
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
CAsynchronous Programming, Analysis

and Testing with State Machines

Pantazis Deligiannis1 Alastair F. Donaldson1 Jeroen Ketema1 Akash Lal2 Paul Thomson1
1Imperial College London, UK

{p.deligiannis, afd, jketema, pt1110}@imperial.ac.uk

2Microsoft Research, India
akashl@microsoft.com

Abstract
Programming efficient asynchronous systems is challenging because
it can often be hard to express the design declaratively, or to defend
against data races and interleaving-dependent assertion violations.
Previous work has only addressed these challenges in isolation,
by either designing a new declarative language, a new data race
detection tool or a new testing technique. We present P#, a language
for high-reliability asynchronous programming co-designed with
a static data race analysis and systematic concurrency testing
infrastructure. We describe our experience using P# to write several
distributed protocols and port an industrial-scale system internal to
Microsoft, showing that the combined techniques, by leveraging the
design of P#, are effective in finding bugs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineering]:
Testing and Debugging

Keywords Asynchronous programming; state machines; concur-
rency; static data race analysis; systematic concurrency testing

1. Introduction
Modern computing infrastructure offers multiple computational re-
sources, through multi-core and distributed clusters, and leaves the
software to exploit concurrency for responsiveness (latency) or per-
formance (throughput). Consequently, developing software requires
expertise in concurrent programming. However, fine-grained con-
currency is at odds with correctness: it makes testing and analysis
of the software much harder than in the sequential case.

This paper is about programming asynchronous systems where
the main concern is responsiveness. To achieve responsiveness, long-
running sequential activities are often split into multiple shorter tasks
that are scheduled asynchronously. If the tasks are not coordinated
properly, the interleaving between tasks from different activities can
be a source of bugs.

Multiple languages and libraries have been proposed to help ad-
dress coordination issues. Examples include actor-based languages
(e.g. Scala [21] and Erlang [28]), the .NET Task Parallel Library [18]
and Grand Central Dispatch [2]. These approaches have mostly fo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737996

cused on simplifying the programming task by moving towards a
declarative paradigm. No direct connection is established between
language design and the analysis and testing that follows once code
is written.

We present P#, a new language for high-reliability asynchronous
programming co-designed with a strong static analysis to ensure
race-freedom, and systematic concurrency testing techniques that
can exploit the statically enforced race-freedom guarantee. Co-
designing P# with accompanying static and dynamic analysis tech-
niques makes a strong move towards ensuring high-reliability of
software written in the new language.

The P# Language A P# program is composed of multiple state
machines that communicate with each other by sending and receiv-
ing events, which are similar to messages in other asynchronous
programming languages. A state can register actions to handle in-
coming events. On arrival of an event, the action registered for the
event is executed. Actions are arbitrary methods written in C# with
the restriction that they must be sequential, i.e. they may not spawn
threads or use synchronization operations. Actions are equipped
with a send primitive to enable sending events to other machines.
The actions on states correspond to asynchronous tasks and the
event-passing as well as the structure of the state machine is what
imposes a coordination control over the actions.

P# is fully integrated with C#. It presents the programmer
with the familiar programming and debugging environment of
C#, facilitating object-oriented design. P# forces the programmer
to declaratively specify asynchrony via state machines, because
actions are sequential and the only way to exploit concurrency
is by using multiple machines. Moreover, P# allows full reuse of
legacy sequential C# code; a programmer does not have to start from
scratch.

Static Data Race Analysis and Testing A P# program executes in
a shared memory environment and event payloads are allowed to
reference heap objects. This enables efficient event-passing without
the need for deep-copying or marshaling, but leads to aliasing which
can result in data races between concurrent events. This problem has
been acknowledged in many message-passing systems. Solutions
include runtime support for on-the-fly race detection [14], which
can limit responsiveness by incurring a runtime overhead, and the
use of type systems that disallow races by design [15], which are
often complicated and restrictive, hampering reuse of legacy code
in a fully-featured language such as C#.

P# comes with a sound static data race analysis that leverages
the state machine structure of the language and the absence of
concurrency inside actions to track ownership of objects. An action
assumes ownership of any payload it receives and any object it
creates; it gives up ownership of any payload it sends as part of an
event. As long as each object has a unique owner, data races cannot
occur. We show experimentally that our static analysis is effective

in detecting and proving absence of data races in practical examples,
and has higher precision than a similar static analysis proposed in
earlier work [20].

A race-free P# program can still suffer from bugs such as
assertion violations, and non-determinism due to asynchrony can
make such bugs hard to detect. We have embedded a systematic
concurrency testing (SCT) framework in our P# runtime which
allows the event schedulings of a P# program to be explored
in a controlled manner, facilitating deterministic replay of bugs.
We optimize SCT by leveraging P#’s semantics and the results
of our data race analysis: for race-free programs it suffices to
consider machine interleavings at event-level granularity, not at the
granularity of individual memory accesses. This leads to improved
performance compared to the CHESS tool [19], which also supports
analysis of C# programs.

As evidence of our claim that P# enables high-reliability asyn-
chronous programming, we present a case study porting a large
asynchronous system, internal to Microsoft, to P#. The porting and
subsequent analysis and testing revealed five bugs in the original
system that were previously uncaught across multiple releases. We
also evaluate P# and our analysis and testing infrastructure using
several distributed protocols.

To summarize, our contributions are as follows:

• We present P#, a new asynchronous language co-designed with
static data race analysis and testing techniques.
• We formulate a sound static analysis for proving race-freedom

of P# programs, showing that it improves on previous work in
terms of scalability and precision.
• We develop systematic and randomized testing strategies that

leverage the P# language and static analysis to provide higher
efficiency than a state-of-the-art SCT tool.
• We report on the use of P# inside Microsoft as the porting and

testing target of an industrial-scale asynchronous system.

2. Related Work
The P Language Our work is inspired by the P state machine-
based language [6], which unifies programming and modeling,
by enabling model checking of programs using the Zing model
checker [1]. P has a surface syntax for writing state machines, op-
erating over scalar values, and exposes a foreign-function interface
to C for encoding functionality that cannot be implemented in-
side the language. Only the P components of a program, not the
foreign-function calls, can be analyzed using Zing. This suffices for
detecting protocol-related errors, but provides no guarantees related
to the foreign functions. P does not provide a systematic way of
testing a whole program. In contrast, our approach enables whole-
program race analysis and systematic testing, and offers a similar
programming experience as in other .NET languages, including IDE
debugging support, due to the embedding of P# in C#.

Actor Languages Several languages, e.g. Scala [21], Erlang [28]
and SALSA [27], define an actor model for implementing asyn-
chronous systems. The actor model is more flexible and general
than the state machine-based paradigm of P#. We argue that the
limitations of state machines do not hinder the design of practical
asynchronous systems, and that the simplicity of state machines
enables scalable and precise static analysis (Section 7).

Message-Passing and Data Races The disadvantages associated
with runtime- and type-based race analysis [14, 15], discussed in
the Introduction, motivate static race analysis based on ownership.
SOTER [20], an ownership-based static analyzer for actor programs,
is most closely related to our work (see also Section 5.5). Our novel
analysis generally has higher precision than SOTER, as we show

by analyzing the four worst-performing SOTER benchmarks in
Section 7.

Concurrency Testing Dynamic approaches to testing of asyn-
chronous programs include concolic execution [23] and dynamic
partial-order reduction [17]. Our testing methodology is inspired by
systematic concurrency testing [9, 12, 19] and our intent was to re-
use the CHESS tool [19], as it can already analyze .NET programs.
In practice, we found that we could improve on the performance of
CHESS by leveraging the domain-specific nature of P# programs
through a custom scheduler embedded in the P# runtime.

3. A P# Program
Figure 1 graphically represents a simple P# program implementing a
master-worker asynchronous system. A master service and multiple
worker services (which are BaseService machines) communicate
with each other to update and exchange user data. A Dispatcher
machine coordinates the services. This example is reminiscent
of a proprietary Microsoft system that we ported from C# to P#
(see Section 7.1).

Each outer box in Figure 1 corresponds to a different P# state
machine, which is a class inheriting from the abstract Machine class
(defined by P#). The example program contains three such machines:
Dispatcher, BaseService and UserService. Member fields
(represented as inner boxes labeled “Machine Local Data”) can
be used to store data local to a machine; static fields are disallowed.
The states of a P# machine are defined by inheriting from the abstract
State class (defined by P#). P# enforces states to be nested classes
of the machine they belong to; this ensures they cannot be accessed
externally. State transitions are denoted by arrows in the figure; all
the available transitions are summarised in the corresponding inner
box of each machine labeled “State Transitions”.

The Dispatcher machine has a list of service machines. It can
change each such machine into a master by sending an eChange-
ToMaster event, or into a worker by sending an eChangeToWorker
event. In the Querying state, the Dispatcher loops, sending re-
quests to the services (e.g. to update their local data).

BaseService is an abstract machine from which all services
inherit. It contains four abstract C# methods, three of which are
bound as actions (represented in the inner box labeled “Action
Bindings”); a service machine must implement all four of these
abstract methods. BaseService starts in the Init state, where it
receives a Payload containing a unique ID. A payload in P# can
be a scalar or a reference sent by a sender machine. After assigning
the value to the ID field, BaseService calls InitializeState().
BaseService transitions to a new state when it receives either an
eChangeToWorker or an eChangeToMaster event. In the new state,
the machine may handle a different set of events. For example, in
the Worker state the machine can handle eUpdateState with the
UpdateState() action, whereas eUpdateState cannot be handled
in the Init state.

Finally, UserService inherits from BaseService and imple-
ments all four abstract methods. By encapsulating the state transi-
tions and action bindings in BaseService, the programmer can fo-
cus on developing custom application logic in UserService. With-
out P#, the programmer would have to manually add synchronization
operations (e.g. locks) in the UpdateState() and CopyState()
methods, as they can potentially race with one another. Adding syn-
chronization operations can be a tedious and error-prone process.
Instead, P# allows the C# code to be simple and sequential.

4. Language and Semantics
We present the core syntax and semantics of P#, on which we
build when formulating our data race analysis in Section 5. The
semantics is based on the event-driven automata formalism from [7],

abstract class BaseService : Machine

Start

eChangeToMaster

eChangeToWorker eChangeToMaster

private int ID;
private Machine Dispatcher;
private List<Machine> Workers;

Machine Local Data

OnEntry() {
 machine.ID = (int) this.Payload;
 machine.InitializeState();
}

class Init : State

OnEntry() {
 this.Dispatcher = (Machine) this.Payload;
 send(machine.Dispatcher, new eAck());
}

class Worker : State

OnEntry() {
 machine.Workers = (List<Machine>) this.Payload;
 send(machine.Dispatcher, new eAck());
 foreach (Machine worker in machine.Workers)
 send(worker, new eCopyState());
}

class Master : State

Initial State:
 (eChangeToMaster, Master);
 (eChangeToWorker, Worker);
Worker State:
 (eChangeToMaster, Master);

State Transitions

Worker State:
 (eUpdateState, UpdateState);
 (eCopyState, CopyState);
Master State:
 (eClientRequest, ProcessClientRequest);

Action Bindings

abstract void InitializeState ();
abstract void UpdateState ();
abstract void CopyState ();
abstract void ProcessClientRequest ();

Actions

class Dispatcher : Machine

private List<Machine> Workers;

Machine Local Data

OnEntry() {
 int nodeId = machine.GetNodeId();
 int choice = machine.GetNextChoice();
 if (choice == 0) send(machine.Workers[nodeId], new eUpdateState());
 if (choice == 1) send(machine.Workers[nodeId], new eCopyState());
 if (choice == 2) send(machine.Workers[nodeId], new eChangeToMaster());
 if (choice == 3) send(machine.Workers[nodeId], new eChangeToWorker());
}

class Querying : State eAck

Next
State

Previous State

Querying State: (eAck, Querying);

State Transitions

class UserService : BaseService

private List<int> ServiceData;

Machine Local Data

override void InitializeState () { }
override void UpdateState () { }
override void CopyState () { }
override void ProcessClientRequest () { }

Actions

Figure 1. Graphical representation of a master-worker asynchronous system in P#.

which itself can be seen as a core calculus of P [6] minus the
ability to dynamically instantiate new machines (i.e. automata).
Our implementation has a feature set on par with P and does allow
for dynamic machine instantiation.

Object-Oriented Language Machines in P# are defined as classes
in an object-oriented language. The syntax of the language is pre-
sented in Figure 2. For brevity, we omit features such as exceptions
and inheritance, although we support both. We use vector notation
to denote sequences of declarations, e.g. vd denotes a sequence of
variable declarations.

stmt s ::= senddst evt(v) | return v | v := v | v := c
| v := v op v | this.v := v | v := this.v
| v := new class | v := v.m(v)
| if (v) ss else ss | while (v) ss

stmts ss ::= s; ss | ε
vdecl vd ::= type v;

mdecl md ::= type m(vd) {vd ss}
cdecl cd ::= class class {vd md}

Figure 2. Syntax of the object-oriented language

Each class (cdecl) consists of a sequence of member variable
declarations vd followed by a sequence of method declarations md.
The type of each variable is either scalar (ensuring the variable
stores primitive values such as integers or floats), or a reference type
(such that the variable stores references to heap-allocated objects).
Member variables are not directly accessible: a member v of the
current class can only be accessed through an expression of the
form this.v, while a member of another class is only accessible via
appropriate method calls.

A method (mdecl) has a number of formal parameters vd, and its
body consists of a number of local variable declarations vd followed
by a sequence of statements ss, with ε the empty sequence. In
statements (stmt), v refers to a local variable, a formal parameter of
a method or this, with this being a constant reference to the class in
which the statement occurs. We denote by c any literal scalar value
and by op any operation over scalars.

We build a running example of a machine managing a linked list;
we start by describing the elements of the linked list.

Example 4.1. Linked list elements are defined as follows:
class elem {

int val ; elem next ;

int get_val() { elem get_next() {
int ret ; elem ret ;
ret := this.val; ret := this.next;
return ret ; return ret ;
} }

void set_val(int v) { void set_next(elem n) {
this.val := v ; this.next := n;
} }

}
Thus, each element stores an integer value and a reference to a next
element, and an accessor and a mutator are defined for both.

Figure 3 presents the operational semantics of the individual
statements in our object-oriented language. We omit the rule for
senddst evt(v), which we discuss in the context of machine tran-
sitions. The rules are defined over tuples (`, h, S, ss). The local
store ` is a map from local variables to values (both of scalar and
of reference type), the heap h is a map from (reference, member
variable)-pairs to values, S is a call stack, and ss is a sequence of
statements to be executed.

A call stack is a sequence of tuples (`s, vs, sss), with `s the local
variable map of the caller, vs the variable in which the return value
of the callee should be stored, and sss the sequence of statements to
be executed after return from the callee. In accordance, rule RETURN
pops the top frame from the stack, updates vs and ensures sss is
executed next.

Rules VAR-ASSIGN and CONST-ASSIGN update v with the value
of v′ and c, respectively. Similarly, rule OP-ASSIGN applies op to
the values of v1 and v2 and updates v with the result (recall that op
only applies to scalars).

Rule MBR-ASSIGN-TO updates the value of the member v of
the object pointed to by this with the value of v′. Conversely, rule
MBR-ASSIGN-FROM updates the value of the variable v with the
value of the member v′.

Rule NEW-ASSIGN creates a new instance of a class class by
identifying an unassigned reference ref on the heap. Given ref ,
all member variables mv(class) of class are allocated by setting
them to an undefined value⊥ (i.e. h[(ref ,mv) 7→ ⊥]mv∈mv(class)),
and v is updated with ref . No constructor arguments are passed

`′ = `s[vs 7→ `(v)]

(`, h, (`s, vs, sss) : S, return v; ss)→s (`′, h, S, sss)
(RETURN)

`′ = `[v 7→ `(v′)]

(`, h, S, v := v′; ss)→s (`′, h, S, ss)
(VAR-ASSIGN)

`′ = `[v 7→ c]

(`, h, S, v := c; ss)→s (`′, h, S, ss)
(CONST-ASSIGN)

c = `(v1) op `(v2) `′ = `[v 7→ c]

(`, h, S, v := v1 op v2; ss)→s (`′, h, S, ss)
(OP-ASSIGN)

h′ = h[(this, v) 7→ `(v′)]

(`, h, S, this.v := v′; ss)→s (`, h′, S, ss)
(MBR-ASSIGN-TO)

`′ = `[v 7→ h(this, v′)]

(`, h, S, v := this.v′; ss)→s (`′, h, S, ss)
(MBR-ASSIGN-FROM)

¬∃v : (ref , v) ∈ dom(h) `′ = `[v 7→ ref]
h′ = h[(ref ,mv) 7→ ⊥]mv∈mv(class)

(`, h, S, v := new class; ss)→s (`′, h′, S, ss)
(NEW-ASSIGN)

`fp = ⊥[this 7→ `(v′)][fpi 7→ `(vi)]1≤i≤n

`′ = `fp [vd 7→ ⊥]vd∈vd
(`, h, S, v := v′.m(v1, . . . , vn); ss)

→s (`′, h, (`, v, ss) : S, ssm)

(METHOD-CALL)

`(v)

(`, h, S, if (v) sst else ssf ; ss)→s (`, h, S, sst; ss)
(IF-TRUE)

¬`(v)
(`, h, S, if (v) sst else ssf ; ss)→s (`, h, S, ssf ; ss)

(IF-FALSE)

`(v)

(`, h, S,while (v) ssb; ss)
→s (`, h, S, ssb;while (v) ssb; ss)

(WHILE-TRUE)

¬`(v)
(`, h, S,while (v) ssb; ss)→s (`, h, S, ss)

(WHILE-FALSE)

Figure 3. Operational semantics

upon instance creation. Instead, we assume that instance creation is
always followed by one or more method calls that set the members
to properly defined values (making the exact value of ⊥ irrelevant).

Assuming a method m is defined as

typem(type1 fp1, . . . , typen fpn) {vd ssm} ,
rule METHOD-CALL creates a new local store starting from the
empty map ⊥ (not to be confused with the undefined value ⊥). The
rule sets this to the value of v′, initializes each formal parameter
fpi with the value of vi, and sets each local variable vd to some
undefined value⊥. Finally, a new stack frame is created for the caller
and execution continues with the statements ssm of the callee. As
in the case of class instantiation, we assume that each local variable
is assigned a well-defined value by the callee before making use of
the stored value.

Rules IF-TRUE and IF-FALSE are standard; the value of v is
retrieved and the correct branch is executed. Rules WHILE-TRUE
and WHILE-FALSE are similar.

Machines Given a set of event names Evt , a set of classes C, and
the set of all possible values Vals that can be assigned to variables,
a machine m is defined as a tuple (classm, qm, Qm, Tm), where:

• classm ∈ C is the class whose methods define the statements
that need to be executed on entry to each state;
• qm is the initial state of m and is represented by a method of
classm that does not have any arguments;
• Qm is the set of non-initial states of m, each of which is

represented by method of classm that has a single argument;
• Tm is the transition function. Given a state q ∈ Qm and an event

queue E ∈ queue(Evt×Vals), the function finds the first event
evt(val) in E that m is willing to handle in state q. The function
then yields (i) the next state q′ as a function in q and evt , (ii)
val , and (iii) an event queue E′ identical to E but with evt(val)
removed.

Example 4.2. Continuing Example 4.1, we can define a machine
that manages a list. For brevity, we omit v := . . . when calling void
methods, and we similarly omit return statements from the bodies of
these methods. null is a special constant, denoting a null reference.

class list_manager {
elem list ;

void init() { void add(elem payload) {
this.list := null; elem tmp;
} tmp := this.list ;

payload .set_next(tmp);
void get(ID payload) { this.list := payload ;

elem tmp; }
tmp := this.list ;
sendpayload eReply(tmp);
}
}

The init method defines the initial state of the machine. The other
states of the machine are defined by the method get, which sends
the whole list to the machine specified by payload by means of the
event eReply , and the method add, which adds payload to the list.

Assuming the machine handles events eAdd and eGet , we
define the transition function as the total function that (a) transitions
to add when eAdd is at the head of the event queue and (b)
transitions to get when eGet is at the head of the queue.

Observe that the machine potentially suffers from a data race: a
reference to the list is still held by the machine after being used as a
payload in the send statement of the get method.

Systems The semantics of systems (or programs) composed of
multiple machines is now defined in terms of transitions between
system configurations (h,M), where h is a heap shared between
the machines in the system, and where M is a map from (machine)
identifiers ID to machine configurations.

A machine configuration is a tuple (m, q,E, `, S, ss), with m
a machine, q the current state of the machine, E an event queue, `
a variable store, S a call stack (as in the object-oriented language),
and ss a sequence of statements that needs to be executed before
the next event in the event queue can be handled.

Given a set of (machine) identifiers ID , an initial system config-
uration is any configuration (h,M) such that for each i ∈ ID there
exists a machine m with M(i) = (m, qm, ε, `m, ε, ssm), where
ε represents both an empty event queue and empty stack, where
`m = ⊥[vm 7→ ⊥] for some variable vm and where ssm is defined
as vm := new classm; vm.q();. The machine definition m occurs
in the tuple, as rule RECEIVE below needs access to the transition
function. The sequence of statements ssm initializes the machine by
creating an instance of the appropriate class, retaining a reference
in vm, and by executing the method corresponding to the initial
state. Once the statements in ssm have been executed, the machine
is ready to handle incoming events by invoking methods of vm.

The transitions between system configurations are defined in
Figure 4. Rule INTERNAL employs the rules from Figure 3 to

M(i) = (m, q,E, `, S, ss)
(`, h, S, ss)→s (`′, h′, S′, ss′)

M ′ = M [i 7→ (m, q,E, `′, S′, ss′)]

(h,M)→t (h
′,M ′)

(INTERNAL)

M(i) = (m, q,E, `, S, senddst evt(v); ss)
Ms = M [i 7→ (m, q,E, `, S, ss)]
Ms(dst) = (m′, q′, E′, `′, S′, ss′)

M ′ = Ms[dst 7→ (m′, q′, E′ : evt(`(v)), `′, S′, ss′)]

(h,M)→t (h,M
′)

(SEND)

M(i) = (m, q,E, `, S, ε) Tm(q, E) = (q′, val , E′)
M ′ = M [i 7→ (m, q′, E′, `, S, vm.q′(val))]

(h,M)→t (h,M
′)

(RECEIVE)

Figure 4. Transition rules

execute a statement for some i. The rule updates the shared heap and
local variables, stack, and sequence of statements of i appropriately.
Note that this rule requires ss to be non-empty.

Rule SEND appends the event being sent to the event queue of
the appropriate machine configuration (depending on dst). Observe
that care needs to be taken to update the machine configuration of i
before appending the event: a machine i can send an event to itself,
i.e. we can have dst = i.

A machine transitions to a new state once no statement remains
to be executed. Rule RECEIVE takes care of this by employing
the transition function of m and invoking the appropriate method
obtained through this function. Observe that we use a variant of call
statement in this case where we use a value instead of a variable
as the argument. The rule is identical to rule METHOD-CALL
when restricted to a single method argument, except that instead of
assigning the result of a variable evaluation to fp, we assign val .

5. Checking for Data Races
Two transitions in a P# program are said to race, if they (i) originate
from different machines instances, (ii) are not separated by any other
transition, and (iii) both access the same field of an object with at
least one of the accesses being a write. Formally, (iii) requires the
common field to be accessed using rules MBR-ASSIGN-TO and
MBR-ASSIGN-FROM, with at least one being MBR-ASSIGN-TO.

If a P# program is free from data races then we can reason
about the possible behaviors of the program by assuming that
machines interleave with event-level granularity; there is no need to
consider interleavings between individual heap access operations.
Furthermore, the ability to detect or prove absence of races is
valuable since races between machines are typically unintentional
and erroneous, because they break the event-based communication
paradigm of the language.

To detect possible data races, or to show their absence, we use
an ownership-based static analysis. Objects are owned by machines,
and ownership of an object o is transferred from a machine m to
a machine m′ upon m sending an event to m′ with a (direct or
indirect) reference to o. Once ownership has been transferred, m is
no longer allowed to access o, as this would violate the fact that m′

has ownership of o. If ownership is respected then data races cannot
occur between machines. Violations of ownership may indicate that
data races do occur.

To make the ownership analysis machine- and method-modular
(to ensure scalability), we define a give-up set for each method m.
For each formal parameter fp of m, if there exists an object o such
that (i) o is reachable from fp (either directly or by transitively

following references) and (ii) ownership of o is transferred by m,
then fp is in the give-up set for m.

Once the give-up set for each method has been computed, data
race-freedom can be established by considering scenarios where:

1. a formal parameter fp is in the give-up set for a method m′;

2. a method m calls m′, passing a variable v for fp;

3. after calling m′, m goes on to access a variable v′.

It suffices to show that in each such scenario, no object o exists that
can be accessed (directly or indirectly) through both v and v′.

The central theorem of this section is:

Theorem 5.1. If each state of a machine m respects the owner-
ship of each method invocation and send-statement (as defined in
Section 5.3), then no data race can occur.

Assumptions Below, we represent each method as a single-entry,
single-exit control flow graph (CFG), where each CFG node consists
of a single statement. The entry and exit nodes are denoted Entry
and Exit. Employing CFGs allows us to treat conditionals, loops
and sequences of statements in a uniform manner

We assume that formal parameters of methods cannot be as-
signed to, and that the variables passed as actual parameters during
method calls are pairwise distinct (avoiding implicit creation of
aliases through parameter passing). These assumptions simplify the
presentation and can be satisfied through preprocessing.

Because scalar variables are passed by value, our race analysis
only needs to be concerned with reference variables. Henceforth,
unless stated otherwise, we thus use variable to only mean a variable
of reference type.

5.1 Heap Overlap
Our analysis depends on knowing whether the same object is
reachable from multiple variables, i.e. our analysis depends on an
analysis that soundly resolves heap overlap between variables at
different CFG nodes. Let us assume we have a heap overlap analysis
at our disposal, in the form of a predicate may_overlap such that
for a method m:

• may_overlap(N,v)
m,in (N ′, v′) holds if there may exist a heap

object o that is reachable from v′ on entry to N ′ that is also
reachable from v on entry to N .

• may_overlap(N,v)
m,out(N

′, v′) holds if there may exist a heap
object o that is reachable from v′ on exit from N ′ that is also
reachable from v on entry to N .

Observe in both cases that we consider the heap objects reachable
from v on entry to N . The reason for this is that we are interested in
objects that are reachable immediately before they are given up.

Heap Overlap in Practice In practice the above predicates are
implemented through an inter-procedural taint tracking analysis.
The analysis is flow- and context-sensitive.

Given a tainted variable v, the taint tracking analysis taints a
variable v′ if there may exist some object that is reachable from v′

that is also reachable from v. The output of the analysis consists
of a function that summarizes how tainting propagates throughout
methods. Given a method m, a local variable or formal parameter v
of m and a node N of m, the analysis yields a function tainted

(v,N)
m

that maps nodes N ′ of m to variables v′ such that if v is assumed
to be tainted on entry to N , then v′ is tainted on exit from N ′. In
other words, v′ ∈ tainted

(v,N)
m (N ′) implies that there may exist an

object o such that v′ can reach o on exit from N ′ if v can reach o
on entry to N .

Our summary function is member variable insensitive, i.e. when
we note in our analysis that a member of an object should become

tainted, we taint the whole object instead. We could improve the
precision of our analysis by keeping track of individual member
variables. However, in the overwhelming majority of cases tainting
full objects suffices (see also Section 7.2.1).

The may_overlap predicate can now be defined as follows:

• may_overlap(N,v)
m,in (N ′, v′) , v′ ∈

⋃
P∈pred(N′)

tainted(v,N)
m (P)

• may_overlap(N,v)
m,out(N

′, v′) , v′ ∈ tainted
(v,N)
m (N ′)

where pred(N ′) denotes the set of predecessors nodes of N ′.

Example 5.2. In Example 4.1, only this can become tainted in
get_val and set_val . Moreover, it can only become tainted if it was
tainted in the first place, as all other variables in these methods are
scalar. For get_next , we have tainted

(ret,Exit)
get_next (Entry) = {this}

(ret is not included in the set, as its value is overwritten in the
second line of the method). The summary for get_next is similar.

Heap overlap is closely related to the well-studied problem of
heap reachability, i.e. the problem of establishing whether a certain
heap object o is reachable from a variable v. Hence, instead of a
taint analysis, alternatively we could have tried to adapt [3], which
is path-, flow-, and context-sensitive heap reachability analysis that
currently seems to be among the most accurate and scalable. The
analysis of [3] is complex, which makes it hard to implement. For
this reason we opted instead to develop a much simpler taint analysis,
which in our experience is accurate enough for our purposes (see
Section 7.2.1).

5.2 Gives up Analysis
We now define for which formal parameters of a method m own-
ership is given up by that method; we denote the set of these pa-
rameters by gives_up(m). Initially setting gives_up(m) = ∅, the
give-up sets are computed as follows:
1: repeat
2: for all m do
3: gives_up(m) :=

⋃
N∈m gives_upfpm(N)

4: end for
5: until gives_up no longer changes

The function gives_upfp
m(N) is defined in Figure 5, where fp(m)

denotes the set of formal parameters of m. As can be seen, owner-
ship of a formal parameter fp is given up either when

1. some object reachable from fp on entry to m is also reachable
from the variable passed as value argument to a send statement
of m, or when

2. some object reachable from fp on entry to m is also reachable
from the ith argument of a method m′ invoked by m, where m′

gives up its ith argument.

The function is formulated as a fixed-point computation, because
methods may be mutually recursive. Termination occurs, as the
number of methods and formal parameters is finite. The function
identifies all formal parameters of a method m from which heap
objects may be reachable that are also reachable from a variable
occurring in a send statement.

Example 5.3. For the methods in Examples 4.1 and 4.2, no formal
parameters are given up. However, if we would let the add method
of list_manager forward payload instead of adding it to the list,
i.e. when we would replace the body by

senddst eAdd(payload);

then add would give up payload .

5.3 Respects Ownership Analysis
We now define the conditions under which the nodes of a method
respect ownership of objects. The interesting cases are when a node
represents a send operation or a method call, because these state-
ments have the potential to erroneously transfer ownership between
machines. All other types of nodes trivially respect ownership.

Suppose that N is a node of a method m, and that N represents
either a method call or a send operation. If N is a method call, of
the form v := v′.m′(v1, . . . , vn), then N respects ownership if
ownership is respected at N for each actual parameter vi such that
the corresponding formal parameter fpi of m′ is in the give-up set
fo m′, i.e. fpi ∈ gives_up(m′). If N is a send operation, of the
form senddst evt(v), then N respects ownership if ownership is
respected at N for v.

We now describe the conditions under which ownership is
respected by a variable in a node. Let N be a node in method
m, and let vars(N) denote the set of variables occurring in N . For
a variable w we say that ownership is respected for w at N if, for
every node N ′ of m, the following conditions hold:

1. If there is a path from Entry to N through N ′, then

¬may_overlap(N,w)
m,out(N

′, this) .

2. If N ′ = N , then w 6= this and

{v ∈ vars(N ′) | may_overlap(N,w)
m,in (N ′, v)} = {w} .

3. If there is a path from N to Exit through N ′, then

{v ∈ vars(N ′) | may_overlap(N,w)
m,in (N ′, v)} = ∅ .

We discuss the three cases in turn. In the first case, we check
whether some object reachable from this is also reachable from w.
If this is the case, we may be able to access a given up object in a
later machine state (through a field of the machine).

In the second case, we check whether w is equal this. If this is
the case, then again we may be able to access a given up object in a
later machine state. We also check that no variable other than w has
access to an object reachable from w. This takes care of potential
aliasing: if an object may also be accessed through other variables,
then the method we invoke may be able to access the objects given
up after it has given them up.

In the third case, we check whether any variable that may be
used subsequent to giving up w can reach an object that was also
reachable through w at the point at which w was given up. We forbid
the use of any such variable.

Observe in the first case, that if some variable v is given up in a
node N ′ on a path from Entry to N and if an object exists that is
accessible through both v and w, then by symmetry an error will be
flagged through the third case, as N is on a path from N ′ to Exit.

Example 5.4. For the method get in Example 4.2, an ownership
violation will be flagged, as any object accessible through tmp in
the send statement is accessible through this. This violates our first
condition above.

The correctness of Theorem 5.1 now follows by the above
observations regarding our respects ownership definition and gives
up analysis. Observe that implementations of may_overlap do not
need to cater for aliasing of formal parameters, because (1) our
top-level methods representing states only have a single argument,
which trivially implies that no aliasing between arguments occurs,
and (2) the requirement on variables in the second case above, where
we recall that all variables passed to a method are assumed to be
pairwise distinct.

gives_upfpm(N) =

{w ∈ fp(m) | may_overlap(N,v)

m,out(Entry, w)} if N = senddst evt(v)

∪1≤i≤n{w ∈ fp(m) | fpi ∈ gives_up(m′) ∧may_overlap(N,vi)
m,out (Entry, w)} if N = v := v′.m′(v1, . . . , vn)

∅ otherwise

Figure 5. Computing the formal parameters given up by m

5.4 Extensions and Implementation
Cross-State Analysis Most false-positives in our experiments
(see Section 7.2.1) originate from the payload of an event being
constructed in one machine state and only being sent from a later
state. This is achieved by temporarily storing the payload in a
machine field. Sending the payload will lead to an ownership
violation, as the sent objects may still be accessible through this. To
suppress these false-positives, we run a cross-state analysis (xSA)
upon detection of an ownership violation. The analysis is based on
the observation that each machine can be seen as a CFG, where at
the end of each method representing a state we non-deterministically
call one of the methods representing an immediate successor state.
Our analysis can now be performed on this overarching CFG once
we lift all machine fields to be parameters of the methods. As
payloads are now passed as parameters, the false-positives no longer
occur. That xSA is sound is an immediate consequence of the
soundness of the ownership analysis.

Example 5.5. We can “repair” Example 4.2 by adding the statement
this.list := null; after the send statement, i.e. we reset the list
member. Once we repaired our method, we need xSA to determine
race-freedom, as list is a member variable. Race-freedom easily
follows once we lift the member variable to be a parameter of all
methods in list_manager .

Implementation We implemented our analysis on top of Mi-
crosoft’s Roslyn1 compiler framework. As Roslyn does not provide
direct access to the underlying CFG of each method, we construct
our own by querying Roslyn’s abstract syntax tree (AST) interface.
Once the CFG of each method has been constructed, we perform
our analysis. However, instead of computing may_overlap up front,
we compute the function lazily whilst performing the gives-up and
respect ownership analyses. This is more efficient, as it avoids com-
puting summaries for variables and nodes irrelevant to the analysis.
Calls to libraries of which the source code is not available are han-
dled in a conservative manner by assuming that each heap object
reachable before the call is reachable from all variables involved in
the call once the call returns.

Exception handling (omitted from our formal treatment) is dealt
with by adding appropriate edges to the CFG. Inheritance is handled
by unioning the summaries of all possible methods that can be
invoked at a call site. We disallow multi-threading constructs and
reflection, and assume that any imported external libraries do not
use these either.

5.5 Comparison with SOTER
Although both SOTER [20] and our data race analysis perform a
static ownership-based analysis, there are some fundamental differ-
ences. SOTER builds upon a field-sensitive points-to analysis. This
analysis is non-modular and does not leverage an understanding of
the underlying (actor) framework. As a consequence, SOTER needs
to sacrifice precision to achieve scalability. Our analysis achieves
scalability without sacrificing precision exactly by leveraging the
semantics of the P# framework.

1 https://github.com/dotnet/roslyn

6. Execution and Testing
The P# runtime can be used for both execution and testing. First, we
show how the runtime executes a P# program; then, we discuss how
it can find bugs (e.g. assertion violations and uncaught exceptions)
using two custom schedulers.

6.1 The P# Runtime
The P# runtime implements the logic for executing P# programs,
such as creating new machine instances, sending events, enqueueing
received events, and handling dequeued events with user-defined
state transitions and actions.

The P# runtime library defines the abstract classes Machine,
State and Event. These classes need to be inherited to define
machines, machine states, and events, respectively. All defined
machine types must be registered with the runtime upon startup of
the runtime; no new machine types may be defined during execution.
This ensures we can easily detect the machines we need to statically
analyze, which might be very hard or impossible otherwise.

Program Startup and Machine Initialization The runtime pre-
processes each registered machine to build a machine-specific map
from states to state transitions and action bindings. Upon startup,
the runtime creates a single instance of the machine class annotated
with the Main attribute. The runtime enforces a single main machine
class, but other instances may be created during execution.

The constructor of each machine initializes the data private to the
machine (e.g. the event queue), after which control is passed to the
OnEntry() method of the initial state of the machine. This method
is the entry point of the initial state and can perform user-defined
operations, such as creating other machine instances and sending
events. When a new event is sent, the runtime is responsible for
enqueueing it in the event queue of the target machine.

Event Handling After executing the OnEntry() method of the
initial state of a machine, the runtime invokes the event handler of
the machine, which runs concurrently with the runtime and other
handlers. The handler tries to dequeue an event from the event queue
(implemented using a thread-safe blocking queue) and handle it
appropriately. After the event has been handled, the handler attempts
to dequeue the next event. If the queue is empty, the handler blocks
until an event arrives or until the runtime terminates (e.g. because
of an error being detected).

The runtime exits and reports an error if (i) an event can be
handled in more than one way in the same state, (ii) an event cannot
be handled in a state and (iii) an uncaught exception is thrown while
an event handler executes.

6.2 Bug-Finding Mode
P# programs may contain concurrency bugs due to their asyn-
chronous nature. Such bugs may only occur when machines are
scheduled in a particular order. Inspired by the success of systematic
concurrency testing (SCT) tools [9, 12, 19], we designed a bug-
finding mode for the runtime, in which execution is serialized and
the schedule is controlled. In this mode, the runtime repeatedly exe-
cutes a program from start to completion, each time exploring a (po-
tentially) different schedule. Our testing approach is fully automatic,
has no false-positives and can reproduce found bugs by replaying
buggy schedules. However, it does require a closed environment,

i.e. when testing we need to define and instantiate additional ma-
chines that model the environment. Like any real environment, the
additional machines may be non-deterministic in nature.

When performing dynamic analysis of concurrent software, it
is necessary to explore the interleavings of all visible operations
(e.g. shared memory accesses and locks) to find all safety property
violations (e.g. uncaught exceptions and deadlocks) [12]. However,
if a program is race-free, only synchronizing operations need to
be treated as visible, which greatly reduces the exploration space.
Existing SCT tools (e.g. CHESS [19]) exploit this by only exploring
interleavings of synchronizing operations while running with a race
detector. If no races are found and all interleavings are explored,
then no bugs were missed due to races. Otherwise, it is necessary to
fallback to interleaving all visible operations.2

P# programs have several benefits that make them well-suited
to systematic testing. First, we can verify race-freedom with our
sound static analysis (see Section 5). This avoids the overhead of
testing with a race detector and ensures that we only have to explore
interleavings of synchronizing operations. Second, since the only
synchronizing operations are the send, receive and create-machine
methods (implemented in the runtime), it is straightforward to build
a systematic testing runtime. This is in contrast to most SCT tools,
which use dynamic instrumentation to intercept memory accesses
and synchronizing operations [19]. In bug-finding mode, the send
and create-machine methods call the runtime method Schedule,
which blocks the current thread and releases another thread. As
observed in previous work on P [6], it is not necessary to insert a
scheduling point before receive operations, thus achieving a simple
form of partial-order reduction [11].

We have implemented a depth-first-search (DFS) and a random
scheduler (both embedded in the P# runtime). The DFS scheduler
explores the schedule-tree in a depth-first manner. Each node is a
schedule prefix and the branches are the enabled machines in the
program state reached by the schedule prefix. The DFS scheduler
is systematic: it explores a different schedule each time, ensuring
exhaustive execution of all schedules (given enough time and
resources, and assuming an acyclic state-space). A limitation of
this type of systematic scheduling is that random choices made by
machines must be fixed or explored systematically as well, which
is at odds with the non-determinism of machines modeling the
environment. In contrast, the random scheduler chooses a random
machine to execute after each send and does not keep track of
already explored schedules. Thus, random machines choices do not
need to be controlled.

Finally, we designed the bug-finding mode to enable easy repro-
duction of bugs: after a bug is found, the runtime can generate a
trace that represents the buggy schedule.

7. Evaluation
We report our experience of applying P# and its family of tools
to a real asynchronous system used inside Microsoft. We then
describe an evaluation of our analysis and testing approach on 12
P# implementations of well-known distributed algorithms.

7.1 Case Study
We used P# to model, port and test a large asynchronous system
from Microsoft, used for rapid development of distributed services.
We refer to this proprietary system as AsyncSystem. The system
has an architecture similar to the example system from Section 3:
a dispatcher and a library that exposes a set of abstract APIs. The
programmer can inherit these abstract APIs to build a service. The

2 In the presence of data races and relaxed memory, even considering all
interleavings of shared memory accesses may be insufficient to find all bugs.

dispatcher will take care of distributing the service. The programmer
only needs to focus on developing the service logic.

Testing services in the original system was extremely challeng-
ing, as asynchronous code was mixed with the service logic. Stress
testing was unable to catch bugs due to the asynchronous behavior of
the system. We addressed this challenge in three steps. First, because
our goal was to find bugs in the services and not the dispatcher, we
modeled the latter using P#. This model captures the asynchrony in-
ternal to the dispatcher. Second, we ported the AsyncSystem library
as a set of abstract P# machines, which expose the same abstract API
actions as the original library. Third, we developed a P# program for
each available service. The service machines inherit all transitions
and action bindings from the library machines. Thus, the program-
mer only needs to override the exposed P# actions and implement
sequential service logic. Table 1 shows combined statistics for the
P# port of the AsyncSystem dispatcher, library and a single service
(denoted AsyncSystem).

The process of porting to P#, and using our static analysis and
testing framework, revealed five bugs in the original AsyncSystem.
We found two of these early on during the porting process: applying
the random P# scheduler to the partially ported system exposed two
issues with the use of asynchrony in the original code still being
used. These errors were eliminated by porting the affected parts
of the system to P#. The remaining three bugs were found during
analysis and testing once the porting of the system was complete.

We emphasize two key points. First, the identified bugs were
indeed too hard to find using stress testing. In fact, they survived
across several releases of the original AsyncSystem. Second, the
P# user-services can execute on the actual dispatcher without
performance degradation (although we leave such evaluation for
future work). At the same time, linking these programs against the
P# model of the dispatcher (thus creating a pure P# program) can
efficiently exploit our analysis and testing techniques.

7.2 Experimental Results
Benchmarks We evaluate our methodology against 12 P# imple-
mentations of well-known distributed algorithms, which we sepa-
rated in two benchmark suites: SOTER–P#, which includes P# ports
of the four worst-performing Java actor programs from [20], and
PSharpBench, which includes:

• BoundedAsync, a generic scheduler communicating with a
number of processes under a predefined bound;
• German’s cache coherence protocol [10];
• Lamport’s Paxos consensus protocol [16];
• the two-phase distributed commit protocol [13];
• Chord [24], a distributed hash-table used for creating peer-to-

peer lookup services;
• MultiPaxos [5], an advanced version of the Paxos protocol;
• Raft [22], a consensus protocol for managing a replicating log;
• the Chain Replication fault-tolerance protocol [26].

All our benchmarks are available online.3

Table 1 presents program statistics for the benchmark suites. The
BoundedAsync, German, BasicPaxos, 2PhaseCommit, MultiPaxos
and ChReplication benchmarks were ported from open source P
implementations [8]. This process required three days of work
(including understanding the protocols and debugging). The Chord
and Raft protocols were implemented from scratch in two days using
only the original papers as a reference. Finally, porting the SOTER
benchmarks to P# required a full day of work.

3 http://multicore.doc.ic.ac.uk/tools/PSharp/PLDI15/

Non-racy versions Racy versions

False positives Found all
Benchmarks LoC #M #ST #AB Time (s) (No xSA) (xSA) Verified? Time (s) data races?

AsyncSystem 5,786 14 82 51 14.883 6 2 7 - -

PS
ha

rp
B

en
ch

BoundedAsync 416 2 8 4 4.988 1 7 3 4.927 3
German 718 3 35 6 4.912 7 7 3 4.973 3
BasicPaxos 865 5 16 4 5.140 2 7 3 5.156 3
2PhaseCommit 983 6 17 12 5.008 1 7 3 5.466 3
Chord 1,005 3 11 17 5.212 7 7 3 5.702 3
MultiPaxos 1,166 7 20 11 5.232 10 5 7 5.205 3
Raft 1,249 4 12 33 5.118 7 7 3 5.132 3
ChReplication 2,004 10 38 27 5.421 4 7 3 5.464 3

SO
T

E
R

–P
Leader 275 2 3 2 4.774 7 7 3 - -

Pi 330 3 3 4 4.851 7 7 3 - -
Chameneos 536 2 4 13 4.988 7 7 3 - -
Swordfish 2,286 6 66 25 5.362 7 7 3 - -

Table 1. Program statistics and results of applying the P# static analyzer. The PSharpBench suite has both non-racy and racy versions. The
reported program statistics are for the non-racy versions of the benchmarks: lines of P# code (LoC); number of machines (#M); number of
state transitions (#ST); and number of action bindings (#AB). All reported execution times are in seconds and averages of 10 runs.

CHESS DFS P# DFS scheduler P# random scheduler

RD-on RD-off Bug Bug Bug
Benchmarks #T #SP #Sch/sec #Sch/sec found? #SP #Sch/sec found? #SP %Buggy #Sch/sec found?

BoundedAsync 5 1127 6.73 33.32 7 198 216.73 7 232 6% 201.01 3
German 6 156 18.19 88.94 7 28 526.59 7 28 22% 52.04 3
BasicPaxos 10 1009 5.42 33.91 7 186 179.19 7 92 83% 201.62 3
2PhaseCommit 8 281 15.92 66.16 7 52 425.41 7 37 3% 485.48 3
Chord 11 1312 - - 3 222 - 3 312 35% 149.57 3
MultiPaxos 14 184 - - 3 27 - 3 28 89% 3.12 3
Raft 14 336,616 0.02 0.15 7 61,197 2.11 7 61,322 2% 1.47 3
ChReplication 11 1416 - - 3 238 - 3 257 100% 150.77 3

Table 2. Results of applying CHESS and the embedded P# schedulers to the buggy PSharpBench programs for at most 10,000 executions
within a 5 minute time limit. We ran CHESS in two modes: with its data race detection on (RD-on) and with its data race detection off (RD-off).
We report: number of threads per execution (#T); number of scheduling points (#SP); number of explored schedules per second (#Sch/sec);
and percentage of buggy schedules (%Buggy)

Our benchmarks are shared-state implementations of the original
distributed algorithms. To model the environment (e.g. failures),
we developed additional non-deterministic P# machines. Thus,
these asynchronous P# programs are single-box simulations of
distributed algorithms; this matches the approach taken in evaluation
of previous work (P and SOTER).

For the buggy P# benchmarks (see Table 2) we generally aimed
to gather hard to find bugs, i.e. bugs requiring a large number of
schedules to occur. Most of the bugs were real mistakes that we
made during the implementation of the protocols (e.g. forgetting
to properly handle an event in some state). If that was not a viable
option, as in the case of BasicPaxos and Multipaxos, we injected an
artificial bug. Any benchmarks that required input were given a fixed
input that was constant across executions. For the P and SOTER
benchmarks, we used the inputs from the original implementations.
For Raft and Chord, our new benchmarks, the input is irrelevant for
finding bugs.

Experimental Setup We performed all experiments on a 1.9GHz
Intel Core i5-4300U CPU with 8GB RAM running Windows 8.1
Pro 64-bit.

7.2.1 Static Data Race Analysis
We evaluate the soundness, precision and scalability of our static
analysis with respect to our benchmark sets.

Soundness and Precision Table 1 shows that the P# static ana-
lyzer manages to find all data races in racy versions of the PSharp-
Bench programs. This is unsurprising, because the analyzer is sound.
To confirm the results, we manually inspected the error output of
the tool, and we indeed found that the tool reported all existing
data races. We have also developed a regression suite that contains
many complex cases of racy and non-racy P# programs (e.g. with
loops, inheritance and aliasing). We have extensively exercised our
analyzer on this suite to increase confidence in its soundness and
fine-tune its precision.

To evaluate precision, we ran the tool on non-racy versions of the
PSharpBench programs. We first ran the analyzer without cross-state
analysis (xSA) (see Section 5.4), and then with xSA. Our tool failed
to verify six benchmarks when xSA was disabled. All reported false
positives were related to either (a) giving up ownership of a machine
field or (b) storing a reference to be given up in such a field. With
xSA enabled, the tool managed to verify all but MultiPaxos and
AsyncSystem, as we discuss next. This shows that xSA is useful.

Although xSA discarded 17 out of 24 false positives, it did not
manage to discard the remaining seven. In each of these seven cases
a machine M1 in a state S1 stores a reference in a machine field a
and then sends the reference to a machine M2. In a later state S2,
M1 sends the contents of a to a machine M3 without first updating
a to point to a new memory location. This could potentially lead to

a data race as this gives each of M1, M2 and M3 access to the same
memory location. However, when manually inspecting the source
code, we found that the sent reference is only ever read. Hence, we
believe that we can suppress these false positives by introducing a
read only analysis.

Previous work on static data race analysis for message-passing
programs includes the SOTER analyzer [20] for actor programs in
Java. We ported four of the worst-performing benchmarks from [20]
to P# (denoted by SOTER–P# in Table 1). While our analyzer
verifies all four benchmarks, SOTER reports a number of false
positives (e.g. 70 false positives in Swordfish). SOTER differs from
our work in that it uses a fundamentally different static analysis that
tracks ownership not just through the user defined code, but also
through the actor framework (see also Section 5.5).

Performance and Scalability Table 1 also shows the execution
time for the application of the P# static analyzer to our benchmarks.
The reported times include xSA. The tool managed to analyze each
benchmark in less than 6 seconds, except for AsyncSystem which
was analyzed within 15 seconds. These results show that our analysis
scales well across P# programs of varying size and complexity.

7.2.2 Finding Bugs in P# Programs
In this section, we explain that the CHESS systematic concurrency
testing tool [19] works with minimal effort on our buggy P# bench-
marks, but that its data race detector adds unnecessary overhead. We
then show that the P# schedulers execute faster than CHESS. Finally,
we show that our random scheduler is more effective at finding bugs
than the CHESS and P# DFS schedulers.

CHESS and Data Races Because P# uses C#, we were able to
apply CHESS to our benchmarks with minimal effort. We used
our own implementation of a FIFO queue, as CHESS does not
recognize the .NET 4.0 lock-free concurrency operations used by
the P# runtime, i.e. a thread-safe blocking queue.

We ran CHESS on each benchmark with and without its data
race detector to measure overhead (expressed in the number of
schedules explored per second). We configured CHESS to perform
a straightforward depth-first search of the schedule-space for at
most 10,000 schedules or 5 minutes (whichever bound was reached
first). Note that CHESS terminates when a bug is found: Chord,
MultiPaxos and ChReplication contain bugs that were detected on
the first schedule, which means that we cannot sensibly report the
number of schedules per second for these benchmarks.

Table 2 shows that CHESS runs between 4 and 7.5 times faster
(in terms of schedules per second) when its data race detection
facilities are disabled. Since our static analysis has determined the
absence of data races, we can indeed run CHESS without data race
detection while being confident that no bugs are missed due to data
races; thus, we can benefit from the increase in speed. With data race
detection enabled, CHESS did not find any data races; this provides
additional confidence that our static data race analysis is sound.

CHESS vs. P# DFS We ran each benchmark using the P# DFS
scheduler to compare execution speed with CHESS. Exploration
stopped once a bug was found or when the time/schedule limit was
reached, as in the case of CHESS. Table 2 shows that the P# DFS
scheduler was 7.6× faster on average (in terms of schedules per
second) than CHESS with data race detection turned off.

We believe that CHESS is slower for two reasons. First, CHESS
uses dynamic instrumentation (adding overhead), whereas the P#
scheduler is embedded in the runtime. Second, CHESS inserts
scheduling points before several synchronization operations (e.g.
runtime locks), whereas the P# scheduler only needs to schedule
before send and create-machine operations, which greatly reduces
the schedule space.

P# Random Scheduler We also tested our buggy benchmarks
using the P# random scheduler. Unlike previous tests, we continue
to explore schedules after a bug is found to compute the probability
that each bug occurs. Table 2 shows that the random scheduler was
able to find all bugs with various probabilities. The ChReplication
bug occurred 100% of the time; we believe that this bug requires only
one of several random binary choices made by the non-deterministic
environment in order to occur. We found two bugs in the German
benchmark: an assertion violation and a livelock. Detecting livelocks
in a dynamic setting is usually non-trivial. However, in this case, the
livelock occurred when all but one machine had terminated; the final
machine was stuck in an infinite loop continuously sending an event
to itself. We easily detected the livelock after forcing the scheduler to
terminate and inspecting the error output. We then imposed a depth-
bound to automatically detect the livelock and ensure termination.
The livelock accounts for 1415 of the 2299 buggy schedules. These
deep schedules are expensive, hence the lower number of schedules
per second compared to the DFS tests (which did not find the
livelocks). Finally, our evaluation confirms previous claims that
random concurrency testing is effective at finding bugs [4, 25].

8. Conclusion
We have presented the P# language for high-reliability asynchronous
programming, co-designed with static ownership-based data race
analysis and systematic concurrency testing support. Our case study
involving the use of P# inside Microsoft as target for porting and
testing an industrial-scale asynchronous system, and our efforts in
implementing a number of distributed protocols, shows the benefits
of language and analysis co-design.

In future work we plan to improve the precision of our data race
analysis. We found that a reoccurring pattern of false positives
involved sending the same data to multiple machines were the
receivers would only read the data. We could address such false
positives by introducing a read only analysis.

Acknowledgments
We would like to thank Shaz Qadeer and Ankush Desai for answer-
ing our queries regarding the P language and the P benchmarks. We
also acknowledge Sophia Drossopoulou, Sriram Rajamani, Kaushik
Rajan, Ganesan Ramalingam and the members of the Multicore
Programming Group at Imperial for their feedback during various
stages of this work. Finally, we would like to thank the anonymous
reviewers and artifact evaluation committee for their comments.

This work was initiated while Pantazis Deligiannis was a re-
search intern with Microsoft Research India. The work was further
supported by a gift from Intel Corporation, EU FP7 STREP project
CARP, and an EPSRC-funded PhD studentship.

References
[1] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing:

A model checker for concurrent software. In Proceedings of the 16th
International Conference on Computer Aided Verification, volume 3114
of Lecture Notes in Computer Science, pages 484–487. Springer, 2004.

[2] Apple Inc. Grand Central Dispatch (GCD) reference, accessed Novem-
ber 2014. URL https://developer.apple.com/library/mac/
documentation/Performance/Reference/GCD_libdispatch_
Ref/index.html.

[3] S. Blackshear, B. E. Chang, and M. Sridharan. Thresher: Precise refuta-
tions for heap reachability. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 275–286. ACM, 2013.

[4] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A
randomized scheduler with probabilistic guarantees of finding bugs. In
Proceedings of the 15th Edition of ASPLOS on Architectural Support

for Programming Languages and Operating Systems, pages 167–178.
ACM, 2010.

[5] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An
engineering perspective. In Proceedings of the 26th Annual ACM
Symposium on Principles of Distributed Computing, pages 398–407.
ACM, 2007.

[6] A. Desai, V. Gupta, E. K. Jackson, S. Qadeer, S. K. Rajamani, and
D. Zufferey. P: Safe asynchronous event-driven programming. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 321–332. ACM, 2013.

[7] A. Desai, P. Garg, and P. Madhusudan. Natural proofs for asynchronous
programs using almost-synchronous reductions. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, pages 709–725. ACM, 2014.

[8] A. Desai, S. Qadeer, and S. Seshia. Systematic testing of asynchronous
reactive systems. Technical Report MSR-TR-2015-25, Microsoft
Research, 2015.

[9] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded scheduling. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 411–422. ACM, 2011.

[10] S. German. Tutorial on verification of distributed cache memory
protocols. In Formal Methods in Computer Aided Design, 2004.

[11] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer, 1996.

[12] P. Godefroid. Model checking for programming languages using
VeriSoft. In Proceedings of the 24th ACM Symposium on Principles of
Programming Languages, pages 174–186. ACM, 1997.

[13] J. N. Gray. Notes on Data Base Operating Systems. Springer, 1978.
[14] O. Gruber and F. Boyer. Ownership-based isolation for concurrent

actors on multi-core machines. In Proceedings of the 27th European
Conference on Object-Oriented Programming, volume 7920 of Lecture
Notes in Computer Science, pages 281–301. Springer, 2013.

[15] P. Haller and M. Odersky. Capabilities for uniqueness and borrowing.
In Proceedings of the 24th European Conference on Object-Oriented
Programming, volume 6183 of Lecture Notes in Computer Science,
pages 354–378. Springer, 2010.

[16] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[17] S. Lauterburg, R. K. Karmani, D. Marinov, and G. Agha. Evaluating
ordering heuristics for dynamic partial-order reduction techniques. In
Proceedings of the 13th International Conference on Fundamental

Approaches to Software Engineering, volume 6013 of Lecture Notes in
Computer Science, pages 308–322. Springer, 2010.

[18] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel
library. In Proceedings of the 24th ACM SIGPLAN Conference on
Object Oriented Programming Systems Languages and Applications,
pages 227–242. ACM, 2009.

[19] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing Heisenbugs in concurrent pro-
grams. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, pages 267–280. USENIX Associ-
ation, 2008.

[20] S. Negara, R. K. Karmani, and G. Agha. Inferring ownership transfer for
efficient message passing. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming, pages 81–90.
ACM, 2011.

[21] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima
Inc, 2008.

[22] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of the 2014 USENIX Annual Technical
Conference, pages 305–319. USENIX Association, 2014.

[23] K. Sen and G. Agha. Automated systematic testing of open distributed
programs. In Proceedings of the 9th International Conference on
Fundamental Approaches to Software Engineering, volume 3922 of
Lecture Notes in Computer Science, pages 339–356. Springer, 2006.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pages
149–160. ACM, 2001.

[25] P. Thomson, A. F. Donaldson, and A. Betts. Concurrency testing using
schedule bounding: An empirical study. In Proceedings of the 19th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 15–28. ACM, 2014.

[26] R. van Renesse and F. B. Schneider. Chain replication for supporting
high throughput and availability. In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation, pages 91–104.
USENIX Association, 2004.

[27] C. Varela and G. Agha. Programming dynamically reconfigurable open
systems with SALSA. ACM SIGPLAN Notices, 36(12):20–34, 2001.

[28] R. Virding, C. Wikström, and M. Williams. Concurrent Programming
in Erlang. Prentice Hall International, 2nd edition, 1996.

