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Abstract

In this paper, we derive optimality results
for greedy Bayesian-network search algo-
rithms that perform single-edge modifica-
tions at each step and use asymptotically
consistent scoring criteria. Our results ex-
tend those of Meek (1997) and Chickering
(2002), who demonstrate that in the limit
of large datasets, if the generative distribu-
tion is perfect with respect to a DAG defined
over the observable variables, such search al-
gorithms will identify this optimal (i.e. gen-
erative) DAG model. We relax their assump-
tion about the generative distribution, and
assume only that this distribution satisfies
the composition property over the observable
variables, which is a more realistic assump-
tion for real domains. Under this assump-
tion, we guarantee that the search algorithms
identify an inclusion-optimal model; that is,
a model that (1) contains the generative dis-
tribution and (2) has no sub-model that con-
tains this distribution. In addition, we show
that the composition property is guaranteed
to hold whenever the dependence relation-
ships in the generative distribution can be
characterized by paths between singleton el-
ements in some generative graphical model
(e.g. a DAG, a chain graph, or a Markov
network) even when the generative model in-
cludes unobserved variables, and even when
the observed data is subject to selection bias.

1 Introduction

The problem of learning Bayesian networks (a.k.a di-
rected graphical models) from data has received much
attention in the UAI community. A simple approach
taken by many researchers, particularly those con-
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tributing experimental papers, is to apply—in con-
junction with a scoring criterion—a greedy single-edge
search algorithm to the space of Bayesian-network
structures or to the space of equivalence classes of
those structures. There are a number of important
reasons for the popularity of this approach. First, a
variety of hardness results have shown that learning
various classes of Bayesian networks is NP-hard (e.g.
Chickering, 1996; Dasgupta, 1999; Meek, 2001), and
it is widely accepted that heuristic search algorithms
are appropriate in general. Second, greedy search is
simple to implement and the evaluation of single-edge
modifications is computationally efficient. Third, and
perhaps most important, this class of algorithm typi-
cally works very well in practice.

In this paper, we provide large-sample optimality
guarantees for a particular greedy single-edge search
algorithm—called greedy equivalence search or GES
for short—when that algorithm is used in conjunction
with any asymptotically consistent scoring criterion.
An asymptotically consistent scoring criterion is one
that, in the limit of large number of samples, assigns
the highest score to the parameter-optimal model-that
is, the model with fewest parameters that can repre-
sent the generative distribution. It is well known that
several Bayesian-network scoring criteria—including
the Bayesian criterion and the minimum description
length (MDL) criterion—are asymptotically consis-
tent. We also provide optimality guarantees for an
alternative greedy search algorithm that we call unre-
stricted GES.

Any greedy algorithm that is used in conjunction with
an asymptotically consistent scoring criterion will (by
definition) have a local maximum at a parameter-
optimal model; the problem is that greedy search can
get trapped in other local maxima. Furthermore, in
order to apply the algorithm in practice, the connec-
tivity of the search space must be sparse (i.e. the num-
ber of models considered at each step of the algorithm
must be reasonably small). For example, because the
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number of models grows super-exponentially with the
number of observed variables, the simple (greedy) ap-
proach of enumerating every model and selecting the
best one is not realistic.

Meek (1997) shows that GES-—under the assump-
tion that “Meek’s Conjecture” is true—will provably
terminate at the parameter-optimal model whenever
the generative distribution is perfect with respect to
that model; that is, whenever the independence con-
straints among the observable variables in that dis-
tribution are precisely the independence constraints
in the parameter-optimal model. This result is some-
what surprising because the connectivity of the search
space for GES is sparse. Chickering (2002) proves
that Meek’s Conjecture is true—thus establishing the
asymptotic optimality of GES—and provides an effi-
cient implementation of the search operators used by
GES. Furthermore, the experimental results of Chick-
ering (2002) suggest that the large-sample guarantees
of GES can hold with reasonably small sample sizes.

In this paper, we consider the large-sample behavior
of GES when we eliminate the requirement that the
generative distribution be perfect with respect to the
parameter-optimal model. In particular, using a more
realistic set of assumptions about the generative distri-
bution, we show that the algorithm identifies a model
that satisfies a weaker form of optimality that we call
inclusion optimality. A model is inclusion optimal for
a distribution if it can represent the distribution ex-
actly and if no sub-model can also do so. Our re-
sults hold whenever the composition axiom of indepen-
dence (see, e.g., Pearl, 1988) holds among the observ-
able variables, the contrapositive of which states that
whenever a variable X is (conditionally or marginally)
dependent on a set of variables Y, then there is a sin-
gleton Y € Y on which X depends. A stronger but
more intuitively appealing assumption that we make
to guarantee that the composition holds is that the
dependence relationships in the generative model can
be characterized by paths between singleton nodes in
some graphical model. Because the d-separation cri-
terion identifies dependencies using paths of this type,
it is easy to show that if the generative distribution is
perfect with respect to some Bayesian network—where
any subset of the nodes may be hidden—then we can
guarantee inclusion optimality in the limit. Our results
also apply when the generative distribution is perfect
with respect to other types of graphical models includ-
ing Markov random fields and chain graphs. In all of
these situations, we allow for the presence of hidden
variables in the generative model and selection bias in
the observed data.

The paper is organized as follows. In Section 2, we
describe our notation and previous relevant work. In
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Section 3, we prove the main results of this paper. In
Section 4, we describe a set of experiments we per-
formed that demonstrate the practical importance of
our results. Finally, in Section 5, we conclude with a
summary and discussion of future relevant work.

2 Background

Throughout the paper, we use the following syntac-
tical conventions. We denote a variable by an upper
case letter (e.g. A,B;,Y,0) and a state or value of
that variable by the same letter in lower case (e.g.
a,b;,y,0). We denote sets with bold-face capitalized
letters (e.g. A,Pa;) and corresponding sets of values
by bold-face lower case letters (e.g. a, pa;). Finally, we
use calligraphic letters (e.g. G, B) to denote statistical
models and graphs.

2.1 Directed Graphical models

In this paper, we concentrate on Bayesian networks
for a set of variables O = {Xi,...,X,}, where each
X; € O has a finite number of states. A paramet-
ric Bayesian-network model B for a set of variables
O ={X;,...,Xn} is a pair (G,0). G = (V,E)isa
directed acyclic graph—or DAG for short—consisting
of (1) nodes V in one-to-one correspondence with the
variables O, and (2) directed edges E that connect
the nodes. 6 is a set of parameter values that spec-
ify all of the conditional probability distributions; we
use B; C 6 to denote the subset of these parameter
values that define the (full) conditional probability ta-
ble of node X; given its parents in G. A parametric
Bayesian network represents a joint distribution over
O that factors according to the structure G as follows:
pg(Xh =x1,..., X0 = Zn)
n
= [[p(Xi = z:|Paf = paf,6:) (1)

i=1

where Pa? is the set of parents of node z; in G. A
Bayesian-network model (or DAG model) G is simply
a directed acyclic graph and represents a family of dis-
tributions that satisfy the independence constraints
that must hold in any distribution that can be rep-
resented by a parametric Bayesian network with that
structure. We say that a Bayesian network G includes
a distribution p(O) if the distribution is defined by
some parametric Bayesian network with structure G.

The set of all independence constraints imposed by the
structure G via Equation 1 can be characterized by the
Markov conditions, which are the constraints that each
variable is independent of its non-descendants given its
parents. That is, any other independence constraint
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that holds can be derived from the Markov conditions
(see, e.g., Pearl, 1988). Pearl (1988) provides a graph-
ical condition called d-separation that can be used to
identify any independence constraint that necessarily
follows from the factorization. We use ALL¢gB|S to de-
note the assertion that DAG G imposes the constraint
that A is independent of B given set S.

2.2 Equivalence, Inclusion and Optimality

There are two common notions of equivalence for
Bayesian networks. Bayesian networks G and G' are
distributionally equivalent (G ~p G') if for every para-
metric Bayesian network B = (G, 8), there exists a
parametric Bayesian network B' = (G’,8') such that
B and B’ define the same probability distribution, and
vice versa. Two DAGs G and G' are independence
equivalent (G =~y G') if the independence constraints
in the two DAGs are identical. These two notions of
equivalence are not generally the same, but they are for
the parametric Bayesian-network models that we con-
sider in this paper (i.e. the conditional distributions
are specified with full tables) and thus we say that
two DAGs G and G’ are equivalent—denoted G ~ G'—
to mean that they are both distributionally equivalent
and independence equivalent.

Similarly, there are two corresponding types of inclu-
sion relations for Bayesian networks. A Bayesian net-
work G is distributionally included in a Bayesian net-
work H (G <p H) if every distribution included in G
is also included in ‘H. A Bayesian network G is inde-
pendence included in a Bayesian network H (G <1 H)
if every independence relationship in ‘H also holds in
G. The relationship G <; H is sometimes described
in the literature by saying that H is an independence
map of G. If we assume that = is equivalent to ~p for
a family of parametric Bayesian-network models then
it is easy to show that <p is equivalent to <;. Thus,
because we are using complete tables, the two types
of inclusion are equivalent and we use G < H to de-
note that G is included—that is, both distributionally
and independence—in H. Note that we are using “in-
cluded” to describe the relationship between a model
and a particular distribution, as well as a relationship
between two models. We say that G is strictly included
in H—denoted G < H—if G is included in H and G is
not equivalent to H.

In this paper, we are interested in two types of op-
timality. A Bayesian network G is parameter opti-
mal for distribution p if G includes p and there is no
Bayesian network that includes the distribution with
fewer parameters. A Bayesian network G is inclusion
optimal for distribution p if G includes p and there is
no Bayesian network G’ such that (1) ¢’ < G and (2)
G' also includes p.
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2.3 Learning Directed graphical models

Approaches to the Bayesian-network learning prob-
lem typically concentrate on identifying one or more
Bayesian networks for a set of variables O =
{X1,...,X,} that best fit a set of observed data D
for those variables according to some scoring crite-
rion S(G,D); once the structure of a Bayesian network
is identified, it is usually straightforward to estimate
the parameter values for a corresponding (parametric)
Bayesian network.

A scoring criterion S(G,D) is score equivalent if, for
any pair of equivalent DAGs G and H, it is necessarily
the case that S(G,D) = S(H, D). A scoring criterion
S(G,D) is decomposable if it can be written as a sum
of measures, each of which is a function only of one
node and its parents. In other words, a decomposable
scoring criterion S applied to a DAG G can always be
expressed as:

n

$(G,D) =) s(X;,Paf) (2)

i=1

Note that the data D is implicit in the right-hand side
Equation 2. When we say that s(Xi,Pa,g) is only a
function of X; and its parents, we intend this also to
mean that the data on which this measure depends is
restricted to those columns corresponding to X; and
its parents.

Many commonly used scoring criteria are both score
equivalent and decomposable. For a discussion of why
score equivalence is an important (and sometimes nec-
essary) property, see Heckerman, Geiger and Chicker-
ing (1995). One main advantage to using a decompos-
able scoring criterion is that if we want to compare the
scores of two DAGs G and G', we need only compare
those terms in Equation 2 for which the correspond-
ing nodes have different parent sets in the two graphs.
This proves to be particularly convenient for search
algorithms that consider single edge changes.

To simplify the presentation in this paper, we con-
centrate on using the Bayesian scoring criterion, but
emphasize that our results are more broadly applica-
ble. For the Bayesian scoring criterion we define, for
each model G, a corresponding hypothesis G*, which
for our purposes can simply denote the assertion that
G is an inclusion-optimal representation of the genera-
tive distribution.! The scoring criterion is then defined
to be the relative posterior (or relative log posterior)

'In practice, the definition of DAG hypothesis is im-
portant only to the extent in which it determines how the
second term is evaluated in Equation 3. For most defini-
tions found in the literature, the resulting values for this
term are identical.
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of G given the observed data. Without loss of gen-
erality, we express the Bayesian scoring criterion Sg
using the relative log posterior of G*:

S5(G, D) = logp(G") + log p(D|G") (3)

where p(G") is the prior probability of G*, and p(D|G")
is the marginal likelihood. The marginal likelihood is
obtained by integrating the likelihood function (i.e.
Equation 1) applied to each record in D over the un-
known parameters of the model with respect to the
parameter prior. Heckerman et al. (1995) describe
parameter priors that guarantee score equivalence and
score decomposability of the Bayesian criterion.

2.4 Asymptotically Consistent Scores

It is well known that the Bayesian scoring criterion
is asymptotically consistent. Simply stated, an asymp-
totically consistent scoring criterion is one that—in the
limit as the number of observed cases grows large—
prefers the model containing the fewest number of pa-
rameters that can represent the generative distribution
exactly. Geiger, Heckerman, King and Meek (2001)
show that parametric Bayesian-network models that
contain complete tables are curved exponential mod-
els; Haughton (1988) derives the following approxima-
tion for the Bayesian criterion for this model class:

Sp(G,D) = logp(Dlé, Qh) + glogm +0(1) (4)

where 6 denotes the maximum likelihood values for the
network parameters, d is the dimension of the model
and m is the number of records in D. The first two
terms in this approximation are known as the Bayesian
information criterion (or BIC). The presence of the
O(1) error means that, even as m approaches infin-
ity, the approximation can differ from the true relative
log posterior by a constant. As shown by Haughton
(1988), however, BIC is consistent. Furthermore, it
can be shown that the leading term in BIC grows
as O(m), and therefore we conclude that because the
error term becomes increasingly less significant as m
grows large, Equation 3 is consistent as well. Because
the prior term p(G") does not depend on the data, it
does not grow with m and therefore is absorbed into
the error term of Equation 4. Thus the asymptotic be-
havior of the Bayesian scoring criterion depends only
on the marginal likelihood term.

Consistency of the Bayesian scoring criterion leads,
from the fact that BIC is decomposable, to a more
useful property of the criterion that we call local con-
sistency. Intuitively, if a scoring criterion is locally
consistent, then the score of a DAG model G (1) in-
creases as the result of adding any edge that eliminates
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an independence constraint that does not hold in the
generative distribution, and (2) decreases as a result
of adding any edge that does not eliminate such a con-
straint. More formally, we have the following defini-
tion.

Definition (Local Consistency)

Let D be a set of data consisting of m records that
are iid samples from some distribution p(-). Let G be
any DAG, and let G' be the DAG that results from
adding the edge X; — X;. A scoring criterion S(G, D)
is locally consistent if, in the limit of large m, the
following two properties hold:

1. If X; is not independent of X; given Paig in p,
then S(G', D) > S(G,D)

2. If X; is independent of X given Pa¥d in p then
S(G¢',D) < S(G,D)

Chickering (2002) shows that the Bayesian scoring cri-
terion is locally consistent, a result we present formally
below.

Lemma 1 Chickering (2002) The Bayesian scoring
criterion is locally consistent.

The significance of Lemma 1 is that as long as there
are edges that can be added to a DAG that eliminate
independence constraints not contained in the gener-
ative distribution, the Bayesian scoring criterion will
favor such an addition. Furthermore, if the genera-
tive distribution is included in a DAG, then Lemma 1
guarantees that any deletion of an “unnecessary” edge
will be favored by the criterion.

2.5 Greedy Equivalence Search

In this section, we describe the greedy single-edge
search algorithm that we use for learning Bayesian net-
works. Rather than searching over the space of DAGs,
we use equivalence classes of DAGs defined by the (re-
flexive, symmetric, and transitive) equivalence relation
~ defined in Section 2.2. We use £ to denote an equiv-
alence class of DAG models. Note that we use the
non-bold character £; although arguably misleading in
light of our convention to use bold-face for sets of vari-
ables, we use the non-bold character to emphasize the
interpretation of £ as a model for a set of independence
constraints as opposed to a set of DAGs. To denote a
particular equivalence class to which a DAG model G
belongs, we sometimes write £(G). Note that G =~ G’
implies G’ € £(G) and G € £(G'). We extend the defi-
nition of inclusion to pertain to equivalence classes of
DAGs in the obvious way.

The connectivity of the search space is defined using
the inclusion relation (<) between DAGs. In particu-
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lar, two equivalence classes £1(G) and £2(G’) are ad-
jacent if and only G < G’ or G' < G and the number
of edges in the graphs G and G’ differ by one. We say
we are moving in the search space in a forward direc-
tion if we move from a state £,(G) to an adjacent state
€2(G") in which G < G'; otherwise we are moving in a
backward direction.

The greedy equivalence search algorithm (or GES for
short) is a two-phase greedy algorithm that can be
described as follows. The algorithm starts with the
equivalence class corresponding to no dependencies
among the variables (i.e. the class containing the DAG
model with no edges). Then, for the first phase, a
greedy search is performed only in the forward direc-
tion until a local maximum is reached. For the second
phase, a second greedy search is performed, starting
from the local maximum from the first phase, but this
time only in the backward direction. GES terminates
with the local maximum reached by the second phase.
We find it convenient to name the (restricted) greedy
searches in the first and second phase of GES forward
equivalence search (FES for short) and backward equiv-
alence search (BES for short), respectively. GES can
thus be described as running FES starting from the
all-independence model, and then running BES start-
ing from the resulting local maximum.

GES is a restricted version of a more general greedy
search algorithm that considers moves in both the
forward and backward directions at each step. We
call this unrestricted version of the search unrestricted
GES or UGES for short.

For states of the search in which the dependency struc-
ture of the equivalence class is very dense, the num-
ber of adjacent states that need be considered by GES
and UGES can be exponential in the number of vari-
ables. For simple models, however, the number of ad-
jacent states is small. Fortunately, we have found that
in practice the algorithms—when applied to real data
sets—only encounter simple models. In fact, Chick-
ering (2002) demonstrates that GES is as fast as a
greedy DAG-based search that considers O(n?) adja-
cent states at each step.

Chickering (2002) describes a representation for equiv-
alence classes and a corresponding set of operators
that implement the forward and backward searches of
GES. All of the operators can be identified efficiently
and can be scored—when using a decomposable scor-
ing criterion—by evaluating only a small subset of the
terms in Equation 2.

We end this section by presenting a transformational
characterization of the inclusion relation for Bayesian
networks. The characterization was initially conjec-
tured to be valid by Meek (1997), and was later proven
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to be so by Chickering (2002).

Theorem 2 (Chickering, 2002) Let G and H be
any pair of DAGs such that G < H. Letr be the num-
ber of edges in H that have opposite orientation in G,
and let a be the number of edges in ‘H that do not exist
in either orientation in G. There exists a sequence of
at most r + 2a distinct edge reversals and additions in
G with the following properties:

1. Each edge reversed is a covered? edge

2. After each reversal and addition G is a DAG and
G<H

3. After all reversals and additions G = H

This theorem plays an essential role to understand-
ing how the GES algorithm—and more specifically the
BES algorithm—Ileads to an inclusion-optimal model.
The key feature in the characterization is that it is
based on single edge transformations.

3 Results

In this section, we prove the main results of this pa-
per. Throughout the section, we use p to denote the
distribution over the observable variables from which
the observed data D was generated, and we use m to
denote the number of records in D.

First we show that the second phase of the algorithm
(i.e. the BES algorithm) is guaranteed (in the limit
of large m) to identify an inclusion-optimal model if it
starts with an equivalence class that includes p.

Theorem 3 IfE* includes p then, in the limit of large
m, the result of running BES, starting from £* and
using any locally consistent scoring criterion, results
in an inclusion-optimal model.

Proof: After each step in the backward equivalence
search, we are guaranteed that the current state £ will
include p by the following argument. Suppose this
is not the case, and consider the first move made by
BES to a state that does not include p. Because this
move corresponds to an edge deletion in some DAG,
it follows immediately from the fact that the scoring
function is locally consistent that any such deletion
would decrease the score, thus contradicting the fact
that BES is greedy.

To complete the proof, assume that BES terminates
with some equivalence class £ that is not inclusion op-
timal, and let £&' < £ be any inclusion optimal equiv-
alence class that is strictly included in £. Let H be

2An edge X; — X;j is covered in DAG G if Pa? =
Pa,;g 0] X,‘.
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any DAG in £, and let G be any DAG in £'. Because
G < H we conclude from Theorem 2 that there exists a
sequence of covered edge reversals and edge additions
that transforms G into 2{. There must be at least one
edge addition in the sequence because by assumption
G # H and because (see Chickering, 1995) reversing
a covered edge in a DAG results DAG in the same
equivalence class. Consider the DAG G’ that precedes
the last edge addition in the sequence. Clearly £(G')
is one step backwards from £ and because G’ has fewer
parameters than H, we conclude from the local consis-
tency of the scoring criterion that £ cannot be a local
minimum, yielding a contradiction. O

Theorem 3 is important from a theoretical point of
view because we can always start BES with the com-
plete equivalence class that asserts no independence
constraints; this model is guaranteed to include p. One
problem with starting from the complete model is that
for any realistic domain, the number of parameters in
the model will be prohibitively large. Put another way,
in order for the asymptotic properties of the algorithm
to apply to a real (finite m) problem, we would need
an unrealistic number of records in the data. Another
problem with starting from the complete model is that
BES must begin by evaluating an exponential num-
ber of (adjacent) states, thus making the algorithm
intractable in this situation. As we shall see in Theo-
rem 4, the previous theorem becomes important in a
practical sense if the composition property holds in p
among the observable variables: given that a variable
X is not independent of the set Y given set Z, then
there exists a singleton element Y € Y such that X is
not independent of Y given set Z.

Theorem 4 If p satisfies the composition property
then, in the limit of large m, GES using any locally
consistent scoring criterion finds an inclusion optimal
model.

Proof: Given Theorem 3 we need only to show that
the forward search (FES) in the first phase of GES
identifies an equivalence class that includes p. Sup-
pose this is not the case, and consider any DAG G
contained in the (local maximum) equivalence class
reached at the end of the first phase of GES. Because
G does not include p, there must be some independence
constraint from G that does not hold in p. Because the
independence constraints of G are characterized by the
Markov conditions, it follows that in p, there must ex-
ist some node X; in G for which X; is not independent
of its non-descendants Y given its parents Pa;. Be-
cause the composition axiom holds for p, there must
exist at least one singleton non-descendant Y € Y for
which this dependence holds. By Lemma 1, this im-
plies that the DAG G’ that results from adding the

CHICKERING & MEEK 99

edge Y — X; to G (which cannot be cyclic by defini-
tion of Y) has a higher score than G. The equivalence
class £(G') is one step forward from £ which contra-
dicts the fact that £ is a local maximum. O

The proof of Theorem 4 does not require that GES
start with the empty (i.e. no-dependence) model; as a
result, we obtain the following corollary.

Corollary 5 If p satisfies the composition property
then, in the limit of large m, UGES using any locally
consistent scoring criterion finds an inclusion optimal
model.

Proof: Suppose the corollary is not correct. Then
there exists a local maximum G in the UGES search
space that is not inclusion optimal. From the proof of
Theorem 4, we can run GES starting from the model
G to reach an inclusion-optimal model. Because the
operators available to GES are a strict subset of the
operators in UGES, it follows that G cannot be a lo-
cal maximum in the UGES search space, yielding a
contradiction. O

Theorem 4 and Corollary 5 are very general results
in the sense that we assume nothing about p except
that the composition property holds over the observ-
able variables; the composition property need not hold
among any of the variables involved that are not ob-
served. The “composition assumption” in isolation,
however, may not be intuitively appealing to many. In
what situations is this assumption violated? Can we
expect the composition assumption to be reasonable
in many domains?

To help gain a better understanding of the types of
situations for which the composition property holds,
we introduce the notion of a graphical path condition.
A graphical path condition PCg(X,Y,Z) is a function
of a graphical model G that maps two singleton nodes
and a set of nodes to either zero or one. Intuitively,
the function checks whether or not there is a “path”
from X to Y given “context” Z. The d-separation cri-
terion, for example, is a graphical path condition for
DAG models: in this case PCg(X,Y,Z) has the value
one if and only if there is an active path from X to Y in
G given set Z. As another example, the presence of an
undirected path between X and Y that does not pass
through a node in Z is a graphical path condition for a
Markov random field (undirected graphical model). As
we discuss below, when there exists a graphical path
condition that characterizes the dependencies among
the variables—as is the case with both of the previous
examples—then we are guaranteed that the composi-
tion property will hold. To simplify the discussion, we
provide the following definition.

Definition (Path Property)
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A graphical model M has the path property if there
exists a path condition PCaq(-,-,) that characterizes
the dependencies implied by M as follows:

XU MY|Z < 3X e XY € Ys.t.PCu(X,Y,Z) =1

We now show that if the generative distribution is per-
fect with respect to a model that has the path prop-
erty, then the composition axiom holds even in the
presence of hidden variables and selection variables.
Selection variables are hidden variables that are in a
particular state for each record in the observed data.
In a mail survey, for example, a selection variable
might correspond to “the person filled out the survey
and mailed it back”; the presence of such variables can
lead to biased results because those who respond to the
survey may not be representative of the population as
a whole.

Let a M be a graphical model for variables V.= {OU
HUS} where O is a set of observed variables, H a set
of hidden variables and S is a set of selection variables.

Proposition 1 If q is a distribution that is perfect
with respect to a model M that has the path prop-
erty, then the composition property holds for p(O) =
> u9(0,H,S =s).

Proof: Follows immediately from the definition of the
path property and from the fact that because q is per-
fect with respect to M, ¢ and M have precisely the
same dependence relations. O

This proposition tells us that if our data is generated
from a distribution that is perfect with respect to some
graphical model with the path property then the distri-
bution is guaranteed to satisfy the composition prop-
erty even if there are hidden variables and the data is
generated with selection bias. This naturally leads the
next corollary.

Corollary 6 If p is perfect with respect to either a
DAG, a Markov random field, or a chain graph, then
in the limit of large m, GES (or UGES) using any
locally consistent scoring criterion finds an inclusion
optimal model.

Proof: This follows immediately because all of these
types of graphical models have the path property. O

4 Experiments

In this section, we present experimental results demon-
strating that we can attain the large-sample benefits
of the GES algorithm—that is, we can identify the
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inclusion-optimal model—when the generative distri-
bution is not DAG-perfect and when given a finite
sample size. Our approach is to sample data from
known gold-standard models for which we can analyt-
ically determine the inclusion-optimal models defined
over the observable variables. By generating synthetic
data from the gold-standard models, we can evaluate
how well GES performs by checking whether or not it
identifies the corresponding inclusion-optimal model.

We concentrate on two specific gold-standard struc-
tures for all of our experiments; we sample the cor-
responding generative parameters—using a random-
sampling technique described below—to produce the
generative distribution. The first gold-standard struc-
ture is the w-structure model shown in Figure 1la in
which all variables are binary except for the three-
valued X,; the variable H is hidden, and as a result
there is no perfect map in a DAG model defined over
the observables. The second generative structure we
consider is the selection four-cycle model shown in Fig-
ure 2a in which all variables are binary except for the
four-valued X;. The variable S is a selection vari-
able with a corresponding selection value of one; in
other words, given a random sample of cases from this
model, we only allow ones for which S =1 to be in-
cluded in the observed data. The resulting distribution
over the observable variables is included in an undi-
rected four cycle, which has no perfect map in a DAG

model.
() (m) (x)
() ()

(a
(x) k9 (%) (x

@\a @/e
(b) (c)

Figure 1: (a) the w-structure model, (b) the
parameter-optimal model and (c) an inclusion-optimal
model that is not parameter optimal.

In Figure 1b and Figure 1c we show (the unique) repre-
sentative DAG models from the two inclusion-optimal
equivalence classes corresponding to the w-structure
model. The model in Figure 1b, which contains 18
parameters, is parameter optimal, whereas the model
in Figure 1c, which contains 20 parameters, is not pa-
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Figure 2: (a) the selection four-cycle model, (b) the
parameter-optimal model and (c) an inclusion-optimal
model that is not parameter optimal.

rameter optimal. Similarly, in Figure 2b and Figure
2c we show representative DAG models from the two
inclusion-optimal equivalence classes corresponding to
the selection four-cycle model. The model in Figure
2b, which contains 19 parameters, is parameter opti-
mal, whereas the model in Figure 2b, which contains
23 parameters, is not parameter optimal.

In order to produce a random generative distribu-
tion with strong dependencies between the variables,
we sampled each of the conditional parameter dis-
tributions from the gold standard as follows. For a
variable X; with k states, we constructed a “basis”
mean value f for p(XilPaig) by normalizing the vec-
tor (3,1,...,1). For the jth “instantiation” paf of
Pa? we produced the mean value 4j by shifting i to
the right j places when j modulo k£ was not one. For
example, if f =« (1, ;, 3) (where o is the normaliza-
tion constant), then /i = a- (3,1, 3), ug =a-(3,1,1),
and so on. We then sampled p(X;|Pad = pa?) from
a Dirichlet distribution with mean p; and equivalent
sample size of 10. The choice of this prior distribution
for the conditional parameters ensures a reasonable
level of dependence between d-connected variables in
the generative structure.

Our experiments proceeded as follows. We considered
17 sample sizes, starting with m = 10 and then dou-
bling to obtain the next sample size until m = 655360.
For each sample size, we produced 100 random gen-
erative distributions for both of the generative struc-
tures. From each such generative distribution, we sam-
pled a single data set of the appropriate size that con-
tained only those values for the observable variables
{X1,X2,X3,X4}. For the selection four-cycle model,
any sample in which S was not in the selection state
was discarded; samples were taken from this model un-
til the number of non-discarded records was equal to
m. We then ran the GES algorithm using the BDeu
scoring criterion (described by Heckerman et al., 1995)
with a uniform structure prior and an equivalent sam-
ple size of ten. In particular, the version of the crite-
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rion that we used can be expressed as:
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where ¢; is the number of configurations of Pagﬁ_, T;
is the number of configurations (states) of X;, Nijk
is the number of records in the data for which X; =
k and Pag{i is in the jth configuration, and N;; =
Sk Nijk. T'(+) is the Gamma function, which satisfies
I(y+1) =yl (y) and I'(1) = 1. Finally, after each run
of GES, we compared the resulting local maximum to
the corresponding inclusion-optimal model(s).

Figure 3a and Figure 3b show the results of our ex-
periments corresponding to the w-structure and selec-
tion four-cycle model, respectively. In these figures we
record, for each sample size, the percentage of models
identified by GES that are inclusion optimal. As ex-
pected, as the sample size increases, the algorithm is
more likely to identify the optimal model.

As discussed above, corresponding to each of the do-
mains are two different equivalence-classes of models
that are inclusion optimal. Only one of these classes is
parameter optimal, however, and the heights of the
curves in Figure 3 are the sum of (1) the percent
of parameter-optimal models and (2) the percent of
inclusion-optimal models that are not parameter op-
timal. When we broke these sums into their compo-
nent parts, we found that for all sample sizes—and for
both domains—GES identifies the parameter-optimal
model in roughly a constant portion of those times
when it identifies an inclusion-optimal model. In par-
ticular, the algorithm identified the parameter-optimal
model roughly three fourths of the time for the w-
structure model, and roughly half the time for the se-
lection four-cycle model, regardless of the sample size.
These results suggest that even in the large-sample
limit, GES may not be able to reliably identify the
parameter-optimal model.

5 Conclusion and Final Remarks

In this paper, we proved that in the limit of large sam-
ple sizes, the GES algorithm identifies an inclusion-
optimal equivalence class of DAG models. The result
is an important extension to the results of Meek (1997)
and Chickering (2002) because—although it guaran-
tees a weaker form of optimality—it relaxes the as-
sumption that the generative distribution is DAG-
perfect among the observable variables. Our results
instead rely on the composition property of indepen-
dence holding among the observable variables. This
weaker assumption necessarily holds whenever the gen-
erative distribution is perfect with respect to a model
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Figure 3: Percentage of models identified by GES that are inclusion optimal as a function of the sample size for
(a) the w-structure gold standard and (b) the selection four-cycle gold standard.

that has the path property (a more reasonable assump-
tion), regardless of whether that model contains hid-
den variables or whether the observed data is biased
from hidden selection variables.

When the generative distribution is DAG-perfect
among the observable variables, there is a unique
inclusion-optimal model that is identical to the
(unique) parameter-optimal model. As we saw in
Section 3, however, when the generative distribution
is not DAG-perfect among the observable variables,
there can be multiple inclusion-optimal models, some
of which are not parameter optimal. Furthermore,
there may be more than one parameter-optimal model.
Our experiments suggest that GES may not be able to
identify a parameter-optimal model, even in the limit
of large sample size. An interesting area for further
investigation is to identify a set of general conditions
under which greedy algorithms (e.g. GES and UGES)
will identify the parameter-optimal model.

Our experiments showed that GES can identify
inclusion-optimal models when given large datasets.
More work should be done to compare GES to other
algorithms (such as UGES) while varying the sample
size; alternative search algorithms might perform bet-
ter with small datasets. Finally, it would be useful
to investigate further the number of samples required
to obtain reliably an inclusion-optimal model using al-
gorithms such as GES; Chickering and Meek (2002)
provide additional empirical evidence suggesting that
this number can be large.
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