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Figure 1: Example image effects achieved via Geodesic Forests. Texture flattening, ink painting, geodesic plotting and diffusive painting
are a few of the many efficient editing operations enabled by the approach proposed in this paper. Figure best viewed on screen.

Abstract
A Geodesic Forest is a new representation of digital color images
which yields flexible and efficient editing algorithms.

In this paper an image is decomposed into a collection of trees
(a forest) whose branches follow directions of minimum variation.
This representation enables expensive, 2D, edge-aware processing
to be cast as efficient one-dimensional operations along the tree
branches. Existing and novel contrast-sensitive editing tasks can
now be achieved by simple and effective algorithms acting on the
same tree-based image decomposition.

The contribution of this paper is three-fold: i) We introduce the
Geodesic Forests image representation which unifies a number of
previously diverse editing techniques; ii) We present a GPU-CUDA
algorithm for the efficient decomposition of an image into a com-
plete set of disjoint geodesic trees; iii) We describe a number of
simple algorithms to generate existing and new edge-aware image
and video effects.

The effectiveness of our algorithms is demonstrated with a number
of applications such as: texture flattening, ink painting, data-aware
resizing, diffusive painting and geodesic plotting. The high level
of parallelism of our algorithms enables them to be applied interac-
tively to high-resolution images (∼ 15Mpixel), and video data.

CR Categories: I.4.10 [Computing Methodologies]: Image Pro-
cessing and Computer Vision—Image Representation; I.4.3 [Com-
puting Methodologies]: Image Processing and Computer Vision—
Enhancement; I.3.3 [Computer Graphics]: Image Generation—;

Keywords: geodesic distance transform, parallel distance trans-
form, forest transform, image editing, bilateral filtering, texture flat-
tening, image resizing, non-photorealistic rendering.

1 Introduction
This paper introduces a new representation of color images which
turns expensive, edge-aware, 2D processing into a set of efficient
1D operations. Existing and new image effects are enabled by such
unified representation.

Nowadays high resolution images and videos are ubiquitous. Yet,
algorithms for editing such data are not fast enough to allow real-
time processing; the reason being that many modern editing algo-
rithms require spatially variant processing. For instance, one of
the most sought-after requirements is edge-sensitivity [Chen et al.
2007; Rother et al. 2004]; i.e. the ability of the algorithm to change
its behavior depending on the local image contrast. Such depen-
dence on the data content limits the speed of current algorithms.

This paper shifts the burden of spatial inhomogeneity from each
specific algorithm to the underlying image representation. This is
achieved by reorganizing the image content so as to hierarchically
cluster together pixels which are similar to one another and spa-
tially close to one another. Once such a decomposition is com-



puted, many diverse editing tasks may be applied directly to the 1D
neighborhoods defined by the branches of our tree-based structure.

GPU processing and the intrinsic parallelism of tree-based process-
ing allow a number of very diverse effects to be achieved efficiently
as variants of the same underlying algorithm.

1.1 Literature survey

This work is inspired by and builds upon the following four pa-
pers [Falcao et al. 2004; Chen et al. 2007; Criminisi et al. 2008;
Weber et al. 2008].

Geodesic Forests are related to the Image Foresting Transform
(IFT) [Falcao et al. 2004], with the following differences: i)
Geodesic Forests use probabilistic soft seed masks as opposed to
binary seed masks. This captures data uncertainty and reduces com-
putation (details later). ii) Here the seed masks and the tree roots
are can be computed automatically as well as selected manually.
iii) The Geodesic Forest decomposition is achieved via an efficient
GPU-based, linear-time algorithm. iv) We extend the range of edit-
ing applications from morphological-like operations [Falcao et al.
2004] to: texture flattening, diffusive painting, seam carving, ink
painting and many others.

The work in [Chen et al. 2007] has introduced the “Bilateral Grid”;
i.e. a clever data structures which combines spatial and range di-
mensions into a single, coarse resolution 3D array. This structure
enables efficient edge-aware GPU-based editing. Geodesic Forests
are a very different representation which turns an n-dimensional
regular grid into a set of 1D paths and enables GPU processing
without compromising resolution or image detail. Our representa-
tion relates to physical phenomena such as diffusion and fluid dy-
namics and provides new insights into geodesic distance transforms
and their uses.

The work in [Criminisi et al. 2008] has introduced generalized
geodesic distances (GGDT), i.e. geodesic distances applied to real-
valued, probabilistic seed masks and demonstrated their application
in segmentation. GGDTs are the primary tool used in our tree-based
image decomposition algorithm.

The Geodesic Forest representation builds upon the vast literature
on efficient geodesic distance transforms. A complete list of rele-
vant papers is beyond the scope of this paper; with some of the most
relevant work being: [Sethian 1999] for the Fast Marching Method;
[Tsitsiklis 1995] for comparisons between wave-front and raster-
scan techniques; [Breu. et al. 1995; Fischer and Gotsman 2006] for
the efficient computation of Voronoi diagrams; [Surazhsky et al.
2005; Sigg et al. 2003; Sud et al. ] for CPU and GPU algorithms
applied to triangle meshes; and finally [Weber et al. 2008] for an
efficient GDT algorithm.

Currently, the fastest reported GDT algorithm is the GPU-CUDA
implementation in [Weber et al. 2008]. In this paper we describe
two modifications of the Weber algorithm: i) we adapt it to compute
generalized geodesic distances and, ii) we store the minimum cost
paths as well as the distances, with little loss of efficiency.

The need for edge-aware processing. Edge-aware segmenta-
tion has been achieved recently using a variety of image models
such as Markov and Conditional Random Fields [Szeliski et al.
2007; Boykov and Jolly 2001; Kolmogorov and Zabih 2004; Li
et al. 2004; Rother et al. 2004; Wang et al. 2005], Random Walker
[Grady and Sinop 2008; Sinop and Grady 2007], Total Varia-
tion [Unger et al. 2008] and Geodesic models [Bai and Sapiro
2007]. Although impressive results have been obtained, the energy
minimization techniques utilized are, in general, not sufficiently ef-
ficient (on large images), nor easy to parallelize.

Related work on edge-aware image editing includes (and is not lim-
ited to): anisotropic diffusion [Perona and Malik 1990], image de-
noising [Szczepanski et al. 2003; Buades et al. 2005], bilateral fil-
tering [Chen et al. 2007; Tomasi and Manduchi 1998; Weiss 2006],
non-photorealistic rendering [Bousseau et al. 2007; Wang et al.
2004; Winnemoller et al. 2006], image colorization [Yatziv and
Sapiro 2006; Levin et al. 2004; Luan et al. 2007], image stitch-
ing [Brown et al. 2005; Agarwala et al. 2004], and tone map-
ping [Lischinski et al. 2006].

Despite their popularity geodesic distance transforms have so far
found only a modest use in the field of image editing. Much of their
use has been limited to skeletonization and morphological opera-
tions [Falcao et al. 2004], 3D mesh editing and manipulation [Ben-
dels et al. 2003], surface interpolation [Cohen-Or et al. 1998] and
shape images [Weber et al. 2008]. In Computer Vision single or
multiple (non geodesic) trees have been used for energy minimiza-
tion in applications such as stereo correspondence [Veksler 2005;
Kolmogorov 2006]. In this paper we extend the range of applica-
tions considerably.

2 Geodesic Forests
This section describes background on generalized geodesic dis-
tances and introduces the Geodesic Forest decomposition.

2.1 Background on geodesic distance transforms

For completeness, we begin by providing a formal definition of the
geodesic distance and then define the recently introduced general-
ized version.

2.1.1 Geodesic Distance Transform

Given a color image I(x) : Ψ ⊂ R
2 → R

3, a binary mask M
(with M(x) ∈ {0, 1}∀x) and a “seed” region (or “object” region)
Ω with x ∈ Ω ⇐⇒ M(x) = 0, the unsigned geodesic distance
of each pixel x from Ω is defined as:

D(x;M, I) = min
{x′|M(x′)=0}

d(x,x′), with (1)

d(a,b) = inf
Γ∈Pa,b

∫ 1

0

√

|Γ′(s)|2 + γ2 (∇I(s) · Γ′(s))
2
ds. (2)

with Pa,b the set of all possible paths between the points a and b;
and Γ(s) : R → R

2 indicating one such path, parametrized by
the scalar s ∈ [0, 1]. The spatial derivative Γ

′(s) = ∂Γ(s)/∂s
represents a vector tangent to the direction of the path. The dot-
product in (2) ensures maximum influence for the gradient ∇I
when it is parallel to the direction of the path Γ. The geodesic
factor γ weighs the contribution of the image gradient versus the
spatial distances. Furthermore, the integral in (2) is the Euclidean

length of the 3D path Γ̃ that Γ defines on the (x, y, I) surface:

Γ̃(s) = [Γ(s); γI(Γ(s))]. Also, for γ = 0 eq. (2) reduces to the
Euclidean length of the path Γ.

An efficient GPU algorithm for computing geodesic distances is
presented in [Weber et al. 2008], while other linear-time CPU al-
gorithms are discussed in [Yatziv et al. 2006; Criminisi et al. 2008]
and references therein.

2.1.2 Generalized Geodesic Distance Transform

This section explains the generalized GDT (GGDT) introduced
in [Criminisi et al. 2008]. The key difference between the GDT and
the GGDT is the fact that in the latter the input seed map M is more
generally a soft, real-valued matrix. Given a map M(x) ∈ [0, 1] the
Generalized Geodesic Distance is defined as follows:

D(x;M, I) = min
x′∈Ψ

(

d(x,x′) + νM(x′)
)

(3)

with d(.) as in (2). Mathematically, this is a small change. How-
ever, the fact that eq. (3) uses the soft belief of a pixel belonging



Figure 2: Generalized geodesic distances in 1D. Given the “be-
liefs” M(x) and a point x the generalized geodesic distance of x
from the (soft) seed region (low values of M) is the sum of the length
of the two segments shown with solid, red lines. See text.

to the object of interest means that the latter can be defined prob-
abilistically. This is achieved more economically than having to
compute the fully optimized binary segmentation. The parameter
ν in eq. (3) establishes the mapping between the beliefs M and
the spatial distances. Figure 2 shows an explanatory diagram in
the 1D case. Alternatives to eq. (3) (e.g. minimizing the distance
√

d2(x,x′) + νM2(x′)) may also be considered.

Figure 3 further clarifies these points with a further, explanatory
2D example. Given an image of a flower, the user may use differ-
ent brush strokes to quickly indicate a foreground object [Li et al.
2004]. In this case the user strokes are used only to compute the
foreground (Fg) and background (Bg) color models, which are rep-
resented as the histograms hFg, hBg over the 3D RGB domain. At
this point, for each pixel x in the image we can compute the log-
likelihood ratio as:

L(x) = log ( hFg (c(x)) / hBg (c(x)) ) (4)

where c(x) represents the RGB color for the pixel in x as a 3-
vector. Now, the real-valued seed map M is obtained via a sigmoid
transformation of the log-likelihood ratio as

M(x) = σ(L(x)), with σ(L) = 1/(1 + exp(−L/µ)). (5)

This operation ensures that M(x) ∈ [0, 1]. Figure 3c shows the
computed seed map in our example. The corresponding GGDT is
shown in Figure 3d.

Note that in this example the seed region does correspond to an
actual object (a flower) and is determined interactively. Later we
will show examples of seed maps computed entirely automatically,
and their applications.

So far we have described the mathematical model of the GGDT.
Next we describe the efficient algorithm for computing it.

2.2 Implementing the Generalized GDT on the GPU

Our GPU implementation uses nVidia’s CUDA programming envi-
ronment and builds upon the work of [Weber et al. 2008]. Weber et
al describe an algorithm they name the Parallel Marching Method
(PMM), which is a CUDA-friendly parallelization of an approxi-
mate 4-pass raster scan technique originally introduced in [Daniels-
son 1980]. They apply their method to multi-chart geometry im-
ages to compute geodesic distances on a curved surface, whereas
we have adapted it to compute the generalized GDT and forest de-
composition of a natural image.

The original Parallel Marching Method achieves a degree of paral-
lelization by organizing the raster scans so that a block of threads
may proceed in parallel. Multiple blocks are overlapped and may
also proceed in parallel. The data is organized to use texture mem-
ory for the immutable image I and global memory accessed coher-
ently for the distance map D. Four passes (up, down, left and right)

Figure 3: Generalized geodesic distances and Geodesic Forests.
(a) An input image. (b) The user indicates the object of interest
with two kinds of brush strokes (green for Fg and red for Bg ). (c)
The probabilistic seed mask M (darker for foreground); Intermedi-
ate grey values indicate uncertain pixels. (d) The estimated Gen-
eralized Geodesic Distance (darker for smaller values). (e) The
computed back-links are visualized here with a 9-color palette. (f)
Tracing minimum cost paths (in red) from selected points. Clusters
of such paths share the same termination point (in green). This nat-
urally defines a set of trees within the image; namely a Geodesic
Forest.

are completed for each iteration of the algorithm. Two copies of
the distance map are used: one for the up/down passes, and a trans-
posed version for the left/right passes. For further details, we refer
the reader to [Weber et al. 2008].

To adapt this procedure for our generalized GDT we first initial-
ize the distance map from the soft seed mask as follows: D(x) =
νM(x). We then execute the raster scans, so that each pixel is re-
placed by the minimum of four values:

D(x) = min











D(x)

D(x+ a1) +
√

2ρ2 + γ2|I(x)− I(x+ a1)|2

D(x+ a2) +
√

ρ2 + γ2|I(x)− I(x+ a2)|2

D(x+ a3) +
√

2ρ2 + γ2|I(x)− I(x+ a3)|2

(6)
The three offset vectors ai define the local kernel and vary for
each scan direction. For example, in the downward pass (fig. 4a)
a1 = (−1,−1),a2 = (0,−1), a3 = (+1,−1). The parameter ρ
represents the spatial scale in the image plane and is fixed to ρ = 1.
This implementation is augmented with an additional output of one
byte per pixel, to store the incoming direction from which the min-
imum distance in eq. (6) is achieved. This back-links map B(x) is
initialized to zero and for each pass, one of three possible direction
indices is written at each pixel, depending on which term in eq. (6)
gives rise to a minimum. For example in the left pass, direction
indices of 3-5 are used (fig. 4b). In each pass, if the distance stored
at a pixel remains unchanged by the minimum operation, then the



Figure 4: Our GPU GGDT algorithm. (a) The downward pass.
The highlighted column shows pixels processed by the current
thread. The distance values in the top row (green) have already
been computed. Distances along the arrows are computed from tex-
ture reads on the image I as in eq. (6). (b) The 9 back-link indices,
highlighting those used in the left pass. A value of 0 indicates that
the shortest distance arises directly from the soft mask as νM(x).
(c) Tracing a path of minimum distance using the back-links.

Figure 5: Comparing efficiency with state of the art. Timings
for the Weber algorithm are shown in red and blue (for CPU and
GPU, respectively). The timings obtained by our GPU algorithm
are shown in green. When back-links are not necessary our gener-
alized geodesic distance transform is as efficient as state of the art
algorithms for conventional GDT. Storing the back-links affects the
run times by about 20%, but with additional advantages (see text).

back-link value is not altered either. As with the distance map, we
maintain two mutually transposed versions of the back-links map
for memory access coherence. After executing all four passes, the
values in B trace minimum cost paths for each position x (fig. 4c
and fig.3f).

Comparison with state of the art We timed our implementation
on an nVidia GeForce 280 GTX. Each timing represents a complete
iteration of four consecutive passes. As shown in fig. 5 our modi-
fication of Weber’s algorithm achieves similar timings to those re-
ported in [Weber et al. 2008] (i.e. ∼ 40ms on a 9 Mpixel grid).
Interestingly, no extra processing time is required to use soft seed
maps as opposed to binary ones. Storing back-links at the same
time as distances is achieved with only about an additional 20%
of the execution time. This is a very reasonable cost to pay for
the added advantage of having access to all minimum cost paths
as well as the associated distances. For added clarity our timings
are also reported in the table below. Interestingly, the percent-
age difference due to the back-links decreases with larger images.
Image size (Mpix) 0.5 2.1 7 12.6 20

Gener. GDT only (ms) 7.5 18.1 37.7 69.8 84.2
Distance and back-links (ms) 9.5 22.1 46.3 85.9 99.3

2.3 Geodesic trees and forests

Given the distance D(x) and the computed back links (fig. 3d,e),
for each point in the image we can follow the chain of back links

Figure 6: Geodesic Forest decomposition for the image in fig. 3a
and the corresponding seed mask in fig. 3c. (a, b, c, d) Differ-
ent Geodesic Forests for increasing values of the geodesic factor
γ (γ = 0.1, 0.5, 0.9, 0.95, respectively). Different colors indicate
different trees within each forest. A subset of all trees is shown here
to aid visualization.

and reconstruct the associated minimum cost path. As illustrated in
fig. 3f such paths terminate at a small set of points. Those automat-
ically determined points constitute the roots of a set of trees whose
union covers the entire image (each pixel belong to at least one tree)
and which are disjoint (each pixels belongs to only one tree). We
call this set of trees a Geodesic Forest.

Figure 6 further clarifies such a decomposition, where each of the
four images represents a different forest, produced by different val-
ues of the geodesic factor γ. Larger values yield fewer trees with
bendier and more convoluted branches. In contrast to the IFT al-
gorithm [Falcao et al. 2004] here the tree roots are computed au-
tomatically from a probabilistic seed map. The number of trees in
the forest is automatically selected by our algorithm. The behavior
shown in fig. 3f is somewhat reminiscent of the hill climbing Mean
Shift algorithm in [Comaniciu and Meer 2002].

Having described our image representation and the associated com-
putation algorithm, we next discuss its applications.

2.3.1 Simulating diffusion processes

The branches of a Geodesic Forest are, by construction, paths of
minimum cost and may be interpreted as paths of least resistance
through an inhomogeneous, physical medium. Therefore, Geodesic
Forests may be used to simulate physical phenomena such as elec-
trical conduction, fluid propagation, magnetism and diffusion.

Figure 7 illustrates a simulation where some green paint is diffused
from a seed region through a carved physical medium. In this ex-
ample the seed mask M is defined as a blank image with a single
blob of paint placed in the middle of the carved region (fig. 7b). The
gradient field ∇I is defined as the gradient of the carved surface.

The Geodesic Forest decomposition produces a number of trees
with roots in the initial paint location. Diffusing paint along the
tree branches, from the root towards the leaves amount simply to
computing the weight

W (x) = Ze
−

D2(x)

φ2 (7)



Figure 7: Simulating diffusion of paint on inhomogeneous sur-
faces. (a) The mask M visualized as a surface in 3D. (b, c, d, e)
Different phases of the diffusion process. (Left col.) The diffused
image I(x) in eq. (8). (Right col.) The diffusion weight W (x) in
eq. (7) visualized as a height map. The green paint being poured in
the middle of the carved region diffuses while following thin, curly
structures, until the whole pattern is uniformly painted. These re-
sults cannot be achieved via Euclidean distances. In practice the
final result in (e) is obtained in a single step. Please see text and
the accompanying video.

with Z a normalization constant which ensures that W ∈ [0, 1],
and φ a user-defined diffusion parameter. The quantity W (x) is a
function of the amount of paint which reaches position x. Then the
diffused image (left column in fig. 7) is constructed as

I(x) = W (x) S(x) + (1−W (x)) C (8)

with S(x) the original surface color (uniform white in this toy ex-
ample) and the constant C the color of the paint (green here). The
diffusion parameter φ controls the spatial extent of the diffusion
process, with larger values of φ yielding spatially larger diffusion
effects. Paint thinning can also be simulated by multiplying W by
a function of the area affected by diffusion.

Being able to diffuse information from one image region to other
regions anisotropically and efficiently is the basis of the editing ap-
plications described next.

3 Applications to image and video editing
This section presents numerous applications of Geodesic Forests in
image and video editing. The reader is kindly invited to view the

Figure 8: Ink painting effects. (a) A photo of Notre Dame in Paris.
(b) The resulting ink brush painting. Black ink is diffused from
strong edges to the rest of the paper creating a subtle “chiaroscuro”
effect. (c) The final effect is obtained by adding automatic pen
strokes and a slight tint to the paper. (d) Detail of (c) highlight-
ing the generated diffusion effect. The whole process takes around
20ms on a 2Mpix image.

associated video for further results and animations.

3.0.2 Ink painting

Figure 8 shows a photograph of the Notre Dame cathedral in Paris
turned into an ink brush painting, with added pen strokes. This ef-
fect is obtained by computing the soft seed mask M from the image
content itself as M(x) = Z|∇Y (x)|, with Y the luma channel and
Z a normalization factor to ensure that M ∈ [0, 1]. The result in
fig 8b is simply a visualization of the diffusion weight W (x) as
defined in eq. (7). As discussed in section 2.3.1 this effect can be
interpreted as the diffusion of the ink from regions of high gradient
in the image towards the flatter areas. The only interaction nec-
essary here is in choosing the amount of diffusion by setting the
value of φ. The final composition (fig. 8c) is obtained by adding
automatic pen strokes. Following [Winnemoller et al. 2006], pen
strokes are computed as the contrast-enhanced gradient magnitude
of the original image.

As demonstrated in fig. 9, ink painting on a rough, textured surface
can also be easily simulated. This is achieved simply by replac-
ing the gradient field ∇I in the computation of the GGDT (eq. 3)
with max(∇I,∇J); where ∇J is a different gradient field. For
instance, in the two examples in fig. 9 J was chosen to be an im-
age with diagonally oriented texture. This operation allows ink to
diffuse into the crevasses of the rough surface.

3.0.3 Geodesic texture flattening

Edge-aware texture flattening is obtained here by: i) decomposing
the image into a small number of components, ii) applying geodesic



Figure 9: Ink painting on a rugged surface. In the case of an
inhomogeneous support the ink diffuses along directions of mini-
mum resistance within the support surface. This is simulated in our
algorithm simply by modifying the gradient field ∇I .

diffusion to each component, and then iii) recombining the pro-
cessed components into the flattened output.

In detail, given a color image I and its luma Y all pixel intensi-
ties are clustered via conventional K-means into K cluster centres,
with mean luma values denoted µi and corresponding standard de-
viations denoted σi (i is a cluster index).

At this point, K soft masks Mi(x) are computed as a function of

the probability of each pixel belonging to the ith cluster as follows:

Mi(x) = 1− λi e
− 1

2

(

Y (x)−µi
σi

)2

(9)

with λi normalization constants (see fig. 10b for an illustration).
For each mask Mi we then compute the corresponding distance
Di(x) as in (3), and thus the diffusion weights Wi(x) following
eq. (7). The flattened luma is obtained as a weighted average of the
cluster colors:

Y ′(x) =
K
∑

i

µiWi(x). (10)

Combining the flattened luma Y ′ with the unprocessed chromatic-
ity channels yields the output color image (fig. 10d). This opera-
tion may be interpreted in physical terms as constructing an image
by pouring K paint shades onto a canvas in different regions and
letting the paint diffuse and mix. Please note that although the min-
imum cost paths are not used explicitly here, the geodesic distances
are still defined by the underlying forest structure.

In this application the soft maps are computed automatically and
the user is only required to select the amount of diffusion φ and the
number of clusters K. In this paper no more than four clusters have
been used thus making the whole process extremely efficient. The
reason why a very small number of cluster suffices (even on images
with complex luma statistics) is due to the probabilistic nature of
the GGDTs, which can take into account the uncertainty of pixels
which do not fully belong to a single cluster and whose contribution
is spread across multiple clusters.

The bottleneck of our flattening algorithm is in the computation of
the K distance maps. However, note that those can be computed
completely independently from one another and in parallel. Also,
our GPU-based GGDT algorithm is itself parallel and extremely ef-
ficient. As an example, 1 Mpix images are flattened in about 30ms,
and 10 Mpix ones in about 160 ms. Notice that here no data sub-
sampling has been necessary (thus avoiding possible loss of fine

Figure 10: Edge-sensitive texture flattening. (a) Original im-
age. (b) Output image where the texture produced by the colorful
lichens has been flattened while retaining sharp details. (c) The
automatically selected soft mask Mi for one of the clusters. Pixels
belonging to the current cluster are indicated in dark. Gray val-
ues indicate uncertain pixels (allocated to multiple clusters). (d)
The corresponding diffused map Wi. The graininess of (c) has now
been removed. (a’, b’, c’, d’) Details of the corresponding images.

details, such as thin structures). Compared to the work in [Chen
et al. 2007] our representation requires relatively small memory
use (even for high res. images), and no large speed reduction is
observed for larger images. Figure 11 shows some typical results.
As shown in the accompanying video, our GPU-based texture flat-
tening technique allows abstraction and cartoonization of videos in
real time.

3.0.4 Painterly effects

The work in [Bousseau et al. 2007] achieved impressive results
on video watercolorization. In that work image simplification was
achieved by simple morphological operations and considerable em-
phasis was placed on being able to see the paper texture in the final
product. The flattening procedure described in the previous sec-
tion achieves image simplification for us. Furthermore, as in sec-
tion 3.0.2, we can use a combination of image gradient and the
gradient of the paper texture to drive the diffusion of the paint. This
produces watercolor-like effects such as those in fig. 12 where pa-



Figure 11: Image abstraction. Different abstraction results ob-
tained by edge-sensitive texture flattening. Each image (around
10Mpix) has been obtained in ∼ 160ms without any data sub-
sampling. The subtlety of this artistic effect is best appreciated on
screen or in the accompanying video.

per with two different texture types have been used.

Furthermore, multiplying the ink painting image by the luma of an
input color image produce the effect shown in fig. 13, with some
dramatic “burning” effects combined with little Voronoi-like cells
which enhance the tree foliage.

3.0.5 Geodesic image plotting

Interesting animations may be generated by letting the trees grow
slowly from their roots, and paint an image as they do so. Figure 14
shows four frames of such an animation. The picture of the house
is being built progressively starting from the tree roots, lengthening
the branches of the forest until each pixel has been visited. Natural
looking intricate patterns are drawn at different stages of the anima-
tion. In this example only one root node has been selected on the
top of the farther chimney. Two more example images are shown in
fig. 1. The reader is kindly invited to view the accompanying video
to fully appreciate the effect.

Figure 12: Watercolor effects. The two rows show the same input
photo being watercolored by using two different surface textures.
Please see the accompanying video to fully appreciate the differ-
ences.

Figure 13: Further painterly effects. Here our geodesic diffusion
process produces dramatic burning effects together with outlining
of the tree foliage.

3.0.6 Diffusive painting

Figure 15 shows two examples of diffusive painting. In fig. 15a pix-
els in the sky of the original photograph are diffused along the forest
branches, from the leaves towards the roots. This produces an effect
where the clouds look like they are being attracted towards the large
dishes of the radio-telescope. In fig. 15b pixel colors are diffused
the other way around, from the root nodes towards the leaves. This
yields an effect akin to electricity discharges. More examples and
animations are shown in fig. 1 as well as the accompanying video.

3.0.7 2D image resizer

Our Geodesic Forest representation generalizes the single curve,
seam carving Dynamic Programming approach in [Avidan and
Shamir 2007]. In this section we show how content-driven image
resizing can be achieved via Geodesic Forests, where the width and
the height of the image are jointly decreased (or increased) by one
pixel at each iteration.

Interactive resizing. A first technique relies on the interactive
selection of one seed point in a region where image material can be



Figure 14: Geodesic animations. Four frames (from left to right,
top to bottom) of an animation where a photograph is progressively
built following the branches of the Geodesic Forest. Please see
accompanying video.

safely discarded (e.g. textureless regions). In this case the matrix M
is set to 0 on such seed point and 1 everywhere else. The (degener-
ate) geodesic forest consists in the single tree rooted at the selected
point. Then, we select the four-branch star subtree which has ex-
actly one leaf per side of the image frame. For each of the 4 sides
the leaf node corresponds to the pixel with the minimal geodesic
distance from the root (cf. fig. 16-right). This defines two pixel
chains joining the two opposite sides of the image frame. Remov-
ing all the pixels in those chains results in a new image with reduced
size. If several seed points are specified, they can be either visited
in an fixed arbitrary order, or randomly.

Automatic resizing. A fully automatic version of this resizing
technique consists in automatically selecting the forest root nodes
within flat image regions (e.g. locations of low gradient magnitude).
Results of such technique are presented in fig. 16 and in the accom-
panying video. It can also be shown that Geodesic Forests general-
ize intelligent scissors operations [Mortensen and Barrett 1995] as
well as panoramic image stitching. Space considerations prevent us
from describing details.

4 Limitations
The algorithms presented in this paper work well for the great ma-
jority of images, however, some difficulties may arise for more in-
tricate images. For instance, texture flattening complex images, rich
in thin structures, may lead to less interesting results. This is prob-
ably due to the difference between what humans perceive to be im-
portant object contours and the computed image gradients.

In rare occasions more iterations of our GGDT algorithm may be
necessary to achieve better distance accuracy; with consequently
slower run times. Although usually 2 iterations suffice, in extreme
examples (such as fig. 7) up to 6 iterations may be necessary.

5 Conclusion
This paper has presented Geodesic Forests, a new representation of
digital color images. The key idea is to shift the burden of data de-
pendent processing from the image editing algorithms to the core
image representation. This enables casting edge-sensitive 2D oper-
ations as a set of efficient 1D transformations.

The proposed image decomposition is achieved via an efficient
GPU-based algorithm which enables processing high resolution im-

Figure 15: Diffusive painting. Diffusing pixel colors along the
forest branches produces suggestive attraction effects. This tech-
nique may be used to plot lightning bolts in the night sky. Please
see the accompanying video.

ages in tens of milliseconds.

Geodesic Forests have also been demonstrated to be a unified
framework for the implementation of a number of existing and
novel image and video editing effects as well as physics-based sim-
ulations. Extensions to 3D, tomographic images and video cubes
are relatively straightforward. Further possible applications include
exact energy minimization via belief propagation on Geodesic For-
est structures.
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