
Doubly Robust Off-policy Evaluation for Reinforcement Learning

Nan Jiang NANJIANG@UMICH.EDU

Computer Science & Engineering, University of Michigan

Lihong Li LIHONGLI@MICROSOFT.COM

Microsoft Research

Abstract
We study the problem of evaluating a policy that
is different from the one that generates data. Such
a problem, known as off-policy evaluation in rein-
forcement learning (RL), is encountered whenever
one wants to estimate the value of a new solution,
based on historical data, before actually deploy-
ing it in the real system, which is a critical step of
applying RL in most real-world applications. De-
spite the fundamental importance of the problem,
existing general methods either have uncontrolled
bias or suffer high variance. In this work, we
extend the so-called doubly robust estimator for
bandits to sequential decision-making problems,
which gets the best of both worlds: it is guaran-
teed to be unbiased and has low variance, and as
a point estimator, it outperforms the most popular
importance-sampling estimator and its variants
in most occasions. We also provide theoretical
results on the hardness of the problem, and show
that our estimator can match the asymptotic lower
bound in certain scenarios.

1. Introduction
We study the off-policy evaluation problem, in which one
aims to estimate the value of a policy with data collected
by another policy (Sutton & Barto, 1998). This problem is
of fundamental importance in AI, and reinforcement learn-
ing (RL) in particular. For example, it is critical in intra-
option learning when an agent tries to optimize the policies
of different options (that is, temporally abstracted actions,
sometimes referred to as skills) using the same stream of
experience generated by some behavior policy (Sutton et al.,
1998). Off-policy evaluation may also be viewed as the
statistical problem of estimating the causal effect of an in-

tervention from historical data, without actually running an
experiment (Holland, 1986; Pearl, 2009).

In practice, off-policy evaluation is critical in many real-
world applications of reinforcement learning, whenever it
is infeasible to estimate policy value by running the policy,
because doing so is expensive, risky, or unethical/illegal. In
robotics and business/marketing applications, for instance,
it is often risky (thus expensive) to run a policy without an
estimate of the policy’s quality (Li et al., 2011; Bottou et al.,
2013; Thomas et al., 2015a). In medical and public-policy
domains (Murphy et al., 2001; Hirano et al., 2003), often
it is hard to run a controlled experiment to estimate the
treatment effect. Off-policy evaluation is therefore critical
in a wide range of important applications.

There are roughly two classes of approaches to off-policy
evaluation. The first is to build an outcome model that
predicts, given a current state and action, the reward and
possibly the next states. Such a model-based approach has
low variance and works well when the outcome model can
be learned to satisfactory accuracy. However, for complex
real-world problems, it is often hard to specify a model
class which is learnable with limited data while at the same
time has a small approximation error. Furthermore, it is in
general impossible to estimate the approximation error of a
model class, resulting in a bias in model-based estimates that
cannot be easily quantified. The second class of approaches
are based on the idea of importance sampling, which correct
the mismatch between the distributions induced by the target
policy and by the behavior policy (Precup et al., 2000). Such
approaches have the salient properties of being unbiased and
independent of the problem’s state space, but its variance
can be too large for the method to be useful, especially when
the decision horizon is large.

In this work, we propose a new off-policy evaluation algo-
rithm that can achieve the best of model-based approaches
(low variance) and importance-sampling-based approaches
(no bias). Our contributions include:

• A simple doubly-robust estimator is proposed for RL
that subsumes a previous one for contextual bandits.
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• The estimator’s statistical properties are analyzed,
which suggests its superiority over previous ap-
proaches. Furthermore, in certain scenarios we prove
that the estimator’s variance matches the Cramer-Rao
lower bound for the off-policy evaluation problem.

• On benchmark problems, the new estimator is shown to
be much more accurate than importance-sampling base-
lines, while remaining unbiased in contrast to model-
based approaches. As an application, we also show
how such a better estimator can benefit policy iteration
to obtain improved policies with higher value.

2. Related Works
This paper focuses on off-policy evaluation in finite-horizon
problems, which are often a more natural way to model real-
world problems. The goal is to estimate expected return of
start states drawn randomly from a distribution. It differs
from previous work that aims to obtain the whole value
function (Precup et al., 2000; 2001; Sutton et al., 2015), but
the two settings share the same core difficulty of predicting
long-term reward in an off-policy way.

There are two main classes of approaches to off-policy eval-
uation. The first is to estimate a model from data, and then
evaluate a new policy against this model. Examples are Ped-
nault et al. (2002) and variants that generates approximate
models by artificial trajectories (Fonteneau et al., 2013).
The second is to use importance sampling (IS) to obtain
unbiased estimates of policy values (Precup et al., 2000;
2001). The main drawback of IS is its high variance, espe-
cially when the horizon is large. In this work, we use the
doubly-robust (DR) technique to combine these two classes
of approaches, resulting in a new off-policy estimator that
is unbiased and has lower variance.

DR was first studied in statistics (Rotnitzky & Robins, 1995)
to improve robustness of estimations when there can be
model misspecification, and a DR estimator is developed
for dynamic treatment regime (Murphy et al., 2001), to
estimate the value as a function of some static side informa-
tion. DR was later applied to policy learning in contextual
bandits (Dudı́k et al., 2011), whose finite-time variance is
shown to be typically better than IS. The DR estimator in
this work generalizes the work of Dudı́k et al. (2011) to
sequential decision-making problems. In addition, we show
that in certain scenarios DR with a perfect model is optimal
as its variances matches the lower bound.

One of the motivations to study off-policy learning is to
ensure that a new policy has a good enough quality before
it gets deployed. Such a safety guarantee has been studied
in the literature. In conservative policy iteration (Kakade
& Langford, 2002) and safe policy iteration (Pirotta et al.,
2013), local adjustments to policies are made to ensure

monotonic improvements over iterations. More recently,
Thomas et al. (2015a) incorporates lower confidence bounds
in policy iteration to ensure the computed policies in the
iterations have a minimum performance guarantee. In this
paper, we show that by replacing IS with DR, an agent can
often deploy good policies more aggressively hence obtain
higher reward, while maintaining the same level of safety
against bad policies.

3. Background
3.1. Markov Decision Processes

An MDP is defined by M = 〈S,A, P,R, γ〉, where S is the
state space, A is the action space, P : S×A×S → R is the
transition function where P (s′|s, a) specifies the probability
of seeing state s′ after taking action a at state s, and R :
S×A→ R is the mean reward function that determines the
short-term goodness of a state-action pair (s, a) by R(s, a).
Let µ be the initial state distribution. A (stationary) policy
π : S × A → R maps each state s ∈ S to a distribution
over actions, where a ∈ A is assigned probability π(a|s).
Given an initial state distribution µ, the discounted value of
π w.r.t. a finite horizon H is defined as

vπ,H := Es1∼µ,at∼π(·|st)
st+1∼P (·|st,at)

[ H∑
t=1

γt−1rt

]
,

where rt is the observed reward with mean R(st, at). When
the value of π is conditioned on s1 = s (and a1 = a), we
define it as the state (and action) value function V π,H(s)
(and Qπ,H(s, a)). In some discounted problems the true
horizon is infinite, but for the purpose of policy evaluation
we can still use a finite H (usually set to be O(1/(1− γ)))
so that vπ,H approximates vπ,∞ with a bounded error that
diminishes as H increases.

3.2. Off-policy Evaluation

For simplicity, we assume that the data (a set of length-H
trajectories) is sampled using a fixed policy1 π0, which we
call the behavior policy. Our goal is to estimate vπ1,H ,
the value of a given target policy π1 from data trajectories
D = {(s(i)1 , a

(i)
1 , r

(i)
1 , . . . , s

(i)
H+1), i = 1, . . . , |D|}. Below

we review two popular families of estimators for this off-
policy evaluation problem.

Notation Simplification Since we will only be interested
in the value of π1 in this paper, we will omit the depen-
dence of value functions on policy unless specified oth-
erwise. Also, whenever the argument of a value func-
tion is a state that appears at the t-th step of a trajectory,

1All the analyses in this paper can be straight-forwardly ex-
tended to handle datasets comprising of trajectories generated
using different behavior policies.
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we omit the dependence on horizon and always assume
that there are H + 1 − t remaining steps. For example,
V (st) = V π1,H+1−t(st). Furthermore, all (conditional)
expectations are taken with respect to the distribution in-
duced by (µ, π0), unless stated otherwise. Finally, given
a trajectory τ = (s1, a1, r1, . . . , sH+1), we use the short-
hand: Et

[
·
]

:= E
[
·
∣∣ s1, a1, . . . , st−1, at−1], and similar

for Vt
[
·
]
.

3.2.1. MODEL-BASED ESTIMATOR

If the true parameters of the MDP are known, the value
of the target policy can be computed recursively from the
Bellman equations: let V 0(s) ≡ 0, and for h = 1, 2, . . . ,H ,

Qh(s, a) := Es′∼P (·|s,a)
[
R(s, a) + γV h−1(s′)

]
,

V h(s) := Ea∼π1(·|s)
[
Qh(s, a)

]
.

(1)

This suggests a two-step procedure for off-policy evaluation,
which is called model-based off-policy evaluation: first, fit
an MDP model M̂ from data; second, compute the value
function from Equation 1 using the estimated parameters
P̂ and R̂. When an exact state representation is used and
each state-action pair appears sufficient number of times
in the data, the model-based estimator has provably low
variance and negligible bias (Mannor et al., 2007), and often
outperforms other alternatives in practice (Paduraru, 2013).

However, real-world problems usually have huge or even
infinitely large state spaces, and many state-action pairs
will not be observed even once in the data, rendering the
necessity of generalization in model fitting. To generalize
over the state (and action) space, one can either choose to
apply function approximators to fitting M̂ (Jong & Stone,
2007; Grünewälder et al., 2012), or to fitting the value func-
tion directly2 (Bertsekas & Tsitsiklis, 1996; Sutton & Barto,
1998; Dann et al., 2014). While the use of function approx-
imators make the problem tractable, it can introduce bias
to the estimated value when the MDP parameters or the
value function cannot be represented in the corresponding
function class. Such a bias is in general hard to quantify
from data, hence breaks the credibility of estimations given
by the model-based approach.

3.2.2. IMPORTANCE SAMPLING ESTIMATORS

The basic importance sampling (IS) estimator provides
an unbiased estimate of π1’s value by averaging the fol-
lowing function of each trajectory (s1, a1, r1, . . . , sH+1).
Let us define the per-step importance sampling ratio as

2Conventionally, fitting value functions directly without fitting
an MDP model is known as value-based (or direct) RL and is
distinguished from model-based (or indirect) RL. Such a difference,
however, is not important for most part of this paper, therefore we
use the term “model” to refer to the value function obtained by
either of these two methods.

ρt := π1(at|st)/π0(at|st), and the cumulative importance
sampling ratio ρ1:t :=

∏t
t′=1 ρt′ . The basic (trajectory-

wise) importance sampling estimator is

VIS := ρ1:H ·
( H∑
t=1

γt−1rt

)
. (2)

Given a dataset D containing multiple trajectories, the IS
estimator is simply the average estimate over the trajectories,
namely 1

|D|
∑
i=1 V

(i)
IS , where V (i)

IS is IS applied to the i-th
trajectory. (This averaging step will be ommited for the
other estimators in the rest of this paper, and we will only
specify the estimate for a single trajectory).

An improved step-wise version of IS multiplies the reward
at each horizon only by the cumulative importance sampling
ratio preceding it, and enjoys slightly smaller variance:

Vstep-IS :=

H∑
t=1

γt−1ρ1:t rt. (3)

Typically, IS (even the step-wise version) suffers from very
high variance, which in general grows exponentially with
horizon.

One variant of IS, weighted importance sampling (WIS), is
a biased but consistent estimator, given as follows: define
wt =

∑|D|
i=1 ρ

(i)
1:t/|D| as the average cumulative important

ratio at horizon t in a dataset D, then WIS estimates the
return from each trajectory in D as

VWIS =
ρ1:H
wH

( H∑
t=1

γt−1rt

)
. (4)

In general, WIS has smaller variance than IS, at the cost
of being biased. There is also a step-wise version for WIS,
which is considered to be the most practial point estimator in
the IS family (Precup, 2000; Thomas, 2015). It is obtained
by applying WIS to each horizon separately:

Vstep-WIS =

H∑
t=1

γt−1
ρ1:t
wt

rt. (5)

We will compare our proposed method to both step-wise IS
and step-wise WIS in the experiment section.

3.3. Doubly Robust Estimator for Contextual Bandits

Contextual bandits may be considered as MDPs with hori-
zon 1, with initial states s drawn i.i.d. from some distribution
µ. As in the general MDP case, a sampling trajectory is in
the form of (s, a, r). Suppose now we are given an estimated
reward function R̂, possibly from performing regression
over a separate dataset, then the doubly robust estimator for



Doubly Robust Off-policy Evaluation for Reinforcement Learning

contextual bandits (Dudı́k et al., 2011) is defined as follows:
with ρ := π1(a|s)

π0(a|s) and V̂ (s) := Ea∼π1(·|s)
[
R̂(s, a)

]
,

VDR := V̂ (s) + ρ
(
r − R̂(s, a)

)
. (6)

This estimator is known to be unbiased when R̂ does not
depend on the sample (s, a, r), and tends to have much
lower variance than IS when R̂ approximates R reasonably
well (Dudı́k et al., 2011).

In the case where the importance ratio ρ is unknown, DR
estimates both ρ and the reward function from data using
some parametric function classes. The name “doubly robust”
refers to fact that if either function class is properly specified,
the DR estimator is asymptotically unbiased, offering two
chances to ensure consistency. In this paper, however, we
are only interested in DR’s variance reduction benefit.

Requirement of independence In practice, the target pol-
icy π1 is often computed from data, and for DR to stay
unbiased, it is required that π1 does not depend on the sam-
ples used in Equation 6; the same requirement applies to IS.
While R̂ should be independent of such samples as well, it
is not required that π1 and R̂ are independent of each other.
Therefore, we can use the same dataset to generate π1 and
fit R̂. In other situations where π1 is given directly, to apply
DR we can randomly split the data into two parts, one for
fitting R̂ and the other for applying Equation 6. The same
requirements and procedures apply to the sequential case,
discussed in the next section. In the experiments, we will
show that our extension of DR outperforms other estimators
regardless of which dataset the model-based estimation is
obtained from.

4. Doubly Robust Estimator for the Seqential
Setting

4.1. Algorithm

Here, we will extend the DR estimator for bandits to the
sequential case. A critical step is to rewrite Equation 3 in a
recursive form. Define V 0

step-IS := 0, and for t = 1, . . . ,H ,

V H+1−t
step-IS := ρt

(
rt + γV H−tstep-IS

)
. (7)

It can be shown that V Hstep-IS is equivalent to Vstep-IS given
in Equation 3. In this form, we can view the step-wise
importance sampling estimator as dealing with a bandit
problem at each horizon t = 1, . . . ,H , where st is the
context, at is the action taken, and the observed stochastic
return is rt + γV H−tstep-IS, whose expected value is Q(st, at).

Then, if we are supplied Q̂, an estimation of Q, we can
apply the bandit doubly robust estimator at each horizon,

and obtain the following unbiased estimator: let V 0
DR := 0,

V H+1−t
DR := V̂ (st) + ρt

(
rt + γV H−tDR − Q̂(st, at)

)
. (8)

Implementation Note Recall that the dependence of V̂
and Q̂ on the remaining number of steps is omitted (see
Section 3.2). When computed from an estimated MDP
model, the value functions for different number of remaining
steps may be obtained by applying Bellman update operator
iteratively H times starting from V̂ 0(s) ≡ 0.

4.2. Variance Analysis

Below we compare the variance of step-wise IS and DR and
show how DR reduces variance with a good model Q̂ from a
theoretical perspective. Note that we only give the variance
of the estimate for a single trajectory, and the variance for
the estimate based on a dataset D will be divided by |D|,
the number of trajectories, due to the i.i.d. nature of D.

Theorem 1. Step-wise importance sampling (Equation 7)
is an unbiased estimator of vπ,H , whose variance is given
in the following recursive form: for t = 1, 2, . . . ,H ,

Vt
[
V H+1−t

step-IS

]
= Vt

[
V (st)

]
+ Et

[
Vt
[
ρtQ(st, at)

∣∣ st]]
+ Et

[
ρ2t Vt+1

[
rt
]]

+ Et
[
γ2ρ2t Vt+1

[
V H−tstep-IS

]]
, (9)

and V
[
V 0

step-IS

∣∣ sH , aH] = 0. In comparison, Equation 8
is also an unbiased estimator of vπ,H with variance given
recursively by

Vt
[
V H+1−t

DR

]
= Vt

[
V (st)

]
+ Et

[
Vt
[
ρt∆(st, at)

∣∣ st]]
+ Et

[
ρ2t Vt+1

[
rt
]]

+ Et
[
γ2ρ2t Vt+1

[
V H−tDR

]]
, (10)

where ∆(st, at) = Q̂(st, at)−Q(st, at) and
VH+1

[
V 0

DR

∣∣ sH , aH] = 0.

Proof. We only prove using mathematical induction for the
case of DR as step-wise IS can be viewed as DR’s special
case with Q̂(st, at) ≡ 0.

For the base case t = H + 1, since V 0
DR = V (sH+1) = 0,

it is obvious that at the (H + 1)-th step the estimator is
unbiased with 0 variance. The theorem holds for t = H + 1.

For the inductive step, suppose the theorem holds for step
t+ 1. At time step t, we have:

Vt
[
V H+1−t

DR

]
= Et

[(
V H+1−t

DR

)2]− (Et[V (st)
])2

= Et
[ (
V̂ (st) + ρt

(
rt + γV H−tDR − Q̂(st, at)

))2
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− V (st)
2
]

+ Vt
[
V (st)

]
= Et

[(
ρtQ(st, at)− ρtQ̂(st, at) + V̂ (st)

+ ρt
(
rt + γV H−tDR −Q(st, at)

))2
− V (st)

2
]

+ Vt
[
V (st)

]
= Et

[(
− ρt∆(st, at) + V̂ (st) + ρt(rt −R(st, at))

+ ρtγ
(
V H−tDR − Et+1

[
V (st+1)

]))2
− V (st)

2
]

+ Vt
[
V (st)

]
(11)

= Et
[
Et
[(
− ρt∆(st, at) + V̂ (st)

)2 − V (st)
2
∣∣∣ st]]

+ Et
[
Et+1

[
ρ2t (rt −R(st, at))

2
]]

+ Vt
[
V (st)

]
+ Et

[
Et+1

[(
ρtγ
(
V H−tDR − Et+1

[
V (st+1)

]))2]]
= Et

[
Vt
[
− ρt∆(st, at) + V̂ (st)

∣∣ st]]+ Et
[
ρ2t Vt+1

[
rt
]]

+ Et
[
ρ2tγ

2 V
[
V H−tDR

∣∣ st, at]]+ Vt
[
V (st)

]
= Et

[
Vt
[
ρt∆(st, at)

∣∣ st]]+ Et
[
ρ2t Vt+1

[
rt
]]

+ Et
[
ρ2tγ

2 Vt+1

[
V H−tDR

]]
+ Vt

[
V (st)

]
.

This completes the proof. Note that from Equation 11 to
the next step, we used the fact that conditioned on st and at,
rt−R(st, at) and V H−tDR −Et+1

[
V (st+1)

]
are independent

and have zero means, and all the other terms are constants.
Therefore, the square of the sum equals the sum of squares
in expectation.

4.3. Confidence Intervals

As mentioned in the introduction, an important motivation
for off-policy evaluation is to guarantee safety before de-
ploying a policy. For this purpose, we have to characterize
the uncertainty in our estimates, usually in terms of con-
fidence intervals (CIs). The calculation of CIs for DR is
straight-forward, since DR is an unbiased estimator of i.i.d.
trajectories and standard concentration results apply. For
example, Hoeffding’s inequality states that for random vari-
ables with bounded range b, the deviation of the average
from n independent samples from the expected value is at

most b
√

1
2n log 2

δ with probability at least 1− δ. In the case
of DR, n = |D| is the number of trajectories, δ the chosen
confidence level, and b the range of the estimate, which
is a function of the maximal magnitudes of rt, Q̂(st, at),
ρt and γ, respectively. The application of more sophisti-
cated bounds for off-policy evaluation in RL can be found
in Thomas et al. (2015a). In practice, however, strict CIs
are usually too pessimistic, and normal approximations are
used instead (Thomas et al., 2015b). In the experiments,

we will see how DR combined with normally approximated
CIs can lead to more significant safe policy improvement
compared to IS.

4.4. Extension

From the analysis in Section 4.2, it is clear that DR only
reduces the variance due to action stochasticity, and cannot
reduce the variance due to the inherent randomness in re-
ward and state transitions, therefore DR can still suffer a
large variance even with a perfect model Q̂ = Q, when the
MDP has substantial stochasticity. One way to further re-
duce the variance in state transitions is to use the following
modified version of DR:

V H+1−t
DR-v2 = V̂ (st) + ρt

(
rt + γV H−tDR-v2

− R̂(st, at)− γV̂ (st, at)
P̂ (st+1|st,at)
P (st+1|st,at)

)
, (12)

where P̂ is the transition probability of the model that we
use to compute Q̂. While it is clear this is an unbiased
estimator and reduces the state transition variance with good
reward & transition model R̂ and P̂ (we omit proof), the
estimator is impractical as the true transition function P is
unknown. However, in problems where we are confident
that the transition dynamics can be estimated accurately
(but the estimated reward function is only approximate),
we can assume that P (·|·, ·) = P̂ (·|·, ·), and the last term
in Equation 12 becomes simply γV̂ (st, at), which is now
computable. This introduces a small bias in the estimate, but
reduces more variance than the original DR. In Section 6.1.3
we will use an experiment to demonstrate the use of such
an estimator.

5. Lower Bound for Off-policy Evaluation
In Section 4.4, we discussed the possibility of reducing vari-
ance due to state transition stochasticity in a special scenario
where transition function can be estimated accurately with
high confidence, which does not happen very often in prac-
tice. A natural question to ask is whether there exists some
estimator that can reduce such variance, without relying on
extra strong assumptions.

In this section, we provide a hardness result on the off-
policy evaluation problem, and show that when no prior
knowledge of the domain is available, the lower bound of
variance of any estimator equals the variance of DR with
a perfect model. Furthermore, DR’s variance gracefully
degrades when the model error increases; in other words,
DR smoothly bridges the gap between simple IS, with a
trivial zero value function, and an optimal estimator, with a
perfect value function.

Before stating the theorem, we first clarify what we mean by
“no prior knowledge is known for the domain”. In particu-
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lar, it means that whether Markovian assumption holds, i.e.,
whether the last observation is automatically a sufficient
statistics of history (namely state), is unknown, and the
only valid state representation is the history itself. We cap-
ture such a most general class of domains by the following
definition of discrete tree MDPs, with some simplifications.
Definition 1. An MDP is a discrete tree MDP if it satisfies
the following conditions:

• State is represented by a sequence of alternating obser-
vations and actions, namely s = o1a1 . . . ot−1at−1ot,
or abbreviated as s = ht. We assume discrete observa-
tions and actions.

• Initial states take the form of s = o1. Upon taking
action a, a state s = h can only transition to a next
state in the form of s′ = hao (i.e., h appended with a
and o), and the transition probability is given by the
parameter P (o|h, a).

• As a simplification, we assume that γ = 1, and non-
zero rewards only occur at the end of each H-step long
trajectory.3 We use an additional observation oH+1 to
encode the reward randomness so that reward function
R(hH+1) is deterministic and the domain can be solely
parameterized by transition probabilities.

Theorem 2. For discrete tree MDPs, the variance of any
unbiased estimator is lower bounded by

H+1∑
i=1

E
[
ρ21:(t−1)Vt

[
V (st)

]]
. (13)

The bound also applies to the asymptotic mean square error
of biased estimators.
Observation 1. The variance of DR applied to a discrete
tree MDP with Q̂ = Q is equal to Equation 13.

The theorem follows from Cramer-Rao bound (CRB) for
the off-policy evaluation problem, and the claim follows
directly by unfolding the recursive form of Equation 10 and
noticing that ∆ ≡ 0, Vt+1

[
rt
]
≡ 0 for t = 1, . . . ,H − 1,

and VH+1

[
V (sH+1)

]
is just a re-writing of VH+1

[
rH
]
.

Proof of Theorem 2. We parameterize the discrete tree
MDPs by µ(o) and P (o|h, a) for h of length 1, . . . ,H .
For convenience we will treat µ(o) as P (o|∅), so all the
parameters can be represented as P (o|h, a) where ha can
contain 0, . . . ,H alternating observations & actions (and
we call this number the length of ha, or |ha|). These param-
eters are subject to the normalization constraints that have

3We suspect that this simplification does not affect the general-
ity of our theoretical results: for problems with random rewards
at each step, we can encode the reward randomness as part of
observation as long as the reward distribution is discrete, and delay
the sum of discounted rewards to the end of trajectory. Both the
Cramer-Rao bound and the variance of DR with a perfect model
seem to be invariant to these transformations.

to be taken into consideration in the Cramer-Rao bound,
namely ∀h, a,

∑
o∈O P (o|h, a) = 1. If we sort the param-

eters P (o|h, a) in the alphabetical order of ha and then o,
then the constraints can be written as

1 · · · 1
1 · · · 1

. . .
1 · · · 1

 θ =


1
1
...
1

 (14)

where θhao = P (o|h, a). The matrix on the left is effec-
tively the Jacobian of the constraints, which we denote as
F . We index its rows by ha, so F(ha),(hao) = 1 and other
entries are 0. Let U be a matrix whose column vectors
consist an orthonormal basis for the null space of F . From
Equation (3.3) and Corollary 3.10 in Moore Jr (2010), we
have the Constrained Cramer-Rao Bound (CCRB) being4

(the dependence on θ in all terms are omitted):

KU(U>IU)−1U>K>, (15)

where I is the Fisher Information Matrix (FIM), and K is
the Jacobian of the quantity we want to estimate; they are
computed below. We start with I , which is

I = E
[(∂ logP0(hH+1)

∂θ

)(
∂ logP0(hH+1)

∂θ

)> ]
,

(16)

where

P0(hH+1) = µ(o1)π0(a1|o1)P (o2|o1, a1) . . . P (oH+1|hH , aH).

To calculate I , we define a new notation g(hH+1), which is
a vector of indicator functions and g(hH+1)hao = 1 when
hao is a prefix of hH+1. Using this notation, we have

∂ logP0(hH+1)

∂θ
= θ◦−1 ◦ g(hH+1), (17)

where ◦ denotes element-wise power/multiplication. Then
we can rewrite the FIM as

I = E
[
[θ−1i θ−1j ]ij ◦ (g(hH+1)g(hH+1)>)

]
= [θ−1i θ−1j ]ij ◦ E

[
(g(hH+1)g(hH+1)>)

]
, (18)

where [θ−1i θ−1j ]ij is a matrix expressed by its (i, j)-th
element. Now we compute E

[
(g(hH+1)g(hH+1)>)

]
.

This matrix takes 0 in all the entries indexed by hao

4In fact, existing literature on Contrained Cramer-Rao Bound
does not deal with the situation where the unconstrained param-
eters break the normalization constraints (which we are facing).
However, this can be easily tackled by changing the model slightly
to P (o|h, a) = θhao/

∑
o′ θhao′ , which resolves the issue and

gives the same result.
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and h′a′o′ when neither of the two strings is a pre-
fix of the other (because, for any observed trajectory,
either g(hH+1)hao or g(hH+1)h′a′o′ is 0). For the
rest entries, without loss of generality assume h′a′o′ is
a prefix of hao. Since g(hH+1)haog(hH+1)h′a′o′ =
1 if and only if hao is a prefix of hH+1, we have
E
[
g(hH+1)haog(hH+1)h′a′o′

]
= P0(hao), and conse-

quently Ihao,h′a′o′ = P0(hao)
P (o|h,a)P (o′|h′,a′) = P0(ha)

P (o′|h′,a′) (note
the independence on o, which is crucial for I to be diago-
nalizable; see below).

Then, we calculate (U>IU)−1. To avoid the difficulty of
taking inverse, we apply the following trick to diagonalize
I: note that for any matrix X with matching dimensions,

U>IU = U>(F>X> + I +XF )U, (19)

because by definition U is orthogonal to F . We can design
X so that D = F>X>+ I +XF is a diagonal matrix, and
D(hao),(hao) = I(hao),(hao) = P0(ha)

P (o|h,a) . This is achieved by
having XF eliminate all the non-diagonal entries of I in the
upper triangle without touching anything on the diagonal or
below, and by symmetry F>X> will deal with the lower
triangle. The construction is as follows: let X(h′a′o′),(ha) =
0 except when h′a′o′ is a prefix of ha, in which case we set
X(h′a′o′),(ha) = − P0(ha)

P (o′|h′,a′) . It is not hard to verify that
this construction diagonalizes I .

With the diagonalization trick, we have (U>IU)−1 =
(U>DU)−1. Since CCRB is invariant to the choice of U ,
and we observe that the rows of F are orthogonal, we
choose U as follows: let n(ha) be the number of 1’s in
F(ha),(·), andU(ha) be the n(ha)×(n(ha)−1) matrix with or-
thonormal columns in the null space of

[
1 . . . 1

]
(n(ha)

1’s); finally, we choose U to be a block diagonal matrix U =
diag({U(ha)}), whereU(ha)’s are the diagonal blocks, and it
is easy to verify that U is column orthonormal and FU = 0.
Similarly, we write D = diag({D(ha)}) where D(ha) is a
diagonal matrix with (D(ha))oo = P0(ha)/P (o|h, a), and

U(U>IU)−1U> = U(U>DU)−1U>

= U(diag({U>(ha)})diag({D(ha)})diag({U(ha)}))−1U

= Udiag({
(
U>(ha)D(ha)U(ha)

)−1})U
= diag({U(ha)

(
U>(ha)D(ha)U(ha)

)−1
U>(ha)}). (20)

Notice that each block in Equation 20 is simply 1/P0(ha)
times the CCRB of a multinomial distribution P (·|h, a).
The CCRB of a multinomial distribution p can be easily
computed by an alternative formula (Equation (3.12) in
(Moore Jr, 2010)), which gives diag(p)− pp>, so we have,

U(ha)

(
U>(ha)D(ha)U(ha)

)−1
U>(ha)

=
diag(P (·|h, a))− P (·|h, a)P (·|h, a)>

P0(ha)
. (21)

We then turn to the calculation of K. Recall that we want to
estimate

v = vπ1,H =
∑
o1

µ(o1)
∑
a1

π1(a1|o1) . . .∑
oH+1

P (oH+1|hH , aH)R(hH+1) , (22)

and its Jacobian is K = (∂v/∂θ)>, with
K(hao) = P1(ha)V (hao), where P1(o1a1 . . . otat) =
µ(o1)π1(a1) . . . P (ot|ht−1, at−1)π1(at|ht).

Finally, putting all the pieces together, we have Equation 15
equal to

∑
ha

P1(ha)2

P0(ha)

(∑
o

P (o|h, a)V (hao)2

−
(∑

o

P (o|h, a)V (hao)
)2)

=

H∑
t=0

∑
|ha|=t

P0(ha)
P1(ha)2

P0(ha)2
V
[
V (hao)

∣∣ h, a].
Noticing that P1(ha)/P0(ha) is the cumulative importance
ratio, and

∑
|ha|=t P0(ha)(·) is taking expectation over sam-

ple trajectories, we have the above expression equal to

H∑
t=0

E
[
ρ21:tVt+1

[
V (st+1)

]]
=

H+1∑
t=1

E
[
ρ21:(t−1)Vt

[
V (st)

]]
.

And this completes the proof.

6. Experiments
Throughout this section, we will be concerned with the
comparison among the following estimators. For compact-
ness, in this section, we drop the prefix “step-wise” from
step-wise IS & WIS.

1. (IS) Step-wise importance sampling of Equation 3;
2. (WIS) Step-wise weighted importance sampling of

Equation 5;
3. (model) MDP Model estimated from data (specified

later for each domain)
4. (DR) Doubly robust estimator of Equation 8
5. (DR-bsl) Doubly robust using a constant guess.

6.1. Comparison of Mean Squared Errors

In this experiment, we evaluate the quality of each method
mentioned above as point estimates by looking at the mean
squared errors of their estimates. For each domain, a policy
πtrain is computed as the optimal policy of the MDP model
estimated from a training datasetDtrain (generated using π0),
and the target policy π1 is set to be (1− α)πtrain + απ0 for
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Figure 1. Comparison of point estimators on Mountain Car. 5000
trajectories are generated for off-policy evaluation, and all the
results are from over 4000 re-draws. The subgraphs correspond to
the target policies produced by mixing πtrain and π0 with different
portions. X-axis shows the size of Dtest, the part of the data used
for IS/WIS/DR. The remaining part of the data is used to construct
the model, which DR uses to calculate Q̂. The y-axis shows the
root mean square error of the estimators divided by the true value
of the target policy in logarithmic scale. We also show the error
of 2-fold DR as an isolated point (�). Since the estimators in the
IS family typically has a highly skewed distribution, the estimates
can occasionally go largely out of range, and we crop such outliers
in [Vmin, Vmax] to ensure that we can get statistically significant
experiment results within a reasonable number of simulations.

α ∈ {0, 0.25, 0.5, 0.75} respectively. Such a mixture policy
is commonly used to yield an improved policy from an ex-
isting one; e.g., Kakade & Langford (2002). The parameter
α controls similarity between π0 and π1. We then apply the
estimators mentioned above to a separate dataset Deval to
estimate the value of π1, and average the estimation errors
across multiple draws of Deval. Note that for the doubly
robust estimator, the estimated model should be indepen-
dent of data used in Equation 8 to ensure unbiasedness. We
therefore split Deval into two two subsets Dmodel and Dtest,
build model on Dmodel, and apply the estimator to Dtest. We
pick several split points and report the error on each of them.

The DR estimator described above does not make full use
of data, since only part of the data (Dtest) is used to compute
the Monte Carlo sample average in Equation 8. We also
propose a more data-efficient version of DR when Q̂ has
to be estimated from Deval, namely k-fold DR, which is
inspired by k-fold cross validation in supervised learning:
we partition Deval into k subsets, apply Equation 6 to each

subset with Q̂ estimated from the union of the rest k − 1
subsets, and finally average the estimate. Since the estimate
from each subset is unbiased, the overall average is unbiased
and potentially has lower variance since the final estimate is
averaged over all trajectories (though the estimate for each
trajectory is not i.i.d.). Since model estimation is expensive,
we only show the result of 2-fold DR in our experiments.

The detailed experiment settings on each domain is below.

6.1.1. MOUNTAIN CAR

Domain Description The mountain car problem (Singh
& Sutton, 1996) is a continuous control problem with de-
terministic dynamics. The state space is [−1.2, 0.6] ×
[−0.07, 0.07], and there are 3 discrete actions. The agent
receives −1 reward every time step with a discount factor
0.99, and an episode terminates when the first dimension of
state reaches the right boundary. The initial state distribu-
tion is set to be uniformly random, and behavior policy is
uniformly random over the 3 actions. The typical horizon
for this problem is 400, which can be too large for IS and its
variants, therefore we accelerate the dynamics in such a way
that given (s, a), the next state s′ is obtained by calling the
original transition function 4 times, and we set the horizon
to 100. A similar modification was taken by Thomas (2015),
where every 20 steps are compressed as one step.

Model Construction The model we construct for this do-
main uses a simple discretization (state aggregation): the
two dimensions are multiplied by 26 and 28 respectively
and the rounded integers are treated as the abstract state. We
then estimate the model parameters from data using a tabular
approach. Unseen abstract state-action pairs are assumed to
have rewardRmin and a self-loop transition. Both the model
that produces πtrain and that used on D are constructed in
this way. On the other hand, DR-bsl uses the step-dependent
constant Q̂(st, at) = Rmin(1− γt)/(1− γ).

Other The dataset sizes are |Dtrain| = 2000 and
|Deval| = 5000. We split Deval such that Dtest ∈
{10, 100, 1000, 2000, 3000, 4000, 4900, 4990}.

Results See Figure 1. As |Dtest| increases, IS/WIS gets
monotonically better, while the model gets worse as less
data is put into model estimation (Dmodel). Since DR’s
performance depends on both halves of the data, it achieves
the best error at some intermediate value of |Dtest|, and
outperforms using all the data for IS/WIS in all the 4 graphs.
DR-bsl shows the performance of DR with a constant guess
as Q̂, which already outperforms IS/WIS most of the time.
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6.1.2. SAILING

Domain Description The sailing domain (Kocsis &
Szepesvári, 2006) is a stochastic shortest-path problem,
where the agent sails on a grid (in our experiment, a map
of size 10 × 10) with wind blowing in random directions,
aiming at the terminal location on the top-right corner. The
state is represented by 4 integer variables, representing ei-
ther location or direction. At each step, the agent chooses to
move in one of the 8 directions (moving against the wind or
running off the grid is prohibited), and receives a negative
reward (cost) that depends on moving direction, wind direc-
tion, and other factors, ranging between Rmin = −3− 4

√
2

andRmax = 0 (absorbing). The problem is non-discounting,
and we use γ = 0.99 in planning for easy convergence when
computing πtrain.

Model Construction Unlike Mountain Car, valid actions
vary from state to state in Sailing, so it is difficult to apply
state aggregations. Instead, we apply Kernel-based Rein-
forcement Learning (Ormoneit & Sen, 2002) to generalize
by supplying a smoothing kernel in the joint space of states
and actions. The kernel we use takes the form exp(‖ · ‖/b),
where ‖ · ‖ is the `2-distance in S ×A,5 and b is the kernel
bandwidth, set to 0.25.

Other The data sizes are |Dtrain| = 1000 and
|Deval| = 2500, and we split Deval such that Dtest ∈
{5, 50, 500, 1000, 1500, 2000, 2450, 2495}. DR-bsl uses
the step-dependent constant Q̂(st, at) = Rmin/2 · (1 −
γt)/(1−γ), for the reason that in SailRmin is rarely reached
hence too pessimistic as a rough estimate of the value.

Results See Figure 2. The results are qualitatively similar
to Mountain Car results in Figure 1, except that: (1) WIS is
as good as DR in the 2nd and 3rd graph; (2) in the 4th graph,
DR with a 3:2 split outperforms all the other estimators,
including the model, with a significant margin, and a further
improvement is achieved by using 2-fold DR.

6.1.3. KDD CUP 1998 DONATION DATASET

In our last domain, we use the donation dataset from KDD
Cup 1998 (Hettich & Bay, 1999), which summarizes the
sequential interactions between the agent and the potential
donators via emails, with the reward being donated money.
The state is represented using 5 integer features, and there
are 12 discrete actions representing sending different types
of emails at a time period, or not sending emails at all. All
trajectories are 22-steps long (H = 22), and there is no
discount. Since this problem only provides data and no

5The difference of two directions is defined as the angle be-
tween them (in degrees) divided by 45◦. For computational ef-
ficiency, the kernel function is cropped to 0 whenever two state-
action pairs deviate more than 1 in any of the dimensions.
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Figure 2. Comparison of point estimators on Sailing. 2500 trajec-
tories are generated for off-policy evaluation, and all the results are
from over 4000 re-draws. Other details are the same as Figure 1.

groundtruth of the target policy’s value is provided, we fit
a simulator from the true data (see details in the next para-
graph), and use the simulator as groundtruth for everything
henceforward: the true value of the target policy is computed
by rolling out Monte-carlo trajectories in the simulator, and
the trajectories used for off-policy evaluation are also gen-
erated from the simulator with uniformly random behavior
policy, with the number of trajectories equal to the size of
the original dataset (3754 trajectories). The other settings
are the same as the experiments in Section 6.1, except that
we replace DR with DR-v2 (Equation 12; assuming P̂ = P )
and use the 2-fold trick. The policy πtrain is generated by
training a recurrent neural network on the original data to
fit the Q-function.

The MDP model used to compute Q̂ is estimtated as follows:
for the transition dynamics, each state variable is assumed
to involve independently, and the marginal transition prob-
abilities are estimated using a tabular approach, which is
exactly how the simulator is fit from real data. Reward func-
tion, on the other hand, is estimated by linear regression for
each action separately, with the first 3 dimensions of state
as features (on the contrast, all the 5 dimensions are used
when fitting the simulator’s reward function from real data).
Consequently, we get a model with an almost perfect tran-
sition function and a relatively inaccurate reward function.
The results are shown in Figure 3, where DR-v2 is the best
estimator in all situations: it beats WIS when π1 is far from
π0, and beats the model-based Q̂ when π1 and π0 are close.
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Figure 3. Results of donation data, averaged over about 5000 runs.
The same legend as Figures 1&2 is used, except for the new estima-
tor DR-v2 given in Equation 12. DR-v2 uses the 2-fold trick; the
whole dataest is applied to other estimators. Since there are many
possible next-states for each state-action pair, for computational
efficiency we use a sparse-sample approach when estimating Q̂
using the fitted model M̂ : for each (s, a), we randomly sample
several next-states from P̂ (·|s, a), and cache them as a particle rep-
resentation for the next-state distribution. The number of particles
is set to 5 which is enough to ensure high accuracy.

6.2. Application to Safe Policy Improvement

In this experiment, we apply the off-policy evaluation meth-
ods in safe policy improvement. Given a batch dataset D,
the agent uses part of it (Dtrain) to find some candidate poli-
cies, some or all of which could be bad due to insufficient
sample and/or approximation in learning, and recommend-
ing such bad policies are considered undesired in many
scenarios. Hence, the agent estimate the value of the candi-
date policies on the rest data (Dtest) via off-policy evaluation,
and recommend the policy with the highest estimated value.
In this problem, we have an additional reason to favor DR:
Dtrain can be reused to estimate Q̂, hence it is no longer
necessary to hold out part of Dtest for model construction.

Due to the high variance of the importance sampling estima-
tors and its variants, acting greedily w.r.t. the point estimate
is not enough to promote safety, and we also want to take
the estimation uncertainty into consideration. Therefore,
we select the policy that has the highest lower confidence
bound using Student’s t-test approximation (Thomas et al.,
2015b),6 and hold on to the current behavior policy if none
of the lower confidence bounds is better than the threshold.
More specifically, the score is V†(Dtest;π)− Cσ†(Dtest;π),
where σ is the empirical standard error, C is a hyperparame-

6Following their paper, we normalize all the rewards into [0, 1]
by the transformation (r−Rmin)/(Rmax −Rmin) when comput-
ing the confidence interval.
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Figure 4. Safe policy improvement in Mountain Car. X-axis shows
the size of data and y-axis shows the true value of the recommended
policy subtracted by the value of the behavior policy.

ter that controls confidence level, and † is a placeholder for
any method that can provide confidence intervals. Among
the methods considered in this paper, importance sampling
and doubly robust estimators satisfy this criterion, while the
model-based and WIS estimators have unknown bias.

The experiment is conducted in Mountain Car, and most
of the setting is the same as in Section 6.1.1. Since we
do not address the exploration and exploitation problem,
we keep the behavior policy fixed as uniformly random,
and evaluate the recommended policy once a while as the
agent gets more and more data. In particular, the datasizes
are |D| ∈ {20, 50, 100, 200, 500, 1000, 2000, 5000}. The
candidate policies are generated as follows: first, we con-
sider different ways of splitting |D| so that |Dtrain|/|D| ∈
{0.2, 0.4, 0.6, 0.8}; for each split, we compute optimal πtrain
from the model estimated from Dtrain, and mix it with π0
with rate α ∈ {0, 0.1, . . . , 0.9}, and altogether we get 40
candidate policies.

The results are shown in the left panel of Figure 4. From
the figure, it is clear that DR’s value improvement largely
outperforms IS, primarily because IS is not able to accept
a target policy that is too different from π0. However, in
this situation πtrain is mostly a good policy (except when
|D| is very small) hence the more aggressive an algorithm
is, the more value it gets. As an evidence, both algorithms
achieve the best value with C = 0 (except when |D| is very
small), raising the suspicion that DR might make unsafe
recommendations when πtrain is bad. To eliminate such a
concern, we conduct another experiment in parallel, where
we have πtrain minimizing the value instead of maximizing
it, resulting in policies worse than the target policy, and the
results are shown in the right panel. Here, we see that as
C becomes smaller, the algorithms become less and less
safe, and with the same C DR is as safe as IS if not better at
|D| = 5000. Overall, we conclude that DR can be a drop-in
replacement for IS in safe policy improvement.
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