
Learning Effective Ranking Functions for Newsgroup
Search

Wensi Xi1
1Department of Computer Science, Virginia
Polytechnic Institute and State University,

Blacksburg, VA, 24060, U.S.A.
xwensi@vt.edu

Jesper Lind, Eric Brill2
2Microsoft Research, One Microsoft Way, Redmond,

WA, U.S.A.
{jesperl, brill}@microsoft.com

ABSTRACT
Web communities are web virtual broadcasting spaces where
people can freely discuss anything. While such communities
function as discussion boards, they have even greater value as
large repositories of archived information. In order to unlock the
value of this resource, we need an effective means for searching
archived discussion threads. Unfortunately the techniques that
have proven successful for searching document collections and
the Web are not ideally suited to the task of searching archived
community discussions. In this paper, we explore the problem of
creating an effective ranking function to predict the most relevant
messages to queries in community search. We extract a set of
predictive features from the thread trees of newsgroup messages
as well as features of message authors and lexical distribution
within a message thread. Our final results indicate that when
using linear regression with this feature set, our search system
achieved a 28.5% performance improvement compared to our
baseline system.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information search
and retrieval;

General Terms
Algorithms, Experimentation

Keywords
Newsgroup search, information retrieval, machine learning, linear
regression, support vector machines.

1. INTRODUCTION
Web communities are web virtual spaces where people can freely
discuss anything. Usenet is a web broadcasting service built for
community discussions. People post to newsgroups to ask
questions, answer questions, or partake in discussions. Search is a
highly desirable feature on top of newsgroup archives, to enable
users to search the message collections for information they need.
Studies have shown that the vast majority of people who interact
with an online community do it passively by browsing/searching

archived discussions rather than directly participating in the
discussions themselves.

Unfortunately, the techniques that have proven successful for
searching document collections and the Web are not ideally suited
to the task of community archive search. Compared to Web
pages, newsgroup articles are typically much shorter, and do not
have rich mark-up that can help determine term relevance. They
also have a very different topological relation to other messages
in the collection, making cues such as in-link analysis and anchor
text impossible to utilize in this context.

In this paper, we explore whether a set of features unique to
newsgroup discussion threads can be used to learn an effective
ranking function that can be deployed in a newsgroup search
engine to help people find relevant information.

The features we examined are based on attributes of the
author of a message, the topology of a thread, and the thread
context of a message. The rest of this paper is organized as
follows: in section 2, we explain unique properties of newsgroup
messages and search problems incurred. In section 3, we discuss
other relevant research. Then, we explain our detailed
experimental methodology in section 4. Results of these
experiments are reported in section 5. Finally, we summarize our
contributions and discuss future research directions in section 6.

2. PROBLEM CONTEXT
In this section, we will explain the unique thread tree structure of
newsgroup messages, analyze user behavior in newsgroups and
present some statistics of the message collection used in this
research.

2.1 Thread Tree Structure of Newsgroup
Messages
Different from the structure of other web-based information
content such as hyperlinks within web pages, newsgroup
messages form a unique structure: the thread tree structure. The
root of the thread tree is the first message posted by someone
seeking an answer to his/her question or someone who wants to
initialize a discussion regarding a specific topic, and then the
thread tree expands as other people reply to this message and
continue the discussion. Figure 1 is an example of a newsgroup
message thread tree. A newsgroup collection can be regarded as a
collection of thread trees, and there is no explicit semantic
relationship between different thread trees.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGIR’04, July 25–29, 2004, Shefield, UK.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Previous research (e.g., [4] [11] [31]) has explored different
ways to take advantage of document tree structure (especially the
Document Object Model (DOM) structure of HTML documents)
to improve the effectiveness of web search. However, the thread
tree structure of newsgroup messages is radically different from
the DOM structure because:

• DOM tree structure represents the structural/ functional/
visual relationship of different components with an html page.
The newsgroup thread tree structure represents the semantic
relationships of messages within a thread tree.

• The edge of the DOM structure carries explicit relationships
(represented by the html tag) of different parts of a web page. The
relationships represented by edges of the message thread trees are
implicit.

• Newsgroup threads contain an interesting form of lexical
redundancy, which is atypical of a web page. For example, a
posting often restates/clarifies/refutes an earlier posting contained
in the same thread.

Figure 1 An example of newsgroup message thread tree
It is not difficult to notice that the content and structure of

newsgroup messages are similar to email messages, which also
contain semantic relationships between messages. However,
searching on newsgroup messages is also different from searching
on e-mail messages, because of:

Different Purpose: Users will most likely utilize a
newsgroup collection as a knowledge base, and search for
answers to their specific information need. However, users may
regard search on emails as an advanced navigation tool, and use it
to locate emails from a specific sender (perhaps restricted to a
specific time) or contain specific keywords.

Different Content Property: Unlike public newsgroup
messages, which are aimed at providing useful information to the
whole community, email collections are private collections and
are not likely to be shared with other people. User can only search
on their own email collection. This also limits the size of the
email collection typically searched.

Different Content Familiarity: People are familiar (or at
least have a basic idea) with the content and authors of their own
email collection. Searching one’s own email collection is
searching on known information. However, people have little idea
of the contents and authors of the newsgroup messages. Searching
on newsgroup message is searching on unknown content.

2.2 User Behavior in Newsgroups
Understanding user behavior in newsgroups will help to detect
common user patterns and thus help us find ways to improve the
search effectiveness. Some people visit a newsgroup to ask
questions, others come to a newsgroup to answer other people’s
questions or discuss some topics. This leads to two different kinds
of behavior: Information Seeking and Message Posting.

Information Seeking Behavior
There are two different ways for a user to find information

via a newsgroup. They can either post a new question on the
newsgroup or submit a query to the search engine. It is very
important to understand the differences between the two methods.

The user-posted questions in newsgroups are usually long.
(more than 20 words). They contain the very detailed situation
that the user is facing. On the other hand, the queries submitted to
a newsgroup search engine are usually very short, normally, 2-3
words. The information need carried by these search queries is
much less detailed compared to the user posted questions.

A: How can I install
firewall on my computer?

A user typically posts a question to a newsgroup because he
thinks the question is unique or he wants a very detailed answer to
the question. A user submits a query to a newsgroup search
engine because he believes somebody might already have
answered the same question or a very similar question in the
newsgroup. No matter whether a user posts a new question to the
newsgroup or submits a query to the search engine, he is
expecting other people’s answers to his question, not other
people’s similar question messages.

Message Posting Behavior
Not all the messages in a newsgroup have equal content

quality; some messages contain more useful information than
others. Is there any way to identify high quality messages? After a
close examination of a set of newsgroup message thread trees, we
found the following to be the most prevalent relationship types
between messages in a thread:
1. Question relationship: a user may not be clear about the
information in the previous message(s) and as a result, raises
more questions in the replied message. This type of relationship is
a very good indication of a shift in topic.
2. Answer relationship: Current message answers the question
of the previous message(s). This type of relationship may also
indicate high quality information to user’s search query.
3. Agreement/Amendment relationship: In the replied message,
user expresses their agreement or adds amendment to the
information presented in previous message(s). Sometimes this
kind of message may also contain information that can be used to
answer search queries.
4. Disagreement/Argument relationship: In the replied message,
user expresses their disagreement or argument to information
presented in previous message(s). Sometimes the replied message
may contain evidence that can be used to answer search queries.
5. Courtesy relationship: “Thank you”, “You’re welcome”
messages. These might be cues to predict the correctness/quality
of previous messages, although they may not contain any useful
information themselves.

Relationship types 2-4, are more likely to lead to high
quality content that can be used to answer search queries. In this
research we try to develop ways to automatically combine
message context in each thread tree and return the best candidate
messages in response to a user’s search query. For example, if a
user’s query is “install firewall”, we hope to return message C, F,

B: Are you using
xp or 2000?

D:I am using xp

C: Call Microsoft tech
support at 1888-123-4567
or visit our internet safety
website at
http://microsoft.com/safe.

E: Hi, I have the
same problem, but I
am using 2000

F: Go to control
panel….blah
blah…

G: Thanks a lot!

H: Go to start….
blah blah…

I: Cool, that works!

H to the user in Figure 1, even though some of these messages do
not contain any search keywords.

2.3 Collection Statistics
This research is based on a newsgroup collection gathered from
the Microsoft.Public.* subhierarchy of Usenet. The collection we
used contains 973,948 messages, which form 349,953 message
thread trees. The average number of messages per tree is 2.78.
The physical size of the collection is 806 Megabytes.

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8 9 10 >10
Size of thread tree

N
um

be
r o

f t
hr

ea
ds

/m
es

sa
ge

s

0

10

20

30

40

50

60

70

80

90

100

pe
rc

en
ta

ge
 c

um
ul

at
io

n

Thread Tree
Corresponding number of messages
Message cumulated curve

Figure 2 Thread size statistics

Figure 2 shows the thread tree size distribution in the
collection. We see from this figure that the messages are not
evenly distributed across different size thread trees. More
specifically, 2/3 of the messages appear in the top 1/3 largest
thread trees, where the size of the thread tree (number of
messages in the tree) is equal or greater than 3.

This observation is important because it reveals the truth that
a significant portion of messages in the newsgroup collection
reside in richer (size ≥ 3) thread tree structures. And it is possible
to improve the effectiveness of newsgroup search as a whole by
analyzing those richer newsgroup thread tree structures.

0

50000

100000

150000

200000

250000

300000

350000

400000

0 1 2 3 4 5 6 7 8 9 10 >10

Depth

N
um

be
r o

f M
es

sa
ge

0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

ed
 P

er
ce

nt
ag

e

Messages
Cumulated Curve

Figure 3 Message depth statistics
Figure 3 shows the message depth distribution. It is

interesting to see that although over 2/3 of the messages are in
thread trees with size ≥ 3, most messages in the collections reside
in very shallow depth of a thread tree. (E.g. over 73% of messages
are within 1 level from the root, and over 85% of the messages
are within 2 levels from the root). Even after we discard all the
root messages (assuming they are all question messages), we still

find that over 75% of the remaining messages reside within 2
levels from the root message, and over 86% within 3 levels. The
message-depth curve is highly skewed.

3. RELATED WORK
Our work on newsgroup search has roots in two research areas:
structured information retrieval and data fusion in information
retrieval.

3.1 Structured Information Retrieval
Our research entails analyzing the structure of message thread
trees to identify/combine the messages that can best answer a
user’s search query. Identifying the best content segment within a
document is a well-studied topic in information retrieval.

Moffat, et, al. [21][31] and Callan [1] did some early work
by partitioning documents into disjoint segments of roughly equal
length, and found that retrieval on passages with 150-300 words
was significantly more effective than full document retrieval.
Salton et. al [23] used a two-pass method. First, they searched a
query against the full document to obtain a top document list.
Then, passage level similarity was used to reorder this list. They
found this approach improved retrieval effectiveness as well.
Fixed length window or natural boundary separation technology
discussed above has proven to be robust and effective for
document retrieval involving fairly long documents.

Hearst et. al.[13] considered documents as sequences of
locally concentrated discussions and used a method to
automatically group small paragraphs into topically related
segments. Her approach retrieves the top segments against the
query and sums the scores of all segments from the same
document. This approach was shown to be better than both
document and single passage retrieval. Her work is related to ours
because newsgroup thread trees can also be considered as a set of
locally concentrated discussions, but different to high quality
traditional literature used in Hearst’s research, newsgroup
message threads contain messages authored by different people
and are not linear in structure. In effect, a newsgroup thread can
be seen as an already grouped topically related set of messages.

In one other work, Mittendorf and Schauble [19] also
suggested using inferred passage boundaries, by employing a
hidden Markov model to determine passages appropriate to each
query. They found that passage ranking improved retrieval
effectiveness.

With the rapid growth of the World Wide Web, more
research has been done to analyze the structure of web pages to
improve web-search. Embley[5] uses heuristic rules to discover
record boundaries within a page to assist data extraction from the
web page. Chakrabarti [2] addresses the fine-grained topic
distillation and dis-aggregates hubs into regions by analyzing link
structure as well as intra-page text distribution. Chen [4]
developed a Function-based Object Model (FOM) of web page
for content understanding and adaptation. Gu [11] tries to
construct a web content structure by breaking out the DOM tree
and comparing similarity among the basic DOM nodes. Most
recently, Yu et. al [30], proposed the use of visual cues in the
web-page to detect web page content structure. Most of this work
analyzes the structural/functional/visual relationship of different
components of an html page. Our research focuses on analyzing
the semantic relationship of different messages within a thread
tree, and we also try to combine multiple evidence sources

3. Extracting feature vectors for each message in our <query,
message> data set;

discovered from message relationships, as well as lexical
distribution in threads and author attributes, automatically.

4. Building a ranking function using Linear Regression (LR) and
Support Vector Machines (SVM). 3.2 Data Fusion in Information Retrieval

Information retrieval can be considered as using a set of known
evidence (e.g. document/ query term frequency, web link
structure) to predict an unknown property: the relevancy of a
document to a query. Extensive research has been done to
combine multiple sources of evidence to improve the
effectiveness of retrieval (also referred to as the “data fusion”
problem). There are two generic ways to combine evidence; the
first method is to combine scores from different systems/ranking
schemes. Fox [24], Fuhr [8] and Gey [10] did some early work in
this area. Lee [16][17] combined results from pairs of different
weighting schemes from the SMART system and found that
significant improvements could be obtained by combining two
different weighting schemes. Vogt and Cottrell [25] combined the
retrieval scores from two systems by taking a weighted sum to
improve “routing queries”. The effectiveness of the combined
system was compared with that of the two individual systems, as
well as with the best possible performance. The result showed the
combined system performed virtually identically to the better of
the two systems. The other fusion method is to combine different
document representations to improve search effectiveness. This
method is extensively used by the participants of TREC web track
in recent years. Most recently, Ogilvie and Callan [21] analyzed
the conditions for successful combination of different document
representations based on TREC web collection, and they found
that the hypotheses for meta-search on classical text collections
do not necessarily hold in web environments. Research on
combining different document representations is relevant to our
study, because in our work, we try to combine information from a
set of messages from different parts of a thread tree to improve
retrieval, and different message sets can be regarded as different
information representations for the same thread tree.

We explain each of the steps in detail below:

4.1 Building the baseline search engine
The baseline search system was developed using the data
collection introduced in 2.3. The collection contains 978,943
messages from the Microsoft.public.* usenet subhierarchy.

We chose Okapi BM 2500 [22] as our default weighting
function in the baseline search engine. The BM 2500 weighting
function is:

∑
∈ ++

++

QT qtfktfk
qtfktfkw

))((
)1()1(

32

31)1((1)

where Q is a query containing key terms T, tf is the frequency of
occurrence of the term within a message; qtf is the frequency of
the term within the query, from which Q was derived, w(1) is the
Robertson/Spark Jones weight of T in Q. It is calculated by:

)5.0/()5.0(
)5.0/()5.0(log)1(

++−−+−
+−+

=
rRnNrn

rRrw (2)

where, N is the number of messages in the collection, n is the
number of messages containing the term, R is the number of
messages relevant to a specific topic, and r is the number of
relevant documents containing the term. In (1), k2 is calculated
by: k1((1-b)+b×dl/avdl), where dl and avdl denote the document
length and the average message length measured in words. In this
experiment, we set k1 = 1.2, k3 =1000, b = 0.75.

In the baseline search system, we use a naïve stemming
method (e.g., only truncate the words ending in “ing” and “s”).
We use a list of approximately 500 stopwords.

4.2 Rating the <query, message> pairs
Human experts were hired to manually examine and identify the
relevancy of top messages returned by the baseline Okapi search
engine for a set of queries. The annotated <query, message> pairs
are then used to train and evaluate our ranking algorithms.

Chen [3] explored a range of machine-learning methods for
combining four factors in information retrieval. These methods
include logistic regression, linear regression, neural networks, and
the linear discriminant. He found these methods gave equally
good results. Xi and Fox [27] use a decision tree to separate
homepage from non-homepages in a web collection and further
use logistic regression to improve the performance of the
“homepage finding” search task. Lewis [18] used Support Vector
Machines (SVM) in Batch Filtering and Routing tasks. Most
recently, Fan et. al.,[6] used Generic Programming (GP) to
automatically optimize a search engine ranking function.. Tested
on the traditional TREC collection, their GP optimized ranking
formula performs significantly better than that of a classical
search formula. In this work, we use linear regression and Support
Vector Machines to combine features extracted from the structure
of newsgroup thread trees to improve the effectiveness of
newsgroup search.

We use 343 sample queries drawn from the Microsoft Help
& Support website search log to search against the newsgroup
message collection. For each of the sample queries, at most the
top 25 messages returned by the baseline search engine were kept.
Thus, we obtained a collection of 5552 <query, message> pairs.
Two domain experts on Microsoft product knowledge were hired
to judge the relevance of these pairs.

When rating each of the <query, message> pairs, each
domain expert was allowed to choose one of the following options
and associated score: relevant (3.0); partially relevant (2.0), non-
relevant (1.0), can not tell (no score associated). Only <query,
message> pairs receiving a score of no less than 2.5 on average1
were regarded as relevant pairs. All the others pairs were regarded
as non-relevant pairs.

4. EXPERIMENTAL APPROACH In order to prevent the domain experts from
misunderstanding the queries, we gave a short description for
each of the 343 sample queries, in a way very similar to the

We use linear regression and Support Vector Machines to
investigate the effectiveness of combining features based on
thread structure, lexical distribution and author attributes to create
an effective ranking function for newsgroup search. The
experimental steps are:
1. Building up a baseline Okapi search engine; 1 i.e. one human labeled a pair as relevant and one labeled it as

partially relevant. 2. Rating a set of <query, message> pairs by human experts;

<desc> part of queries used in TREC ad-hoc tasks [12]. Table 1
shows a few sample queries with corresponding descriptions.

Table 1. Sample queries and their descriptions

Queries Descriptions
Norton Antivirus 2001 What is this software? How can I

get/install this software? Info of
specific virus that can be fixed by this
software will not be relevant.

Boot disk What is this, how do I create one?
Problems that can be fixed by using this
will not be relevant.

Dual Booting What is this? How can I do this?
Specific problem caused/solved by dual
booting will not be relevant.

After the rating process, we found out that 1008 <query,

document> pairs (approximately 18% of all the pairs) were
relevant.

4.3 Feature Extraction
Two kinds of features are collected for each of the messages in
the thread tree; they are features from the thread tree, and features
from the author of the message.

First, we explain features extracted from the message thread
tree. These features are obtained by combining features from 2
domains: tree structure, ranking function.

Tree Structure: Since some messages may include text from
previous message(s), we first filter out all the previous messages
enclosed and only leave the core part of the message to prevent
the system from generating duplicate message contents in the
subsequent steps. Then, we link each message to its previous
message and its following messages to rebuild the message thread
tree. For each of the messages in the thread tree, we extract
content of another message or a combination of other messages in
the same thread tree according to the relationships described in
Table 2.

Table 2. Content features from the thread tree structure

Name Explanation
Message The current message core.
Title The title of the current message.
Root The root message of the current message.
Parent The current message’s direct parent

message. (Null, if current message is root).
Ancestor All the ancestor messages of the current

message, up to the root message.
Thread The current message, and all its ancestor

messages, up to the root message.
Non-root Thread, without the root message.
Children All the direct child messages of the current

message
Descendant All the descendant messages of the current

message.

Ranking Functions: for each of the content features

extracted from the thread tree structure, we calculate 3 scores
according to different ranking functions as explained in Table 3.

Table 3. Different ranking functions
Ranking function Explanation
Okapi Score The standard BM2500 used in the baseline

system
Binary Score 1/0 if a query term appears/does not appear

in a message. The final score is the sum of
term scores for all the term in the query.
This method is reported to be good for short
query search [28].

TotalTF Score Total number of keywords occurring in the
message

With 9 content features selected from the thread tree

structure, and 3 different ranking functions, we have collected 27
attribute scores for each of the messages. We also calculate 3
different ranking scores for the original message (without pruning
out the enclosed previous messages), and that gives us a total of
30 query-specific features extracted from each message. Other
query independent features collected from the thread tree are
shown in Table 4:

Table 4. Content independent features from thread tree

Name Explanation
IsRoot Binary score indicating whether the

message is a root message or not.
Generation Which generation current message occurs

in.
NumberofChildren Total number of direct children the current

message has.
TotalDescendant Total number of descendants that the

current message has.

DescendantDepth

The biggest depth of the current message’s
descendant messages.

TotalLeaf The total number of leaf messages in the
descendants of the current message.

Beside the features extracted from the message thread tree,

features from the author of each of the messages also are collected
using the Microsoft Research NETSCAN project. In earlier work,
Fiore et. al, [7] showed that some of these features correlated with
how likely a user would like to read another posting from an
author. In this work, we tried to find whether such features could
help our ranking function by providing a query-independent
author-quality assessment (akin to Pagerank in Web search).
These features are explained in Table 5.

Table 5. Features from Author’s matrix

Name Explanation
Posts Number of messages an author posts during a

period of time.
Replies Number of reply messages an author posts

during a period of time.
Reponses How many responses the author gets.
AverageLineCount Average length of his/her posting.
DaysPresent Days he/she posts to Usenet.
ThreadCount How many threads he/she is involved in.
Starts How many threads he/she starts.
Barren How many of his/her messages get no replies
NewsGropupCount How many newsgroup communities he/she is

active in.
We have collected 45 features for each of the 5552 <query,

message> pairs to train and test our ranking functions.

4.4 Combining multiple features The performance evaluation of our trained ranking functions
is reported in Figure 4. In this work we use Linear Regression (LR) and Support Vector

Machines (SVM) to train ranking functions using the features
described above.

Performance comparision chart

0.4

0.45

0.5

0.55

0.6

0.65

25% 50% 75% 100%

% of training data used

M
ea

n
R

ec
ip

ro
ca

l R
an

k

Linear Regression Support Vector Machines
Baseline Okapi System

 Figure 4 the evaluation for different sizes of training data

The most common way of combining multiple sources of
evidence in information retrieval is to take a weighted sum of the
scores of different evidence: . Where s

ii swS ∑= i are

scores from different sources, wi is the correspondent weights and
S is the final score for the document. In Linear Regression
analysis the dependent variable S is a boolean factor indicating
whether the message is relevant (1) to a query or not (0). The
independent variables are 45 features described in previous
section. Regression analysis can be used to find a set of weights
wi, which best predicts the dependent variable (i.e. the probability
of a message relevant to a query).

Support Vector Machiness (SVM) are also linear functions
of the form f(x) = w•x+b, where w•x is the inner product between
the weight vector w and the input vector x. the SVM are mostly
used as classifiers to classify class 1 f(x)>0 from class -1 f(x)≤0
The main idea of SVM is to select a hyper-plane that separates the
positive and negative examples while maximizing the minimum
margin, which is defined as for x)(ii xfy i, where yi∈{-1,1}is the

target output. This corresponds to minimizing w•w subject to yi
(w•xi+b)≥1 for all i. In this research we consider relevant
messages are in class 1 and non-relevant messages are in class –1.
Vector x consists of all the features we have extracted. The object
of the SVM is to find the weight vector w that can best separate
relevant messages from non-relevant messages. We utilize the
classifiers as ranking functions by sorting the documents
according to the weight assigned by the classifier.

We can see from Figure 4 that ranking functions trained

using both Linear Regression (LR) and Support Vector Machines
(SVM) can give a significant improvement over the baseline
Okapi system. The Linear Regression Model trained on the entire
4,164 <query, message> pair training set achieved a 28.5%
improvement over our baseline Okapi system. We used a two-
tailed t-test to compare the MRR of LR with that of the baseline
Okapi system for the testing queries and found that this
improvement is significant at α= 0.00006. Moreover, as the
training data increases, the performance of the Linear Regression
trained ranking function seems to be more robust and consistent
than the performance of Support Vector Machines. As the training
data increases, the performance of Linear Regression model
shows a steadily increasing learning curve, indicating that further
improvement can likely be achieved, if we further increase the
training data set. This is something we plan to investigate in the
future.

5. EXPERIMENTAL RESULTS
The original motivation of this work was to build an effective
ranking function for usenet searches involving queries relevant to
Microsoft products. We obtained 343 random queries from
Microsoft Help and Support Search Query logs. We had a
collection of 973948 messages from the Microsoft.public.*
subhierarchy of Usenet. We used okapi baseline to find the top
25 messages for each query. We then had people annotate these
messages, giving us a set of 5,552 <query, intent, message>
triples. We split the data set into training instances and test
instances. The training data set contains instances from 75% of
the queries and the test data set contains instances from the rest
25% of the queries. There was no overlap in queries in the
training and test data.

The retrieval performance of the best LR Model was also
compared with the best single features we collected in 4.3.
Results are shown in Figure 5. We can see from the figure that the
best LR Model beats the best single evidence: “the Okapi score
obtained from the Non-root portion of the thread tree
(OkapiNonroot)” by 13.5%. A 2-tailed T-test performed on the
results of the LR Model and OkapiNonRoot show that the
improvement is statistically significant at α=0.0003. Another
way of looking at this is that approximately 45% of our
improvement gain over the baseline can be accounted for by the
OkapiNonRoot feature. In the case of product support search, users typically care

more about rapidly finding a satisficing answer, rather than the
number of relevant messages retrieved. If the first return message
correctly explains to the querier how to install a firewall in
Windows XP, it is irrelevant whether subsequent returned
messages also correctly answer the query. For this reason, we
chose Mean Reciprocal Rank (MRR) of the first relevant message
to evaluate the models we developed using LR and SVM. MRR is
defined as:

We can also see from the figure that most of the best single
features are Okapi scores obtained from different parts of the
thread tree.

N
R

MRR Ni i∑ ∈=
)/1((3)

where, Ri is the rank of first correct answer for query i, and
N is total number of queries.

Performance Comparison Chart

0.4

0.45

0.5

0.55

0.6

0.65

Lin
ea

r R
eg

res
sio

n

Oka
piN

on
Roo

t

Non
Roo

tTF

Oka
piT

hre
ad

Oka
piT

itle

Oka
piM

es
sa

ge
Bod

y

Oka
piA

nc
es

tor

Oka
piP

are
nt

Oka
piM

es
sa

ge

TFTitle

M
R

R

Figure 5. Performance comparison for different single

features with the Linear Regression Model

6. CONCLUSION AND FUTURE WORK
6.1 Conclusion
Newsgroup search is a very important service for web
communities; however, the performance of a traditional text based
search engine, or a search engine for web pages, when used on
newsgroups, is not adequate due to unique attributes of
newsgroup message threads. In this paper, we analyzed the
reasons that cause the text-based search engine to fail on
newsgroup search and also analyzed the thread tree structure of
newsgroup messages, then we proposed that the performance of
newsgroup search can be improved by analyzing the context
information of the messages within the message thread tree.

After extracting a set of features from the related messages in
the same thread tree and author information for each of the
messages in the newsgroup, we used Linear Regression (LR) and
Support Vector Machines (SVM) to combine these features to
create a ranking function. Our experiments achieved a 28.5%
improvement over the baseline Okapi system (in terms of MRR),
which confirmed our assumption that the performance of
newsgroup search can be enhanced by incorporating features
relevant to the newsgroup domain, such as thread context
information. We were surprised to learn that author features
(which we expected would serve to indicate message quality
much like PageRank does for Web Pages), did not appear to play
a significant role in our ranking functions. Furthermore, we found
that with Linear Regression, the performance is proportional to
the amount of training data used. This suggests an even larger
scale human annotation on test data might achieve higher
performance.

6.2 Future Work
Although significant improvement on the performance of
newsgroup search has been achieved by combining multiple
features from the context of the message in the message thread
tree, there are still more ways to improve the performance of
newsgroup search left unexplored.

One method is to try to automatically detect the semantic
relationship of the message to its previous messages, or in other
words, find the relationship information carried by the edges on
the newsgroup thread tree. Although in section 2.2 we detected 5

kinds of such relationships, in this research, we did not try any
methods to automatically identify these relationships and combine
them together with the content based features to improve the
search performance. The usefulness of these relationships for
search is still to be found.

 The focus of this project was to create a message ranking
function for newsgroup search to help people more readily find
information in newsgroups relevant to Microsoft help and support
related queries. In the future, we plan to study to what extent our
results and conclusions are applicable to all newsgroup search in
general.

7. ACKNOWLEDGEMENT
The authors would thank Dr. John Platt for his SMOX Support
Vector Machine tool, Dr. David M. Chicking for his Linear
Regression tool, and Dr. Marc Smith for his NetScan web social
data mining tool kit. The authors would also thank Dr. Susan
Dumais for her valuable suggestions.

8. REFERENCES
[1] J.P. Callan, “Passage-level evidence in document retrieval.”

In Proceedings of the Seventeenth Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, Dublin, Ireland, pp. 302-309. 1994.

[2] S. Chakrabarti, M. Joshi, and V. Tawde, “Enhanced topic
distillation using text, markup tags, and hyperlinks.” In
Proceedings of the 24th annual international ACM SIGIR
Conference on Research and development in information
retrieval, New Orleans, Louisiana, pp. 208-216, 2001.

[3] A. Chen. “A comparison of regression, neural net, and
pattern recognition approaches to IR,” In Proceedings of the
1998 ACM 7th International Conference on Information and
Knowledge Management (CIKM ’98), Bethesda,
Maryland, pp. 140-147, 1998.

[4] J. Chen, B. Zhou, J. Shi, H. Zhang, and Q. Wu, “Function-
Based Object Model Towards Website Adaptation,” In
Proceedings of the 10th International World Wide Web
Conference. Hong Kong, China, pp. 601-610, 2001.

[5] D.W. Embley, Y. Jiang, and Y.-K Ng, “Record-boundary
discovery in Web documents,” In Proceedings of the 1999
ACM SIGMOD International Conference on Management of
Data, Philadelphia PA, pp. 467-478, 1999.

[6] W. Fan, M.D. Gordon, P. Pathak, “A generic ranking
function discovery framework by genetic programming for
information retrieval,” Information Processing and
Management, in press, 2004.

[7] Fiore, Andrew, Scott Lee Teirnan, Marc Smith. "Observed
Behavior and Perceived Value of Authors in Usenet
Newsgroups: Bridging the Gap", In Proceedings of the CHI
2002 Conference on Human Factors in Computing Systems,
Minneapolis, Minnesota, pp. 323-330, 2002.

[8] N. Fuhr. “Integration of Probabilistic Fact and Text
Retrieval.” In Proceedings of the 15th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, Copenhagen, Denmark, pp. 211-
222, 1992.

[9] S. Fujita. “More Reflections on "Aboutness"”. TREC-2001
Evaluation Experiments at Justsystem. In Proceedings of the

Tenth Text Retrieval Conference (TREC 2001). Gaithersburg,
Maryland, NIST Special Publication 500-250. 2002.

[10] F.C. Gey, A. Chen, J. He, and J. Meggs. “Logistic regression
at TREC4: Probabilistic retrieval from full text document
collections.” In Proceedings of the Fourth Text Retrieval
Conference (TREC 4). Gaithersburg, Maryland, NIST
Special Publication 500-236. 1996.

[11] X. Gu, J. Chen, W.-Y., Ma, and G. Chen, “Visual Based
Content Understanding towards Web Adaptation,” In
Proceedings of Second International Conference on Adaptive
Hypermedia and Adaptive Web-based Systems (AH2002),
Spain, pp. 29-31, 2002.

[12] D.K. Harman, “Overview of the Fourth Text Retrieval
Conference (TREC-4),” In Proceedings of the Fourth Text
Retrieval Conference (TREC-4), Gaithersburg, Maryland,
NIST Special Publication 500-236, pp. 1-23, 1995.

[13] M.A. Hearst, and C, Plaunt “Subtopic structuring for full-
length document access.” In Proceedings of the Sixteenth
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Pittsburgh,
Pennsylvania, pp. 59-68, 1993.

[14] G. Kazai, M. Lalmas and T. Roelleke. “A Model for the
Representation and Focused Retrieval of Structured
Documents based on Fuzzy Aggregation”, In Proceedings of
the 8th International Symposium on String Processing and
Information Retrieval, Laguna de San Rafael, Chile, pp. 123-
135, 2001.

[15] Kaszkiel M., & Zobel, J. (1997). “Passage retrieval
revisited.” In Proceedings of the Twentieth Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, Philadelphia,
Pennsylvania, pp. 178-185. 1997.

[16] J.H. Lee. “Combining multiple evidence from different
properties of weighting schemes.” In Proceedings of the 18th
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Seattle,
Washington, pp. 180-188. 1995.

[17] J.H. Lee. Analyses of Multiple Evidence Combination. In
Proceedings of the 20th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, Philadelphia, Pennsylvania, pp. 267–276. 1997.

[18] D. Lewis “Applying Support Vector Machines to the TREC-
2001 Batch Filtering and Routing Tasks”. In Proceedings of
the Tenth Text Retrieval Conference (TREC 2001).
Gaithersburg, Maryland, NIST Special Publication 500-250.
2002.

[19] E. Mittendorf, and P. Schauble, “Document and passage
retrieval based on hidden Markov models.” In Proceedings
of the Seventeenth Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, Dublin, Ireland, pp. 318-327. 1994.

[20] A. Moffat, R. Sack-Davis, R. Wilkinson, and Zobel, J.
“Retrieval of Partial Document.” In Proceedings of the
Second Text Retrieval Conference (TREC-2), pp.181-190.
NIST Special Publication pp. 500-215, 1994.

[21] P. Ogilvie, J. Callan: “Combining document representations
for known-item search.” In Proceedings of the 26th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, Toronto, Canada
pp.143-150, 2003.

[22] S.E. Robertson, “Overview of the Okapi Projects, Journal of
Documentation, Vol. 53, No.1, pp. 3-7, 1997.

[23] G. Salton, J. Allan, & C. Buckley, C. “Approaches to
passage retrieval in full text information systems.” In
Proceedings of the Sixteenth Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, Pittsburgh, Pennsylvania, pp. 49-
58, 1993.

[24] J.A. Shaw & E.A. Fox, “Combination of multiple searches”,
In Proceedings of the 3rd Text Retrieval Conference (TREC-
3). Gaithersburg, Maryland: NIST Special Publication 500-
250, pp.105-107, 1995.

[25] C.C. Vogt and G.W. Cottrell. “Fusion via linear combination
for the routing problem”. In Proceedings of the Sixth Text
Retrieval Conference (TREC 2001). NIST Special
Publication 500-250. 1998.

[26] R. Wilkinson, “Effective retrieval of structured documents.”
In Proceedings of the Seventeenth Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, Dublin, Ireland, pp. 311-317. 1994.

[27] W. Xi and E. A. Fox. “Machine Learning Approach for
Homepage Finding task”. In Proceedings of the Tenth Text
Retrieval Conference (TREC 2001).). Gaithersburg,
Maryland, NIST Special Publication 500-250. 2002.

[28] W. Xi, "Combining Multiple Source of Evidence for
Information Retrieval,” Master Thesis, Nanyang
Technological University, Singapore, 2000.

[29] J. Xu, and W.B. Croft. “Query expansion using local and
global document analysis.” In Proceeding of ACM-SIGIR
Conference on Research and Development in Information
Retrieval, Zurich, Switzerland, pp.4-11, 1996.

[30] S. Yu, D. Cai, J-R Wen and W-Y. Ma, “Improving Pseudo-
Relevance Feedback in Web Information Retrieval Using
Web Page Segmentation”, In Proceeding of the Twelfth
World Wide Web conference (WWW 2003), Budapest,
Hungary, pp.11-18, 2003.

[31] J. Zobel, A. Moffat, R. Wilkinson, and R. Sack-Davis,
“Efficient retrieval of partial documents.” Information
Processing & Management, 31(3), 1995.

	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. PROBLEM CONTEXT
	2.1 Thread Tree Structure of Newsgroup Messages
	2.2 User Behavior in Newsgroups
	2.3 Collection Statistics

	3. RELATED WORK
	3.1 Structured Information Retrieval
	3.2 Data Fusion in Information Retrieval

	4. EXPERIMENTAL APPROACH
	4.1 Building the baseline search engine
	4.2 Rating the <query, message> pairs
	4.3 Feature Extraction

	Ancestor
	DescendantDepth
	4.4 Combining multiple features

	5. EXPERIMENTAL RESULTS
	6. CONCLUSION AND FUTURE WORK
	6.1 Conclusion
	6.2 Future Work

	7. ACKNOWLEDGEMENT
	8. REFERENCES

