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Abstract
Although programming is one of the most creative things
that one can do with a computer, there is currently no way
to make programs on an increasingly popular class of tablet
computers. Tablets appear unable to support capable (profi-
cient) programming experiences because of their small form
factor and touch-centric input method. This paper demon-
strates how co-design of a programming language, YinYang,
and its environment can overcome these challenges to enable
do-it-yourself game creation on tablets. YinYang’s program-
ming model is based on tile and behavior constructs that
simplify program structure for effective display and input
on tablets, and also supports the definition and safe reuse of
new abstractions to be competitive with capable program-
ming languages. This paper details YinYang’s design and
evaluates our initial experience through a prototype that runs
on current tablet hardware.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Human Factors, Languages

1. Introduction
Kay’s Dynabook [9, 10] envisioned how portable tablet-
sized devices would revolutionize computer usage through
accessible do-it-yourself (DIY) programming. Tablets are
now becoming mainstream but most existing programming
languages still rely on touch-unfriendly keyboard input to
manipulate text-based abstractions. Although visual pro-
gramming languages support metaphors that are potentially
touch-friendly, they suffer from poor input efficiency and a
scaling up problem [2] that inhibits productivity. A DIY
tablet programming language should be both usable on
tablets as well as capable of productive programming.
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Figure 1. YinYang in use on a tablet.

Do we really need capable programming experiences
on tablet devices? Given their portability and accessibil-
ity, tablets are increasingly used to create content, not just
passively consume it. Their smaller screen and limited in-
put capabilities require focused experiences with minimal
features, which incidentally makes the experiences more us-
able; programming can benefit from a similar focus. On the
other hand, computers with keyboards are ubiquitous today
and programming without them seems unnecessary. Tomor-
row, however, keyboards could become niche devices that
are largely replaced by touch-based devices, adversely turn-
ing programming into a more niche activity [3]. Program-
ming should become more accessible, not less, on whatever
devices consumers use in the future.

Our quest to design a tablet programming experience be-
gan by studying Kodu [12], which allows children to create
games for consoles on consoles. Kodu’s core syntactic units
are square tiles that are selected through context menus using
the game pad. Tiles are then arranged into concurrent pri-
oritized behaviors to define autonomous robot-like objects
as inspired by Brooks’ work on behavior-based robotics [1].
The tile and robot metaphors allow children to construct fun
games without writing very much code. On the other hand,
Kodu focuses on education where usability trumps capabil-
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ity, and so programmers are limited to using a fixed grammar
of built-in tiles [23].

Our language, YinYang, heavily borrows from Kodu’s
design being based on tiles that are structured into behav-
iors. However, YinYang focuses on the DIY programming
of games where some usability can be sacrificed to support
the abstract thinking needed for more productive program-
ming. To this end, YinYang is open to the definition of new
tiles with an object-oriented type system that ensures tiles
are used in safe and meaningful ways. The type system also
provides the “context” needed to generate and organize con-
cise context menus used to edit, which cannot be organize by
hand because YinYang is open to new tiles. Finally, an ob-
ject’s overall behavior is formed by composing multiple tiles
together, where behaviors from different tiles are prioritized
in a way that programmers can locally reason about.

Figure 1 shows a photo of YinYang being used on a tablet.
Touch input is supported in part through language design:
YinYang’s syntax is very simple and focuses mostly on how
tiles are arranged; YinYang code is fairly flat allowing for
efficient display; and the programming model overall leads
to less code to input. Additionally, the programming inter-
face improves efficiency through menu organization, allow-
ing programmers to make not-yet correct edits, and by al-
lowing programmers to look beyond the given context when
searching for tiles to use. Through very informal tests on
our current prototype, inputting a program in YinYang with
touch is still about 66% slower than using a keyboard to type
the same program, which indicates that we are not too far
away from our goal.

The rest of this paper proceeds as follows. Section 2
describes the design of the YinYang language while Sec-
tion 3 describes how this language is paired with a touch-
friendly tablet-based editing environment. Section 4 dis-
cusses YinYang’s semantics as well as how it is imple-
mented. We discuss our initial experience with a prototype
in Section 5 and concurrently suggest directions for future
work given lessons learned. Section 6 presents related work
while Section 7 concludes.

2. Language Design
YinYang is a graphical language whose design supports
tablet-based program construction with two core features.
First, control flow is based on Brooks’ subsumption archi-
tecture [1] where overall object behavior emerges from mul-
tiple arbitrated simple behaviors and overall program behav-
ior emerges from multiple interacting autonomous objects.
Second, one tile construct can abstract both verbal “doing”
and nounal “being” logic, and is a type when checking that
abstractions are used meaningfully. These features simplify
YinYang’s syntax, reduce how much code is written, and
provide context that allows editing to be more usable and
efficient. The rest of this section informally describes how
to understand YinYang code; we discuss the code editing

Figure 2. The definition of a Tower tile; the screenshot is
scaled down 60% of its actual size.

experience in Section 3 and semantics and implementation
in Section 4.

Behavior-based Programming
As shown in Figure 2, YinYang’s interface is dominated by
square and circular boxes that contain text or simple sym-
bols. These boxes are tiles that are YinYang’s core unit of
syntax and semantics. YinYang is object-oriented: a tile is
invoked by an object to cause an object to do or be some-
thing. The YinYang code in Figure 2 defines a Tower tile
that causes an invoking object to become a tower; the syntax
used in this code is shown in Figure 3. A tile definition be-
gins with a declaration that lists the tile’s name and tiles that
must be in the type of an object (“ is ”) before the object can
invoke the tile; e.g., a Tower tile can only be invoked by an
object whose type contains the Actor tile. The tile also spec-
ifies what kind of objects must contain (“ in ”) the invoking
object; e.g., an object must be contained in a My Game object
to invoke the Tower tile. Following a tile’s declaration is its
body of YinYang code that executes when the tile is invoked.
This subsection describes how code in a tile’s body is under-
stood while we defer a discussion of abstraction and typing,
which is related to the tile’s declaration, to the second part
of this section.

As described in Figure 3, an expression in YinYang re-
sembles a simple method call whose head is a direct refer-
ence to a tile, meaning tile references are not encoded by
name. An expression can have arguments: if an expression
has one argument, the argument is graphically arranged flush
to the expression’s right; if the expression has more than one
arguments, the arguments are embedded in the expression to
the right of it’s head. A top-level expression forms an act that
represents an individual command and/or query, where mul-
tiple acts are then arranged horizontally on a circled num-
bered line to form a behavior. Consider behavior 3 of the
Tower tile defined in Figure 2:
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Tile ::= Declaration new-line Body

Body ::= Behavior +

Behavior ::= # Act + new-line

Act ::= Expression

Expression ::= head-tile-ref Expression

Declaration ::= tile-name Is In Args

Args ::= argument-name type-tile-ref

Is ::= is extended-tile-ref

In ::= in included-tile-ref

Figure 3. YinYang’s abstract syntax for the code in Figures
2 and 4; terminals are uncapitalized; literals are italicized;
over-bars indicate zero-to-many repetition.

This behavior has only one act whose expression is headed
by the Rotate tile. An object executes a behavior by execut-
ing its acts where executing an act involves invoking the tile
that heads the act; e.g., an object executes the act in this ex-
ample by invoking the Rotate tile, causing it to rotate left.
Expressions that are not acts are evaluated to yield existing
or new objects; e.g., the argument of the Rotate act is a Left

expression whose evaluation yields an object that is passed
to Rotate’s implementation. An object executes the behav-
iors of a tile when it invokes the tile; inside the tile’s defini-
tion this object is referred to as the implicit executing object,
which is comparable to the object that is bound to this in a
Java method.

A behavior executes continuously and in parallel with re-
spect to the executing object’s other behaviors. In Figure 2,
an object invoking the Tower tile is, in parallel, continuously
wearing a cannon tower costume (behavior 1), trying to see
monsters (behavior 2), and rotating left (behavior 3). The
last behavior is animated: rotation causes the executing ob-
ject’s orientation to be updated every display frame accord-
ing to the object’s rotational velocity and the current frame
rate. Within a behavior, acts to the right execute only on the
successful execution of acts to the left, where successful ex-
ecution is determined by the heading tile’s implementation,
usually according to a sensor reading or goal achievement.
Consider behavior 2 in Figure 2:

The first act in this behavior computes whether the executing
object can see some monster while the second act instructs
the object to rotate toward the monster that was seen. If the
object cannot see a monster, then execution of the See act
fails and the Rotate act is not executed. When the object
sees a monster, the See act’s execution succeeds, the Seen

tile is bound to the monster that was seen, and the Rotate

act begins to execute, which in turn causes the object to be-

gin orienting itself toward that monster. Once the object is
oriented toward the monster, the Rotate act’s execution suc-
ceeds and the Fire act begins executing, causing the object
to fire bullets at the monster. If behavior 2 existed in Tower’s
definition without behavior 3 in Figure 2, it could conceptu-
ally be translated into the following pseudo code:

while (true)

if (See(Monster, &Seen))

if (Rotate(Seen)) Fire(Bullet);

A behavior is always re-executed from its first act since an
act whose execution is succeeding could stop succeeding
at any moment while it could still have useful work to do
even while it is succeeding. In our example, execution of the
See act will stop succeeding of the seen monster disappears
while the Rotate act will attempt to maintain the object’s
alignment with a moving monster even after it is initially
aligned with the monster. Note that tiles that do not specify
success conditions in their definitions, such as the Tower tile
in Figure 2, succeed automatically when they are executed
as acts. In this paper, only tiles that are implemented in C#
such as Rotate or See have non-trivial success conditions;
Section 4 describes how success conditions can be defined
in YinYang code.

Conflicts that arise between behaviors are resolved with a
prioritization scheme. Consider behaviors 2 and 3 in Tower’s
definition from Figure 2:

When the See act in behavior 2 succeeds in its execution,
both Rotate acts in behaviors 2 and 3 are able to execute.
However, the Rotate tile is defined to execute exclusively
because an object cannot rotate toward more than one orien-
tation at the same time. In YinYang, if two acts in two be-
haviors can execute but execute the same exclusive tile, then
the act in the higher-priority (lower numbered) behavior ex-
ecutes while the act in the lower-priority (higher numbered)
behavior immediately fails in its execution. In our example,
behavior 2 has a higher priority than behavior 3, so when the
executing object sees a monster, it stops rotating left and in-
stead starts rotating toward the seen monster. The combined
behavior instructs the object to scan for monsters in its lim-
ited field of vision by continuously rotating left, and when
a monster is seen, to rotate toward that monster so that the
object can fire at it. The combined behavior can be realized
with an else condition in the following pseudo code trans-
lation:

while (true)

if (See(Monster, &Seen)) {
if (Rotate(Seen)) Fire(Bullet);

} else Rotate(Left);
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Section 4 will describe how behavior execution is more effi-
cient than this pseudo code translation implies; behavior re-
execution occurs only when the re-execution could change
the state of the program.

Because of its behavior-based programming model, Yin-
Yang’s syntax is simpler and its code is flatter (i.e., less
nested) as it avoids the diverse and nested control flow con-
structs such as if/else conditionals, event handlers, switches,
loops, and so on. A simpler syntax makes it easier to in-
put programs on a tablet while flatter code allows for more
effective use of a smaller screen. Finally by mandating con-
tinuous execution, YinYang can more concisely express the
reactive computations that are common in the game and user
interface programs. Reducing the code needed to express a
program is desirable in any context but crucial on an input-
constrained tablet. On the other hand, YinYang is overall less
flexible in the kinds of programs that it can express effec-
tively; it is very limited in its support for the imperative com-
putations or forming complex arithmetic expressions; Sec-
tion 5 discusses the impact of these trade offs.

Abstraction and Typing
Figure 4 demonstrates how object behavior can be encoded
in multiple tile definitions for better modularity and reuse.
“Attack” logic previously encoded directly in the Tower tile
of Figure 1 is abstracted as the Attack tile in Figure 4 and
used in a new definition of the Tower tile (also Figure 4). To
complement the ability to define new tiles, YinYang stati-
cally enforces that tiles are only invoked in meaningful con-
texts according to types that are formed from tiles. Using the
is term, a tile can extend other tiles, which must be success-
fully executing on an object before the tile can be invoked on
that object. The static type of an object then consists of the
tiles that must be successfully executing on the object in or-
der to reach some point during execution.

If a tile extends another tile, then any object executing the
tile’s body must also be successfully executing the extended
tile. For example, the See, Wear, and Rotate tiles extends
the Actor tile, meaning that invoking objects must be a
graphical and animated “stage actor.” Because the Tower tile
in Figure 4 also requires the Actor tile, the type of an object
executing the Tower tile’s body must contain the Actor tile;
as a result, acts can be formed in Tower’s definition from
the See, Wear, and Rotate tiles. An object also includes
the type of the tile whose body it is executing because the
body is not executed until the tile’s success condition is
true. As a result, the Attack tile can be used to form an
act inside the Tower tile. Tile arguments are also constrained
with tile requirements; e.g., the Attack tile is declared with
a Target argument that must be bound to an object whose
type contains the Actor tile, which is satisfied by the Seen

tile in Tower’s use of the Attack tile.
The typing properties of tiles allow them to effectively

encapsulate class-like nounal “to be” logic in addition to
method-like verbal “to do” logic. For example, an object that

Figure 4. Definitions of the Attack, Tower, and Gun Tower

tiles.

invokes the Tower tile in Figure 4 not only executes tower be-
havior, its type is also enhanced so that it can invoke tower-
extending abstractions like the Attack tile. Tiles further re-
semble classes in the way that tile extension acts like class
inheritance in that a tile can override behavior that is de-
fined in the tiles it extends. Programmers can locally reason
about overriding with tile extension in a way that similar to
class inheritance: given a tile A that extends tile B, an act
of a behavior defined in A will always execute with a higher
priority than an act of a behavior defined in tile B. For ex-
ample, because the Gun Tower tile in Figure 4 extends the
Tower tile, the act in behavior 1 of Gun Tower will always
execute with a higher priority than the act in behavior 1 of
Tower. As a result, a gun tower object will wear a gun tower
costume rather than the cannon tower costume that would
otherwise be worn by a tower object. Although overriding
can locally be understood by the programmer in terms of tile
extension, it is realized globally during execution through a
somewhat surprising right-to-left prioritization scheme that
will be detailed in Section 3.
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An new object is created with a root behavior that defines
the top-level acts that the new object will execute. Consider
the following act that creates a gun tower object:

Make is a built-in tile (keyword) that creates a new object
given a root behavior that the new object will execute. In
this example, the Actor and Tower acts of the root behavior
must execute before the Gun Tower act since the Gun Tower

tile, as declared in Figure 4, extends the Actor and Tower

tiles. As syntactic sugar, acts that invoke extended tiles can
be omitted in an object’s root behavior given their verbosity;
the following act is then equivalent to the former:

Actor and Tower acts are automatically added to this root
behavior when the Make act is de-sugared.

The ability to define abstractions makes YinYang a real
programming language: programmers can modularize code
to reduce repetition, reuse code from other parties, and form
libraries for others to reuse. On the other hand, the unifica-
tion of class-like and method-like behavior in tiles presents
interesting usability problems: sometimes a method-like tile
should be suggested before a class-like tile, and vice versa.
Section 4 addresses how tiles are enhanced to deal with this
and similar usability issues.

This section concludes with a complete simple game that
is formed from the tiles in Figure 4 combined with additional
tiles defined in Figure 5. In this game, the player starts out
with $100 in a bank and can build a gun tower by tapping
the game’s stage (display surface) and paying $100. The
game has a monster generator that creates a new monster
every 2 seconds that wanders around while towers fire at
it. When a monster is hit by a bullet, the player earns $10
while the monster stops moving, performs a splat animation,
and then disappears. The player can build additional gun
towers with the money they earn from killing monsters. The
code in Figure 5 uses several features that are not core to
YinYang’s tablet-supporting design but are still necessary to
define complete programs:

– The Game tile represents the entry point of a game; be-
cause the My Game tile extends the Game tile, it can be ex-
ecuted as a program.

– A tile can define parts as embedded objects that are ex-
ported from an executing object; e.g., the My Game tile de-
clares an exported Bank part to keep track of how much
money the user has earned and spent.

– A tile definition can access the parts of the tiles it includes
( in ), where the executing object must be contained by an
object that is executing the included tile. The in operator
replaces the need for definition nesting as used in most
other languages. For example, the Monster tile includes

the My Game tile to access its bank part, while the Monster

Generator tile includes the My Game tile because it creates
monster objects.

– The built-in Spawn tile creates a new object that will exist
even after the successful act executions that trigger the
Spawn act cease being successful. For example in the My

Game tile, a new gun tower object is created whenever the
user taps the game’s canvas and $100 can be payed from
the bank part. The new gun tower object remains after the
user lifts their finger and the tap ends.

– The built-in Start tile executes a behavior on the execut-
ing object that will continue executing even after the suc-
cessful act executions that trigger the Start act cease be-
ing successful. For example in the Monster tile, a monster
object will start invoking the Monster Dying tile when it
has been hit by a bullet. The object continues to invoke
this tile after the monster is no longer being hit by the
bullet.

– Some tiles can be invoked on an explicitly referenced ob-
ject that is not the object that is executing the enclosing
tile definition. For example, the Pay and Earn tiles, which
command bank objects, can be invoked on the game’s
Bank #1 part from outside of this part’s root behavior.
Tiles that are invoked through an object reference must
be recursively non-exclusive since they cannot be mean-
ingfully prioritized (Section 4).

3. Editing with Touch
The design of an effective tablet-based programming inter-
face must mitigate the tablet’s poor support for text input
and small display size with its strength in support for direct
touch. With this in mind, YinYang is a graphical language
whose code is rendered in a way that supports pervasive tap-
ping as well as a dense yet quickly scannable layout. Editing
is made more efficient by leveraging YinYang’s type sys-
tem to generate concise context menus that help program-
mers find and select options with a speed that is compet-
itive with typing them out. YinYang’s editor also aims to
be less constraining by allowing programmers to make in-
valid edits if the program can be fixed to accommodate the
edit. Finally, YinYang fully leverages its graphical nature by
supporting custom graphical code editing when appropriate.
The rest of this section details how these features are realized
in YinYang’s programming interface.

The design of YinYang’s interface is informed by two
human computer interaction principles. First, Fitts’ Law [5]
predicts that the time needed to select an object depends on
distance to the target and its size. Second, Hick’s Law [7]
describes the time it takes for a person to make a choice
based on how many choices are visible. Kent applies these
principles in an analysis of menu selection [17], which also
influences YinYang’s design.
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Figure 5. Definitions of the My Game, Monster, Dying Monster, Monster Generator, and Bullet tiles that together with the
tiles in Figure 4 define a simple complete game.

Figure 6. A YinYang behavior presenter; Move labels an em-
bedded “act” presenter; Forward and Very Fast label two ar-
gument presenters embedded in the act presenter; the screen-
shot is unscaled.

Presenters
Figure 6 demonstrates how YinYang code is rendered. A tile
or keyword expression in YinYang is rendered with a presen-
ter that starts with a finger-sized (∼ 1.5 cm2) unobstructed
tap space for easy tapping, where the larger target can be
more quickly touched as informed by Fitts’ Law [5]. The
ability to directly tap any presenter eliminates the cognitive
distance between input and output; no cursor is required as
programmers simply tap on the presenter of an expression
they want to manipulate.

A presenter’s width increases beyond its tap space to con-
tain nested argument expressions. Likewise, a presenter’s
height increases a few pixels per level of nesting that occurs
inside the presenter so that expression tree structure is visu-

ally apparent. As a visual optimization, flush right-adjacency
is used to display an expression’s only argument; otherwise
argument expressions are spaced and embedded in the pre-
senter. Because YinYang code is typically not very nested,
lines of presenters (e.g., displayed behaviors) can often be
laid out vertically without wasting very much space. A text
label is displayed in a presenter’s tap space with an extra
large font size (∼ 14 points) so that programmers can scan
more quickly through dense arrangements of presenters. By
convention, tiles are named with up to three short words to
allow their names to fit in a presenter’s tap space.

Additional presenters are placed in the editor as place-
holders for editing tasks that are not directly anchored to ex-
isting code. The insertion ( + ) presenter at the end of the
behavior in Figure 6 is used to append a new act to the be-
havior, while another insertion presenter is used to append a
new behavior to the end of a tile body. Each behavior is also
preceded by a numbered placeholder ( 1 in Figure 6) that
identifies its priority and can be tapped to delete or move the
behavior.

Context Menus
To use space effectively and utilize the rich context pro-
vided by YinYang’s type system, editing in YinYang is based
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Figure 7. The root context menu (unscaled) for adding a new act in a Monster tile that extends the Actor tile. When the
menu is active, programming content is grayed out. The menu has two parts: a top-positioned bar of menu modes, actions, and
menu-wide options, and a menu of options that appears close to where the user tapped. The top level of Core panel of the menu
contains the second-level Top and Morph panels; the second-level Morph panel contains the third-level Tapped and Stage panels.

on context menus (aka popup menus) that open whenever
programmers tap presenters. A context menu presents tiles
for an edit that are filtered according to the context at the
tapped presenter’s expression (or placeholder). The context
of a menu is formed from what tile is being defined, what
tiles are extended and included by the defined tile, and, if in
a behavior, what acts are to the left of the tapped expression.
For example, the context menu for an insertion ( + ) presenter
will contain tiles that can be used to form a new act at the in-
sertion’s location according to what tiles are known to be in
the executing object’s type at that location. Figure 7 shows
such a context menu for the definition of the Monster tile in
Figure 5 that extends the Actor tile, but cannot include the
Attack tile since Monster does not extend the Tower tile. As
another example, consider the following behavior:

Tapping on the Rotate presenter will activate a menu that
includes rotation directions:

The Seen tile does not appear in this menu because there is
no See act successfully executing before the Rotate act, as
is the case here:

Tapping on the Rotate presenter will now activate a menu
that contains the Seen tile because the See tile is now in the
context of the edit:
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Figure 8. A context menu that appears after a Rotate tile
has been selected to form an act; argument binding tasks are
expanded as panels in this context menu.

How context is formed for an edit is described in Section 4.
As informed by Hick’s Law [7], if the tiles of a context

menu are ordered alphabetically then finding a desired tile
can be at best logarithmic. However, programmers might not
know the name of a tile, the name might not be distinct or
informative enough, and there still might be too many tiles
to fit into a single menu. As a result, YinYang organize tiles
into a semantic hierarchy based on the tiles they extend and
include. Context menus can then present tiles hierarchically
with sub-menus that avoid overwhelming programmers with
too many unorganized tiles in one flat menu. For example, if
the Monster tile extends the Actor tile, it appears under the
Actor sub-menu in a context menu, which opens above the
context menu when activated.

Unfortunately, each level of hierarchy in a menu has a
significant cost [17]: an extra tap; an additional scan of the
new menu’s option; and the need to backtrack if a mistake
is made. YinYang displays multiple levels of menu hierar-
chies using tree maps [22] that visualize hierarchical infor-
mation using nested rectangles. Tile hierarchy is expanded
to fill a six-by-six panel (36 options) where expanded hier-
archy boundaries are preserved by panel nesting as shown in
Figure 7. To avoid confusing programmers with either too
much expanded hierarchy or too many options in one level,
only two additional levels of hierarchy beyond the one root
level are expanded, while each expanded panel is limited to
five unexpanded options. The left-top title of a nested panel
can be tapped to activate a sub-menu to reveal all of its op-
tions.

To further streamline editing and improve input effi-
ciency, common editing tasks can appear in succession so
programmers can more rapidly perform sequences of edits.
For example, when the programmer creates a new Rotate

act, the context menu does not close. Rather, additional edit-
ing tasks are shown on the menu to bind Rotate’s argument
as shown in Figure 8. The rotate tile has two arguments,
a mandatory Target argument and an optional Speed argu-
ment, that are expanded in two panels on the context menu.
The menu will only dismiss itself when no common editing
tasks remain; the programmer can also dismiss the menu
manually and reactivate later by tapping the edit site again.

Freedom and Fuzziness
The primary advantage of a graphically-edited language over
a textually-edited language is the ability to guide program-
mers in making syntactically and type correct edits via a
graphical interface. Unfortunately, programmers often dis-
like graphical languages because they constrain the order in
which they can make edits, which disrupts their focus [11,
15]. For example, a symbol must typically be defined be-
fore use even if the programmer would rather use the symbol
first and define it later to preserve their focus on the current
code. In contrast, free-form text editing allow programmers
to write incorrect code that they can fix later at their conve-
nience.

YinYang uses two techniques to give programmers more
freedom during editing. First, context menus provide the op-
tion of defining a new tile to satisfy an edit. The programmer
does not specify the new tile’s name and can later, at their
convenience, navigate to the new tile by tapping its use to fill
in its name and body, which is already primed by the context
of the edit. In Figure 7, the programmer can choose to define
a new tile rather than select an existing tile to form an act;
specify a binding for the new act by creating and binding
a new argument; and then later name the tile “Attack” and
add attack logic with its extended Tower tile already filled in
along with its Target argument.

Second, each context menu can become fuzzy on demand
so that it presents tiles for selection even if they are not
exactly appropriate for the edit’s context. Instead, selecting
such a tile requires making multiple edits to the program that
might not be local to the edited code. As an example, con-
sider writing the code for the Monster tile from Figure 5 in
Section 2, starting with this definition:

The programmer opens the Wear act’s context menu to spec-
ify its costume:
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The programmer wants the monster to look like a bug, but
does not see the appropriate costume in the menu. Bug cos-
tumes require, with an include requirement, that wearing ac-
tors also extend the Bug tile so that special animation be-
havior (Splat) can be accessed in an actor that is wearing
the costume. However, since the Monster tile has not yet
extended the Bug tile, bug costumes are not visible in this
context menu. By selecting the Fuzzy option, additional cos-
tumes become visible in the menu:

By selecting a bug costume, the definition of Monster is au-
tomatically updated to extend Bug:

Because the Monster tile now extends the Bug tile, bug-
specific tiles like Splat will appear in Monster act menus
without needing to select the fuzzy option.

YinYang’s type system enables fuzzy edits with its sim-
plicity and support for expressing semantic tile relationships.
Enhancing context automatically in YinYang is straightfor-
ward: the additional context requirements are propagated
up as new extend and include clauses. Care must be taken
to rank fuzzy choices appropriately according to the exist-
ing context. Only basic heuristics are currently applied to
these rankings; Section 5 will discuss how the organization
of these menus could be improved.

Custom Editing Support
Beyond using context menus uniformly in the editor, Yin-
Yang also supports the versatility of a visual language to
accommodate customized editing experiences through two

facilities. First, a tile can be defined with a configuration
menu that is activated when the tile is chosen in a con-
text menu. For example, when the Custom Amount tile is se-
lected, a virtual keypad-like widget pops up as a configura-
tion menu where the programmer can conveniently input a
dollar amount. Other configuration menus can include slid-
ers, radial widgets, and any other kind of user interface wid-
get. After a tile has been used in an act, the Update option in
the context menu of the use allows it to be edited through its
custom configuration menu.

Second, a tile can define custom behavior for use in the
designer of a program to enable editing by direct manip-
ulation [21]. For example, extending the Game tile creates
a phone-like canvas in the editor of the tile definition that
supports the direct addition and position of actors. In the My

Game tile of Figure 5, the programmer can tap on the canvas
of the game in the designer to add and position a Bank actor
object.

4. Technical Overview
YinYang involves interesting technical details in two areas.
First, YinYang’s type system ensures tiles are used in proper
contexts, which is essential in supporting the reliable defini-
tion of new tiles. Whereas type checking ensures that an ex-
pression is correct, YinYang’s type system can also provide
a list of all tiles, possibly unbounded given the context of a
menu used for editing. Second, YinYang’s execution engine
executes a program continuously with an emphasis on cor-
rect prioritization so programmers can locally reason about
how programs will behave. Behavior execution eventually
reaches native tiles, which are written in C#. This section
describes YinYang’s type system and execution engine.

Types
As discussed in Section 2, an object is typed by the tiles that
it is currently executing successfully. Statically, a tile E is
known to be successfully executing on the executing object
at position P in T if:

– Position P is an act in a behavior, and E forms an act that
occurs earlier in that behavior.

– E is extended directly or indirectly by tile T.

We refer to the tiles that an object is statically known to be
executing at position P by these criteria as the set E. Addi-
tionally, we refer to the set of tiles that tile T includes ( in ) as
I, which specifies what tiles that the executing object’s con-
taining objects must successfully be executing. Given a tile S

that extends a set of tiles F and includes a set of tiles J, S can
be used to form an act at P if F ⊆ T ∪ E and J ⊆ I; i.e., the
extended tiles of S are known to be executing successfully
on the executing object while S’s included tiles are known to
be executing in containing objects.

Creating a new object is a bit different. Given that the
new object will be contained by the executing object, S can
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be used in the root behavior of an object-creating expression
if the tiles it includes (J) are either executing in the executing
object or a containing object (J ⊆ T ∪ E ∪ I). The tiles
extended by S (F ) exist as acts in the root behavior before
tile S is used; however, as mentioned in Section 2, these acts
can be omitted for brevity, in which case they will be inserted
automatically by the runtime.

An expression used as an argument whose type is tile R

must evaluate to an object that is successfully executing tile
R. An argument expression is one of the following:

– An object-creating expression in the form just men-
tioned; an explicit Make tile does not need to be specified.
For example, consider:

The Beetle Costume expression evaluates to a new ob-
ject with Beetle Costume in its root behavior. The new
object then acts as an argument to the Wear act’s Costume
argument, which is valid as the Beetle Costume tile ex-
tends the Costume tile. The Beetle Costume tile itself
includes Bug tile, which is satisfied by the Monster tile
because it extends the Bug tile;

– An argument of the current tile definition; or

– An export of either a tile in E∪ I, or recursively an object
expression, an argument, or another export. For example,
consider:

The Seen tile can be used as an argument in the Rotate

act because: Seen is exported from the See tile; the exe-
cuting object is successfully executing the See tile; and
the Seen tile extends the Actor tile that is supported as a
target argument for the Rotate tile.

Context menus are formed by organizing all known tiles
into a graph and then filtering that graph based on the con-
text of the edit site. Each tile is placed into a graph based
on the tiles it extends and includes given that such semantic
relationships will help programmers locate the tile in a con-
text menu. If tile T extends or includes tile A, then it must be
a child of A. This graph is directed and acyclic (DAG), but
not a tree, meaning that a tile can have multiple parents: if T
extends or includes both unrelated tiles A and B, then it will
appear as children to both A and B. Finally, all types included
or extended by a tile must be in all paths to that tile, so addi-
tional nodes are added to T’s graph as follows:

The extra nodes are needed to encode all semantic relation-
ships in the graph. The graph also has as nodes all possible
exports as well as qualified tile accesses, where these parts
of the graph are built lazily since they are potentially un-
bounded.

The graph is traversed efficiently by skipping traversals
on nodes that are unrelated to the context of the edit site.
For example, in generating a menu for a Costume argu-
ment, nodes in the graph that are not on the path to or from
Costume, which lead to non-costumes, can be skipped safely,
while nodes that are not supported by context, such as an in-
cluded Bug tile when Bug is not in the current context, can
also be skipped. When the fuzzy menu option is activated,
context requirements are relaxed if context can be repaired
to support the node; e.g., by adding a Bug tile to the list of
tiles extended by a Monster tile that wants to create a Beetle

Costume. Since the graph is unbounded, traversal is done
lazily where the result is a new graph of edits that will be
displayed directly in the context menu.

Although technically type safe, a well-formed YinYang
program can contain constructions that are not very mean-
ingful and should either be filtered out of or deemphasized
in context menus. These problematic constructions are:

– The unification of method and class-like behavior in tiles
is problematic for menu construction. For example, con-
sider a Tower tile and a class-like Gun Tower tile that ex-
tends it: although technically safe, Gun Tower should not
appear in a context menu that is used to form an act in the
Tower tile’s body. Likewise, a method-like Attack tile,
which also extends Tower, should not appear in the con-
text menu used to create a new object, although again this
is technically safe.

– Many tiles successfully execute only periodically at dis-
crete points in time. Consider the Hit tile, which succeeds
when the executing actor object collides with another ac-
tor. The “hit” event only occurs for a small infinitesimal
amount of time, and therefore it does not make sense to
do an activity whose effect only occurs over finite time,
like Attack or Move.

– Often, argument expressions should only be bound to
stateless objects (e.g., costumes) or objects that already
exist. For example, a context menu should not propose
creating a new Actor object to satisfy the target argument
of a Rotate or Attack tile.

These constructions are avoided by tagging tiles to indicate
their intent, which are then used to further filter context
menus. For example, a Frame tag indicates that the tile is
used to create a stateful object and should not be used to
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create objects to satisfy an argument tagged Value; or the
Event tag indicates that the tile represents an event and
should not be followed by a tile with the Activity tag, which
indicates that the tile performs work over time. Both Frame

and Value tags indicate class-like tiles while the Event and
Activity tags indicate method-like tiles. Tags only assist
with menu organization and filtering; they do not have any
effect on how code is executed.

Execution
When considering the execution of YinYang code, program-
mers primarily need to be concerned with is how priorities
are assigned across tile boundaries. As mentioned in the sec-
ond part of Section 2, programmers can expect that behav-
iors in a tile will execute with a higher priority than behav-
iors in any tile that it extends. However when an object is
created, these extended tiles must appear as acts somewhere
to the left of the extending tile’s act in the object’s root be-
havior. As a result, it appears counter-intuitive that behaviors
in a tile would execute with a higher priority than behaviors
in the tiles it extends. However, behavior and tile execution
are actually divided into two phases: the first phase executes
each tile’s core behavior left-to-right according to the con-
taining behavior’s act order; while the second phase executes
the tile bodies (numbered behaviors) right-to-left for the suc-
cessfully executing acts in the behavior. This execution is
sketched out in the pseudo code of Figure 9.

Execution of a tile’s core behavior initializes internal
state, binds exports, and determines act execution success.
A native tile, which is implemented with C# code, consists
only of a core behavior while a non-native tile can option-
ally have a core behavior in addition to its body of num-
bered behaviors. No non-native tiles in this paper have ex-
plicit core behaviors, and so succeed in their execution by
default. As shown in Figure 9, left-right execution of an act
acquires a lock on the act’s tile (if exclusive) and executes
its core behavior. After left-to-right execution finishes, ex-
ecution proceeds back right-to-left to execute the bodies of
tiles whose acts are executing successfully. Body execution
(ExecBody) proceeds from lowered numbered to higher num-
bered behaviors as described in Section 2. Priority is low-
ered (Weaken) after each iteration, while a new element is
appended to the priority when executing a behavior or body.

The prioritization of an object created from the Gun

Tower tile in Figure 4 is shown in Figure 10. Because of
right-to-left prioritization, the priority of the Wear act in Gun

Tower’s body is 6.1.1, which is stronger than the 7.1.1 pri-
ority of the Wear act in Tower’s body (lower numbers in-
dicate stronger priorities)s. Additionally, tile bodies inherit
the right-left priority of their acts; e.g., the Rotate act in the
Attack tile’s body has a priority of 7.2.3.1, which is stronger
than the 7.3.1 priority of the Rotate act in the Tower tile’s
body. This matches the programmer’s intuition that the exe-
cution of a tile body should inherit the priority of the corre-
sponding tile invocation.

bool Exec(Object On, Behavior B, Priority P) {
| Append a new part to a priority;
| e.g., 7.1.1 = Append(7.1, 1)
P = Append(P, 1);

| Left-to-right phase
for (i = 0; i < B.Acts.Length; i += 1) {

| Fail if tile is exclusive and a higher
| priority act has already locked the tile.
if (B.Act[i].Tile.IsExclusive)

if (!Acquire(On, B.Act[i].Tile, P)) break;

| Execute core behavior; sets up state,
| binds exports, and determines act success.
if (!Exec(On, B.Acts[i].Tile.CoreBehavior, P))

break;

| Weaken the priority by one; e.g.,
| 7.1.2 = Weaken(7.1.1),
| where 7.1.1 is a higher priority than 7.1.2
P = Weaken(P);

}
| Begin right-to-left phase.
for (j = i - 1; j >= 0; j -= 1) {

| Execute tile bodies of numbered behaviors;
| this cannot fail.
ExecBody(On, B.Acts[j].Tile.Body, P);

P = Weaken(P);

}
| Behavior succeeds if all acts succeed;
| only relevant for root and core behaviors.
return i == B.Acts.Length;

}
void ExecBody(Object On, Body Body Priority P) {

P = Append(P, 1);

| Begin top-down (or lower-higher) phase.
for (i = 0; i < Body.Behaviors.Length; i += 1) {

| Call above Exec, ignore the result since
| this is not a core or root behavior.
Exec(On, Body.Behaviors[i], P);

P = Weaken(P);

}
}

Figure 9. Pseudo code for executing a behavior; argument
evaluation is not shown.

Because behavior execution in YinYang is continuous,
behaviors must be re-executed when their execution can
change the state of the program. This is accomplished by
dynamically tracking the dependencies of a behavior and
conservatively re-executing the behavior whenever these de-
pendencies change. For example, if the behavior acquires a
lock for a tile on the executing object at some priority P,
then it will be re-executed when another behavior acquires
the lock on the same object at a higher priority Q. When a
behavior is re-executed, resources from the previous execu-
tion, such as freshly created objects, are reused as needed or
are cleaned up if they are not reused during the re-execution.
For example, if behavior execution initially acquires a lock
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Figure 10. Trace of how prioritized execution works in
YinYang for an object created from the Gun Tower tile in
Figure 4; higher numbers indicate weaker priorities.

but does not re-acquire the lock on re-execution, the lock is
released while other behaviors waiting on the lock will be
re-executed. Additionally, tiles whose execution are time-
dependent, such as the native Rotate and Move tiles, are
marked as dependent on the frame display. On every frame
update, frame-dependent tiles are executed to perform ani-
mations.

Native tiles are currently implemented as a set of call
backs that define what happens when the tile is first executed
(initialize resources), re-executed (update resources), and
when it stops executing (cleanup resources). Native tiles
have declarations just like YinYang tiles, and so can specify
extended and included tile requirements that the type system
then ensures are satisfied at run-time. Combined with the

ability to specify exclusive-mode execution, new native tiles
can safely be added to the system without breaking existing
ones.

As mentioned in Section 2, a behavior can spawn a new
object or start a new behavior whose execution are de-
tached from the former behavior. While a spawned object
only continues to execute independently, a started behavior
will also execute with a very high priority that will only be
superseded by the next started behavior of the executing ob-
ject. Such prioritization is meant to model imperative pro-
gramming where later statement executions supersede the
effects of earlier statement executions. Finally, some tiles
can be invoked “qualified” on objects other than the execut-
ing object; e.g., one can instruct a Bank part to earn $100.
However, because this execution occurs from outside of the
object, their is no reasonable way to prioritize the tile execu-
tion. As a result, only tiles that are not exclusive, and whose
implementation’s do not execute exclusive tiles, can be in-
voked qualified.

5. Experience and Future Work
Our YinYang prototype implementation consists of about
6000 lines of interpreter and 2000 lines of library (native
tile) C# code. The prototype runs on Window PCs with
touch screens, such as Tablet PCs, and does not require a
keyboard or mouse to use. The native tiles that we have
built allow programmers to express various action-oriented
mobile 2D games, although YinYang can easily be extended
safely with new native tiles to address other game or UI
domains. This section describes our initial experience with
using this prototype and, given lessons learned, concurrently
discusses directions for future work.

As a small informal case study, consider using YinYang
to construct a simple but real game whose code is shown in
Figure 12; two screenshots of play are also shown in Fig-
ure 11. The game starts with a certain number of monsters
on its stage where the player has $100 with which to tap a
monster. Once tapped, the player loses their $100 and the
monster begins to explode by becoming an orange ball that
grows to a very large size. As the monster is exploding, any
other monster that touches it will also start exploding while
the player gains $100. The goal is for the player to explode
the monsters in as few taps as possible.

Input Efficiency and Usability
As a rough unscientific measurement of input efficiency,
the program in Figure 12 takes a little bit less than 2.5
minutes for us to input from memory, while we can type
the text-equivalent program using a real keyboard in about
1.5 minutes; overall, touch input is about 66% slower than
keyboard input for this test. Although programmers spend
more time thinking, learning, and searching than they do on
input, input efficiency still matters, as slow input can disrupt
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Figure 12. YinYang code for the splat game; act insertion anchors are elided from these screen shots.

Figure 11. The Splat game in action. Top: monsters wan-
dering around at the start of the game waiting to be tapped.
Bottom: the player has just tapped a monster setting off a
chain reaction that has already exploded 12 additional mon-
sters.

the programmer’s focus and rhythm, further reducing their
efficiency.

Many things work well in our current prototype in the ar-
eas of input efficiency and usability. For example, the tile
that we want to select is often in the first or second menu,
meaning that it does not take more than a few seconds to
select it. Once a tile is selected to create a new expression,
that its arguments immediately appear in the menu is use-
ful in maintaining rhythm without needing to call up another
menu. YinYang also benefits from being graphical and hav-
ing menus display what tiles are available at each edit site. In
this respect, YinYang is like programming solely with auto-
completion (aka Intellisense) in a textual language, except
that the menus have more organization and are not just lin-
ear lists of completed text options. On the other hand, the
most significant problems that we have identified with our
current prototype are as follows:

– Editing always involves scanning and navigating the
menus. Scanning each menu takes about a couple of sec-
onds, and often one or two additional sub-menus must be
accessed.

– Given that each menu is generated from edit context,
the layout of one menu to the next can differ even if
they share many of the same tiles. As a result of this
inconsistency, the programmer cannot learn where to tap
without first scanning.

– Although YinYang attempts to maintain focus by keeping
the programmer’s focus on one tile definition (Section 3),
activating a menu itself disrupts rhythm and focus as the
menu obscures content.
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– The programming interface provides no cues to the pro-
grammer about what they can do next without activating a
context menu; the programmer must know where to start
editing or what tile to create afresh. This is not intuitive
to programmers who are unfamiliar with the language.

– Menus are organized via tile semantic relationships (ex-
tend and include) that are not always intuitive.

When comparing against textual languages, keyboard-input
allows a programmer to quickly refer to a construct as long
the programmer knows its name, while programmer focus
is preserved since there are few menus to deal with and
the edit cursor keeps track of where they are. As far as
usability is concerned, textual languages often offer no cues
on how to get started, although “wizards” often fill this role
in the programming environment. Finally, the programmer is
expected to know where most constructs are without much
assistance; auto-complete menus are typically ordered only
alphabetically and do not show completions for more than
one level of hierarchy.

Our current prototype makes progress towards being an
efficient and usable programming interface but we have not
yet realized what we believe is achievable on a tablet. Some
ideas for improvement from our experience in using the
current prototype are as follows:

– Probability could be used to ensure that likely options
are organized closer to the initial menu than less likely
options, which can more acceptably be accessed through
deeper sub-menus. Probability models could be based on
edit site context as well as the history of the programmer
as well as a community of programmers.

– Re-introduce the concept of a cursor and have content
and context menus appear on the screen at the same time;
the context menu shown on the screen then depends on
the cursor that advances automatically as edits are made.

– Allow menu categories to be encoded more indepen-
dently from semantics relationships.

– YinYang does not currently utilize the multi-touch ges-
tures that tablets support, we should explore how such
gestures can enhance the programming experience.

– Associate tiles with mnemonics that, when learned, can
quickly be inputted on the tablet to make a quick selec-
tion; e.g., a gesture.

Language Design
The YinYang encoding of the game in Figure 12 is fairly
concise primarily due to YinYang’s behavior-based pro-
gramming model. Conciseness comes from specializing in
the encoding of reactive behaviors, while YinYang is not
suited to expressing many other kinds of computations,
which must instead be accessed through C# native tiles.
YinYang lacks the control flow constructs or explicit vari-
able declarations necessary for expressing many kinds of

fundamental computations; such as searching for something
in a list. Also, although it is possible to encode arbitrary
expressions in YinYang, the programming interface is not
suited for it: writing even simple arithmetic expressions us-
ing context menus would be very tedious and heavy nesting
coupled with long streams of argument expressions invali-
date the assumptions of our interface design.

Ideas for making YinYang more expressive include sup-
porting array programming [8] and/or point-free functional
programming that reduce the need for diverse control flow
constructs and explicitly named variables. Tangible func-
tional programming [4] has explored applying the latter ap-
proach in the context of a graphical language. Addition-
ally, YinYang could be integrated with additional graphi-
cal language/user interface for expressing different kinds of
computations; e.g., a calculator-like language for expressing
math.

6. Related Work
As mentioned before, YinYang is directly influenced by
Kodu [12]. In contrast with Kodu, however, YinYang is re-
designed for touch and supports user defined abstractions.
YinYang is also influenced by our previous experience with
SuperGlue [14], which is a textual, reactive, and object-
oriented language for expressing user interfaces and anima-
tions. We have found that structuring programs into Brooks’
autonomous objects [1] is easier and more expressive than
Superglue’s structuring of programs into objects that are
connected together through data-flow signals.

YinYang is closely related to graphical languages that
are based on structured syntax. Scratch [13], like Kodu,
is a graphical language that makes programming accessi-
ble to beginners and children. Programmers in Scratch drag
blocks from palettes and drop them in place to form the
behavior of an actor. Scratch’s model has been expanded
in Google’s App Inventor [6] with support for user defined
blocks to support more capable DIY programming. In con-
trast to Scratch’s procedure-like blocks, YinYang tiles are
more powerful given their continuous execution semantics
and their ability to act like classes as well as methods.

In contrast to graphical structured languages, syntax-
directed editing [24] leverages built-in knowledge of a tex-
tual language to enable direct editing of syntax trees with
a graphical editor. Unfortunately, syntax-directed editing is
often inefficient and cumbersome [16] when compared to
free-form text editing. Bringing syntax-directed editing to
tablets does not solve its problems. However, some tech-
niques such as leveraging the type system to provide context
and allowing not-yet correct edits could be used to improve
syntax-directed editing in general.

Numerous visual languages such as Prograph [19], Lab-
VIEW [25], and AgentSheets [20] leverage visual spatial re-
lationships and/or direct manipulation [21] to enable a more
immersive programming experience. Visual languages have
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traditionally suffered from scaling-up problems [2], where
directness often conflicts with support for abstraction, and
readability problems [18] where the practical density of vi-
sual elements is less than textual elements. YinYang is very
much a structured (graphical but not visual) language, al-
though it does support direct manipulation in appropriate
cases, such as the direct placement of user interface ele-
ments.

7. Conclusion
Programming has been chained to the typewriter for long
enough: as computing moves toward touch-based devices,
we should rethink our programming experiences lest they
get left behind as niche tasks that require niche computing
hardware. This paper has demonstrated the viability of one
possible programming experience for tablets. YinYang tiles
naturally fit the tablet’s form factor and support for direct
touch, while we have designed a type system around tac-
tile tile placement that enhances expressiveness and safety
while actively supporting input tasks. The resulting pro-
gramming experience shows promise that a tablet language
can be competitive with the capabilities and input efficiency
of keyboard-based programming languages.
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