Automatic Partial Loop Summarization in Dynamic Test Generation

Patrice Godefroid
Microsoft Research
Redmond, WA, USA
pg@microsoft.com

Daniel Luchaup
University of Wisconsin Madison
Madison, WI, USA
luchaup@cs.wisc.edu

ABSTRACT

Whitebox fuzzing extends dynamic test generation based on symbolic execution and constraint solving from unit testing to whole-application security testing. Unfortunately, input-dependent loops may cause an explosion in the number of constraints to be solved and in the number of execution paths to be explored. In practice, whitebox fuzzers arbitrarily bound the number of constraints and paths due to input-dependent loops, hence at the risk of missing code and bugs.

In this work, we investigate the use of simple loop-guard pattern-matching rules to automatically guess an input constraint defining the number of iterations of input-dependent loops during dynamic symbolic execution. We discover the loop structure of the program on the fly, detect induction variables, which are variables modified by a constant value during loop iterations, and infer simple partial loop invariants relating the value of such variables. Whenever a guess is confirmed later during the current dynamic symbolic execution, we then inject new constraints representing pre and post loop conditions, effectively summarizing the symbolic execution of that loop. These pre and post conditions are derived from the partial loop invariants synthesized dynamically using pattern-matching rules on the loop guards and induction variables, without requiring any static analysis, theorem proving, or input-format specification. This technique has been implemented in the whitebox fuzzer SAGE, scales to large programs with many nested loops, and we present results of experiments with a Windows 7 image parser.

1. INTRODUCTION

Dynamic test generation [11, 6] consists of running a program while simultaneously executing the program symbolically in order to gather constrains on inputs from conditional statements encountered along the execution. Those constraints are then systematically negated and solved with a constraint solver, generating new test inputs to exercise different execution paths of the program. Over the last few years, whitebox fuzzing [12] has extended the scope of dynamic test generation from unit testing to whole-program security testing, thanks to new techniques for handling very long execution traces (with billions of instructions). In the process, whitebox fuzzers have found many new security vulnerabilities (buffer overflows) in Windows [12] and Linux [14] applications, including codecs, image viewers and media players. Notably, our whitebox fuzzer SAGE found roughly one third of all the bugs discovered by file fuzzing during the development of Microsoft’s Windows 7 [10]. Since 2008, SAGE has been continually running on average 100+ machines automatically “fuzzing” hundreds of applications in a dedicated security testing lab. This represents the largest computational usage ever for any SMT solver, according to the authors of the Z3 SMT solver [7].

Unfortunately, the number of paths to be explored can be astronomical. For instance, the presence of a single loop whose number of iterations depends on some unbounded input makes the number of feasible program paths infinite. Such a pathological case is illustrated in the small program example shown in Figure 1, where the number of iterations of the while loop depends on the input value.

uniformly,tools like SAGE include counters to bound the number of constraints and paths due to input-dependent loops, hence at the risk of missing code and bugs.

In this paper, we investigate an alternative approach based on
After negating this last constraint, a solution to the new path constraint is now \((x_0 > 0) \land ((x_0 - 1) \neq 50)\), and variable \(c\) is now associated with the symbolic value \((x_0 - 1) + 1\) (because of the symbolic execution of line 6 in the 10th iteration), that is, \(x_0\) after simplification. Then, when the conditional statement on line 10 is executed, the constraint \(x_0 \neq 30\) is added to the path constraint. After negating this last constraint, a solution to the new path constraint \((x_0 > 0) \land ((x_0 - 1) \neq 50) \land (x_0 = 30)\) is \(x_0 = 30\), which leads to a new test hitting the abort1 statement on line 5. Later, when dynamic symbolic execution exits the loop and reaches line 10, the path constraint is now \((x_0 > 0) \land ((x_0-1) \neq 50)\), and variable \(c\) is now associated with symbolic value \((x_0-1) + 1\) (because of the symbolic execution of line 6 in the 10th iteration), that is, \(x_0\) after simplification. Then, when the conditional statement on line 10 is executed, the constraint \(x_0 \neq 30\) is added to the path constraint. After negating this last constraint, a solution to the new path constraint \((x_0 > 0) \land ((x_0 - 1) \neq 50) \land (x_0 = 30)\) is \(x_0 = 30\), which leads to a new test hitting the abort2 statement on line 10.

To sum up, for the example of Figure 1, a single dynamic symbolic execution augmented with automatic partial loop summarization can generate only two new tests that will lead directly to the two abort statements, plus one to negate \((x_0 > 0)\), and the systematic search will then stop after a total of 4 tests (namely, with \(x_0\) equal to 10, 51, 30 and 0), instead of running forever.

2. BACKGROUND

2.1 Dynamic Test Generation

Dynamic test generation (see [11] for further details) consists of running the program \(P\) under test both concretely, executing the actual program, and symbolically, calculating constraints on values stored in program variables and expressed in terms of input parameters. Side-by-side concrete and symbolic executions are performed using a concrete store \(M\) and a symbolic store \(S\), which are mappings from memory addresses (where program variables are stored) to concrete and symbolic values respectively. A symbolic value is any expression \(e\) in some theory \(T\) where all free variables are exclusively input parameters. For any memory address \(m\), \(M[m]\) denotes the concrete value at \(m\) in \(M\), while \(S[m]\) denotes the symbolic value at \(m\) in \(S\). For notational convenience, we assume that \(S[m]\) is always defined and is simply \(M[m]\) by default if no symbolic expression in terms of inputs is associated with \(m\) in \(S\). The notation \(+\) for mappings denotes updating; for example, \(M' = M + [m \mapsto e]\) is the same map as \(M\), except that \(M'[m] = e\).

The program \(P\) manipulates the memory (concrete and symbolic stores) through statements that are abstractions of the machine instructions actually executed. We assume a statement can be an assignment of the form \(m \leftarrow e\) (where \(m\) is an address and \(e\) is an expression), a conditional statement of the form \(i f \ e \ then \ goto \ \ell\) where \(e\) denotes a boolean expression and \(\ell\) denotes the location of the unique next command to be executed when \(e\) holds, or stop corresponding to a program error or normal termination.

Given an input vector \(I\) assigning a concrete value \(I_i\) to the \(i\)-th input parameter, the evaluation of a program defines a unique finite program execution. For a finite sequence \(w\) of statements (i.e., a control path \(w\), a path constraint \(\phi_w\), is a quantifier-free first-order formula over theory \(T\) that characterizes the input assignments for which the program executes along \(w\). The path constraint is sound and complete when this characterization is exact, i.e., when every input assignment satisfying \(\phi_w\) defines a program execution following \(w\) (soundness) and when every input assignment following path \(w\) is a satisfying assignment, or model, of \(\phi_w\) (completeness).

Path constraints are generated by symbolically executing the program and collecting input constraints at conditional statements, as

1| We assume program executions are sequential and deterministic.

2| We assume program executions terminate. In practice, a timeout prevents non-terminating program executions and issues a runtime error.
illustrated in Figure 4 where the lines prefixed with * should be ignored for now. Initially, the path constraint is set to true. We assume that every program execution starts in the same initial concrete store, except for input values I_l which may differ. For every input I_l, we define initially $S[m] = x_i$ if m is an address storing input I_l (denoted $m \in I_l$) and where x_i denotes the symbolic variable corresponding to input I_l. By construction, all symbolic variable appearing in ϕ_w are variables x_i, corresponding to program inputs I_l.

Systematic dynamic test generation [11] consists of systematically exploring all (or in practice many) feasible control-flow paths of the program under test by using path constraints and a constraint solver. After executing a whole-program control-flow path w, if a conditional statement of the form $i \in E$ then goto ℓ is reached, any satisfying assignment of the formula $\phi_w \land c$ (respectively $\phi_w \land \neg c$) where $c = \text{evaluate} _\text{symbolic}(c)$, defines program inputs that will lead the program to execute the then (resp. else) branch of the conditional statement (assuming path constraints are sound and complete).

Systematically testing and symbolically executing all feasible program paths does not scale to large programs. Indeed, the number of feasible paths can be exponential in the program size, or even infinite in the presence of loops with unbounded number of iterations. This path explosion can be alleviated by performing symbolic execution compositionally [9], using symbolic execution summaries. For instance, a function summary ϕ_f for a function f is defined as a logic formula over constraints expressed in theory T. ϕ_f can be derived by successive iterations and defined as a disjunction of formulas ϕ_{w_j} of the form $\phi_{w_j} = p(r_{w_j} \land post_{w_j})$, where w_j denotes an intra-procedural path inside f, $p(r_{w_j})$ is a conjunction of constraints on the inputs of f, and $post_{w_j}$ is a conjunction of constraints on the outputs of f. An input to a function f is any value that can be read by f, while an output of f is any value written by f. ϕ_{w_j} can be computed automatically from the path constraint for the intra-procedural path w_j [9]. A summary thus represents symbolically a set of intra-procedural paths, which can be included in a path constraint in order to generate tests to cover new branches after the function f returns. By memoizing symbolic execution sub-paths as symbolic test summaries that are re-usable during the search, a systematic search can become exponentially faster than a non-compositional one. See [9] for further details. In this paper, we show how to generate automatically such symbolic summaries for input-dependent loops.

2.2 Loops and Induction Variables

The control-flow graph (CFG) of a function is a directed graph whose nodes represent program locations and whose edges represent possible transitions of the control flow between locations, i.e., there is an edge from n_1 to n_2 if the statement located at n_2 can be executed immediately after the statement located at n_1 in some program execution. The start node of the graph is the entry point in the function. An exit node is associated with all return statements. A node n_1 dominates another node n_2 if n_1 belongs to every path from the start node to n_2. A loop is a strongly connected component in the control flow graph. The head of a loop is a node of the loop which dominates all other nodes in the loop. Not all loops have a head. Loops with a head are called reducible loops or normal loops, and their head is unique. The nesting relation between reducible loops in a CFG forms a loop tree. Each node in a loop tree represents a loop with its head and its body (the list of nodes inside the loop), and its successors correspond to other nested loops. By convention, the root (a node without a parent) of the loop tree represents the entry point in the function with the start node as its header. As an example, Figure 3 shows the loop tree for the main function in Figure 2. For instance, the statement at line 11 belongs to two loops, with headers at lines 3 and 9 respectively; the latter loop is called the innermost loop for line 11.

A program trace is a sequence of program locations as they are executed by a particular run of a program. For two locations in a trace, we write $l_s \leq l_l$ if they represent the same program location, and $l_s \triangle l_l$ if they execute during the same function invocation. Given the static CFG for each function in a program, we define the following dynamic concepts relative to a program trace. A loop L is entered by l_j if $l_j \in L \land l_{j+1} \notin L$. (If a loop has a header, it is its entry point.) A loop L is exited by l_k if $l_k \in L \land l_{k+1} \notin L$. A loop exit l_k for L if $k = \text{min}\{i \mid l_i < i \land l_i \notin L\}$ (the loop entry and exit behave as matching open and closed parenthesis). A loop activation is the sequence of locations in a trace between a loop entry and the matching loop exit. An iteration for a loop activation with entry point l_j is a sequence of instructions $l_j, l_{j+1}, \ldots, l_m$ contained in that loop activation such that $l_j \simeq l_{m+1} \simeq l_j \triangle l_1 \triangle l_2 \triangle \cdots \triangle l_j$ and $\forall l_k \in \{l_{j+1}, \ldots, l_m\} \neg(l_k \simeq l_j \triangle l_{k-1} \triangle l_j)$. The Execution Count (EC) for a loop activation is the number of loop iterations contained in that activation. A loop L is active at a program location l part of a trace if l is included in an activation of L.

For a particular activation of a loop L, we define:

Definition 1. An induction variable (IV) is a variable that changes by a nonzero constant amount during each iteration of that loop activation.

Definition 2. A condition is linear if it is of the form $(LHS \prec RHS)$ where $\prec \in \{<, \leq, >, \geq \}$. A conditional statement is IV-dependent if its condition is linear and if a dummy variable assigned the value $LHS - RHS$ at that statement location is an IV inside L.
IVT changes

1 evaluateSymbolic(P, I) {
2 Initialize memory M;
3 S = [m → x[m] | m ∈ I];
4 pc = Initial program counter;
5 s = statement_at(pc);
6 LoopRecord L;
7 while s ≠ { stop } {
8 L = getCurrentLoop(pc);
9 if (L ≠ NULL ∧ pc = L.header) {
10 L.iteration = L.iteration + 1;
11 if (L.iteration == 1) {
12 create L.IVT and L.GT tables;
13 } else {
14 updateIVT(L.iteration, L.IVT);
15 guess_postconditions(L.iteration, L.IVT, L.GT);
16 }
17 }
18 switch(s) {
19 case m → e:
20 L.MD[m].V = M[m];
21 L.MD[m].V^S = S[m];
22 if (L.iteration == 1) {
23 L.IVT[m].V = M[m];
24 L.IVT[m].V^S = S[m];
25 }
26 S = S + [m → evaluate_symbolic(e)];
27 M = M + [m → evaluate_concrete(e)];
28 pc = pc + 1;
29 case if e then goto pc’:
30 b = evaluate_concrete(e);
31 c = evaluate_symbolic(e);
32 if (L ≠ NULL) updateGT(pc, e, L.iteration, L.GT);
33 if (b) {
34 path_constraint = path_constraint ∧ c;
35 pc = pc’;
36 } else {
37 path_constraint = path_constraint ∧ ¬c;
38 pc = pc + 1;
39 }
40 s = statement_at(pc);
41 }
42 }
43}

Figure 4: Path constraint generation during dynamic symbolic execution. Lines prefixed by * are new.

DEFINITION 3. A guard of a loop L is a conditional statement that has one target inside the loop and the other outside the loop. A guard for an activation of L is IV-dependent if its condition is IV-dependent for that activation of L.

3. SUMMARIZING INDIVIDUAL LOOPS

We now describe how dynamic symbolic execution can be extended to automatically generate partial loop summaries that are usable for test generation. Figure 4 shows a modified procedure evaluateSymbolic with new lines prefixed with *.

To simplify the presentation, we start by discussing in this section how to summarize loops in programs that contain a single reducible loop L with a known header L.header in a single non-recursive function (as in the example of Figure 1). We also assume for now that, for any given statement, we can tell whether its location is in L or not. Also assume that all basic data types are integers of the same size. These simplifying assumptions will be lifted in the next sections.

These assumptions however do not tell us if the loop has IVs or IV-dependent guards. We infer this information dynamically. We do so using two tables, one for “IV candidates” (IVT) and one for “IV-dependent guard candidates” (GT). These tables (described later) record both concrete and symbolic values of variables or conditions that might be induction variables or IV-dependent guards. Concrete values are used to discard non-IV candidates from the tables, and symbolic values are used later during loop summarization.

updateIVT(iteration, IVT) {
1 if (iteration == 2) {
2 for v ∈ IVT {
3 if (iteration == 2) {
6 IVT[v].V = M[v]; //used to compute future dV
7 }
8 } else {
9 purge failed IV candidates
10 for v ∈ IVT {
11 if (dV ≠ IVT[v].dV) //changed by the same amount?
12 remove v from IVT; //v is not an IV
13 else
14 IVT[v].V = M[v]; //used to compute future dV
15 }
16 }}

Figure 5: updateIVT ensures that only valid IV candidates are in IVT.

When the loop header is encountered for the first time, an empty IVT is created. Each variable modified in the first iteration gets an entry in the IVT (indexed by the address of the variable), where we record its starting concrete and symbolic values (lines 22-24 of evaluateSymbolic in Figure 4). We record those initial values

Figure 6: Finding IVs in the example of Figure 1.
before the first time the variable is written inside the loop because we need the initial value which the variable had at the loop entry. The use of the MOD table (lines 19 to 21) will be explained later, when we discuss nested loops.

After the first iteration, we only update or remove entries from the IVT table, and keep just those candidates that change by the same constant amount between every two iterations. Procedure updateIVT shown in Figure 5 performs these updates. When we encounter the loop header the second time, we compute and store in the IVT the difference $dV = V(2) - V(1)$ between the current value and the saved one for each variable in the table (line 4 of updateIVT). We then save the symbolic value of the difference $dV^S = V(2)^S - V(1)^S$, for potential summarization later (in Figure 10), and we update the current value V. Each time we reach the header at subsequent iterations, for each variable in IVT we compare the initially saved dV with the current dV (line 10 in Figure 5), and remove entries where they do not match since IVs must change by the same amount at each iteration. We update the IVT once per iteration, rather than after each memory operation, because for each induction variable we need the cumulative effects of the entire iteration, rather than local changes.

Figure 6 shows how the IVT is updated during dynamic symbolic execution of the example in Figure 1 with $x_0 = 0$. (dV^S is always equal to dV for this example and not shown in the figure.) When the control reaches the loop header for the first time (iteration 1 in line 3 of Figure 1), an empty IVT is created. When we perform the write at line 6 and variable c changes from 0 to 1, we add an entry for c, and record its starting value 0. We also add one entry for each of p and x at lines 7 and 8 respectively. Variable p changes by 1 between the first two iterations and by 2 between the 2nd and 3rd iteration, so it is then removed from the IVT, since it cannot be an IV.

3.2 Guard candidates Table (GT)

Similarly, we maintain a Guard candidates Table (GT) in order to detect IV-dependent conditions for possible guards of a loop. When the loop header is encountered for the first time, an empty GT is created (line 12 of Figure 4). Procedure updateGT shown in Figure 7 is called to maintain and use this table whenever a conditional statement is executed during dynamic symbolic execution (see line 32 of Figure 4). We track guard candidates that are conditional statements with a symbolical condition of the form $(LHS \triangleleft RHS)$. Lines 2 and 3 of updateGT filter out candidates that do not satisfy this requirement. For each guard candidate, we store:

- $B =$ concrete boolean value.
- $D = (LHS - RHS)$ the distance between the two operands. Note that $B = (LHS \triangleleft RHS) \equiv ((LHS - RHS) < 0) \equiv (D \leq 0)$, where \equiv denotes logical equivalence.
- $D^S =$ the first symbolic value for D. This is used to compute EC^S (see below).
- $dD = D - old(D)$ change in concrete value for the distance.
- $EC =$ the expected execution count. This is the number of loop iterations that the condition stays unchanged (evaluates to B), assuming that $(LHS - RHS)$ is indeed an IV.
- $EC^S =$ the symbolic value for EC.
- $hit =$ the number of times the candidate was encountered. An IV-dependent guard should be encountered once at each iteration.
- $loc =$ location in the path constraint for precondition.

```plaintext
updateGT(pc, cond, iteration, GT) {
if (cond is not symbolic
  \forall cond is not (LHS \triangleleft RHS) with \langle \in \{<, \leq, >, \geq, \neq\}
  \forall (iteration > 1 \land pc \notin GT)
  \forall both targets of statement at(pc) are inside loop
return:
B = evaluate_concrete(cond) ? true : false;
D = evaluate_concrete(LHS - RHS);
if (iteration==1) {
  GT[pc] = new entry, with GT[pc].hit=0
  GT[pc].B = B;
  GT[pc].D = D;
  GT[pc].D^S = evaluate_symbolic(LHS - RHS);
  GT[pc].loc = current location in path_constraint;
}
else if (iteration==2) {
  GT[pc].D = D - GT[pc].D;
  D^S = evaluate_symbolic(LHS - RHS);
dD = D^S - GT[pc].D^S;
switch ('\langle') {
  case <: {
    if (D > 0) {
      if (dD < 0) {
        insert constraint D^S > 0 \land dD^S < 0 at
          location GT[pc].loc in path_constraint;
        GT[pc].EC = GT[pc].D - GT[pc].D^S - 1;
        GT[pc].EC^S = GT[pc].D^S + dD^S - 1;
      }
    }
  }
  . . .
  }
}
GT[pc].hit = GT[pc].hit + 1;
if (GT[pc].hit # iteration) //candidates should execute
  remove pc from GT;
  //once every iteration
if (GT[pc].B \not\in GT[pc].D done \land iteration==GT[pc].EC+1)
  guess Preconditions (pc, GT);
if (GT[pc].B \not\in GT[pc].D \not\in -GT[pc].D)
  remove pc from GT;
}
else
  GT[pc].D = D;
}
```

Figure 7: updateGT ensures that only IV-dependent guard candidates are in GT.

During the first loop iteration, we add guard candidates as we execute them, indexed by their program location. For each new candidate, we check whether its condition is symbolic and matches a pattern we handle (lines 2 and 3); if so, we compute and record its initial value B (lines 7,11), $D = (LHS - RHS)$ (lines 8,12), and D^S (line 13), and we initialize and increment (line 34) its hit count which becomes 1 for new candidates. At line 14 we save the current location in the path constraint. If this candidate is indeed an IV-dependent guard, and we use it for summarization, then we use this location to remove over-restrictive constraints and insert new ones. If the candidate is not an IV-dependent guard, and we remove it from the GT table, then we use this location to remove the constraint inserted at line 24 of updateGT. During the second loop iteration, we compute and save the difference $dD = D - old(D)$ (line 17) in order to check if D changes by the same amount during every other iteration. We also compute and save EC and EC^S. For instance, if $c < \langle$ (lines 21-27) then $EC = (D - dD - 1) / dD$. However, this only holds if $D > 0 \land dD < 0$ (not for $D = 0$, for instance), so we insert in the path constraint a constraint under which this holds (line 24). At subsequent iterations, we remove GT entries which cannot be IV-dependent guards (lines 36, 39-40). Lines 37-38 are used for loop summarization and are explained later.

Figure 8 shows the changes of the GT for the example of Figure 1 (for simplicity we don’t show D^S and loc fields). When
3.3 Loop Summary

Recall from Section 2.2 that for a given program trace, a loop activation is the sequence of instructions between a loop entry and the matching loop exit. Since a loop exit is inside the loop and the location of the next statement is outside the loop, a loop exit is always a loop guard. When a loop exit is reached, the current path constraint and symbolic store represent only the current execution with a specific number of loop iterations. We now describe how to generalize the symbolic execution of that loop from that specific number of iterations to a set of possible loop executions.

The key idea is to generate a loop summary which characterizes (perhaps only partially) such a set of executions. The generation of a loop summary is performed in two steps: (1) generate preconditions, and (2) generate postconditions.

Before we describe these two steps, we point out the following property, which we can prove and which will be useful shortly.

Lemma 1. (GT Completeness) Given a loop L, if every loop guard is symbolic and IV-dependent, then
1. every guard is executed exactly once during each iteration.
2. the relative execution order of the guards is fixed for all iterations.
3. all guards are in the GT table at the beginning of the second iteration (if there is such an iteration).

Figure 8: Finding guard candidates in Figure 1.

Figure 9: guess_preconditions: we are about to exit the loop due to the conditional jump at pc. The preconditions must ensure that we execute at least one iteration of the loop, and that the condition at pc is the first one to exit the loop.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>line</th>
<th>0</th>
<th>D</th>
<th>dD</th>
<th>EC</th>
<th>EC''</th>
<th>hit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Figure 10: guess_postconditions: If a valid guard candidate predicts the start of the last full iteration, update the symbolic memory for the IV candidates.

Loop Precondition. Consider an input-dependent loop L with a symbolic IV-dependent guard G at location pc and which executes a fixed GT[pc].EC number of iterations on a given dynamic symbolic execution. Since by construction we have GT[pc].EC = evaluate_concrete(GT[pc].ECS), the value of the symbolic expression GT[pc].ECS determines the number of iterations of that loop. Since this expression is symbolic, i.e., input dependent, we can control this number of iterations via test inputs. For instance, the (input) constraint GT[pc].ECS > 0 characterizes the set of program executions where the body of loop L is executed at least once.

When a loop L has more than one symbolic IV-dependent guards, the guard with the smallest execution count is the one which will "expire first" and hence controls the number of loop iterations. Let us denote this guard by G. Moreover, thanks to Lemma 1, we know that there is a fixed total ordering among all such guards. Let us write G1 < G2 if guard G1 precedes guard G2 in this ordering.

When the loop exits, all the constraints that were inserted for all loop guards of L in the current path constraint characterize the inputs for which L iterates exactly GT[G].EC times. In order to generalize this specific execution, we remove all such constraints and replace them by the new constraint

\[\forall G' \neq G \left(GT[G].ECS < GT[G'].ECS \right) \]

\[\iff G' < G \]

\[\iff G < G' \]

injected at the location of the first removed constraint in the path constraint. This new constraint forces the loop to iterate at least once, and forces all other symbolic IV-dependent guards G' to expire after guard G. In other words, this loop precondition defines a set of program executions satisfying such properties. Note that other program executions outside this set will be eventually explored/covered by dynamic test generation when those new individual constraints are flipped later during the systematic search.

The new constraint is computed by procedure guess_preconditions shown in Figure 9, which also updates the path constraint. This procedure is called in line 38 in updateGT (Figure 7) when the loop is exited by guard G (detected in line 37). Updating the path constraint at this point (instead of, say, the last visit of the loop header L.header) ensures that all the constraints due to loop guards are in the path constraint and hence that all of those can be removed.

Loop Postcondition. Given the loop precondition defined above, we want to capture all the side-effects through induction variables whose value depends indirectly on inputs. When all side-effects inside the loop are exclusively through IVs, the symbolic values...
of IVs define the set of all possible states reachable by program executions satisfying the loop precondition.

Each time procedure evaluateSymbolic reaches the loop header L header in line 15 of Figure 4, procedure guess postconditions (shown in Figure 10) is called and searches the GT table for a guard G whose EC indicates that this is the start of the last complete iteration. If this is the case, remember $GT[G], EC^S$ is the symbolic expression that defines the number of loop iterations for any program execution characterized by the loop precondition we defined above.

Then, for each IV v in IVT (line 8 of guess postconditions), we update the symbolic store S to set $S[v]$ equal to the symbolic value $V^S + dV^S * (GT[G], EC^S - 1)$, where V^S is symbolic value of v at the entry of the loop, and dV^S is the symbolic delta value between any two loop iterations. Indeed, this expression defines/predicts the value of v at the beginning of the last full loop iteration parametrized by $GT[G], EC^S$, which itself defines the number of loop iterations when G is the first expiring symbolic IV-dependent loop guard.

Note that we perform the symbolic memory update when the execution reaches the loop header at the beginning of the last complete loop iteration rather than when the loop exits. This way, we are able to generate constraints on IVs if there are tested inside the body of the loop during the last loop iteration until the loop exits (like the assert in line 5 of Figure 1, while removing all constraints due to guards in L is easier after they are all included in the path constraint, i.e., when the loop exits.

Considering again the simple example of Figure 1 with an initial value of $x_0 = 10$, there is only one loop guard (located at line 4) and its EC^S is x_0 (see the GT in Figure 8). At the beginning of the 10^{th} loop iteration, line 15 of evaluateSymbolic in Figure 4 calls guess postconditions (Figure 10), which detects that this is the start of the last complete iteration of the loop.

There are then two IVs in the IVT (see Figure 6), namely c and x. guess postconditions then updates their symbolic values as $V^c + dV^c * (GT[c], EC^c - 1)$, i.e., the symbolic value of c becomes $0 + 1 * (x_0 - 1)$, that is $x_0 - 1$, while the symbolic value of x becomes $x_0 + (-1) * (x_0 - 1)$, that is 1. Now, c is symbolic, and so is the condition at line 5 for which a constraint ($x_0 - 1) = 50$) is added to the path constraint. When the loop guard at line 4 is reached for the 11^{th} time, procedure updateGT (Figure 7) in line 37 detects that the boolean condition B of the guard indeed changes, that this guard was used to update the symbolic memory earlier (via the done boolean flag), and the iteration is one greater than the predicted EC. After all these sanity checks, guess preconditions is called to update the path constraint. All the constraints $((x_0 - 1) \neq 50)$ is negated, a solution that exists and the next path constraint $((x_0 - 1) = 50)$ is, namely $x_0 = 51$, leads to a test hitting the abort1 statement. The case for the assert2 statement is similar and as discussed in Section 1.

The following theorem defines the correctness (and hence the guiding design principles) of the algorithms presented in this section.

Theorem 2. (Correctness) Consider a program P with a single loop L. Assume that path constraint generation performed during dynamic symbolic execution is sound and complete, that all variables modified inside the loop are induction variables, and that every loop guard is symbolic and IV-dependent. Then, if the loop is executed at least three times during a loop activation, loop summarization is performed, and the resulting generalized path constraint is sound and complete.

In practice, loops may have symbolic guards that are not IV-dependent, or have side-effects through non-IV variables. In those cases, our algorithm for loop summarization can still be used as a “best effort” approach to limit path explosion but without soundness and completeness guarantees. However, our algorithm may still be sound and complete in some of those cases. For instance, consider again the simple example of Figure 1. This example contains a loop which has side-effects via variable p, which is not an induction variable. Therefore, the loop summarization performed by our algorithm for this example is not sound and complete for all possible contexts in which the loop may be executed. However, for the specific context provided by function main in Figure 1, our loop summarization is actually sound and complete, since variable p is never read after the loop terminates and therefore does not influence the control flow afterwards. Why would a loop have side-effects that are not read afterwards? In practice, this can happen when populating data structures inside a loop that are to be used later by another program or module that is not the focus of the current testing session. For instance, an image processor parses input files, populates data structures, and then pass pointers to such data structures to a graphics card; if we are interested in finding security-critical buffer-overflow bugs in the image parser itself, populating some of the data structures may look like write-only operations during symbolic execution of the image parser itself.

4. Summarizing Nested Loops

In this section, we lift the simplifying assumptions made in Section 3 regarding the program structure: we now allow an arbitrary number of possibly recursive functions with an arbitrary number of possibly nested loops. But we still assume for now that we know the control flow graph, including its loop structure.

In the presence of recursion, a loop can have multiple nested activations at the same time. Each activation requires its own candidate tables which are no longer needed after it exits. In a manner similar to function activation records, we keep track of loop activations using loop records which are maintained using a loop stack. The record for the innermost loop activation is always on top of the stack.

The loop context is the dynamic state of the loop stack.

Procedure getCurrentLoop uses the CFG to determine the static loop membership of the current program counter pc. When a loop is activated, getCurrentLoop creates a corresponding loop record and pushes it on the loop stack thus entering a new loop context. For this purpose, a function call is considered entering a new loop. This is consistent with the return function structure where the root is the entry point, not a real loop. Procedure getCurrentLoop always returns the record on top of the loop stack, which contains the IVT and GT tables for the current loop. When a function terminates or one or more loops terminate, their records are removed from the stack.

Consider a variable v which is modified inside a function call or a loop nested inside some loop L, but which is not written by any statement immediately contained in L. In this case v does get added to L’s IVT at lines 23- 24 of evaluateSymbolic (Figure 4), and yet it may be an induction variable for L. To account for such cases, we use the MOD table to propagate to parent loops information about variables that are modified inside children loops. This is why each time a new variable is modified in a given context, we save its initial concrete and symbolic values at lines 21-20 of evaluateSymbolic. When a record is removed from the context stack, we propagate the information in MOD to the record of the enclosing context, and if the parent loop is executing its first iteration,
During the second iteration of Figure 2, we return to context (b). In this context, we remove the second activation of the inner loop, we summarize in Note that, due to the assignment at line 8, we exit the loop through GX after x0 = 10 iterations. At the beginning of the last iteration, we perform the following symbolic updates using L0 GT[GX]. ECX = x0 as the execution count: S[x] = x0 − (x0 − 1) − 1 = 0, S[cy] = y0 ∗ x0, S[z] = z0 − (x0 − 1) − 1 = z0 − z0 and S[y] = y0.

When we exit the outer loop, summarization of that loop removes the constraints at GX and GZ from the path constraint, and replaces those with the loop precondition (x0 > 0) ∧ (x0 ≤ z0) (since GX < GZ). At line 18, the conditional statement is executed and the constraint y0 ∗ x0 ̸= y0 ∗ 101 is added to the path constraint. Later, when the constraint y0 ∗ x0 ̸= y0 ∗ 101 is negated, a solution to the new path constraint (x0 > 0) ∧ (x0 ≤ z0) ∧ (y0 ∗ x0 = y0 ∗ 101), for instance x0 = 101, y0 = 1, z0 = 101, leads to a test hitting the error statement.

5. IMPLEMENTATION ISSUES

Here we remove the rest of the simplifying assumptions from Section 3 regarding the program structure. We no longer assume that we have knowledge about the static structure of the program or size information for variables.

5.1 Detecting Loops Dynamically

In practice we do not have the control flow graph for program functions and we want to infer loop information dynamically. The Dynamic CFG (DCFG) is the dynamically built CFG whose nodes are the statements executed so far in the current function. It is represented as a regular CFG together with a current node which corresponds to the current pc. There is one DCFG per function activation record, shared by all loop records inside that function. When we create a new loop record for a function, we also create a new DCFG which contains only the root node. For each instruction, when we call getCurrentLoop, it first updates the DCFG before it uses it. If there is no node corresponding to the current pc, we create one. We add an edge in the current DCFG between the nodes corresponding to the previous pc and the current one, if such an edge does not already exist. The node corresponding to the current statement becomes the current one in the DCFG. We avoid the expensive computation of the loop tree and only invoke it when a new edge is added between two existing nodes. When an existing edge between existing nodes is traversed, there is no need to change the DCFG or its loop structure; we just update the current node. For edges between an existing node and a new one, we simply assume that the new node is part of the current loop (potentially subject to the uncertain exit issue described below) and we patch the loop information correspondingly, in constant time.

LEMMA 4. Let L be the innermost loop containing the current node of a DCFG built based on a program execution. Then the addition of the next node in the execution does not change the header of L or any of its enclosing loops.

Therefore the changes in the DCFG are consistent with the loop stack, by not changing the headers of the active loops.

When compared to static loop detection, dynamic loop detection suffers from two limitations. The first one is that we only detect
a loop L when we execute its header for the second time. As a result, the entire first iteration of L looks as if it was unrolled and part of L’s parent loop. We call this a lost iteration. The effect on summarization is that detecting a loop requires an additional iteration for the “unrolled” loop, and summarization covers only the remainder of that loop’s activation. The unrolled part of a loop executes in the context of the parent and does not impact its summarization. The IV candidates of the parent are not affected, because all the writes inside the parent’s activation (which contains the unrolled sequence) must be accounted for anyway. Guard candidates inserted in parent’s GT are later discarded based on mismatches between the number of iterations and the hit counter.

The second limitation is when we execute a new statement not already in the DCFG, we cannot tell whether it belongs to the last active loop or not. As a result, there are cases when we do not know that we actually have exited a loop until we reach a return statement, or the header of a parent loop. Whether we are still inside of the loop or not depends on future instructions, which we have not seen yet. We call this issue uncertain exit. For instance, when the control reaches line 5 from Figure 2 we cannot tell just by looking at the DCFG if we are still inside the loop or not: at line 6 there could be any instruction, including a return or continue. The effect on summarization is that we have to be conservative at line 5 of updateGT and treat all conditional statements as possible guards. We also have to be conservative and consider that we do not exit a loop L unless we follow an existing edge in the DCFG that leads outside L, or we reach a return, or we reach a statement that dominates L’s header.

5.2 Variable Sizes

When a memory location is modified for the first time in a context, we also record in the IVT the number of bytes written. For an IV candidate v, this is the inferred size of the corresponding variable and it is used whenever we need to find the amount of memory to read to obtain the concrete value $M[v]$. If a variable v has a size larger than the maximum size that can be written in a single statement, then a logical update of v may be performed in several write operations, say a write to v.low and v.high. Our current implementation (see next section) treats v.low and v.high as distinct IV candidates. In practice, the probability for errors due to this scenario is small. If v is not an IV, then the likelihood that either of v.low or v.high behaves as an IV is small. If v is indeed an IV and the increment is not very large, then most likely only v.low changes and is detected as an IV.

6. EXPERIMENTAL RESULTS

We have implemented the algorithms presented in the previous section in the whitebox fuzzer SAGE [12], which uses the Z3 SMT solver [7]. SAGE performs dynamic symbolic execution at the x86 binary level, does not require source code, and is optimized to scale to very long program executions possibly with billions of x86 instructions.

We report in this section preliminary experiments conducted with our prototype implementation and the ANI image parser embedded in Windows 7. Running this parser with a sample well-formed ANI (ANImated Icon) input file of 13,302 bytes results in a program execution with 1,874,649 x86 instructions executed, including 1,417,441 instructions executed after the first input byte is being read from the input file. The number of unique x86 instructions executed is about 30,000 which are spread over 15 different Windows dlls.

The Table in Figure 12 presents experimental data obtained during a single dynamic symbolic execution and constraint solving along the program execution defined when parsing this sample ANI file. The table presents data for both regular SAGE and with loop summarization. A “-” in the table means the data is undefined or unknown.

During the entire program execution, 5,455 unique conditional statements are executed, among which 300 are symbolic, and 231 unique loops are detected dynamically by our implementation (see the previous section). Among these 231 loops, 19 are detected to contain one or more symbolic guards and are thus possibly input-dependent. Our algorithm is able to successfully guess the number of iterations for 6 of those 19 loops. Those 6 loops are summarized 25 times in total, i.e., there are 25 summarized loop activations (some of 6 loops are thus executed and summarized successively more than once during the entire program execution). These 25 summarizations remove a total of 78 constraints out of the path constraint and perform a total of 56 symbolic memory updates (i.e., there are 56 instances of induction variables modified during the 25 loop summarizations). The total number of constraints in the path constraint is 26,260, but only 9,183 are unique (duplicates are removed as cache hits). To solve those constraints, 9,183 calls are made to the Z3 SMT solver, resulting in 383 satisfiable constraints, 8,780 unsatisfiable constraints and no (5secs) timeouts. The total execution time spent in Z3 is 858 secs. Overall, symbolic execution and constraint solving takes 2,600 secs and requires 521 Mb of memory.

We observe that few loops are detected to have symbolic guards (19 out of 231), among which only 33% (6) of those are guessed correctly and hence summarized. To find out why, we visually inspected these 19 loops and collected additional statistics (not shown here). Some of those 19 loops that are not summarized have non-IV guards typically involving pointers as in the following pattern

```c
for (j = 0; j < x; j++) { // x is input-dependent
  if (array != NULL) { // non IV-dependent loop guard
    array[j] = data;
  }
```

Another reason is that some input-dependent loops are executed only once or twice, which is insufficient for our dynamic loop detection and summarization algorithms to kick in. We also tried 12 other ANI input files, but were unable to exercise such loops a larger number of times – see the table in Figure 13.
We also observe that the number of iterations for the loops that are summarized is low, resulting in only 78 constraints being removed from the path constraint. However, the total number of unique constraints (total solver queries) remains about the same: the removal of constraints due to loop summaries is offset by new constraints due to program branches testing IV-values part of post-conditions and made symbolic by the 56 symbolic updates. Moreover, most of the removed constraints and of the new constraints on IV-values are satisfiable, so the overall number of SAT constraints remains about the same (for this experiment with a small well-formed input file where symbolic loops are executed only a small number of times).

Remember the model of each SAT constraint is used to define a new test input file. Interestingly, the SAT constraints with loop summarization gives the systematic search a head start as the new constraints immediately exercise more new code: the incremental instruction coverage obtained by running all 383 generation-1 children tests with loop summarization is about 33% higher than the incremental instruction coverage obtained by running all 384 generation-1 children tests without loop summarization.

This benefit comes at the cost of an about 50% overhead for both total runtime and peak memory usage. This overhead is due to all the extra book-keeping needed by our loop detection and summarization algorithm, and is not due to constraint solving, which remains roughly the same. We emphasize that our current prototype is a first non-optimized implementation of our new algorithm – further optimizations might be able to reduce this cost.

Note that the long execution time of 1,658 secs for regular SAGE is due to turning off all unsound optimizations and heuristics (such as bounds on the number of constraints at specific branches, constraint subsumption, etc.) used by default in SAGE (see [12]).

The results of similar experiments with 12 other ANI input files (including a randomly-generated bogus 800-bytes file) are shown in Figure 13. These numbers confirm the general trends observed above.

7. RELATED WORK AND CONCLUSIONS

The closest work related to ours is [16]. These authors also observe that standard symbolic execution does not track control dependencies and therefore forces loops to execute a fixed number of iterations as in a concrete execution. For each program loop, they define a trip count as a symbolic variable which represents the number of times the loop is executed. They then propose to run a separate static abstract-interpretation-based analysis to determine linear relations between program variables and trip counts. Trip counts are themselves related to the input using a grammar describing the input format and supplied to the analysis. In contrast, our approach is simpler: linear relations among induction variables are inferred dynamically during a single dynamic symbolic execution, made explicit by symbolic store updates at loop summarization, and then propagated forward by regular symbolic execution. Also, we infer loop counts based on simple pattern matching, and do not require an input grammar. Our method however may miss loop counts in cases of loops over delimited fields in the input, which can be handled in [16] thanks to the input grammar; combining our technique with the orthogonal length abstraction technique of [19] could remove this limitation while still not relying on any input grammar. Another difference is that loop structures are defined/detected in [16] using static (binary) analysis. Instead, we build the program’s loop structure on the fly, without additional tools for static analysis. The price we pay is that sometimes we may lose one iteration before detecting a loop, and that loop exits are harder to detect (see Section 5.1). The computation overhead introduced by our technique is reasonable, about 50% runtime and memory, and we believe that optimizations can reduce it. Similar measurements are not available from [16] which does not present results of controlled experiments highlighting the specific contribution of the loop treatment (i.e., turned on versus off) in a dynamic test generation tool. We use a context stack to handle arbitrary nested loops and recursive functions; such cases are not discussed in [16] addresses such cases. Finally, [16] does not define when (i.e., under which assumptions) their approach is sound and/or complete.

In program verification using verification-condition generation, a static program analysis generates a single logic formula representing the entire program (e.g., [4]). This formula typically uses one symbolic variable for each program variable, and captures all control and data dependencies. This approach also typically requires the user to provide a loop invariant for each program loop, as well as pre and postconditions for individual functions. This in turn allows for modular program reasoning. In contrast, dynamic test generation [11, 6] generates logic formulas representing individual whole-program paths one at a time. This allows logic encodings of very long program executions [12], but suffers from path explosion since many paths need be considered. Compositional dynamic test generation [9, 1, 13] provide a practical trade-off between these two extreme logic program representations: intuitively, sets of (say intraprocedural) sub-paths can be bundled together in logic program summaries using disjunctions of (intraprocedural) sub-path constraints, and injected in regular (interprocedural) whole-program path constraints. Prior work on summarization in dynamic test generation describes algorithms for memoizing sub-path constraints, for incrementally bundling them into logic summaries, and for hierarchical search space exploration, but does not prescribe any specific procedure for dealing with loops, unlike our loop generalization and summarization which can encode in one logic formula possibly infinitely many loop executions.

Automatic loop invariant generation and summarization has been discussed in numerous papers in the context of static program analysis, including for infinite-state model checking (e.g., [5]), predicate abstraction (e.g., [3]), and termination analysis (e.g., [18]), to name a few. In comparison, the main originality of our work is that it is based on detecting loop structures, induction variables, IV-independent guards and linear relationships between those in a completely dynamic way – our algorithm does not require any static

<table>
<thead>
<tr>
<th>Input size (bytes)</th>
<th>2504</th>
<th>11326</th>
<th>7908</th>
<th>3272</th>
<th>4592</th>
<th>11346</th>
<th>1700</th>
<th>800</th>
<th>15902</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total analysis time (secs)</td>
<td>391</td>
<td>649</td>
<td>958</td>
<td>465</td>
<td>205</td>
<td>746</td>
<td>362</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>Unique branches</td>
<td>5459</td>
<td>5446</td>
<td>5479</td>
<td>5461</td>
<td>5460</td>
<td>5440</td>
<td>5451</td>
<td>3008</td>
<td>3146</td>
</tr>
<tr>
<td>Unique symbolic branches</td>
<td>272</td>
<td>269</td>
<td>263</td>
<td>271</td>
<td>275</td>
<td>272</td>
<td>254</td>
<td>7</td>
<td>105</td>
</tr>
<tr>
<td>Unique loops</td>
<td>231</td>
<td>228</td>
<td>232</td>
<td>230</td>
<td>229</td>
<td>228</td>
<td>229</td>
<td>125</td>
<td>133</td>
</tr>
<tr>
<td>Unique loops w. symb. cond.</td>
<td>17</td>
<td>19</td>
<td>16</td>
<td>17</td>
<td>19</td>
<td>20</td>
<td>16</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Unique loops w. right guesses</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Loop summarizations</td>
<td>22</td>
<td>23</td>
<td>30</td>
<td>36</td>
<td>36</td>
<td>2</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 13: Experimental results for 12 other ANI input files.
program analysis. We are not aware of any other entirely-dynamic loop-invariant generation algorithm.

Over the last few years, dynamic test generation has been extended in various ways and applied to other application domains (e.g., [8, 17, 2, 15] among others). However, except for [16] and this paper, we are not aware of any other paper specifically focused on how to deal with input-dependent loops in dynamic test generation.

Acknowledgments. We thank Sumit Gulwani, Francesco Logozzo and Cindy Rubio-Gonzalez for helpful comments on preliminary versions of this work.

8. REFERENCES

