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ABSTRACT 
Web communities are web virtual broadcasting spaces where 
people can freely discuss anything. While such communities 
function as discussion boards, they have even greater value as 
large repositories of archived information.  In order to unlock the 
value of this resource, we need an effective means for searching 
archived discussion threads. Unfortunately the techniques that 
have proven successful for searching document collections and 
the Web are not ideally suited to the task of searching archived 
community discussions. In this paper, we explore the problem of 
creating an effective ranking function to predict the most relevant 
messages to queries in community search. We extract a set of 
predictive features from the thread trees of newsgroup messages 
as well as features of message authors and lexical distribution 
within a message thread. Our final results indicate that when 
using linear regression with this feature set, our search system 
achieved a 28.5% performance improvement compared to our 
baseline system. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information search 
and retrieval;  

General Terms 
Algorithms, Experimentation 

Keywords 
Newsgroup search, information retrieval, machine learning, linear 
regression, support vector machines.  

 

1. INTRODUCTION 
Web communities are web virtual spaces where people can freely 
discuss anything. Usenet is a web broadcasting service built for 
community discussions.  People post to newsgroups to ask 
questions, answer questions, or partake in discussions. Search is a 
highly desirable feature on top of newsgroup archives, to enable 
users to search the message collections for information they need.   
Studies have shown that the vast majority of people who interact 
with an online community do it passively by browsing/searching 

archived discussions rather than directly participating in the 
discussions themselves. 

Unfortunately, the techniques that have proven successful for 
searching document collections and the Web are not ideally suited 
to the task of community archive search. Compared to Web 
pages, newsgroup articles are typically much shorter, and do not 
have rich mark-up that can help determine term relevance.  They 
also have a very different topological relation to other messages 
in the collection, making cues such as in-link analysis and anchor 
text impossible to utilize in this context. 

In this paper, we explore whether a set of features unique to 
newsgroup discussion threads can be used to learn an effective 
ranking function that can be deployed in a newsgroup search 
engine to help people find relevant information. 

The features we examined are based on attributes of the 
author of a message, the topology of a thread, and the thread 
context of a message.  The rest of this paper is organized as 
follows: in section 2, we explain unique properties of newsgroup 
messages and search problems incurred. In section 3, we discuss 
other relevant research.  Then, we explain our detailed 
experimental methodology in section 4. Results of these 
experiments are reported in section 5. Finally, we summarize our 
contributions and discuss future research directions in section 6. 

2. PROBLEM CONTEXT 
In this section, we will explain the unique thread tree structure of 
newsgroup messages, analyze user behavior in newsgroups and 
present some statistics of the message collection used in this 
research. 

2.1 Thread Tree Structure of Newsgroup 
Messages 
Different from the structure of other web-based information 
content such as hyperlinks within web pages, newsgroup 
messages form a unique structure: the thread tree structure. The 
root of the thread tree is the first message posted by someone 
seeking an answer to his/her question or someone who wants to 
initialize a discussion regarding a specific topic, and then the 
thread tree expands as other people reply to this message and 
continue the discussion. Figure 1 is an example of a newsgroup 
message thread tree. A newsgroup collection can be regarded as a 
collection of thread trees, and there is no explicit semantic 
relationship between different thread trees.  
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Previous research (e.g., [4] [11] [31]) has explored different 
ways to take advantage of document tree structure (especially the 
Document Object Model (DOM) structure of HTML documents) 
to improve the effectiveness of web search. However, the thread 
tree structure of newsgroup messages is radically different from 
the DOM structure because: 



• DOM tree structure represents the structural/ functional/ 
visual relationship of different components with an html page. 
The newsgroup thread tree structure represents the semantic 
relationships of messages within a thread tree. 

• The edge of the DOM structure carries explicit relationships 
(represented by the html tag) of different parts of a web page. The 
relationships represented by edges of the message thread trees are 
implicit. 

• Newsgroup threads contain an interesting form of lexical 
redundancy, which is atypical of a web page.  For example, a 
posting often restates/clarifies/refutes an earlier posting contained 
in the same thread. 

 

 

Figure 1 An example of newsgroup message thread tree 
It is not difficult to notice that the content and structure of 

newsgroup messages are similar to email messages, which also 
contain semantic relationships between messages. However, 
searching on newsgroup messages is also different from searching 
on e-mail messages, because of: 

Different Purpose: Users will most likely utilize a 
newsgroup collection as a knowledge base, and search for 
answers to their specific information need. However, users may 
regard search on emails as an advanced navigation tool, and use it 
to locate emails from a specific sender (perhaps restricted to a 
specific time) or contain specific keywords. 

Different Content Property: Unlike public newsgroup 
messages, which are aimed at providing useful information to the 
whole community, email collections are private collections and 
are not likely to be shared with other people. User can only search 
on their own email collection.  This also limits the size of the 
email collection typically searched.  

Different Content Familiarity: People are familiar (or at 
least have a basic idea) with the content and authors of their own 
email collection. Searching one’s own email collection is 
searching on known information. However, people have little idea 
of the contents and authors of the newsgroup messages. Searching 
on newsgroup message is searching on unknown content. 

2.2 User Behavior in Newsgroups 
Understanding user behavior in newsgroups will help to detect 
common user patterns and thus help us find ways to improve the 
search effectiveness. Some people visit a newsgroup to ask 
questions, others come to a newsgroup to answer other people’s 
questions or discuss some topics. This leads to two different kinds 
of behavior: Information Seeking and Message Posting. 

Information Seeking Behavior 
There are two different ways for a user to find information 

via a newsgroup. They can either post a new question on the 
newsgroup or submit a query to the search engine. It is very 
important to understand the differences between the two methods. 

The user-posted questions in newsgroups are usually long. 
(more than 20 words). They contain the very detailed situation 
that the user is facing. On the other hand, the queries submitted to 
a newsgroup search engine are usually very short, normally, 2-3 
words. The information need carried by these search queries is 
much less detailed compared to the user posted questions. 

A: How can I install
firewall on my computer? 

A user typically posts a question to a newsgroup because he 
thinks the question is unique or he wants a very detailed answer to 
the question. A user submits a query to a newsgroup search 
engine because he believes somebody might already have 
answered the same question or a very similar question in the 
newsgroup. No matter whether a user posts a new question to the 
newsgroup or submits a query to the search engine, he is 
expecting other people’s answers to his question, not other 
people’s similar question messages. 

Message Posting Behavior 
Not all the messages in a newsgroup have equal content 

quality; some messages contain more useful information than 
others. Is there any way to identify high quality messages? After a 
close examination of a set of newsgroup message thread trees, we 
found the following to be the most prevalent relationship types 
between messages in a thread: 
1. Question relationship: a user may not be clear about the 
information in the previous message(s) and as a result, raises 
more questions in the replied message. This type of relationship is 
a very good indication of a shift in topic. 
2. Answer relationship: Current message answers the question 
of the previous message(s). This type of relationship may also 
indicate high quality information to user’s search query. 
3. Agreement/Amendment relationship: In the replied message, 
user expresses their agreement or adds amendment to the 
information presented in previous message(s). Sometimes this 
kind of message may also contain information that can be used to 
answer search queries. 
4. Disagreement/Argument relationship: In the replied message, 
user expresses their disagreement or argument to information 
presented in previous message(s). Sometimes the replied message 
may contain evidence that can be used to answer search queries. 
5. Courtesy relationship: “Thank you”, “You’re welcome” 
messages. These might be cues to predict the correctness/quality 
of previous messages, although they may not contain any useful 
information themselves. 

Relationship types 2-4, are more likely to lead to high 
quality content that can be used to answer search queries. In this 
research we try to develop ways to automatically combine 
message context in each thread tree and return the best candidate 
messages in response to a user’s search query.  For example, if a 
user’s query is “install firewall”, we hope to return message C, F, 

B: Are you using 
xp or 2000? 

D:I am using xp 

C: Call Microsoft tech 
support at 1888-123-4567 
or visit our internet safety 
website at 
http://microsoft.com/safe. 

E: Hi, I have the 
same problem,  but I 
am using 2000 

F: Go to control 
panel….blah 
blah… 

G: Thanks a lot! 

H: Go to start…. 
blah blah… 

I: Cool, that works! 



H to the user in Figure 1, even though some of these messages do 
not contain any search keywords.  

2.3 Collection Statistics 
This research is based on a newsgroup collection gathered from 
the Microsoft.Public.* subhierarchy of Usenet. The collection we 
used contains 973,948 messages, which form 349,953 message 
thread trees. The average number of messages per tree is 2.78. 
The physical size of the collection is 806 Megabytes.   
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Figure 2 Thread size statistics 

Figure 2 shows the thread tree size distribution in the 
collection. We see from this figure that the messages are not 
evenly distributed across different size thread trees. More 
specifically, 2/3 of the messages appear in the top 1/3 largest 
thread trees, where the size of the thread tree (number of 
messages in the tree) is equal or greater than 3. 

This observation is important because it reveals the truth that 
a significant portion of messages in the newsgroup collection 
reside in richer (size ≥ 3) thread tree structures. And it is possible 
to improve the effectiveness of newsgroup search as a whole by 
analyzing those richer newsgroup thread tree structures. 
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Figure 3 Message depth statistics 
Figure 3 shows the message depth distribution. It is 

interesting to see that although over 2/3 of the messages are in 
thread trees with size ≥ 3, most messages in the collections reside 
in very shallow depth of a thread tree. (E.g. over 73% of messages 
are within 1 level from the root, and over 85% of the messages 
are within 2 levels from the root). Even after we discard all the 
root messages (assuming they are all question messages), we still 

find that over 75% of the remaining messages reside within 2 
levels from the root message, and over 86% within 3 levels. The 
message-depth curve is highly skewed.  

3. RELATED WORK 
Our work on newsgroup search has roots in two research areas: 
structured information retrieval and data fusion in information 
retrieval. 

3.1 Structured Information Retrieval 
Our research entails analyzing the structure of message thread 
trees to identify/combine the messages that can best answer a 
user’s search query. Identifying the best content segment within a 
document is a well-studied topic in information retrieval.  

Moffat, et, al. [21][31] and Callan [1] did some early work 
by partitioning documents into disjoint segments of roughly equal 
length, and found that retrieval on passages with 150-300 words 
was significantly more effective than full document retrieval. 
Salton et. al [23] used a two-pass method. First, they searched a 
query against the full document to obtain a top document list. 
Then, passage level similarity was used to reorder this list. They 
found this approach improved retrieval effectiveness as well. 
Fixed length window or natural boundary separation technology 
discussed above has proven to be robust and effective for 
document retrieval involving fairly long documents.  

Hearst et. al.[13] considered documents as sequences of 
locally concentrated discussions and used a method to 
automatically group small paragraphs into topically related 
segments. Her approach retrieves the top segments against the 
query and sums the scores of all segments from the same 
document. This approach was shown to be better than both 
document and single passage retrieval. Her work is related to ours 
because newsgroup thread trees can also be considered as a set of 
locally concentrated discussions, but different to high quality 
traditional literature used in Hearst’s research, newsgroup 
message threads contain messages authored by different people 
and are not linear in structure.  In effect, a newsgroup thread can 
be seen as an already grouped topically related set of messages. 

In one other work, Mittendorf and Schauble [19] also 
suggested using inferred passage boundaries, by employing a 
hidden Markov model to determine passages appropriate to each 
query. They found that passage ranking improved retrieval 
effectiveness. 

With the rapid growth of the World Wide Web, more 
research has been done to analyze the structure of web pages to 
improve web-search. Embley[5] uses heuristic rules to discover 
record boundaries within a page to assist data extraction from the 
web page. Chakrabarti [2] addresses the fine-grained topic 
distillation and dis-aggregates hubs into regions by analyzing link 
structure as well as intra-page text distribution. Chen [4] 
developed a Function-based Object Model (FOM) of web page 
for content understanding and adaptation. Gu [11] tries to 
construct a web content structure by breaking out the DOM tree 
and comparing similarity among the basic DOM nodes. Most 
recently, Yu et. al [30], proposed the use of visual cues in the 
web-page to detect web page content structure. Most of this work 
analyzes the structural/functional/visual relationship of different 
components of an html page. Our research focuses on analyzing 
the semantic relationship of different messages within a thread 
tree, and we also try to combine multiple evidence sources 



3. Extracting feature vectors for each message in our <query, 
message> data set; 

discovered from message relationships, as well as lexical 
distribution in threads and author attributes, automatically. 

4. Building a ranking function using Linear Regression (LR) and 
Support Vector Machines (SVM). 3.2 Data Fusion in Information Retrieval 

Information retrieval can be considered as using a set of known 
evidence (e.g. document/ query term frequency, web link 
structure) to predict an unknown property: the relevancy of a 
document to a query.  Extensive research has been done to 
combine multiple sources of evidence to improve the 
effectiveness of retrieval (also referred to as the “data fusion” 
problem). There are two generic ways to combine evidence; the 
first method is to combine scores from different systems/ranking 
schemes. Fox [24], Fuhr [8] and Gey [10] did some early work in 
this area. Lee [16][17] combined results from pairs of different 
weighting schemes from the SMART system and found that 
significant improvements could be obtained by combining two 
different weighting schemes. Vogt and Cottrell [25] combined the 
retrieval scores from two systems by taking a weighted sum to 
improve “routing queries”. The effectiveness of the combined 
system was compared with that of the two individual systems, as 
well as with the best possible performance. The result showed the 
combined system performed virtually identically to the better of 
the two systems. The other fusion method is to combine different 
document representations to improve search effectiveness. This 
method is extensively used by the participants of TREC web track 
in recent years. Most recently, Ogilvie and Callan [21] analyzed 
the conditions for successful combination of different document 
representations based on TREC web collection, and they found 
that the hypotheses for meta-search on classical text collections 
do not necessarily hold in web environments. Research on 
combining different document representations is relevant to our 
study, because in our work, we try to combine information from a 
set of messages from different parts of a thread tree to improve 
retrieval, and different message sets can be regarded as different 
information representations for the same thread tree.  

We explain each of the steps in detail below: 

4.1 Building the baseline search engine 
The baseline search system was developed using the data 
collection introduced in 2.3. The collection contains 978,943 
messages from the Microsoft.public.* usenet subhierarchy.  

We chose Okapi BM 2500 [22] as our default weighting 
function in the baseline search engine. The BM 2500 weighting 
function is: 

∑
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where Q is a query containing key terms T, tf is the frequency of 
occurrence of the term within a message; qtf is the frequency of 
the term within the query, from which Q was derived, w(1) is the 
Robertson/Spark Jones weight of T in Q.   It is calculated by: 
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where, N is the number of messages in the collection, n is the 
number of messages containing the term, R is the number of 
messages relevant to a specific topic, and r is the number of 
relevant documents containing the term. In (1), k2 is calculated 
by: k1((1-b)+b×dl/avdl), where dl and avdl denote the document 
length and the average message length measured in words. In this 
experiment, we set k1 = 1.2, k3 =1000, b = 0.75. 

In the baseline search system, we use a naïve stemming 
method (e.g., only truncate the words ending in “ing” and “s”). 
We use a list of approximately 500 stopwords.  

4.2 Rating the <query, message> pairs 
Human experts were hired to manually examine and identify the 
relevancy of top messages returned by the baseline Okapi search 
engine for a set of queries. The annotated <query, message> pairs 
are then used to train and evaluate our ranking algorithms. 

Chen [3] explored a range of machine-learning methods for 
combining four factors in information retrieval. These methods 
include logistic regression, linear regression, neural networks, and 
the linear discriminant. He found these methods gave equally 
good results. Xi and Fox [27] use a decision tree to separate 
homepage from non-homepages in a web collection and further 
use logistic regression to improve the performance of the 
“homepage finding” search task. Lewis [18] used Support Vector 
Machines (SVM) in Batch Filtering and Routing tasks. Most 
recently, Fan et. al.,[6] used Generic Programming (GP) to 
automatically optimize a search engine ranking function.. Tested 
on the traditional TREC collection, their GP optimized ranking 
formula performs significantly better than that of a classical 
search formula. In this work, we use linear regression and Support 
Vector Machines to combine features extracted from the structure 
of newsgroup thread trees to improve the effectiveness of 
newsgroup search. 

We use 343 sample queries drawn from the Microsoft Help 
& Support website search log to search against the newsgroup 
message collection. For each of the sample queries, at most the 
top 25 messages returned by the baseline search engine were kept. 
Thus, we obtained a collection of 5552 <query, message> pairs. 
Two domain experts on Microsoft product knowledge were hired 
to judge the relevance of these pairs. 

When rating each of the <query, message> pairs, each 
domain expert was allowed to choose one of the following options 
and associated score: relevant (3.0); partially relevant (2.0), non-
relevant (1.0), can not tell (no score associated). Only <query, 
message> pairs receiving a score of no less than 2.5 on average1 
were regarded as relevant pairs. All the others pairs were regarded 
as non-relevant pairs. 

4. EXPERIMENTAL APPROACH In order to prevent the domain experts from 
misunderstanding the queries, we gave a short description for 
each of the 343 sample queries, in a way very similar to the 

We use linear regression and Support Vector Machines to 
investigate the effectiveness of combining features based on 
thread structure, lexical distribution and author attributes to create 
an effective ranking function for newsgroup search. The 
experimental steps are:                                                                  
1. Building up a baseline Okapi search engine; 1 i.e. one human labeled a pair as relevant and one labeled it as 

partially relevant. 2. Rating a set of  <query, message> pairs by human experts; 



<desc> part of queries used in TREC ad-hoc tasks [12]. Table 1 
shows a few sample queries with corresponding descriptions. 

 
Table 1. Sample queries and their descriptions 

Queries Descriptions 
Norton Antivirus 2001 What is this software? How can I 

get/install this software? Info of 
specific virus that can be fixed by this 
software will not be relevant.  

Boot disk What is this, how do I create one? 
Problems that can be fixed by using this 
will not be relevant. 

Dual Booting What is this? How can I do this? 
Specific problem caused/solved by dual 
booting will not be relevant. 

 
After the rating process, we found out that 1008 <query, 

document> pairs (approximately 18% of all the pairs) were 
relevant. 

4.3 Feature Extraction 
Two kinds of features are collected for each of the messages in 
the thread tree; they are features from the thread tree, and features 
from the author of the message.  

First, we explain features extracted from the message thread 
tree. These features are obtained by combining features from 2 
domains: tree structure, ranking function.  

Tree Structure: Since some messages may include text from 
previous message(s), we first filter out all the previous messages 
enclosed and only leave the core part of the message to prevent 
the system from generating duplicate message contents in the 
subsequent steps. Then, we link each message to its previous 
message and its following messages to rebuild the message thread 
tree. For each of the messages in the thread tree, we extract 
content of another message or a combination of other messages in 
the same thread tree according to the relationships described in 
Table 2. 

 
Table 2. Content features from the thread tree structure 

Name Explanation 
Message The current message core. 
Title The title of the current message. 
Root The root message of the current message. 
Parent The current message’s direct parent 

message. (Null, if current message is root). 
Ancestor All the ancestor messages of the current 

message, up to the root message. 
Thread The current message, and all its ancestor 

messages, up to the root message. 
Non-root Thread, without the root message. 
Children All the direct child messages of the current 

message 
Descendant All the descendant messages of the current 

message. 
 
Ranking Functions: for each of the content features 

extracted from the thread tree structure, we calculate 3 scores 
according to different ranking functions as explained in Table 3. 

 
 
 
 

Table 3. Different ranking functions 
Ranking function Explanation 
Okapi Score The standard BM2500 used in the baseline 

system 
Binary Score 1/0 if a query term appears/does not appear 

in a message.  The final score is the sum of 
term scores for all the term in the query. 
This method is reported to be good for short 
query search [28]. 

TotalTF Score Total number of keywords occurring in the 
message 

 
With 9 content features selected from the thread tree 

structure, and 3 different ranking functions, we have collected 27 
attribute scores for each of the messages. We also calculate 3 
different ranking scores for the original message (without pruning 
out the enclosed previous messages), and that gives us a total of 
30 query-specific features extracted from each message. Other 
query independent features collected from the thread tree are 
shown in Table 4: 

 
Table 4. Content independent features from thread tree  

Name Explanation 
IsRoot Binary score indicating whether the 

message is a root message or not. 
Generation Which generation current message occurs 

in. 
NumberofChildren Total number of direct children the current 

message has. 
TotalDescendant Total number of descendants that the 

current message has. 
        
DescendantDepth 

The biggest depth of the current message’s 
descendant messages. 

TotalLeaf The total number of leaf messages in the 
descendants of the current message. 

 
Beside the features extracted from the message thread tree, 

features from the author of each of the messages also are collected 
using the Microsoft Research NETSCAN project. In earlier work, 
Fiore et. al, [7] showed that some of these features correlated with 
how likely a user would like to read another posting from an 
author. In this work, we tried to find whether such features could 
help our ranking function by providing a query-independent 
author-quality assessment (akin to Pagerank in Web search). 
These features are explained in Table 5. 

 
Table 5. Features from Author’s matrix 

Name Explanation 
Posts Number of messages an author posts during a 

period of time. 
Replies Number of reply messages an author posts 

during a period of time. 
Reponses How many responses the author gets. 
AverageLineCount Average length of his/her posting. 
DaysPresent Days he/she posts to Usenet. 
ThreadCount How many threads he/she is involved in. 
Starts How many threads he/she starts. 
Barren How many of his/her messages get no replies 
NewsGropupCount How many newsgroup communities he/she is 

active in. 
We have collected 45 features for each of the 5552 <query, 

message> pairs to train and test our ranking functions.  



4.4 Combining multiple features The performance evaluation of our trained ranking functions 
is reported in Figure 4. In this work we use Linear Regression (LR) and Support Vector 

Machines (SVM) to train ranking functions using the features 
described above. 
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  Figure 4 the evaluation for different sizes of training data 

The most common way of combining multiple sources of 
evidence in information retrieval is to take a weighted sum of the 
scores of different evidence: . Where s

ii swS ∑= i are 

scores from different sources, wi is the correspondent weights and 
S is the final score for the document. In Linear Regression 
analysis the dependent variable S is a boolean factor indicating 
whether the message is relevant (1) to a query or not (0). The 
independent variables are 45 features described in previous 
section. Regression analysis can be used to find a set of weights 
wi, which best predicts the dependent variable (i.e. the probability 
of a message relevant to a query).  

Support Vector Machiness (SVM) are also linear functions 
of the form f(x) = w•x+b, where w•x is the inner product between 
the weight vector w and the input vector x. the SVM are mostly 
used as classifiers to classify class 1 f(x)>0 from class -1 f(x)≤0 
The main idea of SVM is to select a hyper-plane that separates the 
positive and negative examples while maximizing the minimum 
margin, which is defined as  for x)( ii xfy i, where yi∈{-1,1}is the 

target output.  This corresponds to minimizing w•w subject to   yi 
(w•xi+b)≥1 for all i. In this research we consider relevant 
messages are in class 1 and non-relevant messages are in class –1. 
Vector x consists of all the features we have extracted. The object 
of the SVM is to find the weight vector w that can best separate 
relevant messages from non-relevant messages.  We utilize the 
classifiers as ranking functions by sorting the documents 
according to the weight assigned by the classifier. 

 
We can see from Figure 4 that ranking functions trained 

using both Linear Regression (LR) and Support Vector Machines 
(SVM) can give a significant improvement over the baseline 
Okapi system. The Linear Regression Model trained on the entire 
4,164 <query, message> pair training set achieved a 28.5% 
improvement over our baseline Okapi system. We used a two-
tailed t-test to compare the MRR of LR with that of the baseline 
Okapi system for the testing queries and found that this 
improvement is significant at α= 0.00006. Moreover, as the 
training data increases, the performance of the Linear Regression 
trained ranking function seems to be more robust and consistent 
than the performance of Support Vector Machines. As the training 
data increases, the performance of Linear Regression model 
shows a steadily increasing learning curve, indicating that further 
improvement can likely be achieved, if we further increase the 
training data set. This is something we plan to investigate in the 
future. 

5. EXPERIMENTAL RESULTS 
The original motivation of this work was to build an effective 
ranking function for usenet searches involving queries relevant to 
Microsoft products.  We obtained 343 random queries from 
Microsoft Help and Support Search Query logs.  We had a 
collection of 973948 messages from the Microsoft.public.* 
subhierarchy of Usenet.  We used okapi baseline to find the top 
25 messages for each query.  We then had people annotate these 
messages, giving us a set of 5,552  <query, intent, message> 
triples.  We split the data set into training instances and test 
instances. The training data set contains instances from 75% of 
the queries and the test data set contains instances from the rest 
25% of the queries. There was no overlap in queries in the 
training and test data. 

The retrieval performance of the best LR Model was also 
compared with the best single features we collected in 4.3. 
Results are shown in Figure 5. We can see from the figure that the 
best LR Model beats the best single evidence: “the Okapi score 
obtained from the Non-root portion of the thread tree 
(OkapiNonroot)” by 13.5%. A 2-tailed T-test performed on the 
results of the LR Model and OkapiNonRoot show that the 
improvement is statistically significant at α=0.0003.   Another 
way of looking at this is that approximately 45% of our 
improvement gain over the baseline can be accounted for by the 
OkapiNonRoot feature. In the case of product support search, users typically care 

more about rapidly finding a satisficing answer, rather than the 
number of relevant messages retrieved.  If the first return message 
correctly explains to the querier how to install a firewall in 
Windows XP, it is irrelevant whether subsequent returned 
messages also correctly answer the query.  For this reason, we 
chose Mean Reciprocal Rank (MRR) of the first relevant message 
to evaluate the models we developed using LR and SVM. MRR is 
defined as: 

We can also see from the figure that most of the best single 
features are Okapi scores obtained from different parts of the 
thread tree.  

N
R

MRR Ni i∑ ∈=
)/1(                              (3) 

where, Ri is the rank of first correct answer for query i, and 
N is total number of queries.  
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Figure 5. Performance comparison for different single 

features with the Linear Regression Model 
 

6.  CONCLUSION AND FUTURE WORK 
6.1 Conclusion 
Newsgroup search is a very important service for web 
communities; however, the performance of a traditional text based 
search engine, or a search engine for web pages, when used on 
newsgroups, is not adequate due to unique attributes of 
newsgroup message threads. In this paper, we analyzed the 
reasons that cause the text-based search engine to fail on 
newsgroup search and also analyzed the thread tree structure of 
newsgroup messages, then we proposed that the performance of 
newsgroup search can be improved by analyzing the context 
information of the messages within the message thread tree.  

After extracting a set of features from the related messages in 
the same thread tree and author information for each of the 
messages in the newsgroup, we used Linear Regression (LR) and 
Support Vector Machines (SVM) to combine these features to 
create a ranking function. Our experiments achieved a 28.5% 
improvement over the baseline Okapi system (in terms of MRR), 
which confirmed our assumption that the performance of 
newsgroup search can be enhanced by incorporating features 
relevant to the newsgroup domain, such as thread context 
information. We were surprised to learn that author features 
(which we expected would serve to indicate message quality 
much like PageRank does for Web Pages), did not appear to play 
a significant role in our ranking functions. Furthermore, we found 
that with Linear Regression, the performance is proportional to 
the amount of training data used. This suggests an even larger 
scale human annotation on test data might achieve higher 
performance. 

6.2 Future Work 
Although significant improvement on the performance of 
newsgroup search has been achieved by combining multiple 
features from the context of the message in the message thread 
tree, there are still more ways to improve the performance of 
newsgroup search left unexplored. 

One method is to try to automatically detect the semantic 
relationship of the message to its previous messages, or in other 
words, find the relationship information carried by the edges on 
the newsgroup thread tree. Although in section 2.2 we detected 5 

kinds of such relationships, in this research, we did not try any 
methods to automatically identify these relationships and combine 
them together with the content based features to improve the 
search performance.  The usefulness of these relationships for 
search is still to be found. 

   The focus of this project was to create a message ranking 
function for newsgroup search to help people more readily find 
information in newsgroups relevant to Microsoft help and support 
related queries.  In the future, we plan to study to what extent our 
results and conclusions are applicable to all newsgroup search in 
general. 
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