

A Comprehensive Human Computation Framework
– With Application to Image Labeling

Yang Yang1, Bin B. Zhu2, Rui Guo3, Linjun Yang2, Shipeng Li2, Nenghai Yu1

1 University of Science and Technology of China, Hefei, Anhui, 230027, China
2 Microsoft Research Asia, Beijing, 100080, China

3 Beihang University, Beijing, 100080, China
1 {wdscxsj, ynh}@ustc.edu.cn

2 {binzhu, linjuny, spli}@microsoft.com
3 imguorui@gmail.com

ABSTRACT
Image and video labeling is important for computers to
understand images and videos and for image and video search.
Manual labeling is tedious and costly. Automatically image and
video labeling is yet a dream. In this paper, we adopt a Web 2.0
approach to labeling images and videos efficiently: Internet users
around the world are mobilized to apply their “common sense” to
solve problems that are hard for today’s computers, such as
labeling images and videos. We first propose a general human
computation framework that binds problem providers, Web sites,
and Internet users together to solve large-scale common sense
problems efficiently and economically. The framework addresses
the technical challenges such as preventing a malicious party from
attacking others, removing answers from bots, and distilling
human answers to produce high-quality solutions to the problems.
The framework is then applied to labeling images. Three
incremental refinement stages are applied. The first stage collects
candidate labels of objects in an image. The second stage refines
the candidate labels using multiple choices. Synonymic labels are
also correlated in this stage. To prevent bots and lazy humans
from selecting all the choices, trap labels are generated
automatically and intermixed with the candidate labels. Semantic
distance is used to ensure that the selected trap labels would be
different enough from the candidate labels so that no human users
would mistakenly select the trap labels. The last stage is to ask
users to locate an object given a label from a segmented image.
The experimental results are also reported in this paper. They
indicate that our proposed schemes can successfully remove
spurious answers from bots and distill human answers to produce
high-quality image labels.1

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge Acquisition. H.3.3 [Information
Search and Retrieval]: Retrieval models. H.5.3 [Group and
Organization Interfaces]: Collaborative computing.

General Terms
Design, Security, Human Factors

Keywords
Distributed knowledge acquisition, human computation, image
labeling, common sense problems, HumanSense.

1. INTRODUCTION
Given an image or video, what does it contain? What does an
object do in the video? How are objects related to each other?
Such questions are hard to answer for even today’s most powerful
computers, but can be easily answered by humans. There exist
many similar tasks in our lives. For example, characters scanned
from a book that cannot be recognized by Optical Character
Recognition (OCR) can be easily recognized by humans. A person
can be instantly identified from a group of people by humans, but
the same task is hard for computers. This type of problem that
requires only human’s common sense knowledge to solve is
referred to as a common sense problem in this paper.

As early as in the 1980s the importance of common sense
knowledge for computers was recognized [1][2]. Labeling images
or videos is a common sense problem. The labeling results are
very useful in helping computers understand images or videos,
and in improving their image or video search results. Humans are
typically hired to label images or videos nowadays. It is a labor-
intensive work. It would be impractical or simply infeasible to
hire enough number of dedicated people to label images or videos
in a large scale, such as those crawled from the Internet. Labeling
crawled images and videos would dramatically improve image
and video search accuracy and relevancy. A new approach is
needed to meet the demand of labeling large-scale images and
videos. The Internet and Web 2.0 can be exploited to achieve the
goal. There are hundreds of millions of Internet users, and
hundreds of thousands of small Web sites. These Internet users
and Web sites can be mobilized to help solve such common sense
problems with an appropriate system, making the Internet very
suitable for solving large-scale common sense problems.1

There are several proposals that exploit the power of the Internet
to solve common sense problems. Open Mind [3] is a world-wide
collaborative effort initiated by the MIT Media Lab to collect
common sense knowledge from people to develop intelligent

1 This work was done when Yang Yang was an intern at Microsoft

Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’08, October 26–31, 2008, Vancouver, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-303-7/08/10...$5.00.

479

software. Regular Internet users are recruited to answer simple
questions on its Web sites, and the collected answers are
processed by machine learning algorithms. Open Mind relies
solely on contributions from online volunteers. It costs very little,
mainly for the maintenance of the specific Web sites. But
counting on online volunteers would make Open Mind unable to
scale up to meet the demand of labeling crawled images and
videos. Open Mind has no mechanism to prevent spurious
answers from bots. The results may be tainted and become
unreliable and inaccurate when bots are employed to answer
questions in Open Mind.

By exploiting the fact that many Internet users are willing to play
entertaining online games, von Ahn et al. proposed to use human
algorithm games to harness their time and energy to solve
common sense problems [4][5][6][7][8][9]. The idea is to convert
plain, tedious questions into vivid, intriguing online games. Web
users, viewed as distributed processors connected by the Internet,
are attracted to play these games, and valuable common sense
knowledge comes as a by-product. For example, the ESP game [4]
displays a same image to a pair of concurrent players randomly
selected and asks them to guess what the partner would think
about the image. Each player enters possible descriptions of the
image as quickly as possible, and once both players give a same
description, they “win” on this image and move on to play with
the next image. This method is as cost efficient as Open Mind. In
addition, it has a strong probabilistic guarantee that the data
collected has a high-quality. The reason is twofold. First, people
are driven by the desire to win the game, and the only way to win
on an image is that both parties have to give a same description.
Since the two players are selected randomly, it is hard to win the
game unless both parties give a valid answer. This would
effectively screen out incorrect answers or spurious answers by
bots. Google brought online a commercialized version of the ESP
game, the Google Image Labeler [10], in 2006.

CAPTCHA [11] is a computer generated challenge-response test
to distinguish humans from computers using a common sense
problem. reCAPTCHA [12] is a novel CAPTCHA that produces
valuable common sense knowledge to improve the OCR quality in
digitizing books for the Internet Archive [13]. It works by
combining two words that OCR cannot read into a challenge. One
word is already identified and serves as a conventional
CAPTCHA, while the other word is not identified yet. If a user
recognizes the identified word, the answer to the unidentified
word is assumed to be correct, and is collected to identify the
unidentified word. The OCR result is therefore improved.

 Using games or CAPTCHA to collect common sense knowledge,
as described above, are innovative ideas. They are very suitable
for large scale applications such as labeling images for a portal of
user-uploaded images and the Internet Archive project [13]. It’s
estimated that “5,000 people playing the ESP game 24 hours a day
would label all images on Google (425,000,000 images) in 31
days” [4]. Although very useful, they are restricted to collecting
certain types of common knowledge. As admitted by the author of
human algorithm games, turning a common sense problem into a
human algorithm game is “nontrivial” [9] because games are
required to be enjoyable. It is also a challenge to preserve user’s
enthusiasm in playing a human algorithm game either. Like
human algorithm games, converting a common sense problem
into a CAPTCHA is not trivial, either. In addition, a human
algorithm game typically requires two Internet users to play live

against each other2. This would raise the bar for the game hosting
Web sites, requiring them to have enough number of concurrent
online users. The manpower of smaller Web sites is thus wasted.

A computational process that involves humans in performing
certain steps is called human-based computation [14], or simply
human computation3. It leverages differences in abilities and costs
between humans and computers to achieve symbiotic human-
computer interaction. In this paper, we propose a framework that
employs human computation to solve general common sense
problems efficiently. The framework supports a range of viable
business models, and can scale up to meet the demand of a large
amount of common sense problems. A hosting Web site can be
either large with heavy traffic or small with limited visitors so that
every Internet user can contribute. Our system can be deployed at
the entrance to Web-based services such as Web email services,
software downloading services, etc. It also supports a profit
sharing ecosystem similar to Google’s AdSense [15] that
motivates Internet users to offer their solutions to our problems in
exchange for shared profit.

The framework proposed in this paper aims to address the
problems associated with the existing approaches mentioned
above. With our framework, there is no need to convert a common
sense problem into a CAPTCHA or an entertaining game. Such a
conversion is nontrivial and challenging, and needs to be designed
case by case. Many human computation examples may not be able
to convert to human algorithm games or CAPTCHA but can
easily fit into our framework. These examples include human-
based genetic algorithm [16] which utilizes humans for evaluation
and three types of innovation (contributing new content, mutation,
and recombination), and interactive evolutionary computation that
uses humans for evaluation of computer graphics [17] or of video
labeling by active-learning engines [18]. Therefore a much
broader spectrum of common sense problems can be solved with
our framework. Attracting enough human contributors is a key
factor in using human computation to solve large scale common
sense problems. As we have mentioned, preserving user’s
enthusiasm is a great challenge for a human algorithm game. With
the application scenarios to be described in Section 2.3, our
framework can maintain a constant or even increasing number of
human contributors. Like Google’s AdSense, Web sites with
small traffic can be employed in our framework to reach more
human contributors.

The framework brings several technical challenges not seen in the
aforementioned human computation schemes, including:

1. How to design the system to support solving general common
sense problems without knowing what questions are asked?
In other words, the system should be problem-agnostic.

2 In [9] single player games are also described. They are variations

of the two-player games by using a bot to emulate a human
player. They are irrelevant to the problems addressed in this
paper since we have assumed that the problems cannot be
solved by computers. If a server-side bot can emulate a human
player, there is no need to collect more answers from humans
since the collected information is enough.

3 Human computation amusingly brings computing back to its
original meaning. In 1940s, a computer, i.e., a person, used a
calculator to contribute to a larger problem such as computing
missile trajectories.

480

2. How to screen out answers from bots? In order to support
solving general common sense problems and to enable a
single Internet user to contribute (i.e., any Web sites, large
or small, can solicit their users to help solve common sense
problems), our system may not be able to tie a question to a
CAPTCHA or to use other means such as two users playing
against each other to tell whether an answer is from a bot or
human. This requires that our system should have a
mechanism to screen out spurious answers from bots.

3. How to distill the answers collected from individual human
users to ensure the quality of the solutions our system
produces?

4. How to prevent malicious players of the system from
attacking others or contaminating the solutions produced by
the system? How to prevent users from making money
without contributing any answers?

These technical challenges are addressed in the system we
propose in this paper. Our system uses <iframe>’s isolation
guaranteed by the Same Original Policy (SOP) [19] to prevent a
malicious problem provider from attacking participating Web
sites, and uses fragment identifiers for secure client-side cross-
domain communications. Random problem ID is used to prevent
attacks launched by colluding participating Web sites and users.
We propose a statistical method to effectively remove spurious
answers from bots, and a majority voting scheme to combining
individual human answers to produce high-quality solutions to
common sense problems.

After presenting our general human computation framework, we
apply it to image labeling, which is a typical common sense
problem. We propose three incremental refinement stages to
produce high-quality image labels. The first stage collects
candidate labels from users. The second stage refines the
candidate labels and identifies synonymic labels. Experimental
results will also be reported. They will show the effectiveness of
our schemes in removing spurious answers from bots and
distilling individual human answers to achieve high-quality
solutions.

The remaining of the paper is organized as follows. The threat
model and an ecosystem based on our proposed system are
presented in Section 2. Our human computation framework is
described in detail in Section 3. The framework applied to image
labeling is described in Section 4. Experimental results are
reported in Section 5. The paper concludes in Section 6.

2. THREAT MODEL AND ECOSYSTEM

2.1 Players
Our human computation system is called HumanSense. There are
four players connected by the Internet in it, as shown in Figure 1:
problem providers, HumanSense server, participating Web sites,
and Internet users. The role of each player is explained as follows:

• Problem providers. A problem provider provides common
sense problems that need to be solved with HumanSense.
Resulting answers from the HumanSense server are also
sent back to the problem provider. Therefore a problem
provider is also called a solution seeker. A problem
provider typically offers money, souvenirs, free services, or
anything else valuable to compensate the other parties of
the system for their contribution to solving the problems.

• HumanSense server. It selects problems and sends to
participating Web sites, fetches Internet users’ answers,
analyzes them to produce solutions to the problems, and
sends these answers to the problem provider. It is the major
player of HumanSense, and will be described in detail in the
subsequent sections.

• Participating Web sites. A participating Web site receives a
problem each time from the HumanSense server, and
presents it to Internet users for their answers. It may offer
certain services such as Web email or software
downloading service to Internet users in exchange for their
answers to the problem.

• Internet users. They contribute their answers to the problem
in exchange for money, rewards, services, or simply fun.
An Internet user might be a bot.

Figure 1: Four players in HumanSense.

2.2 Threat Model and Assumptions
In HumanSense, we assume that only the HumanSense server is
trusted. A problem provider may be anyone who seeks solutions to
her common sense problems through HumanSense. A problem
provider may be malicious, targeting at attacking participating Web
sites or tricking Internet users into clicking a malicious link to go to
a malicious Web site or download a malicious file. An Internet user
is untrusted too. It may be a bot that provides arbitrary answers to
the problems it encounters, or a malicious human who want to gain
disproportionate compensation. A participating Web site may also
be malicious. It may collude with other participating Web sites or
Internet users to make more money disproportional to their
contributions to the problem solutions.

We further assume that most Internet users are well-behaved
humans who want to contribute in exchange for compensation or
free services. A human may sometimes be careless enough to
provide incorrect answers. Therefore human users collectively
provide correct solutions to common sense problems. This is the
foundation of our framework to be used to solve common sense
problems.

481

2.3 Ecosystem
As we have mentioned previously, HumanSense supports a range
of viable business models. We are particularly interested in two
application sceneries. Both would be able to attract a large
number of human contributors to solve common sense problems,
an essential factor to make an application of HumanSense
successful. The first scenario is to place our human computation
at an entrance to free services provided by a large Web site with a
steady flow of visitors, such as Windows Live Hotmail which
provides free Web email services, or www.download.com which
provides free software to download. These Web sites are
compensated with the fees paid by problem providers for hosting
common sense problems. Just like online advertisement, our
system would encourage a Web site to improve its services to
attract more users since the more the Internet users, the more the
Web site can make from HumanSense. When a user wants to enter
her Hotmail account or download free software, she is asked to
provide answers to a common sense problem before receiving the
service she asks for. Scores or awards may be used to encourage
people to provide high-quality answers.
It is also possible to combine a common sense problem with a
CAPTCHA challenge for certain types of common sense
problems, e.g., reCAPTCHA. In this case, a user answers the
CAPTCHA and contributes an answer to the common sense
problem. If the answer to the CAPTCHA is correct, the user is
assumed to be human, and is allowed to receive the desired
service, and the answer to the common sense problem is recorded
by the HumanSense server. Since the CAPTCHA has already
screened out bots from entering answers to our problems, all the
collected answers are from humans. There is no further need to try
to apply any mechanism to remove answers from bots in this case.
Another application scenario is distributed human computation
in which HumanSense pushes common sense problems to the
Web pages of participating Web sites, large or small. Like
AdSense [15], HumanSense collects common sense problems
from problem providers who seek solutions through HumanSense,
and pushes them to participating Web pages. Relevancy or other
criteria can be used to select a common sense problem to be
presented to Internet users in a certain Web page. HumanSense
would charge the problem providers for the solutions
HumanSense provides. The profit would be divided among the
participating Web sites and the Internet users who provide correct
answers. All the answers provided by a user are recorded by
HumanSense, but only the answers contributing to the final
solution generated by HumanSense would be credited for
compensation of contributing answers. HumanSense brings
benefits to all the parties involved. Participating Web sites makes
money by hosting common sense problems to reach their visitors.
They help HumanSense reach a huge number of Internet users,
visitors of both large and small Web sites, in a short time. Internet
users make money by contributing correct answers in an easy and
convenient manner. This is a key difference between HumanSense
and the human algorithm games mentioned previously. We don’t
rely on Internet user’s enthusiasm in playing games – they may
get bored after playing for a while, and it is a nontrivial task to
convert a common sense problem into a game. Instead,
HumanSense presents a common sense problem as it is to users
and allures them to contribute by compensating their correct
answers with money. Solution seekers also benefit from
HumanSense since they find a cheap and quick method to solve
large-scale common sense problems such as labeling images and

videos crawled from the Internet for search. HumanSense makes
money by operating the system.

3. OUR HUMAN COMPUTATION
FRAMEWORK

3.1 Problem Representation
In HumanSense, a problem is represented by the problem resource
files (such as images, videos, etc.) plus a manifest file which
contains the following information about the problem:

• problem: Required. This is the root element, indicating the
file is a problem-describing manifest.

• id: Required. Unique global ID of the problem.

• resources: Required. This part indicates resource files
associated with the problem. Each resource file is
represented as a nested element, such as image, video, etc.

• priority: Optional. An integer value indicating how often
the problem shall be presented to the users. The default
value is 1.

• value: Optional. An integer value indicating how much
value the problem is worth. Combined with other factors,
this value is used to calculate a “score” or monetary award
for a correct answer to the current problem. The default
value is 1.

• type: Required. The type of the problem. This part
indicates to the HumanSense server how to process the
answers to the problem. The proposed framework allows a
plug-in to support a new method associated with a new type
to process the collected answers.

Figure 2: An example of manifest file for an image in the

second stage of image labeling.
The manifest file may also contain problem-type specific elements.
An example of manifest file is shown in Figure 2. It is a manifest
file for an image in the second stage for image labeling described in
Section 4. Three labels, tiger, claw, and tail, are contained in the
manifest. They are displayed as multiple choices for users to select
appropriate ones from in the second stage of image labeling. They
are problem-type specific elements. A manifest file is expressed in

<problem>

 <id>13089</id>

 <resources>

 

 </resources>

 <priority>3</priority>

 <value>2</value>

 <type>ImageLabeling</type>

 <stage>MultipleChoices</stage>

 <labels>

 <label>tiger</label>

 <label>claw</label>

 <label>tail</label>

 </labels>

</problem>

482

XML for easy extension. Note that some items such as priority
in a manifest file may be mutable during the computation.

3.2 Constituent Modules and Interactions
Figure 3 shows major constituent modules of HumanSense. The
whole process consists of the following steps:
1. An Internet user visits a participating Web site for a service

such as accessing Web emails. The Web site requests a
common sense problem from the HumanSense server. The
HumanSense server selects an appropriate problem from the
problem database. To prevent malicious Web site from
tracking or logging the (problem, answer) pair, the
HumanSense server generates a random ID unique to the
current session, maps it to the ID of the selected problem,
and sends it to the Web site. The HumanSense server
maintains the association of the random ID and the real
problem ID for the current session.

Figure 3: Constituent modules.

2. The Web site creates an <iframe> to aggregate the problem

presentation into the participating Web page. The <iframe> will
load the problem with pre-fetched randomId by using URL like
the following: http://HumanSenseServer/problem?id=randomId.
A malicious problem provider may launch phishing attacks
against a user by tricking the user to believe that the problem
frame is from the Web site, and inputs private data such as a
password into the frame, resulting in the private data being
secretly sent back to the malicious problem provider through
embedded scripts. To prevent such phishing attacks, the Web
site should wrap the problem frame in a different display
style to differentiate the problem frame from the Web site’s
content, and also add a clear note on top of the problem
frame to warn users that the frame is used to answer common
sense problems rather than input private data.

3. The HumanSense server generates the problem page and
sends to the problem frame.

3.1 The problem manifest file is modified to remove the
information that is not needed by Internet users, such
as the problem ID, priority, value, etc. All the direct
resource references (such as 13089.jpg in Figure 2)
are replaced with some URL like http://
HumanSenseServer/resource?id=randomId&index=0,
where the index parameter indicates the order of the
resource in the problem manifest that the URL refers
to. Since the HumanSense server maintains the
association of the random ID with the actual problem
ID, correct resources can be retrieved by the
HumanSense server. Web sites or Internet users, on
the other hand, cannot tell from the resources or the
random ID if the problem has been answered or not.
Therefore they cannot launch an attack to repeat an
answer to the same problem in order to let the answer
be in the solution produced by HumanSense. Note
that users would be awarded for contributing correct
answers.

3.2 A problem provider is allowed to choose a
presentation template for each problem it provides.
The presentation template can be selected from a
library of templates or created if no suitable template
is available. A new template will be saved in the
template library for future selection. A presentation
template is defined in XSLT or CSS, and is applied to
the modified problem manifest file to convert the
modified manifest into a Web page containing normal
HTML and JavaScript to provide UI for presenting
the problem and inputting answers, as well as a
special JavaScript function called “$collectAnswer”
to designate how to collect answers from the
generated UI. Since the problem is represented in an
<iframe> whose domain is different from the Web
site, the Same Origin Policy (SOP) [19] guarantees
that the content in the problem frame would not
introduce any cross-site scripting (XSS) attacks to the
Web site.

3.3 The modified problem representation page is sent
back as the content of the problem <iframe> in the
Web page. The page is modified for appending
scripts to support cross-domain communication,
which will be used to transmit a token from the
problem frame to the Web page of the participating
Web site.

4. If a common sense problem is used as a CAPTCHA to
tell humans from bots, the Web site needs to know
whether the problem is answered by a human or by a
bot in order to make a decision on navigating to the
logic of the next step or not. In this case, a CAPTCHA
is added to a common sense problem by the
HumanSense server, such as the case of reCAPTCHA in
which a CAPTCHA and a problem are displayed side
by side. The HumanSense server should select a
problem with known answers from a random problem
provider as a CAPTCHA. This would prevent a problem
provider from using the known answers to its problems
to solve the CAPTCHA automatically. When a correct
answer to the CAPTCHA is received, the HumanSense
server would send a token to the problem frame. Cross-

483

domain communications between the problem frame
and the frame of the Web site are needed in generating
the token and passing the CAPTCHA result included in
the token to the Web site. The current Web standards
don’t support cross-domain communications. The next
Web standards, HTML 5 [20], as well as other
proposals [21][22] would support secure client-side
cross-domain communications. These proposals require
modifications on a current browser. In order to allow
client-side cross-domain communications without any
modifications to the current browsers, the subspace
scheme proposed in [23] is adopted in our system. To
generate the token, a nonce is first generated by the
server of the Web site, and passed to the problem frame
via fragment identifiers for the current problem. The
nonce is then passed to the HumanSense server with the
answers to the CAPTCHA and the common sense
problem. If the answer to the CAPTCHA is correct, the
HumanSense server uses its private key to encrypt the
nonce together with other information in the token. The
token is passed to the problem frame, and then to the
Web site’s page via fragment identifiers. The Web site’s
page will then submit the token to its server. Upon
receiving the token, the Web server uses the public key
of the HumanSense server to decrypt the token and
verifies the decrypted nonce matches the nonce it
generates for the problem. If they match, it concludes
that the token was indeed from the HumanSense server
for the specific CAPTCHA and the user is human. The
logic of the next step is then executed.

The two modules of the HumanSense server, one that removes
spurious answers by bots and the other that distills individual
human answers, will be described in Sections 3.4 and 3.5,
respectively.

3.3 Selection of a Common Sense Problem
A problem is selected to be presented at a participating Web page
based on the following criteria: problem’s type, value, and
priority. By default, a participating Web page is assumed to be
able to present any type of problems for users to answer. A
participating Web site can optionally ask the HumanSense server
to send a specific type of problems to present to its visitors.
Problems of default value are typically presented on a
participating Web page. Internet users can ask for problems of
higher or lower values. Correct answers to problems of higher
values would earn more money, higher scores, or better services.
As a result, users may be motivated to choose problems of higher
values to answer. We note here that a problem of higher value
means that a user usually needs to spend more time or effort to
answer. More compensation should be offered for correct answers
to problems of higher values. Problems of higher priority are
selected to be pushed to participating Web pages more frequently.
Solutions to problems of higher values or priorities would cost
more to the problem provider.
In our system, only the solution provider and Internet users know
if an answer is correct or not. Problems and answers are agnostic
to both the HumanSense server and Web sites except the types of
the problems and answers. The HumanSense server uses statistical
methods to analyze the collected answers from users and produces
problem solutions to send to the problem providers. To avoid
producing incorrect answers due to corrupted data collected from

users, problems should be selected randomly so that it would be
unlikely for any fixed group of users to receive the same problem
more than once. This mechanism targets mainly at collusion of
bots, as we have assumed in Section 2.2 that human users are
benign. This can be easily achieved with a large pool of common
sense problems that our system is designed for.
When the pool of problems is small, it is inevitable that some
problems might be repeated despite the fact that a problem is
randomly selected. HumanSense has built-in security mechanisms
to protect against colluding attacks by bots and Web sites unless
content of a displayed problem is analyzed to extract its features
which are compared with those of previously displayed problems
to detect if two problems are the same or not, as in the image
labeling case described in Section 4. Note that from Section 3.2,
the Web content sent to a participating Web site does not contain
any information about the problem. Web sites or Internet users
cannot tell if two problems they saw are the same or two from the
Web content the problem <iframe> receives. In addition, multiple
copies of a problem can be generated, with each copy being
slightly different. For example, for an image to be labeled in the
system described in Section 4, the content of each copy is slightly
modified without changing its semantic meaning. Hence the hash
values of these copies are different, and it is impossible to use
hash values to identify if two problems are the same or not. The
only way to find out if two images are the same or not is to use
content analysis.

3.4 Removing Spurious Answers from Bots
When CAPTCHA is not used with common sense problems, the
collected answers from users may contain spurious answers
provided by bots. These spurious answers must be removed from
the collected answers to ensure the quality of the solutions
produced by HumanSense. Since the common sense problems
cannot be answered by computers (otherwise there is no need to
use human computation to find answers), and it is highly unlikely
that a fixed group of users would be able to see a same problem
appearing more than once, we can assume that an answer
provided by a bot is random with uniform distribution, and each
answer from bots is assumed to be independently and identically
distributed (i.i.d.). Therefore the answers from bots can be
modeled as an i.i.d. uniform distribution.
Suppose the i-th answer to a problem P provided by users is ai.
Let DA be the set of distinct answers collected for problem P, and
the j-th member of DA is denoted as Aj. The frequency

jAC that

answer Aj appears in the collected answers for problem P is
then ,jA i ji

C b= ∑ , where

,

1, if ;

0, otherwise.
i j

i j

a A
b

=
=
⎧
⎨
⎩

jAC consists of two parts: contribution from humans
j

h
AC and

contribution from bots
j

b
AC :

j jj

h b
A AAC C C= + . Let’s consider

the distribution of
j

b
AC . Suppose that the total number of answers

and the number of distinct answers are T and N, respectively. Note

484

that T N≥ . It is easy to deduce the average and standard

deviation of
j

b
AC for i.i.d. uniform distribution:

/ ,
j

b
AC T N< > = (1)

2b
A j

C

T T T

N N N
σ = − ≈

(2)

The following recursive procedure is applied to remove spurious
answers from bots when the HumanSense server has collected
enough number of answers to problem P:

1. If N is smaller than a threshold and T/N is larger than a
threshold, terminates; otherwise initialize the set of
answers from bots, Sbot, to be the set of all the answers
collected for problem P.

2. Calculate the average and standard deviation of the
answers provided by users in Sbot by using Eqs. (1) and (2).

3. Any frequency b
j A j

A C j

b
AC k Cσ> + < >

is considered as

human contribution and removed from Sbot, where k is a
threshold parameter. If there is no human contribution, this
process is terminated. Otherwise go back to Step 2.

In Step 1, the procedure checks how likely the collected answers
contain ones from bots by checking both the number of distinct
answers and the ratio of the total answers to the number of distinct
answers. The remaining steps are applied only if it finds out that it
is likely that the collected answers contain ones from bots. All the
answers in the resulting Sbot of the above procedure are considered
as answers from bots and are therefore removed from the
collected answers.

3.5 Evaluation of Human Answers
Recall that we have assumed that human users are benign but may
sometimes be careless enough to provide erroneous answers. This
module is applied to human answers, i.e., the collected answers if
CAPTCHA is used with common sense problems or the surviving
answers after the procedure described in Section 3.4 is applied to
remove spurious answers from bots, to deduce a final answer,
considered as the solution, to the problem. Like the procedure
described in Section 3.4 to remove answers from bots, this
procedure is applied only when the number of human answers to a
problem is larger than a threshold.
Simple majority voting is used to combine individual human
answers since according to Gentry et al. [24], majority voting is
better than other methods such as Bayesian inference. Human
answers to a problem are listed from high to low according to
their frequencies. The slope, i.e., the relative difference of the
neighboring frequencies is calculated. The slope at each answer is
compared with the slope of the neighboring answer, starting with
the answer of the highest frequency. If there is a substantial
increase in slope at an answer, that answer is the separation point.
All the answers with frequencies higher than the separation point
are considered as the final answer, while the remaining answers
are discarded.

4. EXAMPLE: IMAGE LABELING
In this section we use image labeling as a concrete common sense
problem to demonstrate how HumanSense works. Assume that it
is used with an email login page. Our image labeling task is

divided into three incremental refinement stages. The first stage is
to ask users to describe the objects in an image. The candidate
labels from the first stage are then refined with multiple choices at
the second stage. Synonymic labels are also identified at this stage.
In the third stage, users are asked to locate the object
corresponding to a given label in a segmented image. We assume
that at the start of the first stage, there is no prior knowledge of
the images. We also assume that CAPTCHA is not needed for the
email service that hosts the image labeling.
The first stage is to collect raw descriptions of objects in an image
and turn them into candidate labels for the 2nd stage. At the start,
all the images are put into this stage’s pool of images. There is no
prior knowledge of the objects in an image. Users are required to
give some descriptions of objects in the images they see. Figure 4
shows an image labeling task in the 1st stage. As more data are
collected, the scheme described in Section 3.4 is applied to
remove spurious answers from bots, and the scheme described in
Section 3.5 is applied to distill human answers to produce
candidate labels. When candidate labels emerge, entering more of
these candidate labels would not gain any further knowledge
about the image. To prevent users from entering these candidate
labels, the candidate labels are put into a “taboo phrase list”. The
“taboo phrase list” is inserted in the problem manifest file of the
image to be displayed with the image. Users are forbidden from
entering labels in the “taboo phrase list”. The labels in the “taboo
phrase list” are displayed as red words in Figure 4. The reload
button on the right of the “OK” button allows a user to skip to the
next image if the current one is too hard to describe. With more
labels put into the “taboo phrase list”, the value of the problem is
also increased, and correct answers would be awarded more. The
score of a correct label of the image as well as the total score of
the current user are also shown in the problem frame in Figure 4.
When the HumanSense server finds that there is an enough
number of labels in the “taboo phrase list” or users would skip
labeling an image which has labels in its “taboo phrase list”, the
HumanSense server concludes that it has collected enough
answers for the image. The image is then removed from the pool
of the first stage images and put into the pool of the second
stage images.

Figure 4: First stage of the image labeling:

Collecting raw descriptions of objects in an image.

485

The second stage targets at refining the candidate labels acquired
in the first stage. The candidate labels are displayed as multiple
choices with the image. Users are asked to choose the ones that
are relevant to the images, as shown in Figure 5. The purpose is to
further improve the quality of the labels to achieve high-quality
labels for the images. It is possible that labels collected from the
first stage contain synonyms. Users are also asked to correlate the
synonyms in this stage.
Like in the first stage, correct answers would be scored or
awarded. Bots and lazy human users would simply choose all the
labels displayed, which guarantees that correct answers would be
selected, resulting in no further knowledge gained about the image
in this stage despite paying certain scores, awards, or money to
these users. To deal with this problem, Random “trap labels” are
intermixed with the candidate labels obtained from the first stage
and listed with the image. These trap labels are fake labels that
would not appear in the image. Selection of any trap label by a
user would result in rejection of the answer.
Trap labels should be selected by a computer automatically and
should not be semantically close to any candidate labels obtained
from the first stage. HumanSense meets the desired requirements
by utilizing the WordNet project [25][26], which offers a large
lexical database for English with distance between two words to
indicate how semantically close they are. To get a proper trap label,
the HumanSense server picks a word randomly from the WordNet
database, and then calculates its distances to all the displayed
labels consisting of the candidate labels as well as selected trap
labels for a specific instance of the image displayed for a user to
answer. If all distances are greater than a preset threshold, this
word is considered to be different enough from all the displayed
labels, and is selected as a trap label. Otherwise a new word is
picked and tested. This process is applied repetitively until an
enough number of trap labels are selected. For each instance of a
displayed image, a fresh set of trap labels are selected. They are
randomly intermixed with the candidate labels for a user to choose
from.

Figure 5: Second stage of the image labeling: Multiple choices

of candidate and trap labels.

The last stage is to locate the object corresponding to a given label
refined at the second stage in a segmented image. The segmentation
algorithm we used in our experiments was the open source software

EDISON [27]. An image overlaid with its segmentation result is
displayed for a user to use the mouse to click all the segments
belonging to the object represented by the given label, as shown in
Figure 6. A user can turn on or off the segmentation result to view
the original image or the image overlaid with segmentation result. A
left-click of the mouse selects a segment and a right-click deselects
it. The segmentation boundary of selected segments would no
longer show to allow a better view of the selected segments for the
specific object, as shown in Figure 7.

5. EXPERIMENTAL RESULTS
We have implemented the proposed framework with ASP.NET on
Microsoft’s Internet Information Services (IIS). The implementation
was geared to support the image labeling described in Section 4 but
many components were generic to support other common sense
problems. The system has been tested internally within our lab. The
labels on five images were collected from about 200 people.
Although the experiment scale is still small, the results we obtained
are very encouraging. We are working towards testing at a much
larger scale, but it would take a substantial time and effort to
achieve that goal.

Figure 6: Final stage of the image labeling: Locating an object

given a segmented image and a label.

Figure 7: Boundaries among selected segments are removed to
have a better view of the object corresponding to “building”.

In addition to human inputs, our experiments also used bots to
generate random labels to input into the system. Figure 8 shows
the collected labels from both humans and bots for the image
shown in Figure 9. Since a bot would unlikely label an image
correctly, there is no difference for a bot’s label to be a

486

meaningful word or not. In order to differentiate the labels from
humans and those from bots, all the labels generated by bots were
meaningless words in our experiments. All the labels we collected
from humans were meaningful words. Therefore we can easily
check if there is any label from bots that has survived our
procedure described in Section 3.4 to remove spurious labels from
bots. Figure 10 shows the surviving labels after applying our
procedure to the collected answers shown in Figure 8 to remove
spurious answers from bots, with the parameter k set to 1. As we
can see from the figure, all the surviving labels are real words.
This means that all the spurious labels from bots are removed
successfully by our scheme.

Figure 8: Collected labels from both humans and bots in the

first stage for the image shown in Figure 9.

Figure 9: A test image for image labeling.

Figure 10: The labels in Figure 8 that survive our procedure

to remove spurious labels from bots, with k=1 (see Section 3.4
for the meaning of k.

Our distilling procedure described in Section 3.5 is then applied to
the surviving labels shown in Figure 10. These labels are
considered as answers from humans. The result is shown in Figure
11. By comparing the labels in Figure 11 and the objects in Figure
9, we can conclude that all the major objects in the image have
been labeled by our system. Therefore, our system can produce
high-quality labels for images.

Figure 11: The resulting labels from the 1st stage for the image

shown in Figure 9.

6. CONCLUSION
We have presented in this paper a human computation framework
to mobilize Internet users to solve large-scale common sense
problems efficiently and economically. An ecosystem based on
the system is described in which all the parties would get benefits
from the system. Internet users are motivated to offer correct
answers to common sense problems in exchange for free services
such as free Web emails, software or music downloading, or for
monetary award. We described a system that can effectively
prevent malicious players in the system to launch attacks against
others or gain money or awards without contribution. We
proposed a scheme to effectively remove answers from bots, and a
majority voting scheme to distill human answers to achieve high-
quality solutions to common sense problems. We then applied the
general human computation framework to image labeling. Three
incremental refinement stages are used to produce high-quality
image labels. The first stage asks users to describe objects in an
image. The candidate labels obtained from the first stage are then
listed together with trap labels to ask users to refine in the 2nd
stage. Synonymic labels are also correlated by users in this stage.
The last stage is to ask users to locate an object corresponding to a
given label in a segmented image. A user can simply use the
mouse to click segments to locate an object. Experimental results
were also reported. They have shown that our scheme removes
spurious answers from bots effectively. That scheme together with
the majority voting scheme to distill human answers can produce
high-quality image labels.

7. REFERENCES
[1] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M.

Shepherd. CYC: A Large-Scale Investment in Knowledge
Infrastructure. Communications of the ACM 38(11): 33–38,
Nov. 1995.

[2] P. A. Boxer. Towards Learning Naive Physics by Visual
Observation: Qualitative Spatial Representations.
Proceedings of the 14th Australian Joint Conference on
Artificial intelligence: Advances in Artificial intelligence,
December 10-14, 2001. M. Stumptner, D. Corbett, and M.

487

J. Brooks, Eds. Lecture Notes In Computer Science, vol.
2256. Springer-Verlag, London, 62-70.

[3] The Open Mind project. http://www.openmind.org/.
[4] Luis von Ahn and Laura Dabbish. Labeling Images with a

Computer Game. ACM CHI 2004, April 2004.
[5] Luis von Ahn, Ruoran Liu, and Manuel Blum. Peekaboom:

A Game for Locating Objects in Images. ACM CHI 2006,
April 2006.

[6] Luis von Ahn, Mihir Kedia, and Manuel Blum. Verbosity:
A Game for Collecting Common-Sense Facts. ACM CHI
2006, April 2006.

[7] Luis von Ahn, Shiry Ginosar, Mihir Kedia, Ruoran Liu, and
Manuel Blum. Improving Accessibility of the Web with a
Computer Game. ACM CHI 2006, April 2006.

[8] Luis von Ahn. Games with a Purpose. IEEE Computer
Magazine, June 2006.

[9] Luis von Ahn. Human Computation (PhD Thesis). CMU-
CS-05-193, December 2005.

[10] Google Image Labeler (Beta, published in August, 2006).
http://images.google.com/imagelabeler/.

[11] Luis von Ahn. CAPTCHA: Using Hard AI Problems For
Security. Eurocrypt 2003.

[12] reCAPTCHA. http://recaptcha.net/.
[13] Internet Archive. http://www.archive.org/index.php.
[14] Wikipedia item on Human-Based Computation.

http://en.wikipedia.org/wiki/Human-based_computation.
[15] Google AdSense. https://www.google.com/adsense/.
[16] A. Kosorukoff. Human Based Genetic Algorithm. IEEE

Int.Conf. on Systems, Man, and Cybernetics, vol. 5, pp.
3464-3469, 2001.

[17] K. Sims. Artificial Evolution for Computer Graphics.
Computer Graphics, 25(4) (SIGGRAPH'91).

[18] X.-S. Hua and Q.-J. Qi. Online Multi-Label Active
Annotation: Towards Large-Scale Content-Based Video
Search. ACM Multimedia 2008.

[19] J. Ruderman. The Same Origin Policy.
http://www.mozilla.org/projects/security/components/same-
origin.html.

[20] Web Hypertext Application Technology Working Group.
HTML 5 - Cross-document messaging.
http://www.whatwg.org/specs/web-apps/current-
work/#crossDocumentMessages.

[21] H. J. Wang, X. Fan, C. Jackson, and J. Howell. Protection
and Communication Abstractions for Web Browsers in
MashupOS. 21st ACM Symposium on Operating Systems
Principles (SOSP), Stevenson, WA, October 2007.

[22] R. Guo, B. B. Zhu, M. Feng, A. Pan, and B. Zhou.
CompoWeb: A Component-Oriented Web Architecture.
WWW 2008.

[23] C. Jackson and H. J. Wang. Subspace: Secure Cross-Domain
Communication for Web Mashups. WWW 2007, pp. 611-
619, Canada, May 2007.

[24] C. Gentry, Z. Ramzan, and S. Stubblebine. Secure
Distributed Human Computation. In Proceedings of 6th
ACM Conference on Electronic Commerce, pages 155-164,
New York, June 2005.

[25] George A. Miller. WordNet: A Lexical Database for English.
Communications of the ACM, Nov. 1995.

[26] WordNet::Similarity, a Perl module for computing measures
of semantic relatedness based on WordNet.
http://www.d.umn.edu/~tpederse/similarity.html.

[27] EDISON: the Edge Detection and Image Segmentation
system.
http://www.caip.rutgers.edu/riul/research/code/EDISON/ind
ex.html.

488

