 2012.

[46] J. B. Sartor, S. Venkiteswaran, K. S. McKinley, and Z. Wang.
Cooperative caching with keep-me and evict-me. In
Workshop on Interaction between Compilers and Computer
Architectures, pages 46–57, 2005.

[47] E. Sikha, R. Simpson, C. May, and H. Warren. The PowerPC
Architecture: A Specification for a New Family of RISC
Processors. Morgan Kaufmann Publishers, 1994.

[48] D. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In Software
Engineering Symposium on Practical Software Development
Environments (SESPSDE), pages 157–167, 1984.

[49] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and
C. C. Weems. Guided region prefetching: A cooperative
hardware/software approach. In International Symposium on
Computer Architecture (ISCA), pages 388–398, 2003.

[50] Z. Wang, K. S. McKinley, A. L. Rosenberg, and C. C.
Weems. Using the compiler to improve cache replacement
decisions. In Parallel Architectures and Compilation
Techniques (PACT), pages 199–210, 2002.

[51] M. Wolczko and I. Williams. An alternative architecture for
objects: Lessons from the mushroom project. In ACM
OOPSLA Workshop on Memory Management and Garbage
Collection, 1993.

[52] W. A. Wong and J.-L. Baer. Modified LRU policies for
improving second-level cache behavior. In
High-Performance Computer Architecture (HPCA), pages
49–60, 2000.

[53] G. Wright, M. L. Seidl, and M. Wolczko. An object-aware
memory architecture. Sci. Comput. Program.,
62(2):145–163, Oct. 2006.

[54] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and
K. S. McKinley. Why nothing matters: The impact of
zeroing. In ACM International Conference on Object
Oriented Programming Systems Languages and Applications
(OOPSLA), pages 307–324, 2011.

[55] Y. Zhao, J. Shi, K. Zheng, H. Wang, H. Lin, and L. Shao.
Allocation wall: A limiting factor of Java applications on
emerging multi-core platforms. In ACM Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 361–376, 2009.

26

