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ABSTRACT
The release of hardware transactional memory (HTM) in commod-
ity CPUs has major implications on the design and implementation
of main-memory databases, especially on the architecture of high-
performance lock-free indexing methods at the core of several of
these systems. This paper studies the interplay of HTM and lock-
free indexing methods. First, we evaluate whether HTM will ob-
viate the need for crafty lock-free index designs by integrating it
in a traditional B-tree architecture. HTM performs well for simple
data sets with small fixed-length keys and payloads, but its benefits
disappear for more complex scenarios (e.g., larger variable-length
keys and payloads), making it unattractive as a general solution
for achieving high performance. Second, we explore fundamen-
tal differences between HTM-based and lock-free B-tree designs.
While lock-freedom entails design complexity and extra mecha-
nism, it has performance advantages in several scenarios, especially
high-contention cases where readers proceed uncontested (whereas
HTM aborts readers). Finally, we explore the use of HTM as a
method to simplify lock-free design. We find that using HTM to
implement a multi-word compare-and-swap greatly reduces lock-
free programming complexity at the cost of only a 10-15% per-
formance degradation. Our study uses two state-of-the-art index
implementations: a memory-optimized B-tree extended with HTM
to provide multi-threaded concurrency and the Bw-tree lock-free
B-tree used in several Microsoft production environments.

1. INTRODUCTION
Recently, each generation of CPU has increased the number of

processors on a chip, resulting in a staggering amount of paral-
lelism. Transactional memory (TM) [17, 28] has been proposed as
one solution to help exploit this parallelism while easing the bur-
den on the programmer. TM allows for atomic execution of all of
the loads and stores of a critical section, thereby relieving the pro-
grammer from thinking about fine-grained concurrency – a notori-
ously difficult engineering task. With the emergence of hardware
transactional memory (HTM) shipping in commodity CPUs, we
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now have a promising transactional memory implementation that
achieves great performance and is widely available.

In main-memory databases, multi-core scalability is paramount
to achieving good performance. This is especially important at the
access method (indexing) layer since it is the hot path for data ma-
nipulation and retrieval. For decades, fine-grained locking (latch-
ing)1 protocols [13, 22] were the method for achieving index con-
currency. In main-memory systems, however, locks (latches) are a
major bottleneck since there is no I/O on the critical path [10, 15].
This has led to the design and implementation of “lock-free” index-
ing methods. Several commercial systems ship with lock-free in-
dexes. For instance, MemSQL uses lock-free skip-lists [30], while
Microsoft’s Hekaton main-memory engine uses the Bw-tree [10,
27], a lock-free B-tree. To achieve lock-freedom, these designs use
atomic CPU hardware primitives such as compare-and-swap (CAS)
to manipulate index state. While efficient, lock-free designs are dif-
ficult to design and engineer since atomic instructions are limited to
a single word, and non-trivial data structures usually require multi-
word updates (e.g., B-tree splits and merges).

Until recently, lock-free index designs were the only way to
achieve great multi-threaded performance in main-memory sys-
tems. Current designs employ HTM to seamlessly transform
single-threaded implementations into high performance multi-
threaded indexes by speculatively and concurrently executing op-
erations [21, 24]. This approach greatly simplifies the design and
implementation of the index; it provides multi-word atomic up-
dates and pushes conflict adjudication into the hardware transac-
tion. However, it is currently unclear if HTM is a “cure all” general-
purpose technique that achieves the same performance goals as
lock-free designs, and if not, what role HTM might play in the
design and implementation of high-performance indexing.

This paper studies the interplay of HTM and lock-free indexing
methods. Our study answers three fundamental questions. (1) Does
HTM obviate the need for crafty lock-free index designs? Our an-
swer is no. HTM has several limitations and pathologies – such as
high abort rates due to capacity limits – that make it unattractive
as a general solution for production systems that encounter a wide
variety of data and workloads. (2) How does HTM differ from
lock-free index designs? We find that HTM performs poorly in
high contention scenarios. An HTM-based approach aborts readers
that touch a “hot” data item, but lock-free designs do not block nor
abort readers for any reason. (3) Given that lock-free designs are
still relevant, can HTM help simplify lock-free design techniques
while maintaining good performance? Our answer is yes. We find
that using HTM as a building block to create a multi-word CAS
instruction greatly helps simplify lock-free indexing design with

1The database community uses the term “latch” to refer to what is known
as a “lock” elsewhere. We use the term “lock” in this paper.



minimal performance impact. Based on our study, we also provide
an HTM “wish list” of features we hope to see in the future.

We make the following contributions through an empirical eval-
uation of indexing methods based on HTM and lock-free designs.

• An evaluation of HTM as a drop-in concurrency solution
(Section 3). We use HTM to provide concurrency in a “tra-
ditional” B-tree architecture using the cpp-btree [7]. We find
that this approach provides great scalability for moderately
sized data sets with small (8-byte) fixed-size key and pay-
loads. However, for data that mirrors many real-world de-
ployments (variable-length keys, large record counts), this
HTM-based approach performs poorly; in some cases per-
forming worse than serialized performance. We also find that
HTM is not yet suitable for implementing fine-grained B-tree
concurrency techniques such as lock-coupling [13].

• A study of fundamental differences between HTM-based and
lock-free index designs (Section 4). We compare the HTM-
based B-tree to the Bw-tree [27], a lock-free B-tree used
in several Microsoft products including the Hekaton main-
memory DBMS [10]. Lock-freedom requires extra mecha-
nism (e.g., epoch protection for memory safety and main-
tenance due to copy-on-write). However, a lock-free ap-
proach never aborts readers (due to copy-on-write seman-
tics). This feature is advantageous to read performance, espe-
cially when reading data with a high update rate. Meanwhile,
an HTM-based approach that performs update-in-place will
abort readers if their read set overlaps with a write, degrading
read performance by up to 4x in the worst case.

• A study of how HTM can help lock-free designs (Section 5).
Using HTM as a method for performing a multi-word CAS
operation (MW-CAS) helps simplify lock-free design, since
it allows atomic installation of operations that span multiple
arbitrary locations (e.g., for B-tree page splits and merges).
We find that the MW-CAS is a great application of HTM
since it avoids many abort pathologies (since transactions are
small) and provides good performance.

We end by providing a summary discussion of our findings and
provide a wish list for HTM features we hope to see in the future.
The rest of this paper is organized as follows. Section 2 provides
an overview of HTM, the indexing architectures we evaluate, and
our experiment environment. Section 3 provides an experimental
evaluation of HTM used as a drop-in solution for multi-threaded
scalability. We discuss the fundamental differences of HTM-based
and lock-free designs in Section 4. Section 5 discusses how to sim-
plify lock-free indexing design using HTM. Section 6 provides a
discussion and our wish-list for future HTM features. Finally, Sec-
tion 7 covers related work while Section 8 concludes the paper.

2. OVERVIEW
Our goal is to: (1) evaluate HTM as a drop-in solution for con-

currency in main-memory indexing, (2) understand the differences
of HTM-based and lock-free index designs, and (3) explore how
HTM might help simplify state-of-the-art lock-free index designs.
We do not aim to find the “fastest” main-memory index, nor do we
propose a new index design for current HTM offerings. The rest of
this section provides an overview of HTM, the B-tree implementa-
tions we evaluate, and our experiment environment.

atomic {
Withdraw(A,X)
Deposit(B,X)

}

(a) Transactional Memory

AcquireElided(Lock)
Withdraw(A,X)
Deposit(B,X)

ReleaseElided(Lock)

(b) Lock Elision

Figure 1: Overview of Programming Models

2.1 Hardware Transactional Memory
Developing high-performance parallel access schemes for main-

memory data-structures is often a tedious and error prone task lead-
ing to deadlocks and race conditions. Transactional memory aims
to ease this burden by delegating conflict detection and resolution
from the developer to the system. Using transactional memory, a
programmer specifies a set of CPU operations (Figure 1a) and the
system ensures atomic and isolated execution of these operations,
or aborts on conflict.

Hardware transactional memory (HTM) piggybacks on existing
features in CPU micro-architectures to support transactions [17].
First, CPU caches can be used to store transaction buffers and pro-
vide isolation. Second, the CPU cache coherence protocol can be
used to detect conflicting transactional accesses. With these mod-
ifications, CPUs can provide hardware support for transactional
memory with low overhead to runtime. There are constraints, how-
ever, that limit HTM’s usefulness. A primary constraint is that the
read and write set of a transaction must fit in cache in order for it to
be executed. Thus many properties may limit a transaction’s size
including: cache capacity, cache set associativity, hyper-threading,
TLB capacity and others. Another constraint is on transaction du-
ration. Many hardware events, such as interrupts, context switches
or page faults, will abort a transaction (many of these limits were
experimentally verified in previous work [24]). Furthermore, con-
flict detection is usually done at the granularity of a cache line. This
may lead to cases of false sharing where aborts occur due to threads
accessing and modifying separate items on the same cache line.

2.1.1 Lock Elision
These issues make it difficult for HTM implementations to guar-

antee that a transaction will ever succeed even if it is infinitely re-
tried. Therefore, to guarantee forward progress a non-transactional
fallback must be provided. One solution is to use lock elision [33]
that guarantees progress by falling back to non-transactional lock-
based synchronization. A nice feature of lock elision is that it is
identical to programming with locks (Figure 1b). The difference
between traditional lock-based synchronization is that lock elision
first attempts to execute a critical section transactionally, and only
if the transaction aborts will it execute the critical section by ac-
quiring the lock. The benefit of lock elision is that it provides
optimistic concurrency for programs that use simple coarse grain
locks. The hardware ensures that as long as concurrent threads ex-
ecute critical sections that do not have conflicting accesses, they
can run in parallel, thus achieving performance similar to using
fine-grained synchronization. In lock elision, the lock word needs
to be included in the read set of a transaction, so that the transaction
aborts when another thread acquires the lock (thus causing a con-
flict). Hence, once a thread resorts to non-transactional execution
by taking the lock, all other concurrently executing transactions
will abort, stalling overall progress.

2.1.2 Intel TSX
Starting with the Haswell CPU, Intel supports transactional

memory, representing the first mainstream CPU to include such
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Figure 2: Bw-tree lock-free page update and split. Split is broken into
two atomic operations using a CAS on the mapping table.

functionality2. From what is known, it resembles the approach de-
scribed above: a 32KB L1 8-way set associative cache buffers read
and write sets and conflict detection is done at cacheline granular-
ity. According to Intel [18], there is no guarantee that a transaction
will eventually succeed even if it is infinitely retried. Therefore,
lock elision or some other form of non-transactional fallback must
be provided in all cases to ensure forward progress. Intel’s transac-
tional synchronization extensions (TSX) provide two interfaces.

Hardware Lock Elision (HLE) adds two new instruction pre-
fixes (XACQUIRE and XRELEASE) meant to be used in conjunc-
tion with instructions that implement a lock, thus providing the lock
elision functionality as explained above.

Restricted Transactional Memory (RTM) adds several instruc-
tions (XBEGIN, XEND and XABORT) to compose custom transac-
tion logic. RTM allows the specification of a custom fallback code
path in case a transaction aborts. One way of using RTM is to have
more flexibility when implementing lock elision. For instance, a
critical section may be transactionally retried a specified number
times before resorting to acquiring the lock (instead of relying on
Intel’s default HLE implementation).

2.2 Index Implementations
We limit our study to main-memory B+-tree implementations

due to its ubiquity in database systems and to make an apples-to-
apples experimental comparison for HTM-based versus lock-free
indexing. Such a comparison is currently hard with other high per-
formance main-memory indexing methods. For instance, ART [23]
exhibits great single-threaded performance, but does not have a
multi-threaded lock-free counterpart.

2.2.1 Traditional B+-Tree Design
The cpp-btree [7] is a high performance memory-optimized B+-

tree. It supports single-threaded access. The cpp-btree does not
contain the fine-grained locking techniques and concurrency pro-
tocols (e.g., page locks or lock-coupling) common in many com-
mercial B+-tree implementations. Thus it works well for our study,
since we find that HTM is incompatible with fine-grained concur-
rency techniques (see Section 3). Plus, the promise of HTM is

2IBM Blue Gene/Q and System z mainframes include HTM but are high
end specialized systems for HPC and scientific computing.

Processor
Intel R© Xeon R© E3-1245 v3 (“Haswell”)
3.4 GHz, up to 3.8 GHz turbo
4 cores, 8 hardware threads total

Caches

64 B cacheline size
Private 32 KB L1D per core, 8-way set associative
Private 256 KB L2 per core, 8-way set associative
Shared 8 MB LLC, 16-way set associative

TLBs L1-DTLB 64 4 KB, 32 2 MB, and 4 1 GB pages
L2-Combined TLB 1024 4 KB or 2 MB pages

DRAM PC3-12800 DDR3 (800 MHz), 2 channels
OS Windows R© Server 2012 R2

Table 1: Configuration of the machine used in experiments.

to seamlessly provide scalable multi-threaded performance to non-
thread-safe data structures. Internally, the cpp-btree is a typical
B+-tree. Data is stored within the leaf nodes, and internal index
nodes contain separator keys and pointers to child pages.

2.2.2 The Bw-tree
The Bw-tree is a completely lock-free B+-tree, meaning threads

never block for any reason when reading or writing to the index.
It is currently shipping within a number of Microsoft products in-
cluding SQL Server Hekaton [10] and Azure DocumentDB [12].
The key to the Bw-tree’s lock-freedom is that it maintains a map-
ping table that maps logical page identifiers (LPIDs) to virtual ad-
dresses. All links between Bw-tree nodes are LPIDs, meaning a
thread traversing the index must go through the mapping table to
translate each LPID to a pointer to the target page.

Lock-free updates. The Bw-tree uses copy-on-write to update
pages. An update creates a delta record describing the update and
prepends it to the target page. Delta records allow for incremental
updates to pages in a lock-free manner. We install the delta using
an atomic compare-and-swap (CAS) that replaces the current page
address in the mapping table with the address of the delta. Fig-
ure 2a depicts a delta update to page P ; the dashed line represents
P ’s original address, while the solid line represents P ’s new ad-
dress. If the CAS fails (e.g., due a concurrent update to the page
winning the CAS) the losing updater must retry. Pages are con-
solidated once a number of deltas accumulate on a page to prevent
degradation of search performance. Consolidation involves creat-
ing a new compact, search-optimized page with all delta updates
applied that replaces the old page version using a CAS (Figure 2b).

Structure modifications. A main difficulty in lock-free B+-tree
design is that structure modification operations (SMOs) such as
page splits and merges introduce changes to more than one page,
and we cannot update multiple arbitrary pages using a single CAS.
The Bw-tree breaks an SMO into a sequence of atomic steps; each
step is installed using a CAS to a single page. We briefly describe a
lock-free page split; page deletes are described elsewhere [27]. The
split works in two phases and is based on the B-link design [22],
as depicted at the bottom of Figure 2. We split an existing page P
by first creating a new page Q with records from the upper half of
P ’s key range. Next, a “split delta” is installed on P (Figure 2c)
that logically describes the split and provides a side-link to the new
sibling Q. We then post a (search key, PID) index term for Q at
parent O with a delta record, again using a CAS (Figure 2d). In
order to ensure that no thread has to wait for an SMO to complete,
a thread that encounters a partial SMO in progress will complete
it before proceeding with its own operation (see Section 5). The
lock-free design is very efficient, however this performance comes
at a cost: it is very difficult to design and implement non-trivial
lock-free data structures such as a B+-tree.
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Figure 3: Read-operation throughput against an in-memory B+-Tree
as the number of hardware threads is increased when no lock, a global
elided lock, and a spinlock are used for synchronization.

2.3 Experimental Environment
Our experiments compare and contrast the cpp-btree and Bw-tree

implementations under several workloads in order to highlight the
fundamental differences between using the HTM and lock-free ap-
proaches to concurrent B-Trees. Each experiment pre-loads one of
the two types of trees. Then, a fixed number of threads are each
assigned to continuously perform either lookup operations or up-
date operations. We vary record count, record size, key size, access
skew, and lookup/update thread count to highlight the pathologies
of each structure. We also compare several approaches for HTM
conflict handling and lock-free techniques against basic spinlocks.
Our results primarily examine operation throughput and hardware
transaction abort rates.

Unless otherwise stated, workloads focus on trees of 4 million
records either using 8-byte keys and 8-byte payloads (61 MB total)
or 256-byte payloads (1.2 GB total). Experiments use 4 hardware
threads issuing lookups and 4 hardware threads issuing updates.

Table 1 describes the machine used for all of the experiments pre-
sented in this paper. This Haswell generation CPU is equipped with
Intel (TSX), which represents the first wide deployment of HTM in
commodity machines. New features, pipeline changes, and cache
hierarchy changes may significantly influence the expressiveness
and performance of HTM. For example, AMD published a design
for its Advanced Synchronization Facility (ASF) [6] in 2010 that
provides a different HTM interface, but ASF-equipped CPUs are
not yet available.

3. LOCK-BASED INDEXING WITH HTM
B-Trees are good candidates to take advantage of hardware lock

elision; many state-of-the-art B-Tree implementations use spin-locks
or read-write locks for multi-core parallelism [13]. HTM lock-
elision requires little effort and overhauls existing lock-based data
structures with optimistic synchronization often just by replacing
the underlying synchronization library.

This section explores the potential of lock elision for B-Trees by
looking at how it fits with two lock-based synchronization schemes:
a single global lock and fine-grained lock-coupling. First, we will
see that HTM effectively parallelizes simple B-Trees that use a sin-
gle (elided) global lock, though with some important limitations.
Finally, we find that Intel’s current HTM interface is incompatible
with lock-coupling.

3.1 Global Lock
Hardware lock elision promises the simplicity of coarse-grain

locks with the performance of fine-grain locks or lock-free pro-
gramming. Therefore, a natural approach is to wrap every B-Tree
operation in a critical section protected by one global lock. Then,
lock acquisition can be hardware elided to provide inter-operation
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Figure 4: Transaction abort rates for various key and payload sizes.

parallelism. This is the current state-of-the-art in HTM-enabled in-
dexing [21, 24].

We evaluated this approach using an existing B+-Tree imple-
mentation (cpp-btree [7]) optimized for single-threaded in-memory
access and parallelized it using a global elided lock. To understand
the best-case potential of the approach and to understand its over-
heads, Figure 3 compares read operation throughput against this
tree using an elided lock, a conventional spinlock, and no lock at
all (which represents ideal performance and is only safe under a
read-only workload). The tree is pre-filled with 4 million 8 byte
keys and payloads, and the number of threads driving a read-only
uniform-random access workload is varied. Our results confirm
earlier studies of small workloads with fixed-length keys and pay-
loads [21]: HTM provides high throughput with little effort. Using
basic HLE is only about 33% slower than unsynchronized access.

3.1.1 Effect of Key and Payload Sizes
Unfortunately, the great results of the global elided lock on a

simple workload do not hold in general. The first complicating is-
sue stems from capacity limits on hardware transactions. Under the
hood, hardware must track the read and write set of all the cache-
lines accessed by a thread in a transaction. Haswell’s HTM imple-
mentation is not fully described by Intel, but it leverages its 32 KB
L1 cache to buffer a transaction’s writes and to track its read and
write set. Any eviction of a cacheline from the transaction’s write
set will result in an abort. Hence, no transaction can write more
than can fit in L1. In fact, associativity compounds this; for exam-
ple, Haswell’s L1 is 8-way associative, and Intel states that writes
to 9 distinct cachelines that map to the same cache set will result
in an abort [18]. Since read sets are also tracked in L1 they suffer
from similar capacity constraints, though Intel indicates read sets
may be protected by an unspecified second-level cache (potentially



Retry:

If(XBEGIN()) Then

// Touch global lock and abort if taken

If(LockIsTaken(lock)) Then goto Fallback;

{Execute critical section}

Else

// Transaction could not begin

goto Fallback;      

End If

Fallback:

retry_count = retry_count + 1

If(retry_count < retrh_threshold) Then

goto Retry

Else

AcquireSpinLock(lock)

{Execute critical section}

ReleaseSpinLock(lock)

End If

Jump to 

Fallback if 

aborted

Figure 5: Lock elision using RTM with configurable retry threshold.

the load unit as in described [6]). Finally, hyper-threading can also
induce capacity-related aborts, since hardware threads on a com-
mon core share an L1 cache and other resources.

Overall, these capacity constraints make HTM challenging to use
when parallelizing B-Trees; many of the properties that determine
the HTM abort rate for a given tree may not be known until run-
time. A tree’s key size, payload size, total size, and address access
patterns all affect performance. For example, tree size is problem-
atic because the number of nodes accessed during a traversal grows
logarithmically with tree size, which increases the required transac-
tion size as well. In the end, these HTM capacity constraints mean
trees with large keys and/or large payloads do not parallelize well
when using a global elided lock.

To investigate the impact of these limitations in practice we mea-
sured the percentage of transactions that abort due to capacity con-
straints for read-only tree traversals while varying the key and pay-
load sizes. We pre-populated the tree with varying number of records
and ran the workloads with hyper-threading both on and off. We
measured the transaction abort rate which is correlated with the
achieved parallelism. If the abort rate is close to 0% all operations
are executed in a transaction and maximum parallelism is achieved
(similar to the HLE performance trend in Figure 3). If the abort
rate is close to 100% lock-elision always falls back to acquiring
the global lock leading to no parallelism (similar to the spin lock
performance trend in Figure 3).

The results in Figure 4 confirm that with this simple approach,
even trees with relatively small keys and payloads cannot always
parallelize. With Haswell’s HTM almost all transactions abort with
payloads larger than a few kilobytes (Figure 4(b)), even though
the transaction buffers are stored in a 32 KB cache. This shows
the limiting effect of the 8-way cache set associativity and cache
sharing with hyper-threading. Key size is even more severely con-
strained, since a single transaction encounters many keys during
each lookup. Abort rates can climb to 40% with just 64 byte keys
in a 1 million record tree (Figure 4(a)).

3.1.2 High-contention Performance
Hardware capacity is just one source of pain for employing HTM;

another difficulty lies in predicting performance due to transac-
tional conflicts. The prior sections avoided conflicts and isolated
the impact of hardware capacity by using a read-only workload.
In practice, HTM is only needed when a workload has potentially
conflicting updates. When a transaction aborts due to a true data
conflict performance is naturally impacted. However, there are two
other problematic ways that transaction aborts hurts performance.
First, speculation is not free: transaction startup overhead and the
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Figure 6: Update Performance when workload Skew and number of
transactional attempts per transaction are varied.

resources it consumes while running can result in wasted work.
Second is the so-called lemming effect [11]. Haswell’s HTM re-
quires all transactions to eventually fall back to using a lock when
transactions abort, since it makes no forward progress guarantees.
When a transaction falls back and acquires the lock, all other trans-
actions in the critical section abort and cannot restart until the lock
is released. The effect is that execution is fully serialized until the
lock is released – even if the other transactions operate on non-
conflicting cache lines. Consequently, concurrency is aggressively
and often unnecessarily restricted. This problem becomes apparent
in high skew workloads where execution is almost entirely serial-
ized even for transactions that operate on low-contention values.

One way to mitigate the lemming effect is to have transactions
retry more than once before falling back to acquire a lock. Retrying
a contentious transaction might be costly, but the cost of acquiring
the lock and serializing execution is (usually) worse. In contrast
to HLE, Haswell’s RTM instructions provide a flexible interface
that allows custom code to be executed when a transaction aborts.
As an optimization, Intel suggests using RTM to retry transactional
execution of a critical section multiple times before resorting to
acquiring the lock [18]. Figure 5 provides a schematic for how to
perform lock-elision with retry using the RTM instructions.

Figure 6a shows the promise of this approach by comparing per-
formance as workload skew and per-transaction optimistic attempt
count are varied. Here, the B-Tree is pre-populated with 4 mil-
lion items of 8-byte keys and payloads; 8 threads execute a work-
load with 50% lookups and 50% updates. The workload is Zipfian
distributed with a skew parameter (θ [14]) varied between 0 to 3
(uniform random through extremely high skew), and the number of
transactional attempts per transaction is varied from 0 to 64, where
0 corresponds to synchronization with a spin-lock. Interestingly,
a retry count of 1 exhibits performance that corresponds to Intel’s
default lock-elision implementation (abbr. HLE). The performance
metric is throughput normalized to the throughput of a spin-lock.

The results show that as workload skew increases the perfor-
mance of lock-elision drops sharply. At some point lock-elision



performs even worse than spin-locks, achieving no parallelism from
the multi-core hardware. Increasing the number of transactional at-
tempts delays the performance cliff, and leads to a more graceful
degradation of performance as skew increases.

3.1.3 Optimal Number of Transactional Attempts
Unfortunately, moving to larger retry limits indefinitely does not

work in general; retrying doomed transactions has a cost and blindly
retrying transactions can lead to performance that is worse than
serialized execution with a spinlock. The root of the problem is
that with the existing HTM conflict resolution strategies (seemingly
“attacker-wins” [11]) transactions may continuously abort one an-
other without any guarantee of global progress. The result is that
for a set of concurrent transactions, it may be possible that none of
them commit: a situation worse than using a spinlock.

One factor that contributes to this pathology is the position of
the first conflicting access within transactions. In the previous ex-
periment, conflicting accesses occur when the 8-byte payload is
updated at the end of a tree traversal operation, which is late within
the transaction. If the size of a payload is significantly larger than
8 bytes, updating it becomes a longer operation, which shifts the
first conflicting access earlier within the transaction. This increases
the probability that retries will repeatedly interfere with one an-
other. For example, a thread T1 may transactionally find a value in
a tree and update its payload in place. In the meantime, a thread T2

may attempt an update of the same payload, aborting T1. While T2

is still updating the payload, T1 may have restarted; if updating the
payload takes a long time compared to index search, then T1 may
cause an abort of T2’s transaction. Even with just these two threads
there is no guarantee the update will ever be completed.

Figure 6b highlights this effect; it re-runs the experiment from
Figure 6a but with 256-byte (instead of 8-byte) payloads. It shows
that as the number of transactional attempts increases, the perfor-
mance reaches a peak and then drops (even below serialized perfor-
mance). The optimal number of transactional attempts depends on
workloads and varies highly. In absence of a smarter solution that
chooses the number of transactional attempts dynamically depend-
ing on the workload, for all future experiments we fix the number
of retry attempts to 8, which provides good general performance
and avoids collapse under the most realistic skews.

3.2 Lock-coupling
A single global lock works when HTM is used for concurrency,

but it is prohibitive without HTM. Practical high-concurrency, high-
performance B-Trees instead rely on fine-grained locking. Efficient
fine-grained locking on B-Trees is notoriously hard to get right.
Many techniques exist, but lock-coupling is one of the most widely
used approaches (see [13, 36] for an overview). In lock-coupling a
pair of locks are held as a worker traverses pages: one on a “source”
page and another on a “target” page. As the traversal proceeds, a
lock on the target page in the traversal is first acquired and only
afterward the lock on the source page is released (Figure 7b). This
careful ordering avoids races between reading the source page and
accessing the target page (for example, this prevents a target page
from disappearing as a traversal moves to it).

Ideally, lock-coupling could also be applied to parallelize B-
Trees using HTM. This has the potential to improve both capacity
and conflict aborts. Transactions could maintain a smaller, constant-
sized read set as they traverse down the tree, and they would avoid
conflicts on higher levels of the tree as they work downward. Sig-
nificantly, these constant-sized read sets would effectively elimi-
nate the effect of tree size on abort rates.

Node A

Node AA Node AB Node AC

Node ABA Node ABB

Node ABAA Node ABAB

(a) Sample B-Tree

Lock(A)
Read(A)

Lock(AB);Unlock(A)
Read(AB)

Lock(ABA);Unlock(AB)
Read(ABA)

Lock(ABAA);Unlock(ABA)
Read(ABAA)

Unlock(ABAA)

(b) Lock-coupling

BeginTransaction()
Read(A)
Read(AB)

Release(A)
Read(ABA)

Release(AB)
Read(ABAA)

CommitTransaction()

(c) Transactional Lock-coupling

Figure 7: Transactional Lock-coupling Approach

Unfortunately, Haswell’s HTM interface is currently too restric-
tive to support lock-coupling. HTM transactions on a single thread
can be nested but cannot be overlapped as lock-coupling’s non-two-
phase pattern requires. To make this work, TSX would need to give
threads control over their read set. For example, AMD’s proposed
ASF instruction set [6] includes “release” instruction that removes
a specified item from the read set of the executing transaction (see
Figure 7c); however, AMD has not yet released a CPU with ASF
support. In the end, without such support, lock-coupling with an
elided page lock would perform no better under Haswell’s HTM
than using a single elided global lock.

3.3 Summary
Using lock elision (via HLE or RTM) works well for simple B-

tree indexes with predictable cache footprints. However, abort rates
are sensitive to many parameters some of which may not be known
until runtime; data structure size, access skew, access rate, physi-
cal address patterns, and false sharing can all play a role. Second,
in some cases, using HTM as a global locking approach can re-
sult in performance worse than single-threaded execution (or seri-
alized execution with a spin lock) due to wasted work on aborts and
transaction initialization overheads. Finally, existing commodity
HTM interfaces are incompatible with fine-grained locking tech-
niques like lock-coupling, which could otherwise reduce conflicts
and eliminate the dependency between aborts and data structure
size.

Clearly, in its current form HTM is not yet a robust solution for
achieving multi-threaded scalability within main-memory B-trees.
In the next section, we compare and contrast an HTM-based B-tree
to a state-of-the-art lock-free B-tree design.

4. HTM VS LOCK FREE APPROACHES
It is tempting to view HTM as hardware-accelerated lock-free

programming, but the approaches are fundamentally different and
each makes tradeoffs. HTM provides an atomic update-in-place
abstraction; lock-free programming techniques use limited (often
single word) atomic updates in place and must compose larger op-
erations using copy-on-write. This has important ramifications that
give each approach a different set of costs and pathologies.



Read-Write Write-Write
Conflict Conflict

HTM
(Atomic update-in-place) Abort/retry Abort/retry

Lock-free
(Copy-on-write and publish) OK Retry

Table 2: HTM aborts whenever a read cacheline is concurrently modi-
fied, but lock-free techniques generally do not interfere with readers.
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Figure 8: Impact of concurrent writers on readers for two different
types of B-Trees. Reader performance suffers under concurrent up-
dates with the RTM-based cpp-btree, whereas readers are immune to
updates with the lock-free Bw-tree.

4.1 The Costs of HTM under Contention
Because the two approaches perform updates differently, the most

significant performance differences between them are due to the
impact updates have on concurrent operations, specifically, how
writes impact concurrent reads. Table 2 explains: write-write con-
flicts cause retries and wasted work under both approaches; how-
ever, lock-free techniques avoid wasted work under read-write con-
flicts that HTM cannot. By avoiding update-in-place, lock-free up-
dates via pointer publishing never disrupt reads. Old value remains
intact for concurrent reads while later reads find new version(s).

Figure 8 explores this effect. It shows the total read throughput
for four reader threads with both B-Tree implementations as the
number of threads performing updates and workload skew is var-
ied. In this experiment, each tree consists of 4 million records. The
small workload uses 8 byte keys and 8 byte payloads; the large
workload uses 30 to 70 byte variable length keys and 256 byte
payloads. Keys are chosen according to a Zipfian distribution as
described in [14].

As expected, for low contention workloads (θ = 0, which is a
uniform random access pattern) neither the HTM-enabled cpp-btree
or the lock-free Bw-tree are significantly impacted by the presence
of threads performing writes. However, for high contention work-
loads (θ ≥ 2) the reader throughput that the cpp-btree can sus-
tain begins to drop. The Bw-tree, in contrast, gets a double benefit
from the contentious write heavy workloads. First, readers benefit
from high access locality, since writers do not hurt readers. Sec-
ond, writers actually benefit readers: readers can read recent writes
from cache (in addition to the benefit the locality skew gives).

4.2 The Overheads of Lock-Freedom
Lock-free techniques can reduce the impact of concurrent writ-

ers on readers; however, this benefit comes with three subtle costs:
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Figure 9: Breakdown of CPU cycles spent by each core performing
lookups and updates in the cpp-btree and Bw-tree under the “large”
workload of Figure 8 with skew θ = 3.

the need for a garbage-collection mechanism for memory safety,
the need for indirection for atomic updates, and the cost of copy-
on-write. These costs are highly intertwined: tradeoffs for each
influence the cost of the others.

4.2.1 Lock-Free Memory Reclamation Overheads
Each object unlinked from a lock-free structure may continue to

be accessed by threads that hold references to it. This is a key ben-
efit, but it also means that for safety the system must track when
threads no longer hold references to an unlinked object. Otherwise,
prematurely reusing an object’s memory could result in threads
reading corrupted data.

For example, the Bw-tree uses an epoch mechanism [27] that
tracks when each thread is accessing the tree. Threads must place
themselves on a list for the current epoch whenever they access the
tree, and they only remove themselves after they drop all references
to tree internal objects. When a page is unlinked it is placed on a
queue in the current epoch until all threads have moved on to later
epochs; after this point, the page is safe for reuse and may be freed.

Different schemes for providing this “pointer stability” have dif-
ferent performance tradeoffs, but all add overhead and most non-
trivial lock-free data structures require some such mechanism. Fig-
ure 9 shows the overhead incurred in the Bw-tree due to epochs
for the “large workload” of Section 4.1 with skew θ = 3; cores
spend 8% and 18% of their cycles on epoch protection for lookups
and updates, respectively. All measurements of the Bw-tree in this
paper include the overhead of its epoch protection.

4.2.2 Additional Indirection
Most lock-free structures must also pay another subtle cost: lock-

freedom influences the in-memory layout of structures. Lock-free
data structures are carefully crafted to group together updates that
need to be atomic, which are then published via a single compare-
and-swap via a pointer-like field. This fuses synchronization and
memory layout, and it forces additional indirection. Bw-tree’s map-
ping table is an example of this; each page access must go through
indirection via the mapping table, which effectively doubles the
number of cachelines accessed when traversing the tree. In our ex-
periences with the Bw-tree and more recent work on a lock-free
transactional engine [26], we have found that this indirection is not
onerous; it often naturally coincides with variable-length lists or
data, which already require indirection to be handled efficiently.

This extra indirection also puts pressure on memory allocators,
since updates cannot use the memory locations of the old values. In
our experience, it may be necessary to resort to specialized and/or
lock-free memory allocators to compensate for this.



4.2.3 Copy Overhead
Finally, lock-free structures also incur the cost of the additional

copying required when using paged copy-on-write semantics. The
costs of copy-on-write are not simple to characterize; page size,
access skew, the uniformity of payload sizes, and the cost of al-
location all play a role in the effectiveness of copy-on-write. For
efficiency, data structures may need to amortize the cost of each
full page copy over several lookups and updates.

Interestingly, copy-on-write can even improve performance in
some cases. For example, Figures 8 and 9 show that copy-on-write
improves the performance of lookups that are concurrent with up-
dates, and Bw-tree’s delta updates and blind writes can improve the
performance of writers as well.

5. SIMPLER LOCK-FREEDOM VIA HTM
The evaluation in Section 4 shows that there are performance

benefits to lock-free indexing designs. However, the gains come at
a cost: it is very difficult to architect and build complex lock-free
data structures such as a B+-tree. This section experimentally eval-
uates a middle ground that uses HTM to ease the difficulty of build-
ing lock-free indexes without sacrificing performance. We first dis-
cuss the difficulty in lock-free indexing design. We then evaluate
approaches for using HTM to implement a multi-word compare-
and-swap (MW-CAS) for use within the Bw-tree to atomically in-
stall multi-page structure modifications (split and merge). While
we discuss the Bw-tree specifically, the approach applies more gen-
erally to data structures that uses indirection for lock freedom.

5.1 Lock-Free Programming Difficulties
A main difficulty with lock-free index designs stems from re-

liance on atomic CPU primitives – usually CAS or fetch-and-
increment – to make state changes to the data structure. These
instructions work at the granularity of a single word (generally a
64-bit word on today’s CPU architectures). Life is easy if all op-
erations on a data structure require only a single atomic instruc-
tion. However, this is rarely the case for non-trivial data structures.
Difficulty arises when operations must span multiple atomic oper-
ations. For example, in the Bw-tree structure modification opera-
tions (SMOs) such as page splits and merges span multiple atomic
steps. Splits involve two atomic steps, each installed using a CAS:
one to install the split to an existing page P with a new sibling Q,
and another to install the new search key and logical page pointer
for Q at a parent page O (see Figure 2). Page merges involve three
steps: one to mark a page P as deleted, the second to update P ’s
sibling Q to merge any of P ’s existing keys, and the third to delete
P ’s id and search key from the parent O.

When operations span multiple atomic steps, one problem that
occurs is handling the case when other threads observe the opera-
tion “in progress”. In lock-based designs, safety in such situations
is guaranteed by a thread stalling on a lock set by a thread per-
forming an SMO [36]. In lock-free scenarios this process is more
difficult: one must handle both (a) how to detect such conflicts
without locks and (b) what to do after detecting the conflict with-
out blocking nor corrupting data. The Bw-tree design addresses
these two issues as follows. A worker detects an in-progress split
by finding that a page’s boundary keys do not contain the search
key; an in-progress delete is detected by traversing to a page con-
taining a “page delete” delta record. Once any Bw-tree thread runs
into an in-progress SMO, it helps along to complete the SMO be-
fore completing its own operation. This “help-along” protocol is
necessary in many lock-free designs for performance, to guarantee
progress, and correctness (e.g., to serialize SMOs that “run into”
each other [27]). An alternate strategy would have a thread simply

// multi-cas atomic update

AcquireHTMLock()      

CAS(table[A],oldA, newA)

CAS(table[C],oldC, newC)

ReleaseHTMLock()

// reader

AcquireHTMLock()

page_ptr = table[E]

ReleaseHTMLock()

A

B

C

D

E

F

G

// single slot update

AcquireHTMLock()

CAS(table[G],oldG, newG)

ReleaseHTMLock()

Figure 10: Global HTM lock protecting the page indirection mapping
table. All reads and writes elide the lock before accessing the table.

retry upon encountering an SMO; this is essentially a form of spin-
ning to wait for the SMO. In this case the wait might be long: the
SMO thread may get scheduled out by the OS, or “lose its way” in
the tree and have to reposition itself to finish the SMO (e.g., when
going up to the parent and finding it split). The “help-along” pro-
tocol guarantees that an SMO completes in a timely manner.

Lock-free designs also lead to subtle race conditions that are
extremely difficult to reason about, engineer around, and debug.
A prime example in the Bw-tree is that simultaneous splits and
merges on the same page could collide at the parent, and without
care lead to index corruption. This happens, for instance, when
a thread t1 sees an in-progress split of a page P into P ′ and Q
and attempts to help along by installing the new index term for Q
at the parent O. In the meantime, another thread t2 could have
deleted Q and already removed its entry at O (which was installed
by another thread t3). In this case t1 must be able to detect the
fact that Q was deleted and avoid modifying O. As an additional
anecdote, it took roughly three months to design and test a correct
page delete protocol in the Bw-tree. There are several more dif-
ficult races and issues we encountered when building the Bw-tree,
but this single example hopefully sheds light on the type of difficul-
ties encountered when building lock-free infrastructure. While we
use examples from building the Bw-tree, other practitioners surely
have similar war stories.

In the rest of this section we aim to ease the burden of build-
ing lock-free data structures. We describe an approach that uses
HTM to simplify lock-free designs by building a high performance
multi-word compare and swap to compose operations that would
otherwise require a series of multiple atomic steps.

5.2 Multi-Word CAS using HTM
As we see it, a major pain point for the Bw-tree lock-free de-

sign is handling operations that span multiple atomic operations on
arbitrary locations in the indirection mapping table. The ability to
perform an atomic multi-word compare-and-swap (MW-CAS) on
arbitrary memory locations would greatly simplify the design and
implementation of the Bw-tree. Fortunately, this is exactly what
HTM provides: a method to atomically update arbitrary words.

Using HTM to implement an MW-CAS fits the sweet spot for
current HTM implementations, especially on Intel’s Haswell. To
elaborate, most applications would only require the MW-CAS to
span a handful of words. For instance the Bw-tree needs at most a
triple word MW-CAS to install a page delete. This means that MW-
CAS transactions will not suffer aborts due to capacity constraints
even with today’s stringent HTM limits. Further, MW-CAS trans-
actions are short-lived (involving only a load, compare, and store
for each word) and would avoid interrupts that spuriously abort
longer running transactions [24].



5.3 Use of a Global Elided Lock
One approach we evaluate places a global elided lock over the

Bw-tree indirection mapping table. To implement the global lock,
we use the RTM-based approach discussed in Section 4, since it
performs much better than default HLE. If a thread cannot make
progress after its retry threshold, it acquires the global exclusive
lock and executes the critical section in isolation. The rest of this
section provides an overview of this approach.

5.3.1 Writes
Writes to the mapping table bracket one or more compare and

swaps within the acquisition and release of the HTM lock. Fig-
ure 10 depicts a multi-slot update to pagesA and C in the mapping
table along with another thread updating a single page G. Exe-
cuting each CAS under the HTM lock ensures that if a conflict is
detected, all changes to the mapping table will be rolled back; the
transaction will eventually succeed on a retry (possibly acquiring
the global lock if necessary). To avoid spurious aborts, we allo-
cate and prepare all page data outside of the MW-CAS operation
to avoid HTM aborts, e.g., due to shared access to the allocator or
accessing random shared cache lines. For example, a thread in-
stalling a split in the Bw-tree would allocate and prepare both the
split delta and the index term delta for the parent before performing
the MW-CAS to install its two changes to the mapping table.

5.3.2 Reads
Bracketing index traversals. We attempted to bracket multiple

reads within a transaction representing an index traversal from root
to leaf. This approach completely isolates index traversals from
encountering in-progress SMOs. However, the approach increases
the abort rate, since the transaction must contain logic to access
page memory and perform binary search on internal index nodes.
As discussed in Section 3, success rates for transactions at such a
coarse grain depend on independent factors (e.g., page size, key
size). The performance of this approach suffered in many of our
experiments due to such spurious aborts.

Singleton read transactions. We instead evaluate an approach
that places each read of a single 8-byte mapping table word in its
own transaction. This avoids aborts due to cache capacity, since
transactions only contain a single read. However, readers can en-
counter an “in-progress” SMO operation, for instance, when a split
is installed between the time a reader access the “old” parent (with-
out the split applied) and the “new” child (with the split applied).
While we need to detect such cases, code to handle such cases be-
comes much simpler: we can just retry the traversal from a valid
ancestor node. This approach guarantees the reader that the MW-
CAS writes are atomic, thus SMOs are installed atomically. There-
fore readers do not need to worry about complex situations such as
helping along to complete an SMO, what to do when running into
multiple in-progress SMOs that collide, etc.

Non-transactional reads. We also evaluate an approach that
performs all reads non-transactionally. The advantage of this ap-
proach is that readers avoid setup and teardown time for hardware
transactions. However, readers are not guaranteed that they will
see SMOs installed atomically. This could happen when a reader
observes writes from a transaction executing within its locked fall-
back path. Essentially, the reader can observe an index state where
the writer is “in between” mapping table writes; this would not
happen if a read were done inside a transaction or while holding
the fallback lock. The result is that there is no reduction in code
complexity, since non-transactional accesses must be prepared to
help along to complete an SMO (or spin waiting for it to finish).
Another issue is that the writer must be carefully order its stores in

// single update
CAS(table[G], oldG, newG)

// Multi-page update
Retry:
If (BeginTransaction())
Then
  // Transactional Execution
  CAS(table[A], oldA, newA)
  CAS(table[C], oldC, newC)
  CommitTransaction()
Else
  // Fallback
  retry_count++
  HelpGuaranteeProgress()    
  Goto Retry
EndIf

A

B

C

D

E

F

G

// reader
page_ptr = table[F]

// Try to avoid page faults
valA = table[A]
valC = table[C]
CAS(table[A], valA, valA)
CAS(table[C], valC, valC)

// Acquire thread-local locks
// if past retry threshold
If retry_count >
   retry_threshold
  1. Acquire all
     thread-local locks
  2. Execute MW-CAS
     updates outside
     HTM transaction
EndIf

Figure 11: Multi-word CAS based on retry.

its fallback path, since non-transactional reads will see these stores
in the order they occur. While this is fine for lock-free structures
like the Bw-tree that already order SMO writes correctly, it is an
issue to be aware of in the general case.

5.4 Infinite Retry
We also evaluate an approach that removes both singleton reads

and writes from HTM transactions. We call this the “infinite retry”
approach. The approach takes advantage of the fact that singleton
reads or updates (that are non-transactional) will still trigger the
cache coherence protocol for their target cache lines. Since HTM
transactions piggyback off this protocol, the multi-word CAS run-
ning within the transaction will see the changes to its write set.
Unlike the non-transactional read approach discussed previously,
this approach maintains the property that readers see atomic instal-
lation of MW-CAS writes. We also discuss methods to help guar-
antee progress of the transactional writes, in order to avoid spurious
aborts as well as starvation due to continued data conflict with sin-
gleton (non-transcational) reads and writes.

5.4.1 Reads and Updates
Figure 11 outlines the approach (for now, focus on the left-hand

side of the figure). Singleton mapping table reads and updates do
not operate within an HTM transaction, as depicted by the reader
to slot F and the update to slot G. Only multi-slot updates (the
multi-slot update toA andC) operate within a hardware transaction
and execute the MW-CAS. The MW-CAS will abort if conflicting
with a singleton read or update, detecting the conflict through the
cache coherence protocol. The MW-CAS continuously retries the
transaction in this case. Effectively, this places the MW-CAS at a
lower priority compared to the singleton reads/updates, since they
can abort the MW-CAS transaction, but not vice versa.

The MW-CAS cannot fall back on a single elided lock protecting
the mapping table since the singleton reads/updates are not aware of
the lock. One way around this is to simply let the transaction fail af-
ter it has retried a number of times; for the Bw-tree this effectively
means abandoning an SMO, which will eventually be retried later
by another thread (and hopefully succeed). However, if progress
is absolutely necessary, the MW-CAS has to retry an infinite num-
ber of times until the transaction succeeds (thus the name of the
approach). This means the MW-CAS has a chance of starvation,
however this is true in general for all lock-free data structures.

5.4.2 Helping to Guarantee Progress
Unfortunately, infinitely retrying a transaction does not guaran-

tee an MW-CAS will succeed, since Intel does not guarantee a



hardware transaction will ever succeed [18] (whereas for a single-
word CAS, there is always a winner). This section discusses some
approaches to help guarantee progress of this approach while try-
ing to avoid a single elided lock. The right hand side of Figure 11
outlines these approaches.

Capacity and time interrupts. Since an MW-CAS transaction
is short and touches a small number of cache lines, it avoids the
likelihood of spurious aborts due to capacity constraints or inter-
rupts due to long-running transactions. However, these are not the
only reasons for aborts with Intel’s current HTM implementation.

Avoiding memory page faults. When a transaction encounters
a page fault it always aborts. Worse, speculative transactional ex-
ecution suppresses the page fault event, so retrying the transaction
speculatively will always fail without some outside help. Intel ad-
mits that synchronous exception events, including page faults, “are
suppressed as if they had never occurred [18].” We confirmed this
behavior on Haswell. Running a single transaction that performs a
single access to a not-present page always aborts if a fallback lock
is not used – the OS never receives the page fault event.

As a result, when omitting a fallback lock, a fallback code path
must at least pre-fault the addresses that the transaction intends to
access. Generally, the mapping table should be present in memory,
but the correctness and progress of the system should not depend
on it. The right hand side of Figure 11 shows how to safely induce
the page faults. On the fallback path, the MW-CAS reads its target
words (in this case mapping table slots A and C) and performs a
CAS for each of these words to assign the target word the same
value as was just read. The CAS induces any page faults while
ensuring that the same value is stored back to the memory location.
Using a simple store might lead to incorrect values being stored
back in mapping table slot under concurrent operations, and using
a simple load might leave the page in a shared, copy-on-write state
(for example, if the page was a fresh “zero page”). After executing
this fallback path, the MW-CAS then retries its updates. We have
yet to see an HTM transaction spin infinitely using this approach.

Thread local read/write lock. Of course, given Intel cannot
guarantee hardware transactions commit, avoiding page faults even
for short transactions does not guarantee progress. Two transac-
tions with overlapping read/write sets can collide and continuously
abort on data conflicts. Ultimately, a “stop the world” approach is
needed to guarantee the MW-CAS can make progress by giving it
exclusive access to update its target words non-transactionally. One
way to achieve exclusivity while avoiding a global shared lock is to
assign a thread-local read/write lock to each thread, as depicted on
the right-hand side of Figure 11. The approach, commonly known
as lockaside (the idea was also used in NUMA-aware locking [4]),
maintains a read/write lock for each thread. Before starting an op-
eration, a thread acquires exclusive access to its own lock. After
an MW-CAS has retried a number of times with no progress, it at-
tempts to gain exclusive access to the mapping table by acquiring
all locks from other threads in the set in a deterministic order; this
is the only time a lock is modified by another thread. Once the
MW-CAS acquires all locks, it modifies its mapping table entries
and then releases all locks. In the common case, this approach is
very efficient since thread-local lock acquisition involves modify-
ing a line already in CPU cache on the thread’s local socket, thus
avoiding ping-ponging across sockets (or cores). Scalability for
lock acquisition (and release) may be an issue on large many-core
machines such as Intel’s Xeon Phi. For current processors with
HTM (currently single-socket and soon to be dual-socket), lock
count should be less of an issue, assuming the thread count is close
to the number of cores.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.5  1  1.5  2  2.5  3

T
h
ro

u
g
h
p
u
t(

M
 o

p
s
/s

e
c
)

Skew

No HTM
HTM (Global Lock)

HTM (Global Lock), No HTM Reads
HTM (Infinite Retry)

Figure 12: Performance of two MW-CAS global lock and infinite retry
approaches compared to the baseline lock-free performance.

5.5 Evaluation
Figure 12 provides an experimental evaluation of the pure lock-

free Bw-tree implementation (abbr. No HTM) along with the MW-
CAS approaches discussed in Sections 5.3 and 5.4. The experimen-
tal workload contains 4 update threads and 4 read threads, where
each thread selects the next record to update/read at random from a
range of 10M keys using a Zipf distribution. We plot total through-
put (y-axis) for various Zipf skew parameters (x-axis). We omit
numbers for the approach that brackets entire tree traversals in a
transaction, since its performance (due to aborts) does not come
close to the other alternatives. Using the global elided lock to
bracket all operations (even singleton reads, abbr. Global Lock)
is simple to implement. However, performance degrades by up
to 25% due the extra overhead of transaction setup and teardown
(roughly 65 cycles on our experiment machine). Removing reads
from the global elided lock (abbr. No HTM Reads) brings perfor-
mance within 10% of No HTM. However, this is at the cost of no re-
duction in code complexity, as discussed in Section 5.3.2. The Infi-
nite Retry approach exhibits similar performance to No HTM Reads
while reducing code complexity, suggesting that removal of single-
ton updates from a transaction does not lead to better performance.
This is because, unlike singleton reads, transaction setup/teardown
time is not the main source of overhead; most of the overhead is
due to the write itself.

6. DISCUSSION
This section extracts key lessons from our experiences evaluating

HTM for main-memory indexing methods. First, we summarize
the benefits and challenges of using current-generation Haswell
HTM. Then, we give a “wish list” for features we hope to see in fu-
ture CPUs that would improve the predictability and performance
of high-performance main-memory indexes built with HTM.

6.1 HTM Benefits and Challenges
HTM allows easy parallel access to simple data structures. Sec-

tion 3 showed that for a moderately-sized index small fixed-length
key and payload sizes HTM allows for almost perfect thread scala-
bility with little effort.

However, predicting HTM performance in indexes is hard and
limits its usefulness. Many factors influence concurrency (and, in
turn, performance), some of which vary at runtime. In the end,
developers must take a conservative approach or risk performance
collapse. For example, predicting abort rates combines the com-



plexity of predicting page table walks, cache misses due to ca-
pacity and associativity (e.g., key and payload sizes in the index),
application access patterns, and thread scheduling. Furthermore,
the parameters for each of these variables change with each new
CPU: TLB coverage, cache configuration, core count, and hard-
ware thread configuration all vary from generation to generation.

With the current generation of HTM, its best to “keep it sim-
ple”. The simplest and most predictable approach to leveraging
HTM for main-memory indexing is as a small primitive where the
number of cache lines accessed are constant per transaction rather
than some function of data structure size or workload skew. This
is exactly what we have done by using HTM as a multi-word CAS,
as proposed in Section 5. We observed that almost every abort in
these transactions is due to a data access conflict (rather than other
spurious aborts) and the cost of retrying is low enough that it never
performs worse than a spin-lock approach even with infinite retries.

6.2 HTM Wish List
Motivated by the findings in this paper, we now turn to a set of

“wish list” items that we hope to see supported for future HTM
release. While we justify our need for these items in the context of
building high-performance main-memory indexes, we believe these
features will benefit the general computing community as well.

Selective choice of which accesses to add to a transaction.
Section 3.1 showed that key, payload, and index size all influence
HTM abort rate, which affects indexing performance. Choice over
which accesses are tracked by HTM could mollify this. Such a
feature would allow a transaction to track just the accesses neces-
sary to detect conflicts (e.g., payload data in the leaf page or a page
“lock” or version to detect SMOs). This data is small compared to
accesses done during binary search that are the source of capacity
aborts and depend on factors like key and page size.

Removal of words from a transaction. The ability to remove
words from a transaction would allow techniques like lock-coupling
to use elided HTM locks efficiently. In most cases, coupled locks
are held briefly during traversal and are not highly contended. There-
fore the majority of overhead comes from the cache traffic involved
in acquiring the lock. Using lock elisions would likely remove a
majority of this overhead. The missing primitive to enable lock-
coupling with HTM is an ability to remove a previous (source)
lock in the traversal from the transaction read/write set. This fea-
ture would also allow the transactional read set for locks to remain
constant size regardless of index size or depth.

AMD’s unimplemented ASF instruction set describes such a “re-
lease,” which removes a cacheline from a transaction’s read set. A
complication with release is that a cacheline may contain more than
one word of a transaction’s read set and would require great care or
compiler support to use safely.

Minimum capacity and liveness. Section 5 explored multi-
word CAS on the Bw-tree mapping table for atomic multi-page
SMO updates. MW-CAS transactions are small and short-lived,
and avoid many of the spurious abort conditions listed by Intel [18].
However, even by avoiding these conditions Intel does not guaran-
tee a transaction will ever succeed, thus our more efficient design
(the infinite-retry approach) had to resort to distributed thread-local
locks to guarantee progress. Two features that would go a long way
toward realizing a practical MW-CAS implementation on arbitrary
memory locations would be (1) guarantee of a minimum transac-
tion capacity; even a small capacity up to two to three words would
be helpful for our purposes and (2) a liveness guarantee that at least
one transaction would “win” during an MW-CAS operation (simi-
lar to single-word CAS) when concurrent transactions conflict.

7. RELATED WORK
Lomet proposed transactional memory [28], and Herlihy and

Moss proposed the first practical implementation [17]. Until re-
cently most research has focused on software transactional mem-
ory (STM) [35]. However, its high overheads have kept STM from
gaining traction within database systems. This is especially true
in main-memory systems; HyPeR recently realized only a 30%
gain over single-threaded performance using STM to achieve par-
allelism [24]. Current HTM implementations [20, 21, 37] seem
to be a viable, high performance method to achieve multi-threaded
parallelism within database systems.

HTM and Database Systems. Hardware transactional memory
has become a timely topic in the database community, especially
in the area of main-memory systems. The HyPeR team explored
how to exploit HTM to achieve concurrency within main-memory
database systems [24]. The idea is to achieve thread parallelism
by breaking a transaction into individual record accesses (read or
update), where each access executes within a hardware transaction
using lock elision. These accesses are “glued” together using times-
tamp ordering concurrency control to form a multi-step database
transaction. This work also included an indexing microbenchmark
on small (4-byte) fixed length keys that showed HTM scaling better
than fine-grained locking, but its focus was achieving high concur-
rency during transaction execution. Our work focuses solely on
main-memory indexing by evaluating HTM and lock-free designs.

Karnagel et al explored using HTM to improve concurrency in a
B+-tree and in SAP Hana’s delta storage index [21]. Similar to our
study in Section 3, they found using HTM with a global lock leads
to excellent performance for databases with small fixed-size keys
but that care must be taken within the index implementation (in the
case of the delta index) to avoid HTM aborts. This work mainly
explored HTM as a drop-in solution to improve concurrency of ex-
isting index implementations. Our work explores this approach as
well, but in addition show HTM performance is sensitive to prop-
erties of the indexed data (key, payload, and data set size). We also
compare HTM-enabled index designs with state-of-the-art latch-
free indexing approaches and explore how to use HTM to simplify
latch-free programming using an efficient multi-word CAS.

Main-Memory Optimized Indexing. Our experiments use two
implementations of a main-memory B+-tree. The Bw-tree, our
latch-free implementation, is currently used within a number of
Microsoft products [10, 12]. PLP [32] and Palm [34] are latch-
free B+-trees. However, these designs use hard data partitioning
to achieve latch freedom, where a single thread manages access to
each partition. Since partitioned designs do not use any synchro-
nization primitives (neither locks nor CAS), it is unclear how HTM
might improve performance in these designs.

Other main-memory indexes achieve great performance. For ex-
ample, ART [23] and Masstree [29] are based on tries (Masstree
is a B-tree of tries). We deliberately do not to compare against
these since our objective is (1) not to have a main-memory index
performance bakeoff and (2) to get an apples-to-apples comparison
of latch-free and HTM-based designs on the same data structure (a
vanilla B+-tree). Further, ART and Masstree do not have latch-free
or lock-based counterparts, respectively.

Multi-Word Compare and Swap. Section 5 evaluated a multi-
word CAS (MW-CAS) implemented via HTM. Other works inves-
tigate implementing MW-CAS using software [2, 16, 19]. Most
of these approaches, such as that proposed by Harris et al [16],
use the hardware-provided single-word CAS as a building block
to implement MW-CAS in software. We did not experiment with
MW-CAS software implementations; we expect them to be less ef-
ficient than an HTM-based implementation. For instance, all soft-



ware MW-CAS implementations we studied (supporting arbitrary
words) contained an internal memory allocation, e.g., to manage a
state descriptor for the multiple words [16].

For performance reasons, Section 5 also discusses methods for
safe interaction between non-transactional and transactional code
when implementing MW-CAS using a best-effort HTM. TM sys-
tems that enable such safe interaction (with strong isolation guar-
antees) are referred to as strongly atomic [3]. Related work on
strongly atomic TM is focused either on STM [1, 8] or proposes
new hardware features for fine-grain memory protection [31]. We
are not aware of work that investigates mixing non-transactional
code with an existing best-effort HTM implementation, such as In-
tel’s TSX. Another line of work on overcoming problems of best-
effort HTM includes safe mixing of software and hardware trans-
actions, such as HyTM [9], PhTM [25] and recently Invyswell [5].
The STM implementations in these systems are costly, and cannot
be used in our case since they are not strongly atomic.

8. CONCLUSION
This paper studied the interplay of hardware transaction memory

(HTM) and lock-free data structures. We began by exploring the ef-
fect of using HTM on a “traditionally” designed high-performance
main-memory B-tree and found that HTM, in its current form, is
not yet suitable as a general-purpose solution for concurrency in
high-performance data processing engines. HTM provides great
scalability for modestly sized data sets with small fixed key and
payload sizes. However, transaction abort rates rise for more realis-
tic workloads with larger data sets containing larger variable-length
keys and payloads, leading to poor performance. In addition, we
find that HTM is not yet suitable for implementing fine-grained
locking techniques such as lock-coupling that would greatly re-
duce HTM aborts due to capacity constraints. We next explored
fundamental differences between HTM-based and lock-free B-tree
designs. We find that lock-free designs are advantageous and still
useful, particularly in high contention scenarios since readers never
block, while an HTM-based approach will abort readers that touch
“hot” data items. Finally, we explored the use of HTM within the
lock-free Bw-tree in order to simplify its design and implementa-
tion, focusing on concurrency of its indirection mapping table that
maps logical page ids to pointers. We explored several designs of
a multi-word compare and swap (MW-CAS) that use HTM to ar-
bitrate conflict on multiple arbitrary cache lines, and find that the
MW-CAS is a great application of HTM: it avoids spurious aborts
since transactions are small and short, provides good performance,
and indeed simplifies lock-free data structure design.
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