A Proposal for SLUMS

Venkata N. Padmanabhan
Microsoft Research

www.research.microsoft.com/~padmanab

SLUMS BOF, 44th IETF
March 1999
Overview

• TCP can satisfy many of SLUMS goals
 – make TCP connection cheap enough that applications can use as many as they would like
 – ALF at the granularity of TCP connections
 • each connec provides a logically-independent byte stream

• Benefits
 – minimal change to existing protocol and API
 – relieves applications from being constantly engaged in transmission/retransmission of data
Problems

- Cost of connection setup
- Large packet count
- State storage and management overhead
- Short connections perform poorly
- Concurrent connections compete
- Strict ordering of single connection is restrictive
- Cost of connection setup
Transaction TCP

- TCP accelerated open eliminates RTT for setup
- But opens up security holes
- Expand CC cache to include key info
 - security & performance at the expense of extra state
 - trade-off exists even with UDP

- T/TCP also helps cut down packet count
 - 3 packets for minimal transaction
Challenges of Short and/or Concurrent Connections

• Concurrent connections compete
 – independent probing ⇒ repeated slow start
 – increased packet loss rate
 – arbitrary bandwidth sharing beyond applic control

• Dominance of timeouts [BPS+98]
 – insufficient dupacks to trigger fast retransmission

• Slow start penalty
 – RFC-2140, RBP [VH97], TCP fast start [Pad98]
 – out of scope of SLUMS
TCP Session [Pad98, BPS+98]

• Decouple 2 components of TCP functionality
 – reliable, ordered byte-stream service: per connection
 – congestion ctrl/loss recovery algorithms: per session

• Three components
 – integrated congestion control
 – connection scheduling
 – integrated loss recovery
Integrated Congestion Control and Connection Scheduling

- Single congestion window for entire session
 - sender entitled to send when $ownd < cwnd$
 - sender can choose to send on any connection
 - independent flow control

- Connection scheduling
 - hierarchical round-robin (HRR) [KKK90]
 - $setwt()$ and $resetwt()$ to dynamically vary weights
 - other schedulers can certainly be used
 - can potentially interface with RSVP/diffserv
Integrated Loss Recovery

- Pool together pkt delivery info across conns to make data-driven loss recovery more effective
 - use *later* acks in addition to dupacks
 - need to be careful with delayed acks
- Loss recovery rules for a connection
 - at least 1 dupack + 3 dup/later acks for a segment
 - at least 3 dup/later acks for at least 2 segments
- Rtx timeout only if all acks streams have stalled
- 7-10X reduction in # rtx timeouts [Pad98]
Ack Aggregation

• Ack loss \(\Rightarrow\) false retransmission possible
 – but experiments in [Pad98] do not exhibit this problem

• To be safe, aggregate acks
 – TCP option to carry ack info for other connections
 – 2 bytes of kind/length + 8 bytes of port/ack number
 – up to 4 such “acks” per packet
 – either in place of or in addition to regular acks
 – helps reduce packet count
Efficient State Management

- **TCP Session**
 - cong ctrl/loss recovery variables in SCB
 - 28 bytes out of 134 bytes in TCB move to SCB
 - only one retransmit timer per session
- **Much smaller TCB for inactive connections**
- **Better demultiplexing algorithms [Mog95]**
 - use hashing instead of linear search
 - maintain TCBs of active connections separately from those for inactive connections
Summary

- Cheap connections ⇒ applic could implement ALF at the granularity of connections
- Connection scheduling to reflect priorities
- Optimized TCP with minimal protocol/API mods helps address many of SLUMS goals
 - quick setup, ALF, independent flow control, multiplexing, QoS consciousness between the streams, integrated congestion control, avoiding repeated slow start, ack aggregation, reduced state management overhead
Limitations

- No failover upon change in IP address
 - Mobile IP style tunneling is a possibility but would be inefficient
 - IP option to carry unique host ID?

- TCP provides enforces reliability
 - selective reliability possible at the granularity of connections