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Abstract 

In this paper, we derive optimality results 
for greedy Bayesian-network search algo­
rithms that perform single-edge modifica­
tions at each step and use asymptotically 
consistent scoring criteria. Our results ex­
tend those of Meek (1997) and Chickering 
(2002), who demonstrate that in the limit 
of large datasets, if the generative distribu­
tion is perfect with respect to a DAG defined 
over the observable variables, such search al­
gorithms will identify this optimal (i.e. gen­
erative) DAG model. We relax their assump­
tion about the generative distribution, and 
assume only that this distribution satisfies 
the composition property over the observable 
variables, which is a more realistic assump­
tion for real domains. Under this assump­
tion, we guarantee that the search algorithms 
identify an inclusion-optimal model; that is, 
a model that (1) contains the generative dis­
tribution and (2) has no sub-model that con­
tains this distribution. In addition, we show 
that the composition property is guaranteed 
to hold whenever the dependence relation­
ships in the generative distribution can be 
characterized by paths between singleton el­
ements in some generative graphical model 
(e.g. a DAG, a chain graph, or a Markov 
network) even when the generative model in­
cludes unobserved variables, and even when 
the observed data is subject to selection bias. 

1 Introduction 

The problem of learning Bayesian networks ( a.k.a di­
rected graphical models) from data has received much 
attention in the UAI community. A simple approach 
taken by many researchers, particularly those con-
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tributing experimental papers, is to apply�in con­
junction with a scoring criterion�a greedy single-edge 
search algorithm to the space of Bayesian-network 
structures or to the space of equivalence classes of 
those structures. There are a number of important 
reasons for the popularity of this approach. First, a 
variety of hardness results have shown that learning 
various classes of Bayesian networks is NP-hard (e.g. 
Chickering, 1996; Dasgupta, 1999; Meek, 2001), and 
it is widely accepted that heuristic search algorithms 
are appropriate in general. Second, greedy search is 
simple to implement and the evaluation of single-edge 
modifications is computationally efficient. Third, and 
perhaps most important, this class of algorithm typi­
cally works very well in practice. 

In this paper, we provide large-sample optimality 
guarantees for a particular greedy single-edge search 
algorithm�called greedy equivalence search or G ES 
for short�when that algorithm is used in conjunction 
with any asymptotically consistent scoring criterion. 
An asymptotically consistent scoring criterion is one 
that, in the limit of large number of samples, assigns 
the highest score to the parameter-optimal model-that 
is, the model with fewest parameters that can repre­
sent the generative distribution. It is well known that 
several Bayesian-network scoring criteria�including 
the Bayesian criterion and the minimum description 
length (MDL) criterion�are asymptotically consis­
tent. We also provide optimality guarantees for an 
alternative greedy search algorithm that we call unre­
stricted GES. 

Any greedy algorithm that is used in conjunction with 
an asymptotically consistent scoring criterion will (by 
definition) have a local maximum at a parameter­
optimal model; the problem is that greedy search can 
get trapped in other local maxima. Furthermore, in 
order to apply the algorithm in practice, the connec­
tivity of the search space must be sparse (i.e. the num­
ber of models considered at each step of the algorithm 
must be reasonably small). For example, because the 
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number of models grows super-exponentially with the 
number of observed variables, the simple (greedy) ap­
proach of enumerating every model and selecting the 
best one is not realistic. 

Meek (1997) shows that GES--under the assump­
tion that "Meek's Conjecture" is true-will provably 
terminate at the parameter-optimal model whenever 
the generative distribution is perfect with respect to 
that model; that is, whenever the independence con­
straints among the observable variables in that dis­
tribution are precisely the independence constraints 
in the parameter-optimal model. This result is some­
what surprising because the connectivity of the search 
space for GES is sparse. Chickering (2002) proves 
that Meek's Conjecture is true--thus establishing the 
asymptotic optimality of GES-and provides an effi­
cient implementation of the search operators used by 
GES. Furthermore, the experimental results of Chick­
ering (2002) suggest that the large-sample guarantees 
of GES can hold with reasonably small sample sizes. 

In this paper, we consider the large-sample behavior 
of GES when we eliminate the requirement that the 
generative distribution be perfect with respect to the 
parameter-optimal model. In particular, using a more 
realistic set of assumptions about the generative distri­
bution, we show that the algorithm identifies a model 
that satisfies a weaker form of optimality that we call 
inclusion optimality. A model is inclusion optimal for 
a distribution if it can represent the distribution ex­
actly and if no sub-model can also do so. Our re­
sults hold whenever the composition axiom of indepen­
dence (see, e.g., Pearl, 1988) holds among the observ­
able variables, the contrapositive of which states that 
whenever a variable X is (conditionally or marginally) 
dependent on a set of variables Y, then there is a sin­
gleton Y E Y on which X depends. A stronger but 
more intuitively appealing assumption that we make 
to guarantee that the composition holds is that the 
dependence relationships in the generative model can 
be characterized by paths between singleton nodes in 
some graphical model. Because the d-separation cri­
terion identifies dependencies using paths of this type, 
it is easy to show that if the generative distribution is 
perfect with respect to some Bayesian network-where 
any subset of the nodes may be hidden-then we can 
guarantee inclusion optimality in the limit. Our results 
also apply when the generative distribution is perfect 
with respect to other types of graphical models includ­
ing Markov random fields and chain graphs. In all of 
these situations, we allow for the presence of hidden 
variables in the generative model and selection bias in 
the observed data. 

The paper is organized as follows. In Section 2, we 
describe our notation and previous relevant work. In 

Section 3, we prove the main results of this paper. In 
Section 4, we describe a set of experiments we per­
formed that demonstrate the practical importance of 
our results. Finally, in Section 5, we conclude with a 
summary and discussion of future relevant. work. 

2 Background 

Throughout the paper, we use the following syntac­
tical conventions. We denote a variable by an upper 
case letter (e.g. A, B;, Y, 8) and a state or value of 
that. variable by the same letter in lower case (e.g. 
a, b;, y, B). We denote sets with bold-face capitalized 
letters (e.g. A, Pa;) and corresponding sets of values 
by bold-face lower case letters (e.g. a, pa;). Finally, we 
use calligraphic letters (e.g. Q, B) to denote statistical 
models and graphs. 

2.1 Directed Graphical models 

In this paper, we concentrate on Bayesian networks 
for a set of variables 0 = {X1, • . .  , Xn } ,  where each 
X; E 0 has a finite number of states. A paramet­
ric Bayesian-network model B for a set of variables 
0 = {X1, ... , Xn} is a pair (Q,O). Q = (V,E) is a 
directed acyclic graph-or DAG for short-consisting 
of (1) nodes V in one-to-one correspondence with the 
variables 0, and (2) directed edges E that connect 
the nodes. 0 is a set of parameter values that spec­
ify all of the conditional probability distributions; we 
use 0; C 0 to denote the subset of these parameter 
values that define the (full) conditional probability ta­
ble of node X; given its parents in Q. A parametric 
Bayesian network represents a joint distribution over 
0 that factors according to the structure Q as follows: 

n 

ITp(X; = x;[Paf = paf,O;) (1) 
i=l 

where Paf is the set of parents of node x; in Q. A 
Bayesian-network model (or DAG model) Q is simply 
a directed acyclic graph and represents a family of dis­
tributions that satisfy the independence constraints 
that must hold in any distribution that can be rep­
resented by a parametric Bayesian network with that 
structure. We say that a Bayesian network Q includes 
a distribution p(O) if the distribution is defined by 
some parametric Bayesian network with structure Q. 

The set of all independence constraints imposed by the 
structure Q via Equation 1 can be characterized by the 
Markov conditions, which are the constraints that each 
variable is independent of its non-descendants given its 
parents. That is, any other independence constraint 
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that holds can be derived from the Markov conditions 
(see, e.g., Pearl, 1988). Pearl (1988) provides a graph­
ical condition called d-separation that can be used to 
identify any independence constraint that necessarily 
follows from the factorization. We use Aj_j_gB IS to de­
note the assertion that DAG Q imposes the constraint 
that A is independent of B given set S. 

2.2 Equivalence, Inclusion and Optimality 

There are two common notions of equivalence for 
Bayesian networks. Bayesian networks Q and Q' are 
distributionally equivalent (Q � o Q') if for every para­
metric Bayesian network B = (Q, 9), there exists a 
parametric Bayesian network B' = (Q', 9') such that 
B and B' define the same probability distribution, and 
vice versa. Two DAGs Q and Q' are independence 
equivalent (Q �I Q') if the independence constraints 
in the two DAGs are identical. These two notions of 
equivalence are not generally the same, but they are for 
the parametric Bayesian-network models that we con­
sider in this paper (i.e. the conditional distributions 
are specified with full tables) and thus we say that 
two DAGs Q and Q' are equivalent-denoted Q � Q'­
to mean that they are both distributionally equivalent 
and independence equivalent. 

Similarly, there are two corresponding types of inclu­
sion relations for Bayesian networks. A Bayesian net­
work Q is distributionally included in a Bayesian net­
work H (Q S. o H) if every distribution included in Q 
is also included in H. A Bayesian network Q is inde­
pendence included in a Bayesian network H (Q S.I H) 
if every independence relationship in H also holds in 
Q. The relationship Q S.I H is sometimes described 
in the literature by saying that H is an independence 
map of Q. If we assume that �I is equivalent to � o for 
a family of parametric Bayesian-network models then 
it is easy to show that S.o is equivalent to 'S.I· Thus, 
because we are using complete tables, the two types 
of inclusion are equivalent and we use Q S. H to de­
note that Q is included-that is, both distributionally 
and independence-in H. Note that we are using "in­
cluded" to describe the relationship between a model 
and a particular distribution, as well as a relationship 
between two models. We say that Q is strictly included 
in H-denoted Q < H-if Q is included in H and Q is 
not equivalent to H. 

In this paper, we are interested in two types of op­
timality. A Bayesian network Q is parameter opti­
mal for distribution p if Q includes p and there is no 
Bayesian network that includes the distribution with 
fewer parameters. A Bayesian network Q is inclusion 
optimal for distribution p if Q includes p and there is 
no Bayesian network Q' such that (1) Q' S. Q and (2) 
Q' also includes p. 

2.3 Learning Directed graphical models 

Approaches to the Bayesian-network learning prob­
lem typically concentrate on identifying one or more 
Bayesian networks for a set of variables 0 
{X,, . . .  , Xn} that best fit a set of observed data D 
for those variables according to some scoring crite­
rion S(Q, D) ; once the structure of a Bayesian network 
is identified, it is usually straightforward to estimate 
the parameter values for a corresponding (parametric) 
Bayesian network. 

A scoring criterion S(Q, D) is score equivalent if, for 
any pair of equivalent DAGs Q and H, it is necessarily 
the case that S(Q, D) = S(H, D). A scoring criterion 
S(Q, D) is decomposable if it can be written as a sum 
of measures, each of which is a function only of one 
node and its parents. In other words, a decomposable 
scoring criterion S applied to a DAG Q can always be 
expressed as: 

n 

S(Q, D) = L s (X;, Paf) (2) 
i=l 

Note that the data D is implicit in the right-hand side 
Equation 2. W hen we say that s(X;, Paf) is only a 
function of X; and its parents, we intend this also to 
mean that the data on which this measure depends is 
restricted to those columns corresponding to X; and 
its parents. 

Many commonly used scoring criteria are both score 
equivalent and decomposable. For a discussion of why 
score equivalence is an important (and sometimes nec­
essary) property, see Beckerman, Geiger and Chicker­
ing (1995). One main advantage to using a decompos­
able scoring criterion is that if we want to compare the 
scores of two DAGs Q and Q', we need only compare 
those terms in Equation 2 for which the correspond­
ing nodes have different parent sets in the two graphs. 
This proves to be particularly convenient for search 
algorithms that consider single edge changes. 

To simplify the presentation in this paper, we con­
centrate on using the Bayesian scoring criterion, but 
emphasize that our results are more broadly applica­
ble. For the Bayesian scoring criterion we define, for 
each model Q, a corresponding hypothesis Qh, which 
for our purposes can simply denote the assertion that 
Q is an inclusion-optimal representation of the genera­
tive distribution.' The scoring criterion is then defined 
to be the relative posterior (or relative log posterior) 

11n practice, the definition of DAG hypothesis is im­
portant only to the extent in which it determines how the 
second term is evaluated in Equation 3. For most defini­
tions found in the literature, the resulting values for this 
term are identical. 
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of Qh given the observed data. Without loss of gen­
erality, we express the Bayesian scoring criterion S 8 
using the relative log posterior of gh: 

where p(Qh) is the prior probability of Qh, and p(D IQh) 
is the marginal likelihood. The marginal likelihood is 
obtained by integrating the likelihood function (i.e. 
Equation 1) applied to each record in D over the un­
known parameters of the model with respect to the 
parameter prior. Heckerman et al. (1995) describe 
parameter priors that guarantee score equivalence and 
score decomposability of the Bayesian criterion. 

2.4 Asymptotically Consistent Scores 

It is well known that the Bayesian scoring criterion 
is asymptotically consistent. Simply stated, an asymp­
totically consistent scoring criterion is one that-in the 
limit as the number of observed cases grows large­
prefers the model containing the fewest number of pa­
rameters that can represent the generative distribution 
exactly. Geiger, Heckerman, King and Meek (2001) 
show that parametric Bayesian-network models that 
contain complete tables are curved exponential mod­
els; Haughton (1988) derives the following approxima­
tion for the Bayesian criterion for this model class: 

A h d 
Sa(Q, D)=logp(DIO, Q  )+'2logm+0(1) (4) 

where {j denotes the maximum likelihood values for the 
network parameters, d is the dimension of the model 
and m is the number of records in D. The first two 
terms in this approximation are known as the Bayesian 
information criterion (or BIC). The presence of the 
0 ( 1) error means that, even as m approaches infin­
ity, the approximation can differ from the true relative 
log posterior by a constant. As shown by Haughton 
(1988), however, BIC is consistent. Furthermore, it 
can be shown that the leading term in BIC grows 
as O(m), and therefore we conclude that because the 
error term becomes increasingly less significant as m 
grows large, Equation 3 is consistent as well. Because 
the prior term p(Qh) does not depend on the data, it 
does not grow with m and therefore is absorbed into 
the error term of Equation 4. Thus the asymptotic be­
havior of the Bayesian scoring criterion depends only 
on the marginal likelihood term. 

Consistency of the Bayesian scoring criterion leads, 
from the fact that BIC is decomposable, to a more 
useful property of the criterion that we call local con­
sistency. Intuitively, if a scoring criterion is locally 
consistent, then the score of a DAG model Q (1) in­
creases as the result of adding any edge that eliminates 

an independence constraint that does not hold in the 
generative distribution, and (2) decreases as a result 
of adding any edge that does not eliminate such a con­
straint. More formally, we have the following defini­
tion. 

Definition (Local Consistency) 
Let D be a set of data consisting of m records that 
are iid samples from some distribution p( ·) . Let Q be 
any DAG, and let Q' be the DAG that results from 
adding the edge X1 --+Xi. A scoring criterion S(Q, D) 
is locally consistent if, in the limit of large m, the 
following two properties hold: 

1. If X1 is not independent of Xi given Paf in p, 
then S(Q', D) > S(Q, D) 

2. If X1 is independent of Xi given Paf in p then 
S(Q', D) < S(Q, D) 

Chickering (2002) shows that the Bayesian scoring cri­
terion is locally consistent, a result we present formally 
below. 

Lemma 1 Chickering (2002) The Bayesian scoring 
criterion is locally consistent. 

The significance of Lemma 1 is that as long as there 
are edges that can be added to a DAG that eliminate 
independence constraints not contained in the gener­
ative distribution, the Bayesian scoring criterion will 
favor such an addition. Furthermore, if the genera­
tive distribution is included in a DAG, then Lemma 1 
guarantees that any deletion of an "unnecessary" edge 
will be favored by the criterion. 

2.5 Greedy Equivalence Search 

In this section, we describe the greedy single-edge 
search algorithm that we use for learning Bayesian net­
works. Rather than searching over the space of DAGs, 
we use equivalence classes of DAGs defined by the (re­
flexive, symmetric, and transitive) equivalence relation 
� defined in Section 2.2. We use E to denote an equiv­
alence class of DAG models. Note that we use the 
non-bold character E; although arguably misleading in 
light of our convention to use bold-face for sets of vari­
ables, we use the non-bold character to emphasize the 
interpretation of E as a model for a set of independence 
constraints as opposed to a set of DAGs. To denote a 
particular equivalence class to which a DAG model Q 
belongs, we sometimes write E(Q). Note that Q � Q' 
implies Q' E E(Q) and Q E E(Q'). We extend the defi­
nition of inclusion to pertain to equivalence classes of 
DAGs in the obvious way. 

The connectivity of the search space is defined using 
the inclusion relation (:S) between DAGs. In particu-
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Jar, two equivalence classes [1 (9) and Ez(9') are ad­
jacent if and only G ::; G' or G' ::; G and the number 
of edges in the graphs G and G' differ by one. We say 
we are moving in the search space in a forward direc­
tion if we move from a state E 1 (9) to an adjacent state 
E2(9') in which G::; G'; otherwise we are moving in a 
backward direction. 

The greedy equivalence search algorithm (or GES for 
short) is a two-phase greedy algorithm that can be 
described as follows. The algorithm starts with the 
equivalence class corresponding to no dependencies 
among the variables (i.e. the class containing the DAG 
model with no edges). Then, for the first phase, a 
greedy search is performed only in the forward direc­
tion until a local maximum is reached. For the second 
phase, a second greedy search is performed, starting 
from the local maximum from the first phase, but this 
time only in the backward direction. GES terminates 
with the local maximum reached by the second phase. 
We find it convenient to name the (restricted) greedy 
searches in the first and second phase of G ES forward 
equivalence search (FES for short) and backward equiv­
alence search (BES for short), respectively. GES can 
thus be described as running FES starting from the 
all-independence model, and then running BES start­
ing from the resulting local maximum. 

GES is a restricted version of a more general greedy 
search algorithm that considers moves in both the 
forward and backward directions at each step. We 
call this unrestricted version of the search unrestricted 
GES or UGES for short. 

For states of the search in which the dependency struc­
ture of the equivalence class is very dense, the num­
ber of adjacent states that need be considered by GES 
and UGES can be exponential in the number of vari­
ables. For simple models, however, the number of ad­
jacent states is small. Fortunately, we have found that 
in practice the algorithms-when applied to real data 
sets-only encounter simple models. In fact, Chick­
ering (2002) demonstrates that GES is as fast as a 
greedy DAG-based search that considers O(n2) adja­
cent states at each step. 

Chickering (2002) describes a representation for equiv­
alence classes and a corresponding set of operators 
that implement the forward and backward searches of 
GES. All of the operators can be identified efficiently 
and can be scored-when using a decomposable scor­
ing criterion-by evaluating only a small subset of the 
terms in Equation 2. 

We end this section by presenting a transformational 
characterization of the inclusion relation for Bayesian 
networks. The characterization was initially conjec­
tured to be valid by Meek (1997), and was later proven 

to be so by Chickering (2002). 

Theorem 2 (Chickering, 2002) Let 9 and 11. be 
any pair of DA Gs such that 9 ::; 11.. Let r be the num­
ber of edges in 11. that have opposite orientation in 9, 
and let a be the number of edges in 11. that do not exist 
in either orientation in 9. There exists a sequence of 
at most r + 2a distinct edge reversals and additions in 
9 with the following properties: 

1. Each edge reversed is a covered2 edge 
2. After each reversal and addition 9 is a DA G and 

9::;11. 
3. After all reversals and additions 9 = 11. 

This theorem plays an essential role to understand­
ing how the GES algorithm-and more specifically the 
BES algorithm-leads to an inclusion-optimal model. 
The key feature in the characterization is that it is 
based on single edge transformations. 

3 Results 

In this section, we prove the main results of this pa­
per. Throughout the section, we use p to denote the 
distribution over the observable variables from which 
the observed data D was generated, and we use m to 
denote the number of records in D. 

First we show that the second phase of the algorithm 
(i.e. the BES algorithm) is guaranteed (in the limit 
of large m) to identify an inclusion-optimal model if it 
starts with an equivalence class that includes p. 

Theorem 3 If E* includes p then, in the limit of large 
m,  the result of running BES, starting from E* and 
using any locally consistent scoring criterion, results 
in an inclusion-optimal model. 

Proof: After each step in the backward equivalence 
search, we are guaranteed that the current state E will 
include p by the following argument. Suppose this 
is not the case, and consider the first move made by 
BES to a state that does not include p. Because this 
move corresponds to an edge deletion in some DAG, 
it follows immediately from the fact that the scoring 
function is locally consistent that any such deletion 
would decrease the score, thus contradicting the fact 
that BES is greedy. 

To complete the proof, assume that BES terminates 
with some equivalence class E that is not inclusion op­
timal, and let E' < E be any inclusion optimal equiv­
alence class that is strictly included in E. Let 11. be 

2 An edge X; -t X1 is covered in DAG Q if Pa7 = 

Paf UX;. 
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any DAG in£, and let 9 be any DAG in£'. Because 
9 < H we conclude from Theorem 2 that there exists a 
sequence of covered edge reversals and edge additions 
that transforms 9 into H. There must be at least one 
edge addition in the sequence because by assumption 
9 ¢ H and because (see Chickering, 1995) reversing 
a covered edge in a DAG results DAG in the same 
equivalence class. Consider the DAG 9' that precedes 
the last edge addition in the sequence. Clearly £(9') 
is one step backwards from £ and because 9' has fewer 
parameters than H, we conclude from the local consis­
tency of the scoring criterion that £ cannot be a local 
minimum, yielding a contradiction. 0 

Theorem 3 is important from a theoretical point of 
view because we can always start BES with the com­
plete equivalence class that asserts no independence 
constraints; this model is guaranteed to include p. One 
problem with starting from the complete model is that 
for any realistic domain, the number of parameters in 
the model will be prohibitively large. Put another way, 
in order for the asymptotic properties of the algorithm 
to apply to a real (finite m) problem, we would need 
an unrealistic number of records in the data. Another 
problem with starting from the complete model is that 
BES must begin by evaluating an exponential num­
ber of (adjacent) states, thus making the algorithm 
intractable in this situation. As we shall see in Theo­
rem 4, the previous theorem becomes important in a 
practical sense if the composition property holds in p 
among the observable variables: given that a variable 
X is not independent of the set Y given set Z, then 
there exists a singleton element Y E Y such that X is 
not independent of Y given set Z. 

Theorem 4 If p satisfies the composition property 
then, in the limit of large m, GES using any locally 
consistent scoring criterion finds an inclusion optimal 
model. 

Proof: Given Theorem 3 we need only to show that 
the forward search (FES) in the first phase of GES 
identifies an equivalence class that includes p. Sup­
pose this is not the case, and consider any DAG 9 
contained in the (local maximum) equivalence class 
reached at the end of the first phase of GES. Because 
9 does not include p, there must be some independence 
constraint from 9 that does not hold in p. Because the 
independence constraints of 9 are characterized by the 
Markov conditions, it follows that in p, there must ex­
ist some node Xi in 9 for which Xi is not independent 
of its non-descendants Y given its parents Pai. Be­
cause the composition axiom holds for p, there must 
exist at least one singleton non-descendant Y E Y for 
which this dependence holds. By Lemma 1, this im­
plies that the DAG 9' that results from adding the 

edge Y -t Xi to 9 (which cannot be cyclic by defini­
tion of Y) has a higher score than 9. The equivalence 
class £(9') is one step forward from £ which contra­
dicts the fact that £ is a local maximum. 0 

The proof of Theorem 4 does not require that GES 
start with the empty (i.e. no-dependence) model; as a 
result, we obtain the following corollary. 

Corollary 5 If p satisfies the composition property 
then, in the limit of large m, UGES using any locally 
consistent scoring criterion finds an inclusion optimal 
model. 

Proof: Suppose the corollary is not correct. Then 
there exists a local maximum 9 in the UGES search 
space that is not inclusion optimal. From the proof of 
Theorem 4, we can run GES starting from the model 
9 to reach an inclusion-optimal model. Because the 
operators available to GES are a strict subset of the 
operators in UGES, it follows that 9 cannot be a lo­
cal maximum in the UGES search space, yielding a 
contradiction. 0 

Theorem 4 and Corollary 5 are very general results 
in the sense that we assume nothing about p except 
that the composition property holds over the observ­
able variables; the composition property need not hold 
among any of the variables involved that are not ob­
served. The "composition assumption" in isolation, 
however, may not be intuitively appealing to many. In 
what situations is this assumption violated? Can we 
expect the composition assumption to be reasonable 
in many domains? 

To help gain a better understanding of the types of 
situations for which the composition property holds, 
we introduce the notion of a graphical path condition. 
A graphical path condition PCg(X, Y, Z) is a function 
of a graphical model 9 that maps two singleton nodes 
and a set of nodes to either zero or one. Intuitively, 
the function checks whether or not there is a "path" 
from X to Y given "context" Z. The d-separation cri­
terion, for example, is a graphical path condition for 
DAG models: in this case PCg(X, Y, Z) has the value 
one if and only if there is an active path from X to Y in 
9 given set Z. As another example, the presence of an 
undirected path between X and Y that does not pass 
through a node in Z is a graphical path condition for a 
Markov random field (undirected graphical model). As 
we discuss below, when there exists a graphical path 
condition that characterizes the dependencies among 
the variables-as is the case with both of the previous 
examples-then we are guaranteed that the composi­
tion property will hold. To simplify the discussion, we 
provide the following definition. 

Definition (Path Property) 
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A graphical model M has the path property if there 
exists a path condition PC M ( -, · , ·) that characterizes 
the dependencies implied by M as follows: 

XjtlM Y[Z ¢?::IX E X, Y E Ys.t.PCM(X, Y, Z) = 1 

We now show that if the generative distribution is per­
fect with respect to a model that has the path prop­
erty, then the composition axiom holds even in the 
presence of hidden variables and selection variables. 
Selection variables are hidden variables that are in a 
particular state for each record in the observed data. 
In a mail survey, for example, a selection variable 
might correspond to "the person filled out the survey 
and mailed it back"; the presence of such variables can 
lead to biased results because those who respond to the 
survey may not be representative of the population as 
a whole. 

Let a M be a graphical model for variables V = { 0 U 
H US} where 0 is a set of observed variables, H a set 
of hidden variables and Sis a set of selection variables. 

Proposition 1 If q is a distribution that is perfect 
with respect to a model M that has the path prop­
erty, then the composition property holds for p( 0) = 
L:Hq(O,H,S = s). 

Proof: Follows immediately from the definition of the 
path property and from the fact that because q is per­
fect with respect to M, q and M have precisely the 
same dependence relations. 0 

This proposition tells us that if our data is generated 
from a distribution that is perfect with respect to some 
graphical model with the path property then the distri­
bution is guaranteed to satisfy the composition prop­
erty even if there are hidden variables and the data is 
generated with selection bias. This naturally leads the 
next corollary. 

Corollary 6 If p is perfect with respect to either a 
DAG, a Markov random field, or a chain graph, then 
in the limit of large m, GES {or UGES} using any 
locally consistent scoring criterion finds an inclusion 
optimal model. 

Proof: This follows immediately because all of these 
types of graphical models have the path property. 0 

4 Experiments 

In this section, we present experimental results demon­
strating that we can attain the large-sample benefits 
of the GES algorithm-that is, we can identify the 

inclusion-optimal model-when the generative distri­
bution is not DAG-perfect and when given a finite 
sample size. Our approach is to sample data from 
known gold-standard models for which we can analyt­
ically determine the inclusion-optimal models defined 
over the observable variables. By generating synthetic 
data from the gold-standard models, we can evaluate 
how well GES performs by checking whether or not it 
identifies the corresponding inclusion-optimal model. 

We concentrate on two specific gold-standard struc­
tures for all of our experiments; we sample the cor­
responding generative parameters-using a random­
sampling technique described below-to produce the 
generative distribution. The first gold-standard struc­
ture is the w-structure model shown in Figure 1a in 
which all variables are binary except for the three­
valued X2; the variable H is hidden, and as a result 
there is no perfect map in a DAG model defined over 
the observables. The second generative structure we 
consider is the selection four-cycle model shown in Fig­
ure 2a in which all variables are binary except for the 
four-valued X1. The variable S is a selection vari­
able with a corresponding selection value of one; in 
other words, given a random sample of cases from this 
model, we only allow ones for which S = 1 to be in­
cluded in the observed data. The resulting distribution 
over the observable variables is included in an undi­
rected four cycle, which has no perfect map in a DAG 
model. 

(a) 

(b) (c) 

Figure 1: (a) the w-structure model, (b) the 
parameter-optimal model and (c) an inclusion-optimal 
model that is not parameter optimal. 

In Figure lb and Figure lc we show (the unique) repre­
sentative DAG models from the two inclusion-optimal 
equivalence classes corresponding to the w-structure 
model. The model in Figure lb, which contains 18 
parameters, is parameter optimal, whereas the model 
in Figure lc, which contains 20 parameters, is not pa-
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(a) (b) (c) 

Figure 2: (a) the selection four-cycle model, (b) the 
parameter-optimal model and (c) an inclusion-optimal 
model that is not parameter optimal. 

rameter optimal. Similarly, in Figure 2b and Figure 
2c we show representative DAG models from the two 
inclusion-optimal equivalence classes corresponding to 
the selection four-cycle model. The model in Figure 
2b, which contains 19 parameters, is parameter opti­
mal, whereas the model in Figure 2b, which contains 
23 parameters, is not parameter optimal. 

In order to produce a random generative distribu­
tion with strong dependencies between the variables, 
we sampled each of the conditional parameter dis­
tributions from the gold standard as follows. For a 
variable X; with k states, we constructed a "basis" 
mean value j1 for p(X;jPaf) by normalizing the vee-( I I I ) F h "th "" . . , g f tor 1, 2, . . . , k . or t e J mstant1atwn pa; o 
Paf we produced the mean value JlJ by shifting j1 to 
the right j places when j modulo k was not one. For 
example, if j1 =a · (1, !, �) (where a is the normaliza­
tion constant), then JL1 =a· ( �, 1, � ), JL2 =a· (� , � , 1), 
and so on. We then sampled p(X;IPaf = paf) from 
a Dirichlet distribution with mean JlJ and equivalent 
sample size of 10. The choice of this prior distribution 
for the conditional parameters ensures a reasonable 
level of dependence between d-connected variables in 
the generative structure. 

Our experiments proceeded as follows. We considered 
17 sample sizes, starting with m = 10 and then dou­
bling to obtain the next sample size until m = 655360. 
For each sample size, we produced 100 random gen­
erative distributions for both of the generative struc­
tures. From each such generative distribution, we sam­
pled a single data set of the appropriate size that con­
tained only those values for the observable variables 
{X1,X2,X3,X4}. For the selection four-cycle model, 
any sample in which S was not in the selection state 
was discarded; samples were taken from this model un­
til the number of non-discarded records was equal to 
m. We then ran the GES algorithm using the BDeu 
scoring criterion (described by Heckerman et a!., 1995) 
with a uniform structure prior and an equivalent sam­
ple size of ten. In particular, the version of the crite-

rion that we used can be expressed as: 

n q; f(IO) r; f(IO + N ) 
S(9 D) = lo 

II II q. . II r;:q; iJk 
' g 

r( 10 + N· ·) r(...!Q...) i=l j=l q; 'tJ k=l r;·q; 

where q; is the number of configurations of Pa�,, r; 
is the number of configurations (states) of X;, N;Jk 
is the number of records in the data for which X; = 
k and Pa�, is in the jth configuration, and N;1 = 

L:k Nijk· r(·) is the Gamma function, which satisfies 
r(y + 1) = yf(y) and r(1) = 1. Finally, after each run 
of GES, we compared the resulting local maximum to 
the corresponding inclusion-optimal model(s). 

Figure 3a and Figure 3b show the results of our ex­
periments corresponding to the w-structure and selec­
tion four-cycle model, respectively. In these figures we 
record, for each sample size, the percentage of models 
identified by GES that are inclusion optimal. As ex­
pected, as the sample size increases, the algorithm is 
more likely to identify the optimal model. 

As discussed above, corresponding to each of the do­
mains are two different equivalence-classes of models 
that are inclusion optimal. Only one of these classes is 
parameter optimal, however, and the heights of the 
curves in Figure 3 are the sum of (1) the percent 
of parameter-optimal models and (2) the percent of 
inclusion-optimal models that are not parameter op­
timal. When we broke these sums into their compo­
nent parts, we found that for all sample sizes-and for 
both domains-G ES identifies the parameter-optimal 
model in roughly a constant portion of those times 
when it identifies an inclusion-optimal model. In par­
ticular, the algorithm identified the parameter-optimal 
model roughly three fourths of the time for the w­
structure model, and roughly half the time for the se­
lection four-cycle model, regardless of the sample size. 
These results suggest that even in the large-sample 
limit, G ES may not be able to reliably identify the 
parameter-optimal model. 

5 Conclusion and Final Remarks 

In this paper, we proved that in the limit of large sam­
ple sizes, the GES algorithm identifies an inclusion­
optimal equivalence class of DAG models. The result 
is an important extension to the results of Meek (1997) 
and Chickering (2002) because-although it guaran­
tees a weaker form of optimality-it relaxes the as­
sumption that the generative distribution is DAG­
perfect among the observable variables. Our results 
instead rely on the composition property of indepen­
dence holding among the observable variables. This 
weaker assumption necessarily holds whenever the gen­
erative distribution is perfect with respect to a model 
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Figure 3: Percentage of models identified by GES that are inclusion optimal as a function of the sample size for 
(a) the w-structure gold standard and (b) the selection four-cycle gold standard. 

that has the path property (a more reasonable assump­
tion), regardless of whether that model contains hid­
den variables or whether the observed data is biased 
from hidden selection variables. 

When the generative distribution is DAG-perfect 
among the observable variables, there is a unique 
inclusion-optimal model that is identical to the 
(unique) parameter-optimal model. As we saw in 
Section 3, however, when the generative distribution 
is not DAG-perfect among the observable variables, 
there can be multiple inclusion-optimal models, some 
of which are not parameter optimal. Furthermore, 
there may be more than one parameter-optimal model. 
Our experiments suggest that GES may not be able to 
identify a parameter-optimal model, even in the limit 
of large sample size. An interesting area for further 
investigation is to identify a set of general conditions 
under which greedy algorithms (e.g. GES and UGES) 
will identify the parameter-optimal model. 

Our experiments showed that GES can identify 
inclusion-optimal models when given large datasets. 
More work should be done to compare GES to other 
algorithms (such as UGES) while varying the sample 
size; alternative search algorithms might perform bet­
ter with small datasets. Finally, it would be useful 
to investigate further the number of samples required 
to obtain reliably an inclusion-optimal model using al­
gorithms such as GES; Chickering and Meek (2002) 
provide additional empirical evidence suggesting that 
this number can be large. 
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