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ABSTRACT

We present Jiazzi, a system that enables the construction of large-
scale binary componentsin Java. Jiazzi components can be thought
of as generalizations of Java packages with added support for exter-
nal linking and separate compilation. Jiazzi components are practi-
cal because they are constructed out of standard Java source code.
Jiazzi requires neither extensions to the Java language nor specia
conventions for writing Java source code that will go inside a com-
ponent. Our components are expressive because Jiazzi supports
cyclic component linking and mixins, which are used together in
an open class pattern that enables the modular addition of new fea-
tures to existing classes. This paper describes Jiazzi, how it en-
hances Java with components, its implementation, and how type
checking works. Animplementation of Jiazzi isavailable for down-
load.

1. INTRODUCTION

Current Java constructs for code reuse, including classes, are in-
sufficient for organizing programs in terms of reusable software
components [26]. Although packages, class loaders, and various
design patterns [11] can implement forms of components in ad hoc
manners, the lack of an explicit language construct for components
places a substantial burden on programmers, and obscures a pro-
grammer’s intent to the compiler or to other programmers. As
object-oriented software systems increase in size and complexity,
components are becoming central to the design process, and they
deserve close integration with the language.

Components should support separate compilation, which enables
development of large programs and deployment of components in
binary form, and external linking, which eliminates hard-coded de-
pendencies to make components as flexible as possible for client
programmers [7]. In addition, components integrated into a class-
based language, such as Java, should aso fit well with the class
system:
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Figure 1: Jiazzi components are constructed from Java classes and
other components, and can be loaded in Java Virtual Machines for
execution.

- Components should import classes that can be both instanti-
ated and subclassed within the component. Inheritance across
component boundaries is necessary for grouping classes and
class extensions into reusable components.

Components should accept imported classes that supply more
methods than the component requires or expects. Requiring
an exact match on methods of an imported class would pro-
hibit the composition of class-extending components; e.g.,
mixins [4].

Cyclic component linking should be alowed to resolve mu-
tually recursive dependencies among components. Mutually
recursive “has a' relationships are especially common at the
classlevel, and naturally span component boundaries.

Jiazzi is our new component system for Java based on program
units[10]. Jiazzi provides the first combination of components and
classes that supports all of the above features. Figure 1illustrates at
ahigh level how Jiazzi works: aJiazzi component can be built from
Javaclasses and other Jiazzi components. The resulting component
can execute directly on a Java Virtual Machine.

Jiazzi makes two contributions to component programming in Java
that also apply to other statically typed, object-oriented languages.
First, no special core language extensions or conventions need to be
used in the Java code used to construct acomponent. Instead, Jiazzi
integrates with Java using a stub generator and an external linker.
Because subclassing across component boundaries and cyclic com-
ponent linking is supported, component boundaries can be placed
in the design naturally. This also alows easy retrofitting of legacy
Java code into component-based designs.



Second, Jiazzi can support the addition of features to classes with-
out editing their source code or breaking existing class variant re-
lationships. Such functionality is already provided by languages
that support open classes [6]. A combination of mixins and cyclic
component linking is used to simulate open classes with what we
call the open class pattern. Using the open class pattern in Jiazzi
provides a solution to the extensibility problem [7], which arises
from the tension between adding features to and creating variants
of aclass. With the open class pattern, we can replace the use of
many design patterns used to implement modular feature addition,
such as abstract factories and bridges, with a combination of exter-
na linking and Java's in-language constructs for subclassing and
instantiation.

Section 2 gives an overview of Jiazzi components and shows how
they can be used in program designs. Section 3 describes how Ji-
azzi can be used to modularly add features to classes with mixins
and the open class pattern. Section 4 explains how type checking in
the presence of separate compilation worksin Jiazzi. Section 5 de-
scribes our implementation of Jiazzi and the interactions between
Java and Jiazzi. Section 6 discusses related work. Section 7 dis-
cusses future work, and summarizes our conclusions.

2. OVERVIEW

Components in Jiazzi are constructed as units [10]. A unit is con-

ceptually acontainer of compiled Javacode with support for “typed”
connections. There are two types of units: atoms, which are built

from Javaclasses (including Javainterfaces), and compounds, which
are built from atoms and other compounds.

Units import and export Java classes. Classes imported into a unit
are exported from other units; classes exported from a unit can be
imported into other units. Linking specified by compounds deter-
mines how connections are made between exported and imported
classes. Groups of classes are connected together when units are
linked; we call these groups of classes packages to emphasize their
similarity to packages in standard Java. Using package-grained
connections reduces the quantity of explicit connections between
units, which alows the component system to scale to larger de-
signs.

Jiazzi includes a component language that provides a convenient
way for programmers to build and reason about units. Using this
language, the structure of classesin aunit’simported and exported
packages can be described using package signatures. Because pack-
ages can be used in multiple unit descriptions, they enhance the
component language's scaling properties.

We introduce Jiazzi using a simple example that composes a user
interface (UI) library with an application into a complete program.
Because they are used to describe units, we will first describe pack-
age signatures.

2.1 Package Signatures

Package signatures are constructs that are used to describe the visi-
ble structure of classesin aJavapackage. |n Figure 2, the package
signature ui _s describesa Ul library with classes W dget , But -
t on, and W ndow; the package signature appl et _s describes
an application with class Pr ogr am In the package signature the
structure of a class is described using a class signature. The class
signature of W ndowin ui _s specifies that the class has the super-
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file: Jui_ssig

signature ui _s<ui _p> {

class Wdget extends Object
{void paint(); }

class Button extends ui _p. Wdget
{ void setlabel (String); }

class W ndow extends ui _p. Wdget
{ void add(ui_p. Wdget); void show(); }
file: ./Japplet_s.sig

signature appl et s<ui _p> {

cl ass Program extends ui _p. Wndow
{void run(); }

Figure 2: Package signatures ui _s, which describes a user inter-
face library, and appl et _s, which describes an application; as
conventions in this example, package signature names end with_s,
and package parameters end with _p.

file: ./applet.unit

atom appl et {
import ui_in :
export appl et _out

ui _s<ui _i n>;
appl et s<ui _i n>;

Figure3: Anatom appl et that importsauser interfacelibrary and
exports an application; as conventionsin thisexample, the names of
imported packages end with _i n, and the names exported packages
end with _out .

classui _p.W dget and hasthe public methodsadd and show. In
our example, only the methods and superclasses of classes are de-
scribed, but class signatures can also describe interface subtyping
and class members such as fields, constructors, and inner classes.
Class signatures can also describe Java interfaces as well as class
and member modifiers (e.g., pr ot ect ed, abst r act).

Class signatures are parameterized by the enclosing package sig-
nature's package parameters, which must be bound to packages
when the package signature is used. The only package parameter
of ui _s isui _p. Weassume Qbject and String arebuilt-in
for the purposes of this example, which a so reflects the close cou-
pling of these classes to the Java Virtual Machine (see Section 5
for more details). Classes other than Obj ect and String must
be referred to through one of the package signature's package pa-
rameters. In ui _s, the direct superclass of W ndowis specified as
ui _p.W dget , which only comesfrom the same package asW n-
dowif ui _p isbound to the same package that provides W ndow.
Allowing a package to implicitly reference itself would limit the
package signature’s use; using the open class pattern in Section 3
depends on the flexibility of package signatures that do not implic-
itly use self-reference.

2.2 Atoms

The atom appl et shown in Figure 3 imports Java classes in the
package ui _i n that implement a user interface library described
by package signature ui _s, and exports classes in a package ap-
pl et _out that implement an applet described by package signa-
tureappl et _s. Within aunit, the package parametersin the pack-
age signatures used to describe each imported and exported pack-
age must be bound only to the unit's imported and exported pack-



file: ./Japplet/applet_out/Program.java

package appl et _out;

public class Program extends ui_i n. Wndow {
ui .in.Button b = new ui_.in.Button();

public Progran() {

b. set Label ("start"); add(b);
}

public void run() { show(); }
}

Figure 4: The Java source implementation of appl et _out .-
Pr ogr amin atom appl et .

+(__applet_s.sig Jiazzi stub generator —————
Widgetclass
applet.unit Button.class
Java (Window.class -
gram.J compiler -
[ Jiazzi unit linker — (—_ metadata_)

applet.jar

Figure 5: The files and development process of building app! et ;
fileswith source shown in other figures are in the dashed rectangle,
tools are in rectangles, files are in rounded rectangles, archive files
are shaded rounded rectangles.

ages. Therefore, class signatures of imported and exported classes
only refer to the unit’simported and exported classes. For example,
after package signature appl et _s isused in appl! et , the super-
class of appl et _out .Progr amisui _i n.W ndow because the
package parameter ui _p isbound to ui _i n.

A unit’sdeclarations of imported and exported packages constitutes
its unit signature. Class signatures provided by the unit signature
are necessary to implement separate type checking in Jiazzi. Inside
a unit, the implementation of the unit’s imported classes are not
visible; outside the unit, the implementation of the unit’s exported
classes are not visible. We explain separate type checking in more
detail in Section 4.

Atoms are built from Java classes that can be compiled from nor-
mal Java source code. Shown in Figure 4 isthe Java source for ap-
pl et’s exported class appl et _out .Pr ogr am The Java source
can instantiate and subclass imported classes. For example in the

implementation of appl et _out .Pr ogr am theclassui _i n.W ndow

can be subclassed and the class ui _i n.But t on can be instan-
tiated. Java source can only refer to imported classes, exported
classes, or private classes contained in the atom.

Figure 5 shows how the atom appl! et is developed in our imple-
mentation of Jiazzi. Files provided by the developer, unit defini-
tions, package signatures, and Java source, are located in separate
source files. Since the implementation of imported classes are un-
available, standard Java source compilers (e.g., javac or jikes) can-
not automatically know about the structure of imported classes. For
this reason, our implementation provides a stub generator that uses
the class signatures of imported classes to generate stub class files.
In our example, stub class files are generated for the imported user
interface classes in package ui _i n. These classfiles are then used
to compile Pr ogr am j avainto Pr ogr am cl ass using astan-
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file: .Jui.unit

atom ui {
export ui _out ui _s<ui _out >;

file: /linkui.unit

conpound [inkui {

export ui _out ui _s<ui _out >,

- appl et _out appl et _s<ui _out >;

local u: ui, a: applet;
link u@i _out to a@i -in, u@i _out to ui_out,
a@ppl et out to appl et out;

Figure 6: An atom ui that exports a user interface library, a com-
pound / i nkui that linksatoms ui and appl et together.

dard Java source compiler.

After Java source compilation, the Jiazzi component linker per-
forms type checking to ensure that the atom’s compiled Java code
conforms to its unit signature. The classfilesfor classes contained
in the atom are placed into a Java archive (JAR) file, which is the
atom'’s binary form. For example, Pr ogr am cl ass is placed
into the atom app! et 'sbinary form, appl et . j ar. The atom’s
unit signature is also placed into the JAR file as component meta
data. More information about developing with Jiazzi can be found
in the user manual [1].

2.3 Compounds

The atom ui in Figure 6 exports a package of classes that im-
plement the user interface library described by package signature
ui _s from Figure 2. Thecompound / i nkui in Figure6 linksthis
atom to the atom app! et from Figure 3. The unit signature of a
compound has the same form as that of an atom; / i nkui exports
packages described by the package signatures from Figure 2. Fol-
lowing its unit signature is the compound’s link section. In the link
section, the Java classes contained in units are conceptually copied
by instantiating the unitsinto unit instances using thel ocal state-
ment. In /i nkui, the atoms appl et and ui are respectively
instantiated into the unit instances a and u.

The | i nk statement makes connections from source packages on
the left to sink packages on the right of each t o clause. A source
package is either an imported package of the compound or an ex-
ported package of one of the compound’s unit instances. A sink
package is either an imported package of one of the compound's
unit instances or an exported package of the compound. We write
v @ as the notation for the imported or exported package p of unit
instance v.

In the compound / i nkui , the exported package u@ii _out is
connected to the imported package a@i _i n. The meaning of this
connection is that al references to classes in the package ui -i n
are replaced with references to classes in u@ii _out in the unit
instance a using name equivalence of the unqualified class name.
For example, references to ui _i n.W dget inside the implemen-
tation of classes in unit instance a are replaced with references to
W dget .ui _out inu.
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Figure 7: A graphica illustration of the connections made by
l'i nkui .

An exported package of a unit instance is available outside of the
linking compound if it is connected to one of the compound’s ex-
ported packages. Encapsulation at the component level is hierar-
chical; linking compounds are only aware of the compound’s unit
signature, and are unaware of the units that initially provided the
exported packages. In /i nkui , the exported package u@ii _out
is connected to the package ui _out that is exported by the com-
pound. Compounds that instantiate / i nkui can use this exported
package, but will not know that these classes are initially exported
by the atom ui .

Anillustration of / i nkui ’'slinking is shown in Figure 7. Unit in-
stances and the enclosing compound are represented as alternately
shaded rounded rectangles. Packages are represented as boxes that
are black tabbed on the left and rounded on the right. Imported
packages come into a unit from the left, while exported packages
leave the unit from the right. Connections are represented as lines
from the right rounded part of a package to the left black tabs of
other packages.

The same unit can be used to create multiple unit instances, each
of which can be used in different contexts. The imports of each
unit instance can be connected differently, and each unit instance
exports a distinct group of classes. There is no restriction on the
number of unit instances, within a single compound or complete
program, that can be created using the same unit.

Informally, a compound can be reduced to an atom by:

1. Copying the (reduced) bodies of all units used to create aunit
instances;

2. Concatenating all of the copied bodies, and renaming class
references according to the mapping specified by the link
section; this rewriting is analogous to the way that a linker
finds and updates offsets at link time.

The result can itself be used to create unit instances that undergo
further linking within larger compounds. Of course, there is no
guarantee that the concatenated bodi es are well-formed unless some
form of checking has been applied to units during linking. We ex-
plain these rulesin Section 4.

The development of / i nkui is shown in Figure 8. Both atoms
appl et and ui must be linked into their binary forms before
l'i nkui can be linked. The Jiazzi component linker performs
type checking and copies the class files from each atom, which are
rewritten according to how connections are made in the compound.
In our example, thelinker createsthe JARfilel i nkui . j ar ,which
is I'i nkui’s binary form. The class file Progr am cl ass is
copied fromappl et . j ar intol i nkui . j ar. Since u@i -out

is connected to a@ui _i n, Progr am cl ass’s references of im-
ported classes in the package ui _i n are changed in the copy to
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Vs N\ L
(linkui.unit )
applet_s.sig Java Virtual
. Machine
applet.jar

Figure 8: The files and development process of building and exe-
cuting / i nkui .

file: ./color_s.sig

signature col or _s<orig-p> {
class Wdget extends orig.-p
void setColor(int); }
class Button extends orig.-p
class W ndow extends orig._p
}

file: /font_s.sig

signature font_s<orig-p> {
class Wdget extends orig.-p
void setFont(int); }
class Button extends orig.-p
class W ndow extends orig._p
}

file: ./both_s.sig

signature both_s<orig_p> {
class Wdget extends orig_p. Wdget

void setColor(int); void setFont(int);
class Button extends orig.p.Button {}
class W ndow extends orig-p. Wndow {}

}

file: ./nop_s.sig

signature nop_s<ori g_p> {

. W dget

—_~

.Button {}
. Wndow {}

. W dget

—_~

.Button {}
. Wndow {}

—_~

}

Figure 9: Package signatures col or_s, f ont _s, and bot h_s
that describe packages which respectively add color, font, and both
color and font features to the package parameter ori g_p, and
nop_s, which isan empty extension of or i g_p.

be references of the exported classesin u@ui _out , which are aso
copied into | i nkui . j ar. The format of a compound’s binary
form is the same as an atom’s binary form; after linking thereis no
distinction between atoms and compounds. Since the compound
I'i nkui has no imports, its classes can safely be executed in a
Java Virtual Machine by placing | i nkui . j ar inthe classpath.

3. FEATURE EXTENSIBILITY

In addition to decomposing a design into many classes, it is aso
useful to decompose a design into multiple features [21]. Features
cross cut class boundaries and benefit from being implemented in
separate components [13]. To demonstrate Jiazzi's expressiveness,



file: ./mix.color.unit

atom m x. col or {

import ui_init
uidin:

export ul _out

ui _S<ui _ ni t >,
nop._s<ui _i ni t>;
col or _s<ui _i n>;

file: ./mix.font.unit
atom m x. font {
import ui_init
uidin
export ul _out

ui _s<ui - nit>,
nop_s<ui _i ni t>;
f ont _s<ui _i n>;

file: ./mix.both.unit

conmpound mi x. both {

import ui_init ui _s<ui - nit>,
ui .in : nop.s<ui . nit>;

export ui _out bot h_s<ui _i n>;

local ¢ : mix.color, f m x. font;
link uiZinit to c@i Zinit,
uidinit to f@ii-init,
c@ui out to f@ui._n,

uiiin to ca@i.in,
f @i _out to ui_out;

Figure 10: Units ni x. col or, m x. font, and n x. bot h,
which use mixin constructions to add color, fonts, and both color
and fonts to a package of Ul library classes.

we show how Jiazzi can be used to decompose classlibrary features
into multiple components. We continue with our example of a Ul
library by adding the color and font feature to the Ul library using
the package signatures in Figure 9. We present two approaches:
the pure mixin approach, which utilizes mixins to add features to
classes, and the open class pattern, which is an improvement of the
pure mixin approach that uses cyclic linking to solve the extensi-
bility problem.

3.1 Mixins

Units are powerful enough to express a kind of mixin [4], where
an exported class subclasses an imported class. Such an exported
class will have all methods present in the actual class connected to
the imported superclass: if amethod misvisiblein aclassimported
into aunit, then outside of the unit misvisiblein any exported class
that subclasses the imported class, even if mis not visible in the
imported class's signature within the unit.

To use mixins in feature addition, suppose we are writing a unit
that adds a feature to a single package of classes. The unit must
import an “initial” construction of the classes before any features
are added, which we call the init-package. The init-package estab-
lishes variant relationships and provides initial functionality. The
unit aso imports the “previous’ construction of the classesthat are
the result of the last feature added, which we call the in-package.
The in-package is an extended version of the init-package. The
unit exports an out-package, which is the extended version of the
in-package: each class in the out-package subclasses a classin the
in-package with the same unqualified name, forming a series of
mixins. The features added by the unit are added to classes in the
out-package.

Figure 10 uses mixins in the atom ni x. col or to add the color
feature to a package of classes that implement a Ul library. The
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c:mx.color
D Pui_out ui_in
ui_init

Figure 11: A graphical illustration of connections made in the com-
pound n7 x. bot h.

f:mx. font

Jui_out

>

m X. col or

Button
void setLabel(String);

Widget
void paint();

ui_in Widjget Button >
[
I Widget /I@ Ui out
void setColor(int = —

Figure 12: A graphica illustration of the subclassing relationships
local to the atom mi x. col or in Figure 10; black arrows point to
subclasses, the grey-dashed arrow points to a desired subclassing
relationship that cannot be achieved using mixins alone.

ui_init

imported packagesui _i n and ui _i ni t and the exported package
ui _out areaUl library’sin-, init-, and out-packages, respectively.
The package signature ui _s from Figure 2 describethe Ul library’s
initia structure. The package signature nop_s is used to describe
the imported package ui _i n as an extension of ui _i ni t without
any new methods. The package signature col or _s from Figure 9
adds the new method set Col or to classW dget and establishes
normal mixin relationships between classesinui _out and ui _i n.

The atom mi x. font in Figure 10 adds the font feature to a Ul
library in the same way that the atom ni x. col or adds the color
feature. The compound ni x. bot h composes both mi x. col or
and m x. f ont together to create aunit that adds both the font and
color features (using package signature bot h_s from Figure 9) to
a Ul library. Inside ni x. bot h, the method set Col or isvisi-
ble in the class ui _out .\W dget exported from the unit instance
f because it is a subclass of ui _out W dget exported from the
unit instance c. This alows both methods set Col or and set -
Font to be visible in the class ui _out .W dget exported from
m x. bot h. Thelinking isillustrated in Figure 11.

Mixins in Jiazzi enable reuse of class implementations only; they
do not provide a common type to describe the functionality they
add, unlike language-level mixin proposals such as the Java lan-
guage extension JAM [2]. Jiazzi mixins address a different design
space: they are link-time abstractions that enable transparent class
inheritance across component boundaries, as opposed to abstrac-
tions in the core language that enable fine-grained mixin-oriented
programming.



file: .Jopen.color.unit

atom open. col or {

import ui_in : ui_s<ui_fixed>,
ui fixed : nop_s<ui _out >;

export ui _out : col or _s<ui . n>;

Figure 13: Anatom open. col or that usesthe open class pattern
to add color featureto a Ul library.

Using the pure mixin approach to add features to classes is prob-
lematic aswe can seein Figure 12, which shows the subclassing re-
lationship of W dget and But t oninsideopen. col or (thesub-
classing relationships of W ndow are similar to But t on’s). Sub-
classing isused to make the class But t on avariant of W dget by
having ui _i ni t .But t on subclass ui _i ni t W dget . The fea-
ture of color is added to W dget in the class ui _out .W dget .
Using mixins fails, however, because we cannot combine classes
ui _out .But t on and ui _out .W dget to create “color buttons”
The problem that occurs when trying to add features (a.k.a. ver-
tical class extension) and create variants (a.k.a. horizontal class
extension) is known as the extensibility problem [7]. We can solve
this problem by using an approach that utilizes cyclic component
linking as well as mixins.

3.2 Open Class Pattern

A genera solution to the extensibility problem must not only allow
the modular addition of new features to existing classes; it must
also ensure that added features are visible in all variants of the up-
dated class. For example, the new method set Col or added to
W dget must be visible in instances of W dget 's variant But -
t on. Open classesin MultiJava [6] satisfiesthis requirement when
features are new methods. Jiazzi does not directly support open
classes, but the open class pattern utilizes Jiazzi’s expressive link-
ing facilities to simulate open classes.

The open class pattern utilizes mixins and “upside-down” mixins,
which behave the same as normal mixins, just from a different per-
spective: imported classes subclass exported ones. Method visibil-
ity is the reverse as that for mixins: if a method mis visible in a
class exported from a unit, then inside of the unit mis visible in
any imported class that subclasses the exported class, even if mis
not visible in the exported class's signature outside the unit. Us-
ing “upside-down” mixins necessarily requires cyclic component
linking.

To apply the open class pattern, suppose we are writing a unit that
adds a feature to a single package of classes. Like the pure mixin
approach, the unit must import an in-package and export an out-
package. The new featureis still implemented in the out package’s
classes, which is the extended version of the in-package (forming
normal mixins). The key to the open class pattern is that instead
of importing an initial-package, the unit instead imports a fixed-
package, which is the result of all features applied to the package
of classes. The fixed-package is the extended version of the out-
package (forming the “upside-down” mixins).

Figure 13 uses the open class pattern in the atom open. col or to
add the color feature to classesin a Ul library. The imported pack-
agesui _i nandui _f i xed and the exported package ui _out are
the Ul library’s in-, fixed-, and out-packages, respectively. The
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open. col or

Button
void setLabel(String);

Ui in Widget
- void paint();

A 4 a 4
Widget .
A 4

it
ui_fixed

Figure 14: A graphica illustration of the subclassing relationships
local to the atom open. col or inFigure 13.

file: ./open.color/ui_out/Widget.java
package ui _out;
public class Wdget extends ui_in. Wdget {
private int clr;
public void setColor(int c) {
clr c;
}
protected int getColor() {
return clr;

}
}

file: ./open.color/ui_out/Button.java

package ui _out;

public class Button extends ui._in.Button {
public void paint() {

this.getColor() ...;

super. pai nt ();

}

Figure 15: The Java source implementations of ui _out .W dget
and ui _out .Buttonincol or.

package signature ui _s from Figure 2 is used to describe the struc-
ture of ui _i n. The package signature nop_s from Figure 9 is
used to establish the “upside-down” mixin relationship between
ui fixed and ui _out. As with the pure mixin approach, the
new method set Col or isadded to theclassW dget inui _out .

Figure 14 showsthe subclassing relationship of W dget and But -
t on inside open. col or (again, the subclassing relationships of
W ndows is like that of Button). Only classes in the fixed-
package should be instantiated or subclassed to create variants. For
example, ui _f i xed.W dget , not only ui _i n.W dget , isasu-
perclassof ui _i n.Butt onsinceBut t onisavariant of W dget .
As can be seen in the figure, the class ui _out .W dget , which
adds the new method set Col or, is inserted as a superclass of
ui _fixed.W dget , which establishes the “upside-down” mixin
relationship.

Shown in Figure 15 is the Java source for classes W dget and
But t on in package ui _out . The method get Col or is hidden
outside of the atom open. col or by ui _out W dget 's class



file: .Jopen.font.unit

atom open. font {

import ui_in : ui_s<ui_fixed>,
ui fixed : nop_s<ui _out >;

export ui _out : font_s<ui . n>;

file: .Jopen.both.unit

compound open. bot h {

import ui_.in : ui_s<ui_fixed>,
ui fixed : nop_s<ui _out >;

export ui _out : both_s<ui . n>;

local cC :
link ui fi
ui fi
caui

open. color, f open. font;
xed to c@ui fixed,
xed to f@i fixed,
out to f@ui.n,

ui.in to c@i dn,
f @i _out to ui_out;

Figure16: Anatom open. f ont that usesthe open class pattern to
add the font feature to a Ul library, and a compound open. bot h
that adds both the color and font feature to a Ul library .

signature. Because of ui _f i xed.W dget 's“upside-down” mixin
relationshipwith ui _out .W dget ,insideopen. col or’simple-
mentation the method get Col or isvisiblein ui _out .But t on,
as shown in the Java source for ui _out .But t on.

Figure 16 shows how multiple feature-adding components can be
combined into one feature-adding component using a compound.
The atom open. f ont uses the open class pattern to add the font
feature to a Ul library. The compound open. bot h instantiates
both open. col or and open. font and applies the resulting
unit instances to its in-package import of the Ul library. The com-
pound open. bot h itself uses the open class pattern so that it ap-
pearsto directly add both the color and font featuresto aUl library.

Figure 17 shows how the open class pattern can be used end-to-
end to create a Ul library. The compound open. fi xed uses
the atom open. i nit and compound open. bot h to create a
feature-complete Ul library. The atom open. i ni t provides the
initial implementation of the Ul library, so it does not need to im-
port an in-package. Inside open. fi xed, the features of the Ul
library are “fixed” by taking the out-package of unit instance b and
connecting it to the fixed-package imports of both unit instances i
and b. Figure 18 illustrates the linking done in both the compounds
open. fi xed and open. bot h.

No more features can be added to open. fi xed using the open
class pattern. The compound’s exported package ui _f i xed ap-
pears outside of the compound to be a Ul library that provides the
color and font features. All intermediate classes, those not exported
from open. fi xed, are hidden from clients of the Ul library. As
aresult, clientsof open. fi xed areisolated from the fact that the
Ul library was built using the open class pattern.

Figure 19 shows the global class inheritance hierarchy established
by the compound open. fi xed. Classes in independently devel-
oped units can exist between each other in the class inheritance
hierarchy! A color But t on isboth asubclass of the original But -

t on and a subclass of a color W dget , which solves the extensi-
bility problem in Figure 12.
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file: .Jopen.init.unit

atom open.init {
import ui fixed :
export ui _out

nop-s<ui _out >;
ui s<ui fixed>;

file: /fixed_s.sig

signature fixed_s<ui_p> {

class Wdget extends Object

{ void setFont(int); void setColor(int);

void paint();

class Button extends ui _p. Button

{ void setLabel (String); }

cl ass W ndow extends ui -p. W ndow

{ void add(ui p. Wdget); void show(); }

file: ./open.fixed.unit

compound open. fi xed {

export ui _fixed : fixed.s<ui fixed>;

YL

local |

link i @i
baui
baui
baui

open.init, b :
_out to ba@ii .in,
out to @i fixed,
out to b@i fixed,
_out to ui _fixed;

open. bot h;

Figure 17: A compound open. f i xed that fixes the features of a
Ul framework.

open. fi xed

i:open.i niﬂ

D) Jui_out

-
ﬁ_ﬁxed

>—|

4

Figure 18: A graphical illustration of connections made in com-
pounds open. fi xed and open. bot h.
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Figure 19: A graphical illustration of the global inheritance rela-
tionships established by open. fi xed.

When combined with cyclic component linking, mixins have anon-
trivial effect on type checking. Inheritance cycles could be intro-
duced into the class hierarchy or method collisions could occur
when two ambiguous methods exist in the same scope. As we
show in Section 4, separate type checking in Jiazzi can disallow
these constructions.

The open class pattern is not unique to Jiazzi; it can also be useful
as a convention in Java code outside of Jiazzi components when
separate compilation, and especially separate type checking, is not
important and source code is open to modification. However, Jiazzi
makes the open class pattern’s use more realistic, and also enables
configuration of featureswith external linking. The open class pat-
tern, but not Jiazzi itself, necessarily causes a shift in the program-
ming model of Java code that uses it to add features. At present,
we are adding better support for the open class pattern in Jiazzi to
minimize the effects of this shift.

4. TYPE CHECKING

The Java classes used in the construction of an atom are checked
according to the Java Language Specification [12]. Jiazzi uses a
conventional Java compiler to perform these checks; stubs are gen-
erated for imported classes to ensure that they are used correctly
in classes that the atom contains. A Jiazzi component linker then
ensures that the atom'’s classes are consistent with the atom’s unit
signature. For compounds, the linker must ensure that the link-
ing of units within a compound is consistent with the compound’s
unit signature and the unit signature of units used to create unit in-
stancesin the compound. All of these checks are performed by type
checking connections. Type checking each connection requires the
matching of classesin a source package with classesin asink pack-

age.

Classes contained in an atom arein potential source packages, while
classes exported in an atom’s unit signature are in sink packages.
An atom’s source packages are implicitly connected to the atom’s
sink packages by package name equivalence. Classesimported in a
compound'’s unit signature and exported in the unit signatures of a
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compound’s unit instances are in potential source packages, while
classes exported in a compound’s unit signature and imported in
the unit signature of a compound’s unit instances are in sink pack-
ages. A compound's source packages are explicitly connected to
sink packages; source packages are on the left and sink packages
areontheright of t o clausesin acompound’s| i nk statements.

To compare the class signatures of sources and sinks, Jiazzi ex-
pands package signatures by replacing each package signature’s
package parameters with the names of the packages they are bound
to. Expansion checks are made to ensure that a package parameter
is bound to a package that provides all classes referred to through
the package parameter. Package signatures have no other purpose
during type checking other than being expanded to generate unit
signatures.

The indirect properties of a class, such as subclasses, superclasses,
and inherited methods, require that the class exist in an environ-
ment of other classes, over which referencesto classesin the signa-
tures of these classes are closed. Properties for source classes are
extracted from the source environment of a connection, and prop-
erties for sink classes are extracted from the sink environment of
a connection. The source environment is the same for all connec-
tionsin aunit, and is created using the union of the class signatures
for al classes in potential sources and the class signatures of the
unit’simported classes. For classes contained inside an atom, class
signatures are extracted directly from their class definitions. The
sink environment is created using the union of the class signatures
for dl classes imported and exported into the unit or unit instance
where the sink package is |ocated.

Type checking thus amounts to source-sink class matching in the
context of a source environment and sink environment. Consider a
connection from packages sour ce to si nk inside aunit u. If a
classCisdescribed insi nk, then Cmust be describedinsour ce,
otherwise u is rejected. In addition, the following rules must hold
for u to be well-typed:

R1. If method misintroduced in si nk.C, then mmust either be
introduced in or aninherited method of sour ce.Caccording
to the source environment.

R2. If p.Disasubclass of si nk.Cand a method misintroduced
in p.D according to the sink environment, then mmust not
be introduced in nor be an inherited method of sour ce.C

according to the source environment.

R3. If class p.Dis the direct superclass of si nk.C according to
the sink environment, then each direct and indirect superclass
of sour ce.Ciseither the class q.D (where g is connected to
p), asuperclass of g.D according to the source environment,

or aclassthat is not visible in the sink environment.

The first rule is straightforward; Rule R1 ensures that method re-
quirements are met. A method provided to the sink class could be
found in either the source class or one of its superclasses. Rule R2
rejects constructions that would cause method collisions. We have
chosen an interpretation of method collision that disallows both
silent overriding, where the signatures of colliding methods are the
same, and ambiguous method calls, where the signatures of collid-
ing methods differ only by return type.



file: ./licon/l con.java
package i con;
public class | con extends Object {
public void paint() {
draw(); )
void draw() { ... }
file: ./lcw/Cowboy.java
package CWw,
public class Cowboy extends icon.lcon {
public void duel () {
draw() ;

i}nt dram() { ... }
}

Figure 20: Valid conventional Java source code that demonstrates
Java's built-in package scoping.

Rule R3 ensures that superclass relationships are consistent be-
tween connections and it also prevents some subclassing relation-
ships from being hidden. A class is not visible in the sink envi-
ronment if is not exported from or imported into the unit that con-
tains the sink. The rule ensures that subclassing relationships that
are true locally within a unit are also true globally in correct unit
compositions, while still allowing subclass relationship hiding to
accommodate class hiding. The open class pattern in Section 3 re-
lies on subclass relationship hiding, sinceintermediate classesin an
open class construction are hidden to units that only import fixed
classes.

Rule R2 depends on method scoping, in that it only checks for
method collisions using methods visible in class signatures. We
explain method scoping in more detail in Section 4.1. We discuss
type checking in the presence of abstract methods in Section 4.2.

4.1 Method Scoping

A method collision occurs when two methods have conflicting types
and are visible in the same class. Since not everything isvisiblein
the source and sink environments used to check connections, then
according to Rule R2, two methods can collide only if they are
visible in the same scope. Thisis important since, in order to re-
ject method collisions modularly in the presence of mixins, method
scope must be accounted for.

Without considering method scope, a method collision occurs in
the conventional (non-Jiazzi) Java code of Figure 20. Even though
the method voi d draw() aready existsin its superclass| con,
the class Cowboy introduces the method i nt dr aw( ) . However
because of package scoping, this Java code is valid. Both dr aw
methods are visible only in the enclosing package, because both
lack public or protected access declarations. Since each classisin
a different package, the scopes of the methods do not overlap and
no ambiguity occurs. This observation is similar to the one made
by Riecke and Stone [22] and elaborated on by Vouillon [28] with
respect to class-based typing.

Thissame protocol isimplemented in Jiazzi for unit scopes. Rule R2
does not consider methods that are hidden in class signatures. A
method that is not mentioned in the class signature of an imported
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file: /Jew_e_ssig

signature cw.e_s<i conp> {

cl ass Cowboy extends icon_p.lcon
{void duel (); int draw(); }

file: ./icon_e_s.sig

signature icones<> {

class | con extends Object

{ void paint(); void draw(); }
file: ./ew_s.sig

signature cws<icon_p> {

cl ass Cowboy extends icon_p.|con
{ void duel (); }

file: .Jicon_s.sig
signature icons<> {
class | con extends Object

{void paint(); }

file: ./mix.cowboy.unit
atom mi x. cowboy {
import iconin :
export cw.out

icon_s<>;
cw.e_s<i con. n>;

file: ./cowboy.wrong.unit

compound cowboy. wrong {

inport icon.in : icone.s<>;
export cw.out CW.S<i con.i n>;

local cw : mx.cowboy ;
link iconin to cw@ condn,
cw@w.out to cwout;

Figure 21: cowboy. wr ong creates a method collision.

classis hidden from that unit; a method that is not mentioned in the
class signature of an exported class is hidden outside of the unit.
This hiding establishes method scopes, and if two methods do not
exist in overlapping scopes, they cannot collide.

In some cases, method scope can be explicitly used to eliminate ac-
cidental method collisions through wrapping units in compounds.
In Figure 21, the atom m x. cowboy exports a class Cowboy
with both methods duel and dr aw. A unit instance created using
m x. cowboy is connected in the compound cowboy. wr ong.
Because the class | con imported into the compound also contains
the method dr aw, amethod collision occursand cowboy. wr ong
isrejected.

Instead of rewriting the unit m x. cowboy to hidedr awin Cow-
boy, a programmer can wrap the compound hi de. dr aw around
m x. cowboy, as shown in Figure 22. hi de. dr aw hides the
method dr awfrom itspublic interface, which allows hi de. dr aw
to beused in cowboy. ri ght.

In some situations, a programmer would like to expose a pair of
colliding methods to clients (e.g., both dr aw methods may need
to be visible in Cowboy), and let the client programmer choose
one. In Jiazzi, ambiguous methods that cannot be resolved using
scope during composition are always rejected as method collisions.



file: ./hide.draw.unit

compound hi de. draw {

inmport icon.in : icon.s<>
export cw.out cW.s<i con.i n>;

local cw : mx.cowboy;
link iconiin to cw@con.n,
cw@w.out to cwout;

file: ./cowboy.right.unit
conpound cowboy. ri ght {

inmport icon.in : icone.s<>
export run_out run_s<>;
local cw : hide.draw ;

link iconin to cw@con.n,
cw@wout to cw.out;

Figure 22: hi de. dr aw hides an unwanted method allowing the
composition of avalid cowboy. ri ght .

Moby [9], in contrast, alows ambiguous methods to be exposed
in the same scope, and leaves the complexity of resolution to the
caller.

4.2 Abstract Methods

In addition to instance methods and subclassing, other Java lan-
guage features can be expressed in class signatures. Instance fields,
static methods, and static fields are checked like instance methods.
Constructors must be matched directly in the source class, because
they are not inherited. Checking of abstract methods, however, de-
serves extra discussion.

Unlike concrete virtual methods, an abstract method within a class
or interface cannot be hidden by a class signature. Otherwise, a
non-abstract subclass of the class described by the class signature
could contain hidden abstract methods. This restriction is present
in MultiJava's open classes for the same reason [6].

Because of the need to upgrade libraries, Javaallows abstract meth-

ods to be unimplemented in concrete classes [18]. Successive ver-

sions of Java core libraries have added abstract methods to exist-

ing classes (e.g., compare the initial and current version of class
j ava. awt .Gr aphi c¢s). InJava, an abstract method invoked with-
out an implementation will raise a runtime error. Jiazzi’s require-

ment that concrete classes have no abstract methods conflicts with

Java's binary compatibility support.

5. IMPLEMENTATION

Our current implementation of Jiazzi consists of a stub generator
and an offline linker that operates on class files. The linker per-
forms unit-level type checking, and it rewrites class files to form
the binary forms of units. The binary forms of units can be used to
create unit instances in a compound, or can be loaded into a Java
Virtual Machine (JVM). Only the classfile's constant pools, which
contains its symbols, are rewritten by the linker: thereisno need to
parse and inspect the bytecode instructionsin method bodies. Class
file features such as debug attributes, which are important for com-
patibility with existing Java development tools, are preserved in the
rewritten classfiles.
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When compounds are linked, class file symbol rewriting is used
to update references to imported classes in class files when con-
nections are made in compounds, and to rename classes based on
whether they are hidden or exported from the compound. Classfile
rewriting is also used to establish method scopes. Since method
scopes are dependent on unit boundaries and not on class or pack-
age boundaries, we cannot depend on any built-in VM mecha
nisms to delineate method scopes at runtime. Instead, class file
rewriting renames hidden methods. So that no accidental collisions
can occur in valid constructions, renaming is applied across mul-
tiple unit compositions so that distinct methods remain uniquely
named.

The only run-time performance penalty due to using units arises
from the duplication of the binary forms of units during linking.
That is, using a single unit to create many different unit instances
could lead to binary bloat, which can have negative performance
effects (e.g., due to instruction cache and native compilation). On
the other hand, units used in different contexts could be optimized
independently. For example, method scoping could be used to de-
virtualize method calls[29] as units are linked.

Although the symbols used in Java class files can easily be rewrit-
ten, Symbolsreferred to in Java native methods cannot. A Java na-
tive method is bound to a method based on the name of the method
and its containing class. Changing either the name of the class or
method breaks this connection. Therefore, only classes without na-
tive methods can be contained within units. Such renaming aso
interferes with some uses of the Java Reflection APl where sym-
bols are referred to at runtime.

A linked unit can be loaded and linked directly by the VM. Since
such linking is primarily performed in the class |oader, we refer to
this as class loader linking, in contrast to Jiazzi linking, which has
been described so far. The exported classes of the unit appear as
normal Java classes, which can be loaded and be made available
through the class loader.

Compared to Jiazzi linking, classloader linking isfragile. A class's
imports can be bound to classes that differ from the classes com-
piled (and type checked) against. Since thereis no description of
the classes originally compiled againgt, like those provided by Ji-
azzi with aunit’s signature, type checking during class loader link-
ing is implemented in the VM with incremental whole-program
analysis (using constraints [17]) and runtime checks (e.g., check-
ing that abstract methods are implemented when invoked).

Currently, component-based programs in Jiazzi must use a combi-
nation of Jiazzi and class loader linking. Many classes in the stan-
dard language library, such as Obj ect and Stri ng, are strongly
tied to the language and can only be linked through the class |oader.
Also, because they depend on reflection or native methods, many
class libraries cannot be repackaged as Jiazzi components.

6. RELATED WORK

Many of the techniques and concepts used in Jiazzi have been ex-
plored previoudly: the core component model is derived from pro-
gramunits[7, 10] and Jiazzi's method-scoping rules resemble those
of Riecke and Stone [22] and Vouillon [28]. Our contribution in
Jiazzi is demonstrating how these techniques can be combined to
define a practical component system for Java that also applies to



other statically typed object-oriented languages. In doing so, we
have solved the type challenge left open by Findler and Flatt [7].

The language ComponentJ [24] isaunit-like component system for
Java. ComponentJisalanguage extension in which components are
objects that import and export methods but not types. Components
in ComponentJ are al so first-class values.

Moby [8, 9] is a structurally typed object-oriented language that
supports ML-style modules. Methods can be hidden in modules:
object types created in these modules do not propagate the hid-
den methods in their type. However, a hidden method can still be
invoked by explicitly specifying its originating class type. Since
Moby does not use subclassing relationships implicitly when typ-
ing method invocations, module applications that create method
collisions are alowed. To resolve ambiguous methods, Moby relies
on object-view coercion to explicitly coerce the type of an expres-
sion from a class to one of its superclasses. Moby does not support
the cyclic linking of modules.

Mixins were pioneered in CLOS[15]. JAM [2] extends Java with
in-language mixins. The module system of Objective Caml [16]
supports external class connections. Since classes can be defined in
modules, these classes can also form something like mixins. How-
ever, Objective Caml does not permit a class supplied to a compo-
nent (functor) to provide more methods than required by the com-
ponent.

JavaMod [3] is a theoretical module calculus for Java. It supports
the import and export of classes and cyclic module linking. How-
ever, they do not consider situations where imported classes inherit
from exported classes. JavaMod supports subclassing across mod-
ule boundaries, but extra methods provided for an imported class
must be explicitly hidden, and resulting subclasses will not contain
those hidden methods.

Jiazzi’s open class pattern provides a modular way to add features
to classes in object-oriented systems. Odersky [19] addresses the
similar problem of class adaptability by adding views to objects.
A view isan unnamed function that adds methods and fields to an
existing class. Views cannot be implemented with separate compi-
lation.

MultiJava [6] is a Java language extension that addresses adding
new methods (but not fields) to existing classes with open classes.
New methods can be added to a class using scoped compilation
units. Separate compilation is supported since clients of the class
explicitly choose which scopes they can view. It is possible for
new compilation units in MultiJava to add new methods to classes
after execution begins, in contrast to Jiazzi where new methods and
fields can only be added when the units undergoes link-time con-
struction.

Work in separation of concerns, such as subject-oriented program-
ming [13], address the issues of separating class featuresinto sepa-
rate modules. Feature-oriented programming [21] and role compo-
nents [27] use individual mixin-like structures to decompose de-
signs into feature hierarchies. An approach similar to the open
class pattern is used in Mixin Layers [25]. Instead of using indi-
vidual mixins, Mixin Layers provides constructs that apply mixins
to multiple classes at once. Java Layers[5] isan implementation of
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Mixin Layers for Java

Jiazzi does not provide a solution for the configuration of run-
time behavior as do other component systems such as COM [23],
CORBA [20], and JavaBeans [14]. Such components are used at
design time to configure runtime behavior and do not provide a
good solution for system deployment. Configuration of code versus
runtime behavior address reusability at different times and granu-
larities. Jiazzi complements these component systems. For exam-
ple, since a Bean in JavaBeans exists as a set of Java classes, it can
be contained inside a Jiazzi unit.

7. CONCLUSIONSAND FUTURE WORK
We have presented the design and implementation of Jiazzi, which
enhances Java with externally linked, hierarchical, and separately
compiled components. Jiazzi’s support for mixin constructions and
cyclic linking allows open classes to be simulated leading to clean
functional decomposition of features in programs. Jiazzi does not
change existing Java development practice: programs are still writ-
ten in the Java language and still execute on conventional Java vir-
tual machines. Although we have finished Jiazzi’s core component
model and initial implementation, we are still enhancing Jiazzi in
many areas:

Providing more integrated support for open classes in Jiazzi;

Adding more flexibility to component composition by pro-
viding more control over method scopes and the hiding of
abstract methods;

Add support for online linking of components, and a meta-
programming protocol that allows for configuration of com-
ponent linking at runtime instead of statically in the Jiazzi
component language;

Integrating Jiazzi more closely into a VM so class loader
linking and bytecode duplication can be avoided, and to al-
low reflection and native methods inside components.

We expect that more areas of improvement will be revealed as we
gain experience in using Jiazzi to build large systems. An imple-
mentation of Jiazzi for Javais available for download at:
http://wwy cs. utah. edu/plt/jiazzi.
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