
Fuzzing in The Cloud

(Position Statement)

Patrice Godefroid David Molnar

Microsoft Research

February 2010

In this short note, we argue that fuzzing in the cloud
will revolutionize security testing.

It’s more than elasticity. Fuzz testing is the pro-
cess of repeatedly feeding modified inputs to a program
in order to uncover security bugs (such as buffer over-
flows). Because fuzzing is typically easy to parallelize
by running multiple instances of the program under
test, it benefits from the elastic nature of cloud comput-
ing: if an organization wants to perform 100,000 test
iterations, it only needs machines for the required time.
This elasticity means that smaller teams or smaller
companies can experiment with fuzz testing without
a large capital cost.

Despite these benefits of elasticity, in the long run
an organization that needs software security will find
itself continuously testing. New releases of software
need new security testing, whether by the authors of
the software or by adversaries trying to find security
holes. Over time, this repeated testing chips away at
the “rent vs. own” argument for cloud infrastructure.
An organization that does fuzz testing for each build
of a piece of software will pass the break-even point
for buying its own dedicated machines in a matter of
months, even when the costs for cooling, administra-
tion, etc. are taken into account. Elasticity is not the
“killer argument” for cloud fuzzing.

It’s about shared infrastructure. Instead, the
major win for cloud fuzzing comes from a shared se-

curity infrastructure for the entire picture of people,
processes, and tools required to build secure software.
Each application must be “enrolled” in a fuzz testing
infrastructure, which includes defining how new inputs
are passed to the program (test harnesses/drivers),
how to detect security-related bugs (runtime checkers),
and how to prioritize the resulting security flaws (bug
triage). Beyond security testing, this infrastructure
can include training for developers, as well as functions
such as timely response to reports of security flaws. At
Microsoft, the Security Development Lifecycle and the
Trustworthy Computing organization are examples of

shared security infrastructure that have grown over a
period of many years.

A mature security infrastructure requires a range
of human talents and organizational knowledge, and
it cannot be assembled overnight. Once created, how-
ever, the marginal cost of supporting a new piece of
software is relatively low. For example, once a new
fuzz testing tool is available, it can be applied to ap-
plications already enrolled in the shared infrastructure
without massive new investment. For another exam-
ple, the cost to handle reports of security flaws can be
amortized over all the applications supported by the in-
frastructure. Hosting security testing in the cloud sim-
plifies the process of gathering information from each
enrolled application, rolling out updates, and driving
improvements in future development.

From nothing to something. Because the upfront
cost of a security infrastructure is large, the leap from
zero to some security process is the hardest. More and
more organizations will face this leap due to compli-
ance, risk management, and public relations impact
of security failures on their business. For example,
Adobe is currently under attack in the press due to
its poor software security in Flash and Acrobat, which
poses a threat to its platform dominance and thereby
to its revenues. While Adobe’s troubles stem from the
large market share of Flash and PDF, the trend extends
to other organizations, because security conscious cus-
tomers want ways to measure the security risk intro-
duced by outsourced code or even from packaged prod-
ucts. While compliance standards such as the Pay-
ment Card Industry standard or Sarbanes-Oxley today
devote relatively little attention to software security,
we expect this will change. If a major customer or
compliance standard adopts software security require-
ments, organizations will find themselves making the
leap into security testing with a short deadline under
intense pressure. Cloud fuzzing makes it possible for
a small organization to take this leap by leveraging
shared infrastructure. As organizations join, the con-



tinuous improvement to the infrastructure will make it
harder for others to replicate the infrastructure’s per-
formance, even if they can buy the same amount of raw

resources.

It’s happening already. Furthermore, centraliza-
tion of infrastructure for security is an ongoing trend.
Within Microsoft, the Windows organization adopted
an “every team for itself” model in Vista. In Win-
dows 7, the Windows Experience group (WEX) cen-
tralized security testing in a lab with hundreds of ma-
chines. For Windows 8, all Windows fuzz testing will
take place in a central fuzzing lab. This model shields
the rest of the Windows organization from the details
of fuzzing and enables compliance with the Microsoft
Security Development Lifecycle without needing dedi-
cated security professionals in every Windows team.

Outside Microsoft, to take just two examples, IBM
has introduced the Rational Developer Cloud, which
makes testing resources with the Rational tools avail-
able on demand. Veracode offers on demand scan-
ning of binaries to create a “Moody’s score for code”
that quantifies the risk of security bugs. Both offer
more than simply migrating existing processes to the
cloud: they change the way collaboration, response,
and ship decisions are made by leveraging shared in-
frastructure.

Technology advances: Whitebox Fuzzing and

Compositional Testing. Recent technology ad-
vances benefit from and further amplify these trends
towards centralized fuzz testing. Whitebox fuzzing is a
new approach to fuzzing pioneered at Microsoft in the
SAGE tool and based on symbolic execution and con-
straint solving techniques. By observing what the pro-
gram under test does with its inputs, whitebox fuzzing
is able to drive its executions through code that was
previously impossible to reach with traditional black-
box fuzzing. In the process, new security bugs can be
found. In 2008-2009, the Windows 7 WEX organi-
zation deployed SAGE on a large scale as part of their
centralized fuzzing lab: SAGE found 50% more bugs
than all traditional fuzzers combined.

The next step is compositional testing, which cre-
ates test summaries from symbolic execution. These
summaries are not only re-usable during a fuzzing ses-
sion, but also apply across applications that share com-
mon components (such as DLLs) and over time (from
one fuzzing session to the next). Compositional testing
can result in a search algorithm that is exponentially

faster than the current state of the art for whitebox
fuzzing. Early experiments show that 90% or more of
the current redundancies in whitebox fuzzing can be
eliminated through compositional testing. Every test
run in a centralized infrastructure can create new test

summaries to improve all future test runs through this
component.
Synergistic opportunities. We are developing a ver-
sion of SAGE to leverage the gains from centralized in-
frastructure by collecting key statistics about whitebox
fuzzing (code and taint coverage, x86 instructions not
being handled, search bottlenecks, etc.). We are also
currently building a general infrastructure to generate,
store and re-use symbolic test summaries for large parts
of the Windows operating system.

We envision that this data will be cross-checked
and aggregated with other data sources such as MSRC
data, Watson data, defect density models (adapted to
security), code churn, the MSEC Locutus database,
etc. The goal is to define a “fuzzing health index” that
measures the quality of the security testing and evalu-
ates the security risk from each piece of code.

Our data collection and analysis will improve the
quality of tools and of the new processes they support.
A bug found while testing Alice’s code can improve the
process and tools, so Bob benefits as well.
The whole is bigger than the sum of the parts.

What is unique to the cloud? It is an infrastructure
shared by multiple tenants. By sharing multiple data
sources such as test results for different yet overlapping
components of a product, the entire community bene-
fits more than each of the individual tenants. These
formidable synergies are the transformational forces
that will drive the move towards fuzzing in the cloud

and make it a reality.

Acknowledgements. This short note attempts to ar-
ticulate why cloud computing might disrupt the secu-
rity testing (i.e., fuzzing) world. We thank Jim Larus,
Michael Levin and Matt Thomlinson for interesting
comments.

2


