
Beyond Open Source: The TouchDevelop Cloud-based
Integrated Development and Runtime Environment

Thomas Ball Sebastian Burckhardt Jonathan de Halleux Michał Moskal Nikolai Tillmann
Microsoft Research

One Microsoft Way, Redmond WA 98052, USA
{tball,sburckha,jhalleux,micmo,nikolait}@microsoft.com

ABSTRACT
The creation and maintenance of mobile applications is a
complex process, involving a set of technologies ranging from
an application programming language and integrated devel-
opment environment (IDE), through the deployment and
update models of the various app stores, to a cloud back
end that stores user and telemetry data (with its own pro-
gramming language and a variety of hosting issues).

We present the design of a Cloud-based Integrated Devel-
opment and Runtime Environment (CIDRE) to make the
creation of mobile+cloud applications easier for non-expert
programmers. A CIDRE combines an online programmer
community, a browser-based IDE, and an app store. The
deep integration of the three elements decreases friction in
the software engineering of apps through automated source
control and dependency management, an open architecture
for distributed plugins, and a crowd-sourced collection of
crash reports and coverage/profile data. A CIDRE brings
together three audiences: language/IDE designers (the au-
thors of this paper), application programmers, and applica-
tion users, who can easily modify the apps they are using
(all distributed in source), and become programmers them-
selves.

We have implemented a CIDRE in the form of TouchDeve-
lop, a streamlined, cross-platform, browser-based program-
ming environment. We describe the design of TouchDevelop
and the use of automation at various points to make it easy
for the three parties to communicate and give feedback to
one another. As we will show through our analysis of three
years of deployment of TouchDevelop to hundreds of thou-
sands of users, much of the design of our CIDRE can inform
other approaches to cloud-based software engineering.

Categories and Subject Descriptors
D.2.6 [Programming Environments/Construction Tools]:
Integrated environments; D.2.3 [Software Engineering]:
Program editors

MSR-TR-2014-63

General Terms
Design, Languages

Keywords
IDE, cloud, plugins, ASTs

1. INTRODUCTION
Application (app) stores for mobile platforms such as tab-

lets and smartphones have lately become very popular. Even
though the majority of apps available in these stores are con-
ceptually very simple, there can be a lot of friction in the
development, deployment, and maintenance of these apps.
The hopeful app creator must first master a complex set of
technologies, including general purpose programming lan-
guages (be it Java, C#, or even a memory unsafe language
like Objective-C) and integrated development environments
(IDEs). The next step is understanding the deployment and
update models of the various app stores. Finally, many mo-
bile apps require a cloud back end to store user data and
telemetry data not provided by the app store, which re-
quires gaining mastery of cloud infrastructure, and possibly
another language for server-side programming. For many
people, this puts mobile app creation out of reach.

To address this complexity, we propose to merge the con-
cepts of an app store, an IDE, and a programmer community
into one deeply integrated environment, dubbed a Cloud-
based Integrated Development and Runtime Environment
(CIDRE). A CIDRE supports the five key attributes of an
emerging experience (a more precise description will follow
in § 2.1):

• Cross Platform and Mobile: the IDE and runtime
experience are available across platforms and on vari-
ous form factors, including smartphone, tablet, laptop,
and desktop;

• Online Community: programming is a social ac-
tivity, as evidenced by the popularity of sites such as
stackoverflow.com and github.com; a CIDRE inte-
grates social features (reviews, scores, forums, com-
ments, ratings, collaboration, crowdsourcing) to fos-
ter collaboration, encourage growth of the programmer
community, and ease the entry for newcomers;

• Ubiquitous Workspace: users expect their workspa-
ces and documents to move with them as they change
devices, so a CIDRE must replicate a user’s program-
ming workspace across a user’s devices, which leads to
the topic of...

1

stackoverflow.com
github.com


• Offline Support: a CIDRE is not simply a shell
into services in the cloud; it provides substantial of-
fline functionality so that a user may continue to work
productively even when disconnected from the cloud;

• Secured Identity: supporting online interactions and
a ubiquitous workspace requires that users assume an
identity that can persist within the system.

We argue that a CIDRE’s support for an emerging expe-
rience brings many automation and simplification opportu-
nities, greatly reducing the friction for mobile+cloud app
development.

We have implemented a CIDRE in the TouchDevelop pro-
ject (touchdevelop.com) [14], which originally focused on
bringing general-purpose programming capabilities to any-
one with a smartphone, without the need for a separate
computer or a physical keyboard. The driving idea was
that smartphones often will be the first, and possibly the
only, computing device people have access to, and that these
modern equivalents of 1980s 8-bit computers need a modern
equivalent of BASIC, complete with access to the on-board
sensors, graphics, and the web.

Over the past three years, the project expanded from a
single smartphone app into a web app running in all mod-
ern HTML5 browsers on phones, tablets, and keyboard-
equipped PCs (regardless of the operating system they may
be running). Additionally, TouchDevelop gained capabili-
ties normally found in general purpose languages and IDEs,
while maintaining the simplicity of the initial simple smart-
phone app: an open source publishing system with auto-
mated updates and dependency tracking, a vast library of
built-in functions, an advanced module system for user-defi-
ned components, user-defined types with automatic cloud
replication, a literate programming system, a single-step and
breakpoint-based debugger, a profiler, a crash-logging sys-
tem with bucketization, and crowd-sourced coverage collec-
tion.

The TouchDevelop CIDRE brings together three audi-
ences, as shown in Figure 1: the CIDRE designers (the au-
thors of this paper), app programmers, and app users:

• CIDRE Designers: The TouchDevelop IDE is deliv-
ered as web app to TouchDevelop app programmers.
We use the cloud to deliver multiple versions of the
IDE simultaneously; TouchDevelop programmers who
have a high experience score have the option to use
the beta version, which includes new features not in
the current version. The IDE has a high level of in-
strumentation and telemetry that sends data back to
the cloud to help us understand the stability of a new
release and the usage of features. Assertion failures in
the IDE automatically generate bug reports, allowing
us to quickly see if a new feature is causing problems.

• App Programmers can rapidly build apps and iter-
ate with their users, as well as with the CIDRE de-
signers to get bugs fixed and/or questions answered;
Furthermore, just as the TouchDevelop IDE contains
instrumentation, the TouchDevelop compiler inserts
instrumentation into apps so that programmers au-
tomatically get profiles and coverage information as
users execute their apps. Runtime failures in a Touch-
Develop app present users with a dialog whereby they
can submit a stack trace to the app programmer.

CIDRE
Designers

App
Programmers

App Users

IDE,
updates

Telemetry, 
bugs, comments

Apps,
updates

Telemetry, 
bugs, comments

Figure 1: CIDRE creates positive feedback cycles
between designers, programmers and users.

• App Users can provide feedback to programmers in
comments and bug reports, as mentioned above. But,
more importantly, app users are empowered to become
app programmers as the TouchDevelop IDE is just
one tap away from the app store, allowing any app
to be modified and re-published in a matter of sec-
onds. TouchDevelop tracks the provenance of scripts,
so that a user who authors a script that is changed and
re-published by others can get an increased ranking.

The evaluation of the data we have collected, including
over 100,000 published scripts and associated information
publicly available via REST APIs (see § 3.7) shows the
CIDRE approach pioneered in TouchDevelop to be largely
successful: Users are creating apps for mobile devices, they
are modifying the apps they use, and taking advantage of
libraries published by other users. Most importantly, the
quality of apps created on mobile devices in on par or better
than the ones created on desktop devices. Moreover, users
who use both mobile and desktop devices are by far the most
successful at app creation.

Outline.
In the reminder of this paper we first make the idea of

CIDRE more precise (§ 2), then describe an implementation
in the form of TouchDevelop (§ 3), and finally present an
evaluation of three years of data collected about our user
community and their apps (§ 4). We finish with discussion
of related work (§ 5) and conclusions (§ 6).

2

touchdevelop.com


2. CIDRE
We now clarify what we mean by a cloud-based integrated

development and runtime environment (CIDRE). A CIDRE
has the following three key characteristics:

1. it integrates the development, storage, and the deploy-
ment of applications — thus combining an IDE, code
repository, and app store.

2. it provides all components of the emerging experience,
as defined in §2.1 below.

3. it supports the development of applications that pro-
vide the emerging experience to their users.

In the remainder of this section, we define the emerging
experience, which is independent of the chosen particular
application domain. We then discuss how the CIDRE’s deep
integration of features provide these emerging experiences,
both for the CIDRE itself, and for the applications being
developed.

2.1 The Emerging Experience
The explosive growth of mobile devices and cloud-based

services has changed the way that users experience appli-
cations. As technologies advance, the distinction between
desktop applications, mobile apps, and websites is becoming
increasingly blurred — applications can use cloud services
to look more like websites, websites can employ HTML5 to
look more like apps, and apps can provide rich functionality
on PCs to look more like applications. What results from
this confluence of applications, mobile apps, and websites, is
a new combination of experiences, which we call the “emerg-
ing experience”, defined as the combination of the following
five components:

Cross Platform and Mobile. While most users still rely
on a PC or laptop when it comes to “serious work”, there
is an increasing expectation that applications make some or
all of their functionality available for use on mobile devices,
such as tablets or phones. We expect this trend to continue.
Pragmatically, the question we should ask is not whether
users prefer PCs or mobile devices, but how we can provide
a good experience on both. This can be quite challenging be-
cause (1) there is an extreme variation in screen sizes among
phones, tablets, and multi-monitor PCs, and (2) tablets and
phones are intended to be used without a keyboard, for the
most part. The input paradigms are shifting towards touch
and speech. In the future, they may shift further towards
various natural interfaces based on cameras and sensors, or
even direct brain interfaces.

Online Community. When chat rooms, e-mail, and in-
stant messaging started, they were isolated services and not
tied to particular applications. However, since using a com-
puter in general appears to be more productive and fun in
the context of an online community rather than just as a
solitary enterprise, social features such as reviewing, forums,
comments, ratings, collaboration, crowdsourcing, and gam-
ification are now increasingly becoming integrated with all
sorts of applications, apps, and websites.

Ubiquitous Workspace. Users no longer rely on a single
device for running applications. Often, they have multiple
PCs and/or laptops (at work and/or at home), they carry

a smartphone at all times, and they use a tablet on the go
or in recreational spaces. Thus, they are likely to frequently
switch between devices, or even use multiple devices at the
same time. As they do, they expect continuity. In particu-
lar, they expect that their data and preferences (the personal
workspace) are synchronized between devices, and backed up
in the cloud so that they remain continuously available even
if some or all of the devices are powered off.

Secured Identity. Supporting online interactions and a
ubiquitous workspace requires that users assume an iden-
tity that can persist within the system. This identity may
or may not be revealing the true identity of the user. The
identity must be secured by appropriate means, to ensure
authenticity of online interactions and the privacy of the
personal workspace. The identity is also required to sup-
port billing, which can be any combination of a one-time
payment, recurring service fees, or micro-transactions.

Offline Support. Mobile devices often encounter an unre-
liable and/or slow internet connection, and are sometimes
even completely disconnected. Thus, it is important that
critical functions of the application remain available, and
that unavailable functionality is exposed gracefully (because
users have little patience for crashing or unresponsive appli-
cations).

Being serious about supporting the emerging experience
in a CIDRE has far-reaching consequences. Mainstream pro-
gramming with traditional IDEs presents some serious ob-
stacles to achieving these goals: for example, the traditional
editing experience for text-based code is ill suited for mobile
devices with small screens and no keyboards.

2.2 Integration Benefits
We now discuss some of the benefits that result from a

deep integration of code development, publishing, and social
networking.

Open Collaboration. Since a CIDRE has complete knowl-
edge of all the code and libraries needed to run an applica-
tion, it is very easy for anybody to fork a published ap-
plication to make modifications. This enables spontaneous
collaboration and encourages users to openly exchange code
(either in the form of published applications, or as libraries).

Telemetry and Feedback. A CIDRE integrates not only
the development and testing of an application, but the whole
lifecycle, which also includes publishing of the application
in the app store, and the publishing of updates. Thus, a
CIDRE can automatically collect telemetry information and
report it to the developer. For instance, it can report how
many users have run a script, it can display detailed code
coverage, and it can report crashes. It also collects user
ratings, comments and suggestions.

Onboarding and Crowdsourcing. Since a CIDRE in-
cludes an online community, it eases the process of learning
about a new language and development environment. Over
time, this effect accumulates as power users contribute doc-
umentation and tutorials, and answer questions in forums.

Powerful Runtime Services. To support users in build-
ing applications for the emerging experience (§2.1), we can
bundle the services already used by the CIDRE into the ap-

3



plication runtime. For example, we can provide high-level
APIs to support (1) working with user identities, (2) defin-
ing personal workspaces that synchronize automatically be-
tween devices, and (3) directly provide access to common
cloud services, such as search and maps. For all of these,
the integration is valuable because it provides simplicity and
continuity (for example, the user identities at runtime match
the identities in the CIDRE, and users need not re-enter per-
sonal information and passwords separately for each appli-
cation) and can help to solve tricky data management issues,
such as automatic schema migration for personal workspaces
or cloud sessions when pushing application updates.

Research on Software Engineering. Last but not least,
the use of an integrated environment simplifies the collec-
tion of data across the whole lifecycle of an application, and
allows us to quickly incorporate lessons learnt. In TouchDe-
velop, we make all versions of all applications and variations
(by all authors) publicly available for research, accessible via
the web (see § 3.7).

3. TOUCHDEVELOP
This section describes TouchDevelop [14], an implemen-

tation of a CIDRE. TouchDevelop consists of two parts—
the cloud back-end implemented primarily in C# on top
of Windows Azure storage and compute services, and the
client IDE, written in TypeScript (a typed extension of Java-
Script [3]), that runs in all modern web browsers.

On Windows Phone and Android, TouchDevelop also is
available as a native app in the respective app stores. The
app makes certain platform (eg., media libraries and sensors)
available to the embedded web browser that runs the Touch-
Develop client, which is otherwise identical to the plain web
app (see [11] for detailed discussion of the approach taken).

We now describe the fundamental design decisions relat-
ing to code representation, the programming language, and
how we use a general notion of publication to store a wide
variety of entities in the cloud, including script versions, art
resources, comments, reviews, tutorials, and documentation.

3.1 Code Representation
Relying on text-based programming in a CIDRE is prob-

lematic. Main-stream programming is still firmly rooted in
ASCII representations, with minimal embrace of Unicode.
However, editing program text using touch-based keyboards
on small screens is vastly impractical; the use of special sym-
bols, indentation, punctuation, long identifiers, and the re-
quired editing precision, make for a painful experience. We
believe this to be the primary reason why touch-based de-
vices have so far seen little use for editing code.

Our solution is to make the editing a bit more organized,
using a semi-structured code editor: statements are ma-
nipulated directly at the level of the abstract syntax tree
(AST)[13], whereas expressions are edited as a sequence of
tokens. Semi-structured editing prevents syntax errors that
span several lines of code. It also allows for editing expres-
sions with an adaptive on-screen keyboard at the token level,
avoiding the restrictiveness of a fully structured editor (in
the vein of Scratch [10]). For expression editing, buttons
represent tokens, not characters, and can change dynami-
cally based on cursor context. Experiments by colleagues in
the PocketCode project show that the mix of tree-based and
token-based editing is more effective than solely tree-based

editing [8].
Since editing is not based on a text representation, we can

store and edit programs directly as abstract syntax trees,
without superfluous formatting or punctuation. This opens
several opportunities for improving the experience further.

First, appropriate interfaces can be designed to edit the
code using various input modalities. Whereas touchscreen
users get a context-sensitive, token-based on-screen keyboard
as described above, keyboard users get an analog of tradi-
tional IDE auto-completion—when they type, a search is
performed on the choices that would be proposed by the on-
screen keyboard. Additionally, most common text editing
operations (copy, cut, paste, indent a block, etc.) have tree-
level equivalents and can be mapped directly. The multi-
input-modality works hand in hand with workspace synchro-
nization. For example, the user can develop a program on a
big desktop computer, and then tweak it on a mobile device.

Second, because the user is editing the AST, the edit op-
erations can be tracked much more precisely. For exam-
ple, identity of statements can be preserved when they are
moved, allowing for a more precise diff and better merge
semantics: merges based on AST modifications rather than
text edits can guess intentions better, and fail less often [4].
This is important for simplifying collaboration.

Third, code can be rendered automatically, using colors,
indentation, and fonts consistently across all projects. Also,
code can be rendered more space-efficiently, which helps to
preserve precious screen space on mobile devices.

Finally, IDE plugins can easily manipulate ASTs directly,
simplifying both code analysis and modification. This also
lowers the entry barrier for research on software engineering
and on refactorings.

3.2 Programming Language
The simplification of the IDE alone is not sufficient to en-

able the convenient development of applications on a mobile
device. Because screen space is limited, it is important to
keep code as simple and concise as possible. Clearly, low-
level languages like C with explicit memory management
and buffer overruns would be a bad choice. Also, using
a mix of languages and formats (JavaScript, HTML, CSS,
SQL, XML, XSLT) would require a proliferation of editors
and editing modes.

TouchDevelop uses a custom designed, statically-typed
programming language. This is dictated by the needs of
the semi-structured code editor as well as the desire to keep
programs concise, simple and high-level, yet flexible for re-
search purposes.

Strong Typing. Because the language is statically typed,
we can use the type of an expression to determine what the
user may want to enter next. Thus, we can display type-
and context-dependent buttons for editing, which is crucial
to avoid typing characters.

Cloud State. Scripts need cloud storage to provide work-
spaces and online interactions for their users. However, writ-
ing and managing cloud services for this purpose can be
quite daunting. In TouchDevelop, we have made this pro-
cess easy, by using the cloud types programming model [6].
Users simply mark the data that is to be shared in the cloud
(in a personal workspace, or with other users). This data is
automatically replicated across devices and can be read and
written efficiently (i.e. without applicaiton-level synchro-

4



nization or communication, online or offline). Our runtime
ensures that all replicas are automatically synchronized and
conflicts are resolved automatically and consistently, ensur-
ing causal eventual consistency [7].

APIs. We provide numerous platform- and browser-independent
APIs for accessing sensors (such as location, microphone,
camera, gyroscope), media libraries (music, pictures), and
web services. This ensures that conceptually simple scripts
(e.g. pick a random song and play it, or take a picture and
post it online) are indeed simple to write. TouchDevelop
provides over 1,500 functions in its API set.

3.3 Storage and Publications
Apps in TouchDevelop consist of immutable modules which

we call scripts. Scripts are the most important among vari-
ous types of immutable publications that TouchDevelop users
can create. Every publication is assigned a unique id upon
creation. The following publication types are straightfor-
ward analogs of concepts from a programmer community or
an app store.

• scripts: Scripts can be easily made public and shared
with other users. The identity of the current author
and the ids of script from which the current script was
derived (base script) if any, is included in the script at
the moment of publication. Scripts can be marked a
libraries, and then referenced from other scripts.

• comments are free-form pieces of text attached to
other publications. Comments attached to another
comment form a thread of discussion. Comments can
be also tracked as bugs or feature requests.

• reviews are much like star-ratings in an app store—
they provide a quantifiable measure or quality of a pub-
lication (eg., a script, a comment, or an art resource).
In TouchDevelop a user can express that they like a
publication by giving it (up to one) heart. We do not
support negative reviews.

• screenshots are attached to scripts and can be posted
by the author or other users.

• art resources: Apps usually use images and sounds
in addition to source code. Much like scripts, these can
published as immutable entities, and have comments
and reviews attached later.

• forums: There are a number of forums where users
can provide comments. As elsewhere, nested com-
ments can be attached forming discussion threads.

Variations are scripts derived from another script (called
the base script). The base chain of a script consists of the
script itself and the base chain of its base script if any.

Every authorized user of the system has a corresponding
id and an associated user publication, where the publica-
tion is mutable—the name, profile picture, etc. can be all
updated.

The unification of IDE with programmer community and
app store allows additional interesting publication types:

• crash reports: When a script crashes, the users are
given an option to inform the author by posting a crash
report (including free-form text if needed). These re-
ports are then automatically bucketized by stack trace.

• profile and coverage information: Some script runs
are randomly selected for profiling or coverage collec-
tion. All such information is automatically aggregated
and attached to the script for everyone to see. Informa-
tion about the total number of runs and installations
also is included, forming another quantifiable measure
of script quality.

• documentation scripts use literate programming to
render scripts as documentation topics. This way doc-
umentation can be easily user-sourced. Documenta-
tion scripts can be made into interactive tutorials, see
§ 3.5.

• plugin scripts let TouchDevelop programmers extend
the IDE. Plugins can be invoked from various points in
the IDE and operate on the AST of the current script.
They run locally in the IDE, but can invoke web ser-
vices to do the actual work, giving rise to distributed
cloud plugins (see § 3.4).

• remixes are scripts with more than one author in their
base chain. A direct remix is a script authored by a
different user than its base script.

The immutability of scripts plays a critical role in depen-
dency management. Just before a script is published, all
its dependencies (scripts used as libraries and art resources)
are automatically published as well (if they have been mod-
ified), and their resulting identifiers are stored in the script.
This way, every script has a consistent snapshot of its de-
pendencies.

While scripts are immutable, there is a way for an author
to publish an update to their own script. The users of the
script (be it a top-level app or a library) are then notified
and given an easy way to update.

Scripts are installed into user’s workspace. Once in-
stalled, they can be modified, and ultimately published. The
state of the workspace is automatically synchronized be-
tween different devices of the same user.

Clearly, many features of TouchDevelop (in particular, in-
teractions with the online community, and the browsing and
search of published scripts, art, documentation, and forum)
depend on a connection to the cloud. However, the entire
IDE functionality (including code editing with temporary
storage, compilation, running, debugging, and profiling) is
fully available offline because it is implemented completely
on the client side.

3.4 Cloud plugin architecture
A very interesting, if not yet fully explored, area of re-

search in CIDRE is the idea of distributed cloud plugins.
Plugins are authored as TouchDevelop scripts, avoiding se-
curity issues with foreign JavaScript code running under the
domain of TouchDevelop and dramatically lowering the bar-
rier to entry for plugin authors. For example, a script to
rename top-level declarations while updating the references
(eg., to enforce a naming convention) is six statements long.
Additionally, plugins being scripts can be forked, reviewed,
and commented on as usual.

Technically, the AST maps to a JSON object, which can
be inspected and modified using regular JSON APIs. This
enables processing of the data on a different server, not af-
filiated with TouchDevelop. The plugin script just needs to
take the JSON object representing the AST, send it to the

5



server, and possibly save the updated AST back. Such cloud
plugins can alleviate problems with limited computational
capabilities of the phone, for example to run various static
analysis of the code. We expect plugins to be particularly
interesting for research purposes: TouchDevelop provides an
easy way to deploy such plugins, an eager user-base (which
could use lots of help with their programs), and any data
about the plugin usage can be easily captured. Moreover,
the programming language is small and the scripts are not
too complicated, making it easy to develop prototypes.

3.5 Automatic tutorials
Automatic tutorials offer a gentle introduction to the IDE

for user who are new to TouchDevelop and/or programming
in general. The tutorials are authored as documentation
scripts. A tutorial script is broken into steps, and for each
step the IDE extracts the description and the target script.
It then first displays the description and then guides the
user through the process of creating the target script. Once
the target script is reached, the IDE moves to the next step.
This automated guidance works by continuously computing
the diff between the ASTs of the target script and the cur-
rent script, finding the first token that needs to be inserted
or removed and then displaying tips on the UI elements that
need to be tapped to accomplish this (this may involve nav-
igating between different screens in the IDE etc.). For each
completed step in a tutorial, the user receives positive feed-
back from the IDE.

Tutorials are fully automatic and adaptive—if the user
decides to do something else, the tutorial engine will let
them explore and then direct them back on track. The AST
diff need not be exact—for example, it can ignore the exact
values of string literals and the exact art resources used.

TouchDevelop, with the automatic tutorials, was listed as
one of the options for the Hour of Code event (see csedweek.
org/learn). During a week in November 2013 over 130,000
students took the tutorials.

3.6 Gamification
We have experimented with various schemes of bringing

gaming components into the programming process. Scripts
are ranked according to the number of hearts they receive,
and the number of times they are installed and run. This
score decays over time to let newer scripts rise to the top.

Additionally, users are assigned score based on the number
of hearts their publications receive, the number of followers
they have, the number of different features of TouchDevelop
they have used, and the number of days they were active.
The score is displayed prominently on the user profile, and
we have anecdotal evidence of users taking it very seriously.

3.7 Openness
All the publications (scripts, comments, art resources,

user meta-data, crash, coverage, and profile reports) are
publicly available via the cloud REST APIs described at:

https://www.touchdevelop.com/help/cloudservices

This data has been used in several external research projects
so far.

Scripts are in public domain from the point of publication
on and can be freely forked by any TouchDevelop user. The
plugin architecture lets anyone extend the platform, and we
expect to introduce more plugin hooks in the future. Ad-
ditionally, users contribute to documentation (including the

automatic tutorials), report bugs and request features in the
IDE, and provide answers on the forums.

On a few occasions the ability to fork scripts caused fric-
tion with our users. Overall, however, we found the open
and public architecture to be conducive to development of
a vibrant user community.

TouchDevelop also provides an export feature targeting
various native app stores, including Windows, Windows Pho-
ne and Android, with more coming in future. So far about
1000 TouchDevelop-generated apps have been published in
the Windows stores. Interestingly, one of the most pop-
ular educational games in the Windows Store, MindSticks
(mindsticks.com), was authored in TouchDevelop.

Timeline.
The first release of TouchDevelop was in April 2011 as a

native C# Windows Phone app, six months after the pro-
ject started, and did not include much in the way of cloud
support. Script publishing was added in August 2011, com-
ments and reviews were added in November 2011, and li-
braries in February 2012. Around that time the rewrite of
the IDE as a TypeScript web app started, which was fi-
nally released in October 2012. Debugger, crash logging,
and coverage collection were added in July 2013 and profile
collection a short while later. Cloud data was released in
October 2013, and interactive tutorials in November 2013.

4. EVALUATION
This section presents an evaluation of the TouchDevelop

platform and the two feedback cycles from Figure 1. § 4.1
discusses the IDE itself and interaction of the authors of this
paper with app programmers and users, while the remaining
subsections focus on app programmers, their creations, and
interactions with app users.

4.1 TouchDevelop itself
As mentioned previosuly, TouchDevelop consists of a cloud

back-end consisting of about 100KLOC of C# running in
Windows Azure, and a client running in HTML5 web-brow-
sers. The IDE part of the client (AST operations, compiler,
editor, debugger etc.) is implemented in about 60KLOC of
TypeScript; the runtime libraries are 50KLOC.

Every source code check-in to the client is built auto-
matically and uploaded to the cloud back-end generating
a uniquely named release. At every time there is one re-
lease labeled “current” and (a possibly different) one named
“beta”. The “current” release is moved about every week,
and the “beta” is moved several times per week. Users with
high score are encouraged to try the beta version.

In case of an unexpected exception or assertion failure in
the client, we log a crash report in the cloud. The client also
sends instrumentation telemetry data. As of April 2014, we
collect about 100 crash reports and 35,000 telemetry reports
per day, from about 1000 users. These numbers have been
growing steadily over time.

We found the crash reports to be tremendously useful dur-
ing development. The cloud back-end automatically bucke-
tizes crash reports by stack trace and type, and sorts them
by number of occurrences. This lets us focus on the crashes
occurring frequently and impacting more users. Crash re-
ports include the current script being edited and 1000 or so
recent log messages and instrumentation events. The log is
particularly useful in presence of async APIs in JavaScript,

6

http://csedweek.org/learn
http://csedweek.org/learn
https://www.touchdevelop.com/help/cloudservices
http://mindsticks.com


Figure 2: Growth of TouchDevelop

which often make stack traces non-informative.
We found this functionality useful enough to expose simi-

lar information for user scripts: whenever the script crashes,
the user can agree to sending crash report to the author.
These are then categorized in a similar way.

The analysis of instrumentation data is simpler: it can
be visualized over time and categorized by different kinds
of devices. We have used it on a number of occasions when
deciding to remove unused fragments of user interface code
from the IDE.

In addition to automated tracking, we also let users, par-
ticularly the ones using “beta” release, report bugs in forms
of comments on a specific forum. These can be then cat-
egorized, assigned, and tracked (we plan to expose similar
functionality for user scripts soon). Given our limited re-
sources, this form of crowd-sourced testing enabled by large
TouchDevelop user-base has proven very useful.

4.2 Scripts and users
This section provides basic data about the users of Touch-

Develop platform, the scripts they publish, and growth trends.
The analysis is based on the public data about users and
their published scripts (see § 3.7).

The data-set contains 105,076 scripts published between
August 2011, when we first introduced script publishing, and
April 2014. We have excluded from further analysis 5,943
scripts published from various system and testing accounts,
leaving us with 99,133 scripts.

A feature is a built-in function name, a qualified library
function name, or a language feature name (eg., “if-state-
ment”, “object type definition” or “assignment”).

A feature multiset for a script contains each feature as
many times as it is used in a given script. In particular, the
multiset does not contain literals or art references, which
are customizable in automatic tutorials (see § 3.5), and are
commonly changed during rebrandings—when a user clones
a script and only changes a bit of text or a picture.

Trivial scripts are ones which have no base script and
share the exact feature multiset with at least ten other scripts.
These are either very small, or are the result of completing
a tutorial.

Overall, 58% (58,116) of all scripts are non-trivial. There

Figure 3: Distribution of script sizes

are 184,773 users of whom 30,382 have published at least
one script, and 14,287 have published at least one non-trivial
script.

Figure 2 shows the growth of the TouchDevelop platform
over time—published scripts, registered users, and number
of started tutorials (scaled down by 50% to fit in the plot).
There was a significant bump in number of users (if not
scripts) following a round of publicity after the initial release
of the web IDE. Similarly, the Hour of Code event brought
in quite a few new (but trivial) scripts. The plot also show
that growth continues to accelerate.

Figure 3 shows the size of published scripts. While the
majority of scripts are small (their median size is 24 state-
ments), 14,031 scripts contain more than 100 statements,
and 1,253 script contain more than 1000 statements. Scripts
above 5000 statements are outliers—there are only 132 of
them—and the biggest script has 9282 statements. Scripts
which are successful, measured by the number of runs, are
significantly bigger—their median size is 72 statements for
scripts with over 100 runs and 96 statements for scripts with
over 500 runs.

4.3 Updates and remixes work
The update size is the cardinality of the multiset of fea-

tures used in given script minus the feature multiset of its
base (if any). The cardinality of the sum of all update sizes,
which is a measure of published edit operations, is 4.0M for
trivial scripts and 5.5M for non-trivial scripts. On the other
hand, there are 0.8M statements in trivial scripts (which
have no base) and 7.7M in non-trivial ones, suggesting that
an average non-trivial statement was republished unchanged
several times.

Figure 4 shows the update sizes for scripts with no base
(ie., initial publications), scripts where the base has the
same author (ie., updates), and scripts where the base has
a different author (ie., direct remixes). The data is for
non-trivial scripts only. The initial publication is by far
the biggest, with small incremental updates after that. We
later point to quality advantages of scripts with updates.
The small sizes of remixes (and their relative low quality,
see § 4.7) suggest that they are mostly used as a learning
tool, although in some cases the changes are significant (eg.,

7



Figure 4: Distribution of update sizes

there are 330 remixes with an update size greater than 100).
Typically, there are at most a few updates published for

a given script, however longer update sequences occur: the
maximal length of base chain (§ 3.3) is 314, with 890 scripts
over 50, 6600 over 10, and 37,422 with a base script at all.

4.4 Script popularity vs. user success
In the remaining sections we want to see how various fac-

tor influence user’s success in developing apps. Our assump-
tion is that once a user manages to develop an app, they will
publish it and it will get run by the author and other users.
Of course, the user may not publish, or other users may fail
to find (and thus run) the script. However, the number and
quality of publications does not suggests users are particu-
larly shy about publishing. We also observe lots of scripts
being run by non-authors. We are thus going to take the
number of runs of a script as a proxy for user success.

Alternatively, we could use the number of installations of
a script or the number of hearts (positive reviews) given to
a script. We found these to be correlated, but the number
of runs is the most informative, especially for the majority
of scripts, which do not have any hearts, but are run a few
times.

Profile, coverage, and crash logs also could be used as
measures of quality and popularity, but they are often miss-
ing and do not capture if the script is performing useful
functions.

4.5 Phone is better for development than a PC
Figure 5 shows the mean number of runs and the mean size

for scripts published from different kinds of devices. Over-
all, scripts published from mobile devices (phones, tablets,
music players, etc.) are smaller, yet more popular than ones
published from desktops (keyboard-equipped desktop and
laptop computers). This suggests people are putting more
effort into programming from a mobile device.

The good showing of mobile platforms is mainly due to the
dedicated TouchDevelop apps for Windows Phone. Our An-
droid app is relatively recent and not yet as feature complete.
Tablets are generally also showing good results, comparable
with desktop machines.

Figure 5: Script popularity by publication platform

Figure 6: Script popularity by user type

We did not collect data about publication device at the
beginning—the plot shows data for the 80% of scrips for
which we did collect publication device. Also, Windows
tablets are a bit difficult to categorize as they may or may
not sport a keyboard, which may or may not be used. They
are thus included in both Windows numbers and separately.

4.6 Phone + PC is better yet
Figure 6 shows the total number of runs of all scripts pub-

lished by a user, averaged over given user set (and divided
by 10 to fit in the plot). It also shows the mean number of
days the user was active.

Similarly to the data for scripts, users publish higher qual-
ity scripts from mobile platforms. In both cases they use
the platform for about five days on average. However, users
who publish from both desktop and mobile platforms pro-
duce much better scripts and use TouchDevelop for almost a
month on average. This is encouraging, TouchDevelop is the
only platform which currently provides this kind of emerging
experience for coding.

4.7 Language features
Figure 7 shows script popularity for scripts using different

features of the platform or the language. The data is lim-

8



Figure 7: Script popularity by feature used

ited to non-trivial and non-hidden scripts. Hidden scripts
account for about 20% of all scripts, but are more common
in some of the buckets we analyze (though not in the per-
platform buckets from previous sections). Hidden scripts are
hardly run by anyone other than they author, so they get
artificially low scores.

The first set focuses on different forms of collaboration
and version control. Scripts which have a base script are
somewhat more popular and bigger than script that do not,
which suggests people are finding source control useful. Li-
braries as a form of modularization (ie., the author of library
and the script is the same) seem very successful, whereas us-
age of other user’s libraries is moderately successful. Low
popularity of remixes (ie., scripts which have more than one
author in the base chain) seem to indicate they are used
mostly as learning tool, yet are common.

The second set focuses on the usage of different language
features. Scripts with comments in the source seem more
popular. Other somewhat advanced features (global vari-
ables and functions with arguments) also have positive in-
fluence on popularity. However, users do not seem to know
how to handle more advanced features, like type definitions
and boxes [5] (see below).

The last set splits the scripts by the main API used.
Scripts that use the game board (which includes physics and
2D graphics engines) are most numerous and popular. Boxes
are TouchDevelop’s way of constructing more complex UIs.
They are an advanced feature, which users seem to find hard
to master. Finally, it is possible to create very simple scripts
(note the low average size) with simple UI, which use neither
game board or boxes.

The relative run counts of games and apps may be due to
users being more inclined to play games than use produc-
tivity apps. However, even the gap between apps with and
without boxes is significant.

5. RELATED WORK
Many aspects of our CIDRE definition (§2) can be found

in lesser combination in existing projects and websites; to
the best of our knowledge, their full combination is unique
to the TouchDevelop project.

5.1 Web-based Software Development
Community websites such as StackOverflow demonstrate

how to encourage programmers to share knowledge, and on-
line repositories such as GitHub combine cloud storage, so-
cial functions to encourage collaboration, outsourcing func-
tions like build to other web services. However, neither one
supports both the development activity and the deployment
of applications.

Providing the functionality of traditional IDEs as a web-
site is becoming increasingly popular, and there are many
web-based IDEs available today, such as codenvy.com, koding.
com, or visualstudio.com. While they provide typical IDE
functionality (develop, compile, test, debug) and parts of the
emerging experience (ubiquituous workspace, secure iden-
tity, and code repository), they fall short on the many other
aspects of our CIDRE vision.

There is no deep integration of social features to support
the online community and foster open collaboration. Also,
support for tracking the whole life cycle of applications (in-
cluding deployment and telemetry) is only slowly emerging,
and typically limited to the parts of the application that
execute in the cloud. Almost all web-based IDEs still still
do not support offline operation. Finally, as far as we have
seen, web-based IDEs all but ignore the mobile experience
and still squarely focus on programming from the traditional
desktop with large screens, keyboards, and text-based pro-
gramming languages.

Abandoning traditional programming methodology in fa-
vor of high-level programming abstractions and building blocks
that simplify the development of applications also is seeing
more uptake. A good example are online app-creation wiz-
ards [1, 2]. However, TouchDevelop remains unique in this
space as its design is still code-first, allowing the develop-
ment of complete programs, as opposed to code fragments
in a static template.

5.2 Development for Non-expert Programmers
on Mobile

PocketCode [12] is a tool similar to the initial version of
TouchDevelop—it focuses on single-user programming di-
rectly on a phone or tablet. The programming language is
far simpler and its main aim is education.

AppInventor [9] lets users create Android apps by drag
and dropping blocks representing various ASTs on a sep-
arate PC. The programming language is simpler than in
TouchDevelop (for example lacking library abstractions), and
the cloud and social support is more limited. On the other
hand, the support for Android-specific APIs and UI is su-
perior in AppInventor. Interestingly, the code editor is fully
structured—expressions are also edited as trees. The effec-
tiveness of the two approaches was recently compared [8].

6. FUTURE WORK AND CONCLUSIONS
TouchDevelop’s main use so far has been in the educa-

tional context—as an introductory platform for mobile, or
even general, development. Yet, we have also seen some pro-
fessional use, for example the MindSticks game, ranking very
high in the Windows App Store. In future, we plan to push
the semi-professional angle more by enabling features like
server-side execution (with full programming language in-
tegration), offline AST-based merge functionality in version
control, real-time collaborative editing of code, and inte-

9

http://codenvy.com
http://koding.com
http://koding.com
http://visualstudio.com


grated bug-tracking. This should provide us with more data
how a CIDRE would be used by more advanced developers.

We also plan to experiment, or encourage experimenta-
tion by others via the cloud plugin mechanism, with various
program analyses to enable faster learning and better code
quality for non-expert programmers.

We believe that TouchDevelop integrates many of the fea-
tures which will become more common in the IDEs of the
future. It also represents a convenient vehicle for program-
ming language research. We encourage the reader to try the
IDE (at touchdevelop.com) for themselves, and invite them
to extend it.

7. REFERENCES
[1] 10 Excellent Platforms for Building Mobile Apps.

http:

//mashable.com/2013/12/03/build-mobile-apps/.

[2] Microsoft Project Siena.
http://microsoft.com/projectsiena.

[3] TypeScript Langauge Website.
http://www.typescriptlang.org/.

[4] S. Apel, O. Leßenich, and C. Lengauer. Structured
merge with auto-tuning: balancing precision and
performance. In ASE, pages 120–129, 2012.

[5] S. Burckhardt, M. Fähndrich, P. de Halleux,
S. McDirmid, M. Moskal, N. Tillmann, and J. Kato.
It’s alive! continuous feedback in ui programming. In
PLDI, pages 95–104, 2013.

[6] S. Burckhardt, M. Fähndrich, D. Leijen, and
B. Wood. Cloud types for eventual consistency. In
European Conference on Object-Oriented
Programming (ECOOP), volume 7313 of LNCS, pages
283–307. Springer, 2012.

[7] S. Burckhardt, D. Leijen, M. Fähndrich, and
M. Sagiv. Eventually consistent transactions. In
ESOP, pages 67–86, 2012.

[8] A. Harzl, V. Krnjic, F. Schreiner, and W. Slany.
Comparing purely visual with hybrid visual/textual
manipulation of complex formula on smartphones. In
DMS, pages 198–201, 2013.

[9] J. Liu, C.-H. Lin, P. Potter, E. P. Hasson, Z. D.
Barnett, and M. Singleton. Going mobile with app
inventor for android: a one-week computing workshop
for k-12 teachers. In SIGCSE, pages 433–438, 2013.

[10] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and
E. Eastmond. The scratch programming language and
environment. Trans. Comput. Educ., 10:16:1–16:15,
November 2010.

[11] A. Puder, N. Tillmann, and M. Moskal. Exposing
native device APIs to web apps. In Proceedings of
First ACM International Conference on Mobile
Software Engineering and Systems, MobileSoft 2014,
2014.

[12] W. Slany. A mobile visual programming system for
android smartphones and tablets. In VL/HCC, pages
265–266, 2012.

[13] T. Teitelbaum and T. Reps. The cornell program
synthesizer: A syntax-directed programming
environment. Commun. ACM, 24(9):563–573, Sept.
1981.

[14] N. Tillmann, M. Moskal, J. de Halleux, and
M. Fahndrich. TouchDevelop: programming

cloud-connected mobile devices via touchscreen. In
Proceedings of the 10th SIGPLAN symposium on New
ideas, new paradigms, and reflections on programming
and software, ONWARD ’11, pages 49–60, 2011.

10

http://touchdevelop.com
http://mashable.com/2013/12/03/build-mobile-apps/
http://mashable.com/2013/12/03/build-mobile-apps/
http://microsoft.com/projectsiena
http://www.typescriptlang.org/

	Introduction
	CIDRE
	The Emerging Experience
	Integration Benefits

	TouchDevelop
	Code Representation
	Programming Language
	Storage and Publications
	Cloud plugin architecture
	Automatic tutorials
	Gamification
	Openness

	Evaluation
	TouchDevelop itself
	Scripts and users
	Updates and remixes work
	Script popularity vs. user success
	Phone is better for development than a PC
	Phone + PC is better yet
	Language features

	Related Work
	Web-based Software Development
	Development for Non-expert Programmers on Mobile

	Future Work and Conclusions
	References

