
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00.

Maintaining Mental Models: A Study of Developer Work Habits
Thomas D. LaToza

Institute for Software Research International
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213 USA

tlatoza@cs.cmu.edu

Gina Venolia
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
gina.venolia@microsoft.com

Robert DeLine
Microsoft Research
One Microsoft Way

Redmond, WA 98052 USA
rob.deline@microsoft.com

ABSTRACT
To understand developers’ typical tools, activities, and practices
and their satisfaction with each, we conducted two surveys and
eleven interviews. We found that many problems arose because
developers were forced to invest great effort recovering implicit
knowledge by exploring code and interrupting teammates and this
knowledge was only saved in their memory. Contrary to
expectations that email and IM prevent expensive task switches
caused by face-to-face interruptions, we found that face-to-face
communication enjoys many advantages. Contrary to expectations
that documentation makes understanding design rationale easy,
we found that current design documents are inadequate. Contrary
to expectations that code duplication involves the copy and paste
of code snippets, developers reported several types of duplication.
We use data to characterize these and other problems and draw
implications for the design of tools for their solution.

Categories and Subject Descriptors
D2.7 [Distribution, Maintenance, and Enhancement]:
Documentation; D2.9 [Management]: Programming teams;
D.2.6 [Programming Environments]: Integrated environments.

General Terms
Design, Documentation, Experimentation, Human Factors

Keywords
Code duplication, communication, interruptions, code ownership,
debugging, agile software development

1. INTRODUCTION
Developers must know or obtain a variety of information to
successfully understand and edit code – what code to change, how
design decisions are scattered across code [4], the rationale or
history behind decisions [7], the slice affecting a variable’s value
[13], the owner responsible for the code [1], other developers
currently editing it, which changes will break code elsewhere, and
which changes elsewhere affect it. Developers choose among
many strategies to record, communicate, and discover this
information. Naming, comments, and design documents allow
developers to share their current understanding with future

developers, but require an investment of time and knowledge
about what future developers will need to learn. Conventions,
factoring, and patterns minimize documentation burdens by
providing general answers but constrain possible solutions and
themselves become more to learn. For many types of information,
the simplest solution is frequently to ask a teammate for the
answer [2], yet the teammate is interrupted, must change tasks,
and forgets goals, decisions, and interpretations relevant to the
interrupted task. Modern development environments compute
facts from code (e.g. callers of a method, writers to a field,
methods overriding a method, average execution time) or other
artifacts and require neither interruption nor investment in error
prone documentation maintenance, but require a tool vendor or
researcher to have anticipated the developer’s situation and needs.
And computing many types of information may require the
developer’s assistance.
We performed a series of investigations of developers. The central
theme that emerged was the developers’ reliance on implicit code
knowledge. Developers go to great lengths to create and maintain
a mental model of the code, and knowledge is shared between
developers through face-to-face communication and the code
itself. Developers avoid using explicit, written repositories of
code-related knowledge in design documents or email when
possible, preferring to explore the code directly and, when that
fails, talk with their teammates. Exploring code is made difficult
by tool limitations and difficulties traversing relationships. Using
the social network as the second line of inquiry causes
interruptions and lost work, but those costs are offset by other
benefits. Implicit knowledge retention is made possible by a
strong, yet often implicit, sense of code ownership, the practice of
a developer or team being responsible for fixing bugs and writing
new features in a well defined section of code. This increases the
payoff from the large investment understanding code. Implicit
knowledge retention makes some information difficult to uncover,
particularly code duplication. Yet developers view it far more
broadly than the clone detection literature.
We used both qualitative data from interviews and quantitative
data from two surveys in our investigation. While the breadth of
our exploratory approach precludes the detail necessary to fully
understand each topic, and we were often left with more questions
than answers, we highlight interesting observations and propose
promising directions for future investigation.
We first present a taxonomy of developer activity which guided
our investigation. We then describe the study design and
organizational characteristics of the participants. In the first
results section, we describe developers’ time usage, tool usage,
and tool preferences. In the second, we discuss the nature,
motivations, and problems with developers’ reliance on implicit

492

Table 1. Descriptions of activities read by respondents. Descriptions ending in […] have been shortened.

Designing Analyzing a new problem and mapping out the broad flow of code which will be used to solve the problem. […]
Writing Creating a new method, source file, or script and getting it to a compilable state

Understanding Determining information about code including the inputs and outputs to a method, what the call stack looks like,
why the code is doing what it is doing, or the rationale behind a design decision. […]

Editing Editing existing code and returning it to a compilable state.

Unit testing Ensuring that code is behaving as expected. […]

Communicating Any computer mediated or face-to-face communication about information relevant to a coding task […]

Overhead Any other code related activities including building, synchronizing code, or checking in changes.

Other code [No description provided]

Non code Any other activities included in your work time

code knowledge. Finally, we present design recommendations for
tools and conclude.

2. ACTIVITY TAXONOMY
We began our investigation by characterizing developers’
interactions with code – their activities, tools, and biggest
problems. Rather than bringing a preconceived area of focus, we
wished to be more opportunistic and let our users – the developers
– guide us in selecting what they perceived as most painful
through reports of their time, tool effectiveness perceptions, and
problems.
Two previous studies have categorized developers’ activities in
the field through diaries, observation, and surveys. In the first
study [9], thirteen developers on a large software project logged
every hour for a year which of 13 activities they were engaged in.
The categories distinguished different life cycle activities such as
estimation, requirements, high level & low level design, test
planning, coding, inspections, and high level & low level testing.
Most developers reported being in a coding stage. Despite
waterfall or spiral models predicting developers spend their time
coding in a coding stage, developers reported coding for only half
of their time with the rest spent on activities associated with other
life cycle stages.
In the second study [12], developers were surveyed, observed, and
interviewed to count the number of times they switched between
one of thirteen activities. Observations of eight developers for an
hour each revealed that they most frequently executed UNIX
commands, followed by reading the source, loading or running
software, and reading or editing notes. Yet is not clear how
activity switches translate to time spent on activities as activities
may be frequent and brief or long and infrequent.
We designed our own taxonomy (see Table 1) to focus more
specifically on code related activities and the motivation behind
these activities. We wished to know specifically for what types of
activities developers used development environments and which
activities environments were poorest in supporting. We also
wanted to know whether developers chose different tools for
different activities.
From the our own personal experience as software developers,
hypotheses about what developers might find difficult, and topics
of ongoing research, we also formulated nineteen hypothesized
problems developers might have in obtaining or communicating
about code-related knowledge.

3. METHOD
The study consisted of three parts: a survey about activities, tools,
and problems (the “activities survey”), a series of semi-structured
interviews, and a survey of work practices (the “follow-up
survey”).

3.1 Organization
The population we selected for study was software developers at
Microsoft Corporation. Microsoft is a large software company
whose products span a wide range of markets: web portals
(MSN); consumer devices (Windows Mobile, Xbox); office
productivity applications (Windows, Office); and developer tools
and infrastructure (Visual Studio, Great Plains, SQL Server). Of
the roughly 63,000 employees, roughly 6,000 are software
developers who work on shipping code in product groups. Other
developers include those who work on test infrastructure and tools
and those in Microsoft Consulting and Microsoft Research. These
groups were excluded from our study.
Within a product group, there are three core roles – software
design engineer (SDE), program manager, and software test
engineer. SDEs are responsible for software design, fixing bugs,
and writing new features. Program managers are responsible for
specifying and prioritizing features and for writing high level
feature specification documents which developers use to write
code and testers use to write test cases. Software test engineers
translate feature specifications into test cases and manually test
the software. A somewhat less common role is software design
engineers in test (SDE/T) who write test automation
infrastructure. Members of each of these roles work in small
teams of “individual contributors.” Individual contributors are
managed by a lead (e.g. lead software design engineer) who
reports to a manager (e.g. software design engineer manager).
Other less frequent roles include software architect, product
designer, and usability engineer. Nearly all individual
contributors have private offices (not cubes) and most do not
share an office.
Product group work for a particular release of a product is divided
into milestones. In the first milestone, program managers make
initial decisions about what features will be in the release, what
features developers will work on in subsequent milestones, and
write initial feature specification documents. SDEs may work on
bug fixes and patches from the previous release, try out new
technologies, or plan major changes. Several milestones of
development follow. Each milestone is divided more or less into a
coding phase, where features are added, and a stabilization phase,

493

where developers concentrate on fixing bugs. During the last
milestone, most of the work involves fixing bugs. As the release
nears, most changes become too time consuming and risky to test,
and developers spend more time making the next version’s code
more maintainable (see Figure 1).

3.2 Procedure
Activities survey participants first completed a number of
demographic items. They next read the activity descriptions found
in Table 1. They were then asked to report the fraction of their
past week work time spent on each activity, choosing among 10%
increments plus choices for 1%, 2%, and 5%. For each activity,
they were asked the percent of time on that activity they used each
of a set of tools or techniques, using the same scale. For each
tool/technique combination and activity, developers were asked to
rate its effectiveness on a seven-point Likert scale. Finally, they
rated the seriousness of each hypothesized problem using a seven-
point Likert scale. There were 204 questions in all.
While we expect respondents misremembered, misestimated, and
misreported the time fractions, we expect they were able to
differentiate across large distinctions like values near 0% and 5%
or values near 10% and 40%. We normalized each group of
fractional responses to sum to 100%.
Before deploying the activities survey we used two techniques to
ensure that its design fit the activities, tools, techniques, and
problems relevant to our target population. First we ran three
experienced developers through the survey using a think-out-loud
protocol. We adapted the survey wording and structure based on
their feedback. Second, we developed a reduced version of the
survey that included extensive opportunities for participants to
write in additional activities, tools, and problems. We deployed
this pilot survey to 99 randomly selected developers and received
28 responses. Any write-in response from two or more
respondents was included in the activities survey. No activities or
problems met this criterion, but a few tools did.
We selected the four problems rated as the most serious on
average from the activities survey (see Table 2) and designed a
series of interview questions to elicit qualitative information about
the character and impact of these problems. We added several
general, open ended questions on how the participants
characterized their work and activities and on team
communication patterns. Two authors attended each interview.
Ten of the eleven interviewees consented to having the
conversation audio-recorded. All three authors used their notes or
recordings to generate nearly 1,000 note cards of observations.
The cards were then used for a card sort [14] where they were
placed on the walls of a ~30 foot hallway to form groups, elicit
themes and trends, and consolidate observations across
interviwers and interviewees.
From the card sort we identified several preliminary hypotheses.
We developed a follow-up survey to assess the hypotheses
amenable to surveying. Participants first answered demographic
questions. Next they answered questions about the size of their
feature team, which was defined as, “the core group of developers
that you work with.” They then answered a series of questions
about communication patterns, code ownership, design
documents, understanding unfamiliar code, code duplication, unit
testing, and adoption of agile practices. There were 187 questions
in all.

3.3 Participants
We drew our participants from the population that deals directly
with code: SDEs, SDE/Ts, and architects at both the individual
contributor and lead level. After the activities survey we decided
to focus on developers working on shipping code, and so removed
the responses from architects and SDE/Ts from our analysis and
the subsequent observations. We felt that our survey questions
were most informative about SDEs, and we lacked resources to
investigate all three roles. We excluded contractors because of
logistical problems and excluded interns because we wished to
generalize to professional software developers.
Participants were invited to participate in the surveys by email and
sent a reminder email several days before the surveys were closed
if they had not yet responded. Respondents were compensated by
entry in a drawing for $50 gift certificates. In the activities survey,
we randomly sampled 1,000 participants from the participant
pool, excluding those invited to take the pilot survey. We received
157 responses, 104 from SDEs, including 18 from lead SDEs. We
were somewhat disappointed with the response rate and attribute
it to the survey being deployed in early July when many were on
vacation, some technical problems with the survey deployment,
and sheer size of the survey. In the follow-up survey, we
randomly sampled 1,000 from the same pool excluding SDETs
and recipients of the activities and pilot surveys. We received 187
responses, 176 from SDEs. For both surveys, we did not measure
self selection bias to ensure our sample was truly representative.
The activities survey contained several demographic questions.
Since participants from all surveys were randomly sampled from
the same population of SDEs, and we expect any self selection
bias to apply equally to both surveys, these demographics apply to
all study participants. The average respondent is in their 30’s with
an undergrad degree, 12.1 (± 6.5) years programming, 5.8 (± 4.2)
years at Microsoft, and 2.9 (± 2.4) years on their current team;
89% of respondents are male. 37% reported that most of their
code base was written in C#, compared to 56% in C or C++,
reflecting both older, established code bases and newer code bases
written in C#.
We interviewed eleven respondents, five SDEs from the pilot
survey and 6 lead SDEs from the activities survey.

4. ACTIVITIES AND TOOLS
Far from spending all of their time understanding or editing
existing code, developers reported spending most of their time
elsewhere. Developers’ tool use was frequently correlated with
their tool preferences. This is clearly visible in the positive linear
relationship of tool usage to effectiveness (Figure 5). As the study
was exploratory rather than being hypothesis driven, results are
presented with descriptive statistics. Times are reported using the
mean (± standard deviation).

4.1 Time breakdown
Developers reported spending a little less than half of their time
(49% ± 39%) fixing bugs, 36% (± 37%) writing new features, and
the rest (15% ± 21%) making code more maintainable. This
confirmed our expectation that most developers spend much of
their time fixing bugs. But the vast variability in these numbers
also demonstrates that typical development activity varies greatly
across teams and across the lifecycle (Figure 1).

494

1-34-67-1213-2425-36
0%

20%

40%

60%

80%

100%

Months until next planned release

P
er

ce
nt

 o
f w

or
k

tim
e

(n=2)
(n=16)

(n=34) (n=14) (n=22)

Writing new features

Fixing bugs

Making code more maintainable

Figure 1. The time spent fixing bugs, making code more
maintainable, and writing new features varies with the time

until the product is planned to be released.

Figure 2. A box plot of activity time. The box bottom,

internal line, and top are the first, second, and third quartiles.
The exterior lines extend for 1.5 times the interquartile region,

with outliers displayed above.

-0.251

0.363

-0.301 -0.244

-0.425 -0.270

0.2140.363

Designing

Editing

Writing

Non-code

Other Code Overhead

Communicating

Understanding

Figure 3. Statistically significant correlations between time
spent on each activity. Negative numbers indicate inverse

relationships. (Spearman’s rho, thin lines for p<0.05, thick
lines for p<0.01, n=104.)

Number of Activities in Past Week

Pe
rc

en
t

of
 D

ev
el

op
er

s

98765432

25

20

15

10

5

0

Figure 4. Most developers engage in a number of activities in
a given week.

Median times spent on each activity (Table 1) are remarkably
close (Figure 2), dashing hopes that a single activity accounts for
most of developers’ time. Most developers engage in multiple
activities in a given week (Figure 4). However, most activities
still had individual developers who spent most of their week on
that activity.
Pairwise correlations of activities (Figure 3) reveal several
statistically significant, if not large, activity relationships.
Designing code and writing new code are positively correlated.
Editing code goes hand-in-hand with overhead tasks like building
and source code management. Understanding existing code is
negatively correlated with designing code and writing new code,
suggesting that one is either working on new code or examining
existing code, but not both at the same time. Designing and
writing are negatively correlated with non-code activities,
suggesting that working on new code is an all-consuming activity.
The negative correlation between writing new code and

communicating about code suggests developers working on new
functions or classes need less information from their teammates.
Unit testing was the only activity for which we found no
correlation to other activities. It is worth noting that analyzing
only pairwise correlations neglects any relationships involving
multiple activities.

4.2 Communicating
Developers both preferred and spent more time using face-to-face
communication than electronic communication (Figure 5a),
replicating a 1994 finding [9] of a strong preference for face-to-
face over email. Yet, email has since increased in prominence and
sophistication and instant messaging has made possible short
response time, interactive communication. Developers gave a
number of reasons for preferring face-to-face communication.
Developers reported that email questions often took hours or days
to receive a response, that developers frequently misinterpreted
emails’ meanings, writing an email without immediate feedback
often resulted in explanations with more or less detail than the
recipient required, and that email was just tedious to write. We
believe many of these problems generalize to other electronic

495

% communicating about code time

Ef
fe

ct
iv

en
es

s
(1

 =
 L

ow
, 7

 =
 H

ig
h)

302520151050

7

6

5

4

3

2

1

Other

Web
External docs

Internal docs

Bug database
Phone

IM

Email

Unplanned meetings

Planned meetings

% designing code time

Ef
fe

ct
iv

en
es

s
(1

=
Lo

w
, 7

=
H

ig
h)

35302520151050

7

6

5

4

3

2

1

Other
Source code editor

Visual designers

Visio
Word processor

Paper
Whiteboard

% understanding code time

Ef
fe

ct
iv

en
es

s
(1

=
Lo

w
, 7

=
H

ig
h)

302520151050

7

6

5

4

3

2

1

Other Diff tool
Profiler

Other debuggerSQL editor

Notepad

Source Insight

SlickEdit

Emacs
VI

Visual Studio debugger

Visual Studio editor

% understanding code time

Ef
fe

ct
iv

en
es

s
(1

=
Lo

w
, 7

=
H

ig
h)

403020100

7

6

5

4

3

2

1

Other

Trace statements

Debugger

Running codeHigh level views
Checkin messages

Reading code

Figure 5a-d. (See text.)

communication such as documentation, bug databases, and IM.
Developers still use email when the issue is of low priority,
involves multiple people, or involves non-teammates, averaging
16.1 (± 14.5) emails sent to teammates in the prior week and 5.9
(± 11.5) to non-teammates. The preference for face to face
communication over email might limit benefits from systems
helping developers locate old emails, and the barriers
discouraging email use might make it difficult to encourage more
retention of knowledge in emails. Unplanned, face-to-face
meetings happen frequently with teammates, averaging 8.4 (±
11.7) per week, and much less frequently with non-teammates,
averaging 2.6 (± 4.0). Communication within the team is much
more common than communication across teams, indicating that
the culture of informal communication works well and that the
team boundaries are typically in the right places.
Most developers reported using IM only infrequently for code
related tasks. It was more frequently used to contact teammates for
social functions (e.g. going to lunch) or to talk to family. Use of
the telephone for code-related communication was similarly rare.

4.3 Designing
Despite the availability of high-level views of code and visual
editors such as tools for UML, developers remain focused on the
code itself. Developers reported using a source code editor the
most for design while paper and whiteboards were perceived most
effective (Figure 5b). We hypothesize that the need to find details
about the existing design by using a source code editor
discourages increased use of paper or whiteboards, even though
both were viewed as more effective tools.

4.4 Perceived problems
Table 2 lists the problems we proposed in the survey and the
percent of respondents who agreed that the problem is a “serious
problem for me.” The top four are: understanding the rationale
behind existing code, having to switch tasks because of manager
or teammate requests, being aware of changes elsewhere, and
finding code duplicates. We focused our semi-structured
interviews on these problems to discern what makes them
difficult. Several themes emerged:
• Developers go to great lengths to create and maintain rich

mental models of code that are rarely permanently recorded.
• Understanding the rationale behind code is the biggest problem

for developers. When trying to understand a piece of code,
developers turn first to the code itself and, when that fails, to
their social network.

• Developers and development managers use a variety of tools
and work practices and are actively looking for better solutions.

We present these themes with support from our follow-up survey.

5. MAINTAINING MENTAL MODELS
Developers create and maintain intricate mental modes of the
code. Through our interviews, we know that developers, without
referencing written material, can talk in detail about their
product’s architecture, how the architecture is implemented, who
owns what parts, the history of the code, to-dos, wish-lists, and
meta-information about the code. For the most part this
knowledge is never written down, except in transient forms such
as sketches on a whiteboard. One interviewee summed it up well -
“Lots of design information is kept in peoples’ heads.”

496

Table 2. Developer ratings of proposed problems. In the
survey, problems were presented without headings and in a

different order.

This is a serious problem for me % agree

Code Understanding
Understanding the rationale behind a piece of
code

66%

Understanding code that someone else wrote 56%
Understanding the history of a piece of code 51%
Understanding code that I wrote a while ago 17%

Task Switching
Having to switch tasks often because of requests
from my teammates or manager

62%

Having to switch tasks because my current task
gets blocked

50%

Modularity
Being aware of changes to code elsewhere that
impact my code

61%

Understanding the impact of changes I make on
code elsewhere

55%

Links between Artifacts
Finding all the places code has been duplicated 59%
Understanding who “owns” a piece of code 50%
Finding the bugs related to a piece of code 41%
Finding code related to a bug 28%
Finding out who is currently modifying a piece of
code

16%

Team
Convincing managers that I should spend time
rearchitecting, refactoring, or rewriting code

43%

Convincing developers on other teams within
Microsoft to make changes to code I depend on

42%

Getting enough time with senior developers more
knowledgeable about parts of code I'm working on

34%

Expertise Finding
Finding the right person to talk to about a piece of
code

39%

Finding the right person to talk to about a bug 38%
Finding the right person to review a change before
check-in

19%

5.1 Personal Code Ownership
Mental models are expensive to create and maintain. Developers
have a strong notion of personal code ownership, which
constrains the amount of code they have to understand in detail.
In our follow-up survey, 77% of respondents agreed1 with the

1 Throughout this paper, the word agree means that the participant

selected either “Somewhat agree”, “Agree”, or “Strongly agree”
from a seven-point Likert scale.

statement, “There is a clear distinction between code that I own
and the code owned by my teammates.” On the other hand some
teams have a policy to avoid personal code ownership because it
makes individuals too indispensable and promotes, in the words
of one of our interviewees, “too much passion around the code.”
Code ownership is a long-term proposition, reducing the number
of times that a developer has to learn a new code base. In the
activities survey, the average time on the current code base was
2.6 years, with 32% reporting 6 years or more. Personal code
ownership is usually tacit, i.e. part of the mental model. Written
records of ownership, when present, are often out-of-date and
distrusted.
We received conflicting information about design documents for
issues within a team. Design documents are usually written by a
developer immediately prior to implementing a larger change that
affects other developers to solicit other developers’ input on
important decisions. In the interviews, design documents were
described almost as write-only media, serving to structure the
developer’s thinking and as an artifact to design-review, but
seldom read later and almost never kept up-to-date. On the other
hand our follow-up survey respondents reported a different
picture of design documents for issues within the team: their
feature teams wrote an average of 7.6 (± 10.2) documents in the
prior year, and kept 51% of them up-to-date. We were surprised
with these numbers and can’t reconcile them with the results of
the interviews.

5.2 Team Code Ownership and the “Moat”
Even stronger than personal code ownership is a notion of team
code ownership. An overwhelming 92% agreed with the statement
“There is a clear distinction between the code my feature team
owns and the code owned by other teams.” Feature teams are
small. 93% stated that their feature team consisted of 2-4 people
(including the respondent). There seems to be a sweet spot at
three-person feature teams, reported by 49%. Feature teams are
almost always collocated, facilitating informal knowledge sharing.
One of the ways developers maintain their mental model of their
team’s code is by subscribing to check-in messages by email,
though several interviewees expressed dissatisfaction with the
lack of detail provided by teammates.
Small feature teams’ strong code ownership forms a kind of moat,
isolating them from outside perturbations. The moat is defined, in
part, by design documents, which specify the interface across the
moat. Design documents related to cross-team issues were less
common than those relevant to issues within the team. Although
the average number of design documents written in the last year
for cross-team issues was 4.5 (± 7.8), significantly less than the
7.6 (± 10.2) for within-team issues (two-tailed t-test, p<0.01,
t=4.78), cross-team design documents are significantly more
likely to be kept up-to-date (61% versus 51%, two-tailed t-test,
p<0.01, t=−3.58). The greater care taken with cross-team design
documents reflects their important role in defining the moat.
Unit tests, used by 79% of our respondents, are an important part
of the development process for many reasons. One surprising
function is to defend the moat from outside perturbations – 54%
of respondents agreed that an important benefit of unit testing is
that “they isolate dependencies between teams.”

497

Table 3. Forms of code duplication reported by interviewees with frequency and importance from follow-up survey respondents.

 Repeated work Example Scattering Fork Branch Language
Creation Separate developers

implement same
functionality

Copy and
paste of
example code

Design decision
distributed over
multiple methods

Copy of other
team’s code
base

Branch
maintained
separately

Reimplementation by
same developer in
different language

Aware when
created

No Yes Yes Yes Yes Yes

Refactoring
challenge

Awareness at
creation; different
design decisions

Investment
creating
abstraction

Changing
architecture

Convincing
other team to
make changes

Combining
released
branches

Changing architecture
or implementation
language

Size of clone Members, classes Members,
classes

Members, classes Many classes,
code base

Code base Members, classes

Repeated change 24% 44% 29% 13% 25% 29%
Refactoring 19% 39% 14% 5% 6% 15%
Agree problem 42% 41% 37% 29% 28% 29%

Almost all teams have a team historian who is the go-to person
for questions about the code. Often this person is the developer
lead and has been with the code base the longest.

5.3 New team members
Creating a mental model from scratch requires a lot of energy for
the new team member and the team as a whole. Often the
newcomer is assigned a mentor, often the team historian,
designated as the first point of contact for questions about the
code. The mentor helps to jumpstart the newcomer’s mental
model and social network. Newcomers are much more likely to
read the team’s design documents than seasoned team members.
Some teams maintain online documents specifically for
newcomers. Unguided exploration of the code is rare; more
commonly the newcomer is assigned bugs specifically to
introduce them to the code while minimizing risk. While all
changes are code reviewed before checkin, newcomers receive
extra attention and feedback on early changes they make. Several
interviewees viewed fixing bugs as requiring less design
knowledge than implementing new features. Bug fixing allows
newcomers to do useful work while still learning the code base.

5.4 Code duplication
Two previous studies [5] [10] and the focus of clone detection
tools (e.g. CCFinder [3]) led us to expect that when developers
were asked about code duplication, they would discuss copying
and pasting example API usage code, subclasses, or other hard-to-
understand example code or even regale us with stories of hard to
refactor clones. When pressed, a few admitted to copying and
pasting code in dubious ways. Yet most responded with stories
that had nothing to do with finding example code or copy and
paste.
From our interviews, we identified six distinct forms of code
duplication (Table 3), corresponding to columns in the table.
Each clone type can be characterized by its creation mechanism,
whether developers are aware they are creating clones, the
refactoring challenges to remove the clones, and the size of the
clones. Our follow-up survey also revealed the percentage of
developers who had made changes repeated in multiple places or
refactored or otherwise eliminated duplication during a one week
period. Finally, developers rated the difficulty maintaining their
code base caused by each type of clone.

In repeated work clones, multiple developers separately and
unknowingly reimplement the same functionality. One developer
reported that he had been implementing a small piece of
functionality that another developer was also working on for a
different problem until a program manager suggested that he talk
to a second developer. After creation, interviewees viewed these
clones as being difficult to refactor as each developer may have
made subtly different decisions that are difficult to change.
The most studied clone type, example clones, occurs when some
usage context code which illustrates how to create or make use of
some code is copied and pasted and modified. We expect that this
usually involves a small amount of code. Kim et al. [6] argue that
copies frequently diverge and that it is difficult to predict whether
the clones would be better off factored into a new abstraction.
Scattered clones, or logical clones, involve crosscutting changes
in the aspect oriented programming sense [4]. Here, changing a
particular decision requires making changes to many widely
dispersed areas of code. One developer reported that correctly
changing one method required changing another method that was
hidden several calls deeper into the component. Another reported
that they would sometimes make a change, hope for the best, and
rely on testers to find any other necessary related changes.
Fork clones occur when a team takes a large portion of code from
another team. One developer reported doing this when they
wished to use code that the original team was not ready to ship.
They subsequently heavily modified the code to remove
functionality they didn’t need. Forks occur when a consuming
team wishes to use functionality provided by a producing team in
ways that the producing team is unable to support. Interviewees,
when asked, all agreed that it was best to avoid forked code
whenever possible. Yet, when faced with the alternative of
reimplementing the functionality from scratch, forking is
frequently a better alternative. Particularly difficult are bug fixes.
The consuming team must monitor bug fixes made by the
producing team and reimplement the fixes themselves, taking on
much of the maintenance burden of the producing team.
Branch clones occur when developers must reimplement their
change in several branches of the same code base. They aren’t
clones in the strict sense of duplicate code but rather copies of the
entire code base in various stages of release. One developer

498

reported fixing a bug in both code used in production and the
current version under development.
Language clones involve the same code implemented in multiple
languages. One developer reported having the same methods in
both C++ and C#.
In contrast to the clone detection literature’s narrow view of
cloning as syntactically similar code, developers viewed cloning
as making the same change several times. This includes many
cases involving code not syntactically similar in a single code
base but cloned across code bases or repeated in multiple
languages or branches. From the developer’s perspective, many of
these problems seem similar in that individual bugs have to be
fixed in several places, new feature work involves changes in
many different places, or changes crosscut the strong team code
ownership boundary. Future empirical work might be best served
by focusing on this broader definition of repeating the same work.

6. RATIONALE AND COMMUNICATION
Understanding the rationale behind code is the most serious
problem developers face among the problems activities survey
respondents were asked about. 66% of the respondents agreed
that “understanding the rationale behind a piece of code” was a
serious problem (see Table 2). There are many facets to the
rationale problem: 82% agree that it takes a lot of effort to
understand “why the code is implemented the way it is,” 73%
“whether the code was written as a temporary workaround,” 69%
“how it works,” and 62% “what it’s trying to accomplish.”
Consideration of rationale led us to understanding how developers
understand and explore code. We found that developers had many
complaints about using their tools to explore code, eschewed
design documents for interrupting teammates, had code ownership
boundaries to minimize how much they must understand, and
rarely documented their understanding for others. This led to the
second most serious problem - developers felt they were too
frequently interrupted by their teammates. We also explored how
developers maintained awareness of changes affecting their code
and what developers meant by code duplication.

6.1 Investigating Code Rationale
When investigating a piece of code, developers turn first to the
code itself: on average respondents spent 42% (± 29%) of their
understanding time examining the source code, 20% (± 17%)
using the debugger, 16% (± 19%), examining check-in comments
or version diffs, 9% (± 10%) examining the results, 8% (± 12%)
using debug or trace statements, and 3% (± 14%) using other
means (Figure 5d). In other words, the code itself is the best
source of information about the code. However it is not flawless.
Developers commonly become disoriented in unfamiliar source
code, and discerning the relationship between observed program
behavior and the source code is often difficult.
When the code itself does not give the answers the developer
needs, one might expect them to turn next to the vast amount of
information that’s written about it – the bug reports, the specs, the
design documents, the emails, etc. This is emphatically not the
case. Several factors combined to dissuade most developers from
using design documents for understanding code. First, finding
design documents was frequently difficult. Design documents
were stored on internal websites without a usable search facility,
forcing developers to manually navigate hierarchic collections
looking for the appropriate design document. Thus, even if

developers thought there was a possibility of a design document
containing the information they cared about, it was not worth
looking for. If search were available, it was not clear that
developers would know the correct search terms. Second, design
documents were not reliably updated. Thus, developers consulting
a document would not be sure if the code still conformed to the
document and would be forced to inspect the code.
The second recourse for investigating the rationale behind code is
the social network. If the developer thinks a teammate might be
able to provide the needed information (or the name of the person
who might), she will walk down the hall to talk with them.
Once the developer has the desired information, she returns to her
office, applies the newfound information, and gets on with her
work. This information is precious: it is demonstrably useful,
demonstrably hard to ascertain from the code, and was obtained at
a high cost. Yet it is exceedingly rare for this developer to then
write this information down. The next person who needs the same
information must go through the same laborious discovery
process. There are plenty of reasons that a developer would
choose to not record the information. The overhead of checking
the code out, editing it, and checking it back in (possibly
triggering check-in review processes, merge conflicts, test suite
runs, etc.) is enough to dissuade the developer from recording the
information as a comment in the code. Some interviewees
expressed the concern that the newfound information was not
authoritative enough to add permanently to the code or that
checking in the comment under their own names would
inappropriately make them experts. Hence the information tends
to remain in the developers’ heads, where it is subject to
institutional memory loss.

6.2 Interruptions
Each of these unplanned, face-to-face meetings represents an
interruption of at least one person. Recovering from these
interruptions is a substantial problem, ranking second with 62%
of developers agreeing that this is the case (Table 2). Recovering
from an interruption can be difficult. Developers must remember
goals, decisions, hypotheses, and interpretations from the task
they were working on and risk inserting bugs if they
misremember.
Developers have adopted various strategies to mitigate the effects
of interruptions on themselves, such as using a closed office door
or other social cues to deflect interruptions, working on
complicated tasks at times of the day when interruptions are
infrequent, staving off an interruption for a moment while
finishing a thought, or scheduling “office hours.” Sometimes the
interrupter mitigates the impact of interruption by using email
instead of face-to-face for low-priority issues or emailing a
warning 10 minutes before the interruption to give the interrupted
person a chance to save his working context by writing down
notes.
While many (though not all) interviewees indicated that they
received too many interruptions, all acknowledged that
interruptions were a valuable part of the work culture.
Interestingly, two interviewees indicated that interruptions had
become more of a problem since their teams had adopted agile
processes.

499

Table 4. Agile practices adopted by respondents.

Does your team use % agree
Collective code ownership within the team 49%
“Sprints,” i.e. a development cycle that last four
(or so) weeks

42%

An intentional policy to involve customers
(internal or external) deeply into design and
planning

33%

“Scrum meetings,” i.e. a brief daily status meeting
including all stakeholders

25%

“Burndown” estimate or chart, i.e. a measure of
the time remaining in the sprint

24%

An intentional policy of preferring face-to-face
over electronic communications

16%

Pair programming, i.e. developers working
together, shoulder-to-shoulder on a problem

16%

A “bullpen” or other open-floorplan space for the
team

10%

6.3 Bug Investigation Example
Developers reported spending nearly half of their time fixing
bugs. A bug investigation helps illustrate how their tools,
activities, and problems interact to make fixing bugs possible but
also suboptimal. When asked to describe an instance of a
difficulty understanding the rationale behind a piece of code, one
developer responded with a bug investigation narrative. While
this is but a single story and not necessarily general and based on
a recollection of events and not completely accurate, it illustrates
several themes supported by interview and survey data.
After being assigned a new bug through a bug tracking tool, the
developer first reproduced the bug by navigating to a webpage
and ensuring that error 500 – internal error was triggered as
reported in the bug. Next, the developer attached the Visual
Studio debugger to the web server, set it to break on exceptions,
reproduced the error again, and was presented with a null
reference exception in Visual Studio. From an inspection of the
call stack window, the developer considered the functions that
might be responsible for producing the erroneous value. The
developer switched to emacs to read the methods and used
ctags.exe to browse callers of methods. The developer then
switched back to the Visual Studio debugger to change values at
run time and see the effects. The developer made a change,
recompiled, and found that the same exception was still being
produced. Finally, the developer browsed further up the call-
stack, tracing the erroneous value to one object, then to another
object, and finally to a third object protected with mutexes.
By this time, the developer had wandered into code that he did not
understand and did not “own” – or have primary responsibility for
making changes. But a second developer was working on a high
profile feature that touched this code, so he immediately knew
that this second developer would understand this code. He went to
the second developer’s office, interrupted the second developer,
and engaged him in a discussion about the rationale behind the
code. He walked back to his office, made a change based on this
information, and determined that the change wouldn’t work,
leaving him with a new problem. He then walked back to the

second developer’s office who then him that the functionality
causing the problem was actually related to code that a third
developer was working on. They both went to visit the third
developer’s office only to find the third developer away for lunch.
The first developer, now blocked, switched to another task. After
lunch, both developers returned to the third developer’s office,
had a design discussion about how the functionality should
behave, and finally passed the first developer’s bug to the third
developer to make the fix.
This story illustrates several themes in our surveys and interviews:

• Developers rapidly switch between multiple tools.

• When looking for detailed information about code, developers
first explore the code by reading it and using a debugger.

• When unable to find answers exploring code, developers
consult knowledgeable teammates rather than specs, design
documents, email, or other artifacts.

• Face-to-face communication is strongly preferred over email or
IM.

• Developers switch tasks when blocked or interrupted by
teammates seeking code knowledge.

• Software development is a highly social process.

• While code ownership within a team is well understood,
changes crosscut ownership boundaries.

• Developers spend vast amounts of time gathering precious,
demonstrably useful information, but rarely record it for future
developers.

7. OPENNESS TO CHANGE
Developers and development teams are constantly trying new
tools and work practices to optimize their work. Developers use a
variety of tools to do their job. When writing code, 49% use two
or more tools, and 19% use three or more.
In our interviews, we found several development teams
experimenting with “agile practices,” a collection of behaviors
intended to make software development more efficient2. Some
teams were gingerly dipping a toe into the agile water, while a
small number were jumping in with both feet (see Table 4). 48%
of respondents reported that their team was using two or more of
the eight practices, 32% three or more, and 20% four or more. A
few respondents (3%) reported that their teams used seven or all
eight of the practices. Most developers wanted to continue
adopting agile practices (53% agreed that they thought their team
“should adopt agile software development methodologies more
aggressively”) while a few were skeptical (14% agreed that their
team should adopt less aggressively).
Developers adopted specific agile practices when they felt their
benefits were compelling. Developers shunned design documents
in favor of face-to-face communication, designed minimally rather
than up front, and employed unit testing. Developer leads reported
preferring daily standup team meetings over weekly team
meetings. Daily meetings encouraged teammates to help each
other and assisted the lead in responding to problems blocking
individual developers’ progress. Several teams had gone further

2 http://agilemanifesto.org/

500

by adopting an entire agile process, Scrum [11], and reported
using radical collocation, collective ownership, and sprints.

8. DESIGN RECOMMENDATIONS
Several of the problems we observed might benefit from tool
solutions, although further empirical work is first necessary.

Problem: Developers don’t write down knowledge in design
documents, resulting in constant rediscovery of knowledge known
by developers working on the code in the past.

Solution: Reduce the cost of using design documents by (1)
providing hyperlinks in code to design documents or (2) tools that
capture informal whiteboard or paper designs. Two empirical
questions that must first be answered are how readable informal
notes would be for others and how much of what subsequent
developers need to understand was ever explicitly considered by
the original developer.

Problem: Interrupted developers lose track of parts of their
mental model, resulting in laborious reconstruction or bugs and
discouraging more frequent interruptions.

Solution: Externalize developer’s task context – methods they’ve
examined, decisions in progress, and other information – in a tool.
This information could also be useful as documentation for future
developers. The central empirical question is determining what
information developers consider during a modification task.

Problem: It is difficult to discover and consistently change
clones.

Solution: Embed hyperlinks between clone instances with editor
support for navigating between clone instances.

9. CONCLUSIONS
Our exploratory study of developers’ typical activities, tools, and
problems led to a finding that is likely surprising to few –
software development relies heavily on implicit knowledge. Yet, a
detailed examination yielded more interesting findings – barriers
preventing design document and email use, problems with
interruptions, causes of duplication, and the deeply social nature
of software development. We feel that wide-ranging, exploratory
studies like ours have an important place within software
engineering to keep tool development rooted in real problems
developers face and fight the perceived irrelevance of academic
software engineering research [8]. While many of our findings
help inform tool development, many also need much more study.
Finally, it not clear how this study of software development at
Microsoft generalizes to software development in other
professional environments. Given the diversity of environments –
large software companies, small software companies, software
developers in companies whose product is not the software itself,
open-source development of commercial software – future work is
needed to understand the generality of these findings.

10. ACKNOWLEDGEMENTS
Many thanks to Nachi Nagappan for his skills with statistical
analysis, Miryung Kim for very helpful discussions including
suggesting interview questions and an initial form of our clone
taxonomy, and Andrew Ko, Marwan Abi-Antoun, Jim Herbsleb,
and Brad Myers for careful readings of earlier drafts and helpful
suggestions. The authors gratefully acknowledge support from a

National Science Foundation Fellowship awarded to the first
author and by NSF research grant IIS-0534656. This paper is
based on work carried out while the first author was an intern on
the Human Interactions in Programming team at Microsoft
Research.

11. REFERENCES
[1] de Souza, C. R., Redmiles, D., Cheng, L., Millen, D., and

Patterson, J. 2004. Sometimes you need to see through walls:
a field study of application programming interfaces. In
Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work (Chicago, Illinois, USA,
November 06 - 10, 2004), 63-71.

[2] Hertzum, M. & Pejtersen, A. M. The information-seeking
practices of engineers: searching for documents as well as for
people. Information Processing and Management, 36, 5,
761-778, 2000.

[3] Kamiya, T., Kusumoto, S., and Inoue, K. CCFinder: a
multilinguistic token-based code clone detection system for
large scale source code. TSE, 28, 7 (Jul. 2002), 654-670.

[4] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Videira Lopes, C., Loingtier, J.-M., and Irwin, J. Aspect
Oriented Programming. In Proceedings of ECOOP, 1997.

[5] Kim, M., Bergman, L, Lau, T., and Notkin, D. An
Ethnographic Stud of Copy and Paste Programming
Practices in OOPL. International Symposium on Empirical
Software Engineering, 2004.

[6] Kim, M., Sazawal, V., Notkin, D., and Murphy, G.C. An
Empirical Study of Code Clone Genealogies. FSE 2005.

[7] Moran, T. P. and Carroll, J. M., Eds. Design rationale:
concepts, techniques, and use. Lawrence Erlbaum
Associates, Inc, 1996.

[8] Parnas, D.L. On ICSE’s “Most Influential Papers”. In ACM
Software Engineering Notes, 20, 3, July 1995, 29-32.

[9] Perry, D., Staudenmayer, N., and Votta, L. G. People,
Organizations, and Process Improvement. IEEE Software,
11, 4, 36-45, 1994.

[10] Rosson, M.B., and Carroll, J.M. The Reuse of Uses in
Smalltalk Programming. ACM Transactions on Human-
Computer Interaction, 3, 3, 219-253, 1996.

[11] Schwaber, K, & Beedle, M. Agile Software Development
with Scrum. Prentice Hall, 2001.

[12] Singer, J., Lethbridge, T., Vinson, N., and Anquetil, N. An
Examination of Software Engineering Work Practices. In
Proceedings of CASCON ’97, 209-223, 1997.

[13] Weiser, M. 1981. Program slicing. In Proceedings of the 5th
International Conference on Software Engineering (San
Diego, California, United States, March 09 - 12, 1981), 439-
449.

[14] Wright, G. and Ayton, P. Eliciting and Modeling Expert
Knowledge In Decision Support Systems, Vol. 3, 13-26,
1987.

501

