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ABSTRACT
Contract-based modular checkers have the potential to per-
form scalable checking of user-defined properties. However,
such tools have seldom been deployed on large software ap-
plications of industrial relevance. We present a case study of
applying a modular checker HAVOC to check properties about
the synchronization protocol of a core Microsoft Windows
component with more than 300,000 lines of code and 1500
procedures. The effort found 45 serious bugs in the com-
ponent with modest annotation effort and low false alarms;
most of these bugs have since been fixed by the developers
of the module. We describe our experience in using a mod-
ular checker to create various property checkers for finding
errors in a well-tested application of this scale, and our de-
sign decisions to find them with low false alarms, modest
annotation burden and high coverage.

1. INTRODUCTION
Developing and maintaining systems software such as op-

erating systems kernels and device drivers is a challenging
task. They consist of modules often exceeding several hun-
dred thousand to millions of lines of code written in low-level
languages such as C and C++. In many cases, these mod-
ules evolve over several decades where the original architects
or developers have long ago departed. Such software may
become fragile through the accumulation of new features,
performance tuning and bug fixes, often done in an ad-hoc
manner. Given the astronomical number of paths in any
real program, testing can only cover a relatively very small
fraction of the paths in a module. Bugs found in the field
often occur in these rarely exercised paths.
Static analysis tools provide an attractive alternative to

testing by helping find defects without requiring concrete
inputs. However, the applicability of static tools is limited
due to two main factors. First, most static analysis tools
check generic properties of code such as buffer overrun, null
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dereference or absence of data-races. These checkers are not
extensible, i.e., they cannot be easily augmented to create a
checker for a new user-defined property — testing still re-
mains the only way to check such properties in spite of their
limited coverage. Second, most scalable static analysis tools
are based on specific abstract domains or dataflow facts,
and generate numerous false alarms when the property be-
ing checked depends on system-specific invariants that fall
outside the scope of the analysis. This happens particularly
when the property depends on the heap — even when the
property being checked is a generic property as above. In
most cases, the user does not have an option to interact
with the tool to express specific knowledge that would help
remove these false warnings.

Contract-based modular checkers such as ESC/Java [17],
Spec# [4], HAVOC [5] and VCC [9] have the potential to perform
scalable checking of user-defined properties. These checkers
share the following strengths:

1. They provide the operational semantics of the underly-
ing programs irrespective of the property being checked.
This is in stark contrast to static analyzers based on
data-flow analysis or abstract interpretation, which re-
quire defining abstract semantics for each new prop-
erty.

2. They use a theorem prover to perform precise intrapro-
cedural analysis for loop-free and call-free programs,
in the presence of contracts for loop and called proce-
dures.

3. They provide an extensible contract language to spec-
ify the properties of interest, and contracts. The use
of theorem provers allow rich contracts to be specified,
when required, to remove false alarms.

4. Generic interprocedural contract inference techniques
(e.g. Houdini [16]) exist to infer contracts to relieve
the user from manually annotating the entire module.

5. Finally, the presence of contracts provide incremental
checking across changes to procedures without reana-
lyzing the entire module, and the contracts can serve
as valuable documentation for maintaining these large
codebases.

In spite of the potential benefits offered by modular check-
ers, such tools have been seldom deployed successfully on
large software applications of industrial relevance. We be-
lieve this is due to the following limitations:



1. The annotation burden for checking a property on such
a large code-base can be substantial, and can often be
several times the size of the source code. Although
contract inference has been proposed to relieve the user
burden, previous work in ESC/Java [16, 15] does not
allow for inferring user-defined contracts.

2. The problem of capturing the side-effect of each pro-
cedure and aliasing between pointers can be difficult.
Various ownership and encapsulation methodologies
have been proposed [4], but they impose restrictions
on the heap manipulation that are often not satisfied
by low-level systems code.

3. Finally, there is a lack of good case studies illustrating
the feasibility of using such a tool on real-world soft-
ware to provide value in discovering hard-to-find bugs,
with modest investment of user effort.

In this paper, we present an important (perhaps the first)
feasibility study of using contract-based modular checkers
on a large scale codebase of industrial relevance, for check-
ing user-defined properties. We describe our experience with
applying the modular checker HAVOC [5, 20] on a core com-
ponent Comp of the Windows kernel — the name of the
module and the code fragments have been modified for pro-
prietary reasons. The code base has more than 300,000 lines
of C code and has evolved over two decades. The module
has over 1500 procedures, with some of the procedures being
a few thousand lines long — a result of the various feature
additions over successive versions. For this component, we
specified and checked properties related to the synchroniza-
tion protocol governing the management of its main heap al-
located data structures. The correctness of checking the pro-
tocol was decomposed into checking for reference-counting
protocol, proper lock usage, absence of data races and en-
suring that objects are not accessed after being reclaimed
(teardown race). Verification of these properties required
expressing many system-specific intermediate invariants (see
Section 2) that are beyond the capabilities of existing static
analysis tools.
The highlights of the effort that was conducted over a

period of two months were:

1. We found 45 bugs in the Comp module that were con-
firmed by the developers and many of them have been
fixed at the time of writing. Most of these bugs appear
along error recovery paths indicating the mature and
well-tested nature of the code and signifying the ability
of modular checkers to detect subtle corner cases.

2. The checking required modest annotation effort of about
250 contracts for specifying the properties and operat-
ing system model, 600 contracts for procedure con-
tracts. The contract inference generated around 3000
simple contracts, a bulk of the required annotation ef-
fort, to relieve the need for annotating such a large
code base. This corresponds to roughly one manual
contract per 500 lines of code, or one per 2.5 proce-
dures.

3. The tool currently reports 125 warnings, including the
45 confirmed bugs, when the checker runs on the an-
notated code base. The extra warnings are violations
of intermediate contracts that can be reduced with ad-
ditional contracts.

We describe the challenges faced in using a modular checker
for finding errors in a well-tested application of this scale,
and our design decisions to find them with low false alarms,
modest contract burden and high coverage. Our decisions
allowed us to achieve an order of magnitude less false alarms
compared to previous case studies using modular check-
ers [16], while working on a C module almost an order more
complex than these previous case studies. We believe that
the study also contributes by identifying areas of further re-
search to improve the applicability of these modular checkers
in the hands of a user.

2. OVERVIEW
In this section, we use the example of checking data-race

freedom on the main data structures of Comp to illustrate
some of complexities of checking properties of systems soft-
ware with low-false alarms. In particular, we show that pre-
cise checking of even a generic property such as data-race
freedom often requires:

• contracts involving pointer arithmetic and aliasing,

• conditional contracts, and

• type invariants to capture aliasing relationships.

Such requirements are clearly beyond the capabilities of
existing automated software analysis tools that scale to such
large components. This justifies the use of modular check-
ers that involve the users to decompose the problem using
domain-specific knowledge.

We first describe high-level details of the data structure
and the synchronization protocol, some procedures manip-
ulating these structures, and finally the contracts to check
the absence of data-races.

2.1 Data structures
Figure 1 describes a few types for the heap-allocated data

structures in Comp. The type LIST_ENTRY is the generic
type for (circular) doubly-linked lists in most of Windows
source code. It contains two fields Flink and Blink to obtain
the forward and backward successors of a LIST_ENTRY node
respectively in a linked list. An object of type NODEA con-
tains a list of children objects of type NODEB using the field
NodeBQueue. Figure 2 describes the shape of the children list
for any NODEA object. Each child NODEB node also maintains
pointers to its parent NODEA object with the ParentA field.

The macro CONTAINING_RECORD (defined in Figure 1) takes
a pointer addr to an internal field field of a structure of
type type and returns the pointer to the enclosing struc-
ture by performing pointer arithmetic. The helper macros
ENCL_NODEA and ENCL_NODEB uses the CONTAINING_RECORD

macro to obtain pointers to enclosing NODEA and NODEB struc-
tures respectively, given a pointer to their LIST_ENTRY fields.
The CONTAINING_RECORDmacro is frequently used in systems
software and is a major source of pointer arithmetic.

Since these objects can be accessed from multiple threads,
one needs a synchronization mechanism to ensure the ab-
sence of data-races on the fields of these objects. Each NODEA

structure maintains a field Resource, which is a pointer
to a ERESOURCE structure that implements a reader-writer
lock. The lock not only protects accesses to the fields in
the NODEA structure but additionally also protects the fields
NodeALinks, ParentA and State in all of its NODEB children.



typedef struct _LIST_ENTRY{
struct _LIST_ENTRY *Flink, *Blink;

} LIST_ENTRY, *PLIST_ENTRY;

typedef struct _NODEA{
PERESOURCE Resource;
LIST_ENTRY NodeBQueue;
...

} NODEA, *PNODEA;

typedef struct _NODEB{
PNODEA ParentA;
ULONG State;
LIST_ENTRY NodeALinks;
...

} NODEB, *PNODEB;

#define CONTAINING_RECORD(addr, type, field) \
((type *)((PCHAR)(addr) - \

(PCHAR)(&((type *)0)->field))) \

//helper macros
#define ENCL_NODEA(x) \

CONTAINING_RECORD(x, NODEA, NodeBQueue) \
#define ENCL_NODEB(x) \

CONTAINING_RECORD(x, NODEB, NodeALinks) \

Figure 1: Data structures and macros used in the
example.

2.2 Procedures
Figure 3 describes three procedures that manipulate the

NODEA and NODEB objects. Contracts are denoted by __re-

quires, __ensures and __loop_inv. CompClearChildState
takes a NODEA object NodeA and clears a mask StateMask

from the State field of any NODEB child that has this mask
set. It uses the procedure CompFindChildState in a loop to
find all the children that have the StateMask set and then
clears the mask on the child by calling CompClearState. Fi-
nally, the procedure CompFindChildState iterates over the
children for a NODEA object and returns either the first child
that has the mask set, or NULL if no such child exists.
To encode the data-race freedom property on the fields of

NODEA and NODEB objects, we introduce assertions that each
access (read or write) to a field is guarded by the Resource

lock in the appropriate NODEA object. The three procedures
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Figure 2: The list of NODEB children of a NODEA.

#define __resA(x) __resource(‘‘NODEA_RES’’,x)
#define __resrA_held(x) __resA(x) > 0

VOID CompClearChildState(PNODEA NodeA,
ULONG StateMask) {

CompAcquireNodeAExcl(NodeA);
PNODEB NodeB;
CompFindChildState(NodeA, StateMask, &NodeB);

__loop_inv(NodeB != NULL ==> NodeB->ParentA == NodeA)
while (NodeB != NULL) {

CompClearState(NodeB, StateMask);
CompFindChildState(NodeA, StateMask, &NodeB);

}
CompReleaseNodeA(NodeA);

}

__requires(__resrA_held(NodeA))
__ensures (*PNodeB != NULL ==>

(*PNodeB)->ParentA == NodeA)
VOID CompFindChildState(PNODEA NodeA,

ULONG StateMask,
PNODEB* PNodeB) {

PLIST_ENTRY Entry = NodeA->NodeBQueue.Flink;

__loop_inv(Entry != &NodeA->NodeBQueue ==>
ENCL_NODEB(Entry)->ParentA == NodeA)

while (Entry != &NodeA->NodeBQueue) {
PNODEB NodeB = ENCL_NODEB(Entry);
if (NodeB->State & StateMask != 0) {

*PNodeB = NodeB; return;
}
Entry = Entry->FLink;

}
*PNodeB = NULL; return;

}

__requires(__resrA_held(NodeB->ParentA))
VOID CompClearState(PNODEB NodeB, ULONG StateMask) {

NodeB->State &= ~StateMask;
}

Figure 3: Procedures and contracts for data-race
freedom.

clearly satisfy data-race freedom since the lock on the NODEA
object is acquired by a call to CompAcquireNodeAExcl before
any of the operations.

2.3 Contracts
Now, let us look at the contracts required by HAVOC to

verify the absence of the data-race in the program. The
procedure CompClearState has a precondition (an assertion
inside __requires) that the Resource field of the NodeB-

>ParentA is held at entry; this ensures that the access to
NodeB->State is properly protected. The __resrA_held(x)

macro expands to __resource(“NODEA_RES”, x) > 0, which
checks the value of a ghost field “NODEA_RES” inside x. The
integer valued ghost field “NODEA_RES” tracks the state of
the re-entrant Resource lock in a NODEA object — a positive
value denotes that the Resource is acquired. For brevity, we
skip the contracts for CompAcquireNodeAExcl and CompRe-

leaseNodeA, which increments and decrements the value of
the ghost field, respectively.

The procedure CompFindChildState has a similar precon-
dition on the NodeA parameter. The procedure also has a
postcondition (an assertion inside __ensures) that captures
child-parent relationship between the out parameter PNodeB



#define FIRST_CHILD(x) x->NodeBQueue.Flink
#define NEXT_NODE(x) x->NodeALinks.Flink

__type_invariant(PNODEA x){
ENCL_NODEA(FIRST_CHILD(x)) != x ==>
ENCL_NODEB(FIRST_CHILD(x))->ParentA == x

)

__type_invariant(PNODEB y){
NEXT_NODE(y) != &(y->ParentA->NodeBQueue) ==>
y->ParentA == ENCL_NODEB(NEXT_NODE(y))->ParentA

)

Figure 4: Type invariants for NODEA and NODEB types.

and NodeA.
Let us inspect the contracts on CompClearChildState.

We need a loop invariant (an assertion inside __loop_inv) to
ensure the precondition of CompClearState inside the loop.
The loop invariant states that NodeB is a child of NodeA when
it is not NULL. The postcondition of CompFindChildState en-
sures that the loop invariant holds at the entry of the loop
and also preserved by an arbitrary iteration of the loop.
Finally, consider the loop invariant in procedure CompFind-

ChildState: the loop invariant is required for both prov-
ing the postcondition of the procedure, as well as to prove
the absence of a data-race on NodeB->State inside the loop.
This loop invariant does not follow directly from the con-
tracts on the procedure and the loop body.
To prove this loop invariant, we specify two type invariants

for NODEA and NODEB objects using the __type_invariant

annotation in Figure 4. The type invariant on any NODEA

object x states that if the children list of x is non-empty
then the parent field ParentA of the first child points back
to x. The type invariant for any NODEB object y states that
if the next object in the list is not the head of the circular
list, then the next NODEB object in the list has the same
parent as y. The two type invariants capture important
shape information of the data structures and together imply
that all the NODEB objects in the children list of NodeA point
to NodeA.

3. BACKGROUND ON HAVOC

In this section, we provide some background on HAVOC,
including the contract language, the modular checker and
an interprocedural contract inference. In addition to the
details of HAVOC described in earlier works [5, 6], we de-
scribe the main additions to the tool for this paper. This
includes adding support for resources and type invariants in
contracts, and the instrumentation techniques.

3.1 Contracts
Our contracts are similar in spirit to those found in ESC/Java [17]

for Java programs, but are designed for verifying systems
programs written in C. We provide an overview of the sub-
set of contracts that are used in this work. Throughout
this paper, we use the terms “contracts” and “annotations”
interchangeably, although the former is primarily used to
express an assertion. More details of the contract language
are described in the HAVOC user manual1.
Procedure contracts and loop invariants. Procedure

1Available at http://research.microsoft.com/projects/havoc/

contracts consist of preconditions, postconditions and mod-
ifies clauses. The __requires contract specifies a precondi-
tion that holds at the entry to a procedure. This assertion
is assumed when analyzing the body of the procedure and
checked at all call-sites of the procedure. The __ensures

contract specifies a postcondition that holds at exit from
the procedure. The __modifies contract specifies a set of
locations that are possibly modified by the procedure; it gen-
erates a postcondition that all other locations in the heap
remain unchanged. The postconditions are checked when
analyzing the body of the procedure, and assumed at all
call-sites for the procedure.

The __loop_inv contract specifies a loop invariant — an
assertion that holds every time control reaches the head of
the loop. The assertion should hold at entry to the loop,
and should be preserved across an arbitrary iteration of the
loop.

Contract expressions. A novel feature of our contract
language is that it allows most call-free and side-effect free
C expressions in the assertions. The assertions can refer
to user defined macros, thereby allowing complex assertions
to be constructed from simpler ones. We allow referring to
the return value of a procedure with the __return keyword.
The postconditions may also refer to the state at the entry
to the procedure using the __old keyword as follows:

__ensures (__return == __old(*x) + 1)
__modifies (x)
int Foo (int *x) {*x = *x + 1; return *x;}

Resources. In addition to the C program expressions,
we allow the contracts to refer to ”ghost fields” (called re-
sources) of objects. Resources are auxiliary fields in data
structures meant only for the purpose of specification and
manipulated exclusively through contracts. We allow the
user to use __resource(<NAME>, expr) to refer to the value
of the ghost field <NAME> in expr. The contract __modi-

fies_resource(<NAME>, expr) specifies that the resource
<NAME> is possibly modified at expr. Consider the following
contract on the procedure CompReleaseNodeA that releases
the Resource field of a NODEA object:

#define __resrA(x) __resource(‘‘NODEA_RES’’, x)
#define __modA(x) __modifies_resource(‘‘NODEA_RES’’, x)

#define __releasesA(x) \
__requires (__resrA(x) > 0) \
__ensures (__resrA(x) == __old(__resrA(x)) - 1)\
__modA(x) \

__releasesA(NodeA)
void CompReleaseNodeA (NODEA NodeA);

Type invariants. Figure 4 illustrates type invariants for
the NODEA and NODEB types, using the __type_invariant

contract. Type invariants specify assertions that hold for
all objects of a given type. Such invariants typically hold
at all control locations except for a handful of procedures
where an object is being initialized or being torn down, or
may be broken locally inside a basic block (e.g. when an
NODEB object is added as a child for NODEA). The user has
the flexibility to specify the control locations where he or
she expects the invariants to be temporarily violated.

3.2 Modular checker
In this section, we provide a brief overview of the checker

for verifying an annotated procedure. Interested readers can



find more details in other works [5]. The main enabling
techniques in the checker are:
Accurate memory model for C. HAVOC provides a

faithful operational semantics for C programs accounting for
the low-level operations in systems code. It treats every C
pointer expression (including addresses of stack allocated
variables, heap locations, and values stored in variables and
the heap) uniformly as integers. The heap is modeled as
a mutable map or an array Mem mapping integers to inte-
gers. A structure corresponds to a sequence of pointers and
each field corresponds to a compile-time offset within the
structure. Pointer dereference *e corresponds to a lookup
of Mem at the address e and an update *x = y is translated
as an update to Mem at address x with value y. Contract
expressions are translated in a similar fashion.
Given an annotated C program, the tool translates the

annotated source into an annotated BoogiePL [12] program,
a simple intermediate language with precise operational se-
mantics and support for contracts. The resulting program
consists of scalars and maps, and all the complexities of
C (pointer arithmetic, & operations, casts etc.) have been
compiled away at this stage. Example of the translation can
be found in earlier work [6].
Precise verification conditions. HAVOC uses the Boo-

gie [4] verifier on the generated BoogiePL file to construct
a logical formula called the verification condition (VC). The
VC is a formula whose validity implies that the program
does not go wrong by failing one of the assertions or the
contracts. Moreover, it ensures that the VC generated for
a loop-free and call-free program is unsatisfiable if and only
if the program does not go wrong by failing any assertion
or contract present in the code. This is in sharp contrast to
most other static analysis tools that lose precision at merge
points.
Scalable checking using SMT solvers. The validity of

the VC is checked using a state-of-the-art Satisfiability Mod-
ulo Theories (SMT) solver Z3 [11]. SMT solvers are exten-
sions of the Boolean Satisfiability (SAT) solvers that handle
different logical theories such as equality with uninterpreted
functions, arithmetic and arrays. These solvers leverage the
advances in SAT solving with powerful implementation of
theory specific algorithms. These tools can scale to large
verification conditions by leveraging conflict-driven learning,
smart backtracking and efficient theory reasoning. The mod-
ular analysis with efficient SMT solvers provides a scalable
and relatively precise checker for realistic procedures up to
a few thousand lines large.

3.3 Interprocedural contract inference
HAVOC, like any other procedure-modular checker, requires

contracts for called procedures. We have implemented a con-
tract inference algorithm in HAVOC based on the Houdini [16]
algorithm in ESC/Java. The algorithm takes as input a par-
tially annotated module along with a finite set of candi-
date contracts for each procedure in the module, and out-
puts a subset of the candidates that are valid contracts for
the module. The candidate contracts are specified by pro-
viding an expression inside c requires, c ensures and
c loop inv contracts. For example, the candidate con-

tracts on a procedure Foo are shown below:

__c_requires (x != NULL)
__c_ensures (__return > __old(*x))
int Foo (int *x) {*x = *x + 1; return *x;}

The Houdini algorithm performs a fixed point algorithm
as follows: Initially, the contract for each procedure is the
union of the user-provided contracts and the set of candidate
contracts. At any iteration, it removes a candidate contract
that can be violated during a modular checking of a proce-
dure. The algorithm terminates when the set of candidate
contracts does not change.

3.4 Instrumentation
HAVOC also provides different ways for instrumenting the

source code with additional contracts (either candidate or
normal ones), to relieve the user of manually annotating
large modules with similar assertions. The two principle
mechanisms of instrumentation are:

• Access-instrumentation: The user can direct the tool
to add any assertion at every (read, write or both)
access to either (i) a global variable, (ii) all objects of
a given type, or (iii) fields of objects of a given type.

• Function-instrumentation: The user can also direct the
tool to add a contract (possibly a candidate contract)
to every procedure with a parameter of a given type.

These instrumentations are extremely useful to define prop-
erties and thereafter populate candidate contracts of a given
kind. For example, to specify that any access to a field x->f

of an object x of given type T is always protected by a lock
x->lock, we use the access-instrumentation feature to add
an assertion x->lock being held before any access to x->f.
On the other hand, one can use the function-instrumentation
feature to populate a class of candidate contracts on all the
procedures in a module. For instance, we can add a can-
didate precondition that the lock x->ParentA->Resource is
acquired, for any procedure that has a parameter x (to be
substituted with the formal parameter) of type NODEB. Note
that in the original implementation in ESC/Java, the Hou-
dini algorithm was used with a fixed set of candidate con-
tracts — namely for checking non-null assertions, index-out-
of-bound errors etc. on parameters and return values. The
ability to add user-defined candidate contracts is extremely
crucial for allowing the user to leverage the contract infer-
ence while checking user-defined properties.

4. PROPERTY CHECKING ON Comp

In this section, we briefly describe the core driver Comp
from the Windows R⃝operating system, and the synchroniza-
tion protocol that was checked. For the sake of security,
we keep the component and the names of the procedures
anonymous. The component has around 300,000 lines of
code, excluding the sources for the kernel procedures. There
are more than 1500 procedures present in the module. The
code for the component has evolved over almost two decades,
and each new generation inherits a lot of the code from the
previous versions. Some of the procedures in the module
have up to 4,000 lines of code, signifying the complexity and
the legacy nature of the code base. Comp also heavily em-
ploys the Microsoft Structured Exception Handling (SEH)
mechanism for C/C++ to deal with flow of control due to
exceptions (discussed more in Section 5.4).

We first provide a brief description of the synchroniza-
tion protocol governing the management of the main heap-
allocated structures in Comp. We will focus on four main



type of objects: NODE that is the root type which can contain
multiple instances of NODEA, NODEB and NODEC types.
Each NODE has an ERESOURCE field NodeResource and a

mutex NodeMutex for synchronization. The ERESOURCE struc-
ture implements a reader-writer lock in Windows that can
be recursively acquired. The NodeResource acts as a global
lock for access to any NODEA, NODEB and NODEC objects within
a given NODE (i.e. it is sufficient to acquire this lock to access
any field in the NODEA, NODEB and NODEC objects).
Each NODEA object has a list of NODEB children (as de-

scribed in Section 2) and a list of NODEC children. Each
NODEA has a ERESOURCE field Resource that protects most of
its fields and the fields of its children NODEB and NODEC ob-
jects; each NODEA also has a mutex NodeAMutex that protects
a set of other fields in each NODEA and its NODEB and NODEC

children.
Each NODEA also has an integer field ReferenceCount that

signifies the number of threads that have a handle on a par-
ticular NODEA object — a positive value of ReferenceCount
on an NODEA object indicates that some thread has a handle
on the object and therefore can’t be freed.
There is a global list ExclusiveNodeAList of all the NODEA

objects for which the Resource has been acquired. A call to
the procedure CompReleaseAllNodeAResources releases the
Resource field of any NODEA on the ExclusiveNodeAList.
Comp has a synchronization protocol governing the cre-

ation, usage and reclamation of the objects in a multi-threaded
setting. The synchronization is implemented by a combina-
tion of reference counting, locks and other counters in these
objects, and is specific to this module. The integrity of the
protocol depends on several properties whose violations can
lead to serious bugs:
1. Ref-count usage. We checked that for every execu-

tion path, the increments and decrements of the Reference-
Count field of a NODEA object are balanced. Decrementing
the count without first incrementing could lead to freeing
objects in use and a net increment in this field would cor-
respond to a resource leak, as the NODEA object will not be
reclaimed.
2. Lock usage. We check for the violation of the locking

protocol for the various locks in NODE and NODEA objects.
For a mutex field, we check that the lock is acquired and
released in alternation; for a reader-writer lock which can be
acquired recursively, we check that each release is preceded
by an acquire.
3. Data race freedom. This is roughly the property

that we described in Section 2, except that we monitor reads
and writes for the other fields in these objects too. Since the
NodeResource in a NODE object acts a global lock, we need
the Resource field in a NODEA object be held only when the
global NodeResource lock is not held.
4. Teardown race freedom. We check for races be-

tween one thread freeing a NODEA object, and another thread
accessing the same object. Any thread freeing a NODEA ob-
ject must hold that NODEA’s Resource exclusive, hold the
parent NODE’s NodeMutex, and ensure that NODEA’s Refer-

enceCount is zero. Conversely, any thread accessing a NODEA

must either hold the NODEA’s Resource shared or exclusive,
hold the parent NODE’s NodeMutex, or have incremented the
ReferenceCount field. These rules ensure mutual exclusion
between threads freeing and accessing NODEA objects, and
any rule violation could lead to a teardown race. This is a
domain-specific property which requires the user to define

the property.

5. CHALLENGES AND DESIGN DECISIONS
In this section, we describe the challenges we faced in

applying HAVOC to a well-tested codebase of this complexity.
We also outline the design decisions that have enabled us
to find serious bugs with relatively low false alarms, modest
annotation effort and high coverage.

5.1 Aliasing
Checking properties that depend on the heap can be dif-

ficult because of indirect accesses by pointers; this is be-
cause different pointer expressions can evaluate to the same
heap location. The problem affects modular checkers as it
is not natural to express aliasing constraints as procedure
contracts, and may require substantial annotation burden.
Finally, the problem is worse for C programs where the ad-
dresses of any two fields &x->f and &y->g can be aliased,
due to the lack of type safety. This results in numerous false
alarms while checking properties that depend on the heap.
We introduce two sources of justifiable assumptions that al-
low us to check the desired properties by separating concerns
about type-safety of the program as explicit assumptions.

• Field safety. We assume that the addresses of two
different word-type fields (fields that are not nested
structures or unions) can never alias, i.e., &x->f and
&y->g cannot be equal, whenever f and g are distinct
fields. This assumption is mostly maintained with the
exception of cases where the program exploits struc-
tural subtyping whereby two structures with identical
layout of types are considered equivalent, even though
the field names might differ. The user only needs to
specify these exceptions to the tool using additional
contracts.

• Type assumptions. Many aliasing and non-aliasing
constraints can be captured by type invariants similar
to the ones shown in Figure 4. These invariants are
established after object initialization and are violated
at very few places temporarily. The type invariants
are currently assumed but not asserted, and help to
reduce false positives significantly when dealing with
unbounded sets of objects in lists.

Although, both field-safety and the type invariants can be
verified in HAVOC [6, 20], they require reasoning with quan-
tifiers and the annotation overhead can be fairly high. Dis-
charging these obligations would improve the confidence in
the results of the property checking.

5.2 Modifies clauses
Modifies clauses are used to specify the side-effect of a

procedure on the globals and the heap. Specifying a precise
set of modified locations for the heap and the resources may
require significant annotation burden. On one hand, using a
coarse grained modifies information may result in invalidat-
ing relevant facts at call sites needed for checking a property;
on the other hand, the checker would complain if the speci-
fied locations do not contain the locations that are actually
modified. Various ownership and encapsulation methodolo-
gies have been proposed [4], but they impose restrictions on



the heap manipulation that are often not satisfied by low-
level systems code. For soundness, these methodologies im-
pose additional assertions in the program that might require
substantial annotation overhead to discharge.
We have found the two following strategies to achieve a

low annotation overhead without sacrificing significant cov-
erage:

• Property state modifies

• OUT parameter modifies

Property state modifies: To keep the annotation burden
low for checking, we decided to make the modifies clauses
for the heap unchecked, i.e., they are assumed at the call
sites, but not checked as postconditions. However, for the re-
sources in the property, we require the user to specify sound
modifies clauses. Although this introduces unsoundness in
our checking and may suppress real bugs, we found it to
be pragmatic tradeoff based on the following observation:
most of the pointer fields in the program that point to other
objects in the heap and define the shape of data structures
are immutable with very few exceptions. For instance, the
ParentA in a NODEB object is set after initialization and re-
mains immutable afterwards. A quick grep revealed that
the ParentA field in a NODEB object is read at least in 1100
places in the source, however it is written to at only 8 places,
mostly in the creation path. For fields like ReferenceCount

in NODEA objects that form part of a property, we maintain a
resource to track the value of this field, and thereby support
sound modifies clauses.
OUT parameter modifies: Making the modifies clause free

for fields in the heap almost allowed us to avoid specify-
ing modifies clauses for the fields in the heap. However, we
found the need for specifying modifies clauses for out param-
eters of a procedure to avoid the following situation that is
quite common in systems code:

void Bar(.., PSCB *LocalScb);

void Foo(...){
PSCB LocalScb = NULL;
....
Bar(..., &LocalScb);
...
if (LocalScb){...}
...

}

If we do not provide a modifies clause for Bar to indicate
that the heap has changed at the location &LocalScb, the
checker would assume the code inside the then-branch of
“if(LocalScb)” is unreachable, and therefore be unsound.
To avoid this, we used the contract inference to infer modifies
clauses for the parameters that are used as out parameters.

5.3 Interactive contract inference
The typical use of the the contract inference engine was

to infer a set of simple contracts that would hold for a large
number of procedures, possibly with a few exceptions. The
inference relieves the user by finding the exception set with-
out having to manually inspect the complex call graph. For
example, for checking data-race freedom, we inferred the set
of procedures where the lock Resource in a NODEA object is
held. This can be achieved by creating candidate contracts
about this lock being held on all procedures that have either
a NODEA or a NODEB as a parameter or return value.

However, the precision of the inference crucially depends
on the existing contracts. These contracts could have been
manually specified or inferred previously. An attempt to
infer contracts without being cognizant of other constraints
on the module can lead to significant loss of precision. Con-
sider the Figure 5, where the procedure CompCreateChild-

WithAttribute creates a child of NodeA in CompCreateNodeB

and then initializes different parts of the the child object
and other data structures through several layers of deeply
nested calls. Suppose we are interested in inferring the pro-
cedures where the Resource in an NODEA object is held, to
check for data-race freedom. Unless the contract on Com-

pCreateNodeB is already specified, the inference engine fails
to discover that NodeB->ParentA->Resource is held at en-
try to all the CompInitializeX procedures. The contract on
CompCreateNodeB is more difficult to infer since it involves
two objects PNodeB and NodeA.

void CompCreateChildWithAttribute(PNODEA NodeA,
ATTRIBUTE attr,...){

PNODEB NodeB;
CompAcquireNodeAExcl(NodeA);
CompCreateNodeB(NodeA, &NodeB,..);
CompInitialize1(NodeB, attr,...);
...

}

__ensures((*PNodeB)->ParentA == NodeA)
void CompCreateNodeB(PNODEA NodeA, PNODEB *PNodeB,..);

void CompInitialize1(PNODEB NodeB, ..){

<modify ParentA, State fields in NodeB >
CompInitialize2(NodeB, ...);

}

void CompInitialize2(PNODEB NodeB,..){
<modify ParentA, State fields in NodeB>
CompInitialize3(NodeB, ...);

}

Figure 5: Procedure calls chains

Therefore, the process of adding manual contracts and
applying inference was coupled with the feedback from each
step driving the other.

5.4 Exceptions
Comp uses Structured Exception Handling (SEH) to deal

with flow of control due to software and hardware excep-
tions. In SEH, the program can use either __try/__except
blocks to implement an exception handler, or __try/__finally
blocks to deal with cleanup along both normal and excep-
tional paths.

__try{
//guarded code

} __except (expr) {
//exception handler
//code

}

__try{
//guarded code

} __finally{
//termination code

}

To model exceptions, we introduced a resource variable
__thrown to denote whether a procedure call raises an ex-
ception. The variable is reset to FALSE at entry to any
procedure, is set to TRUE whenever a kernel procedure that
could raise an exception (e.g. KeRaiseStatus or ExAllo-

catePoolWithTag) returns with an exception, and is reset
to FALSE once the exception is caught by an exception han-
dler in __except. We introduced a new contract macro:

#define __may_throw(WHEN) __ensures(!WHEN ==> !__thrown)



A procedure with a __may_throw(WHEN) contract denotes
that the procedure does not raise an exception if the con-
dition WHEN does not hold at exit from the procedure. This
allows specifying __may_throw(TRUE) on one extreme to indi-
cate that any call to the procedure may throw an exception,
and __may_throw(FALSE) on the other extreme to indicate
that the procedure never raises an exception. Every proce-
dure in the module also has a default modifies clause saying
that __thrown can be modified by the procedure.
The presence of exceptions increases the number of paths

through a procedure, since any called procedure can poten-
tially throw an exception and jump to the exit. Our initial
attempt at ignoring the exceptional paths revealed very few
bugs, signifying the well-tested nature and the maturity of
the codebase.
To circumvent the problem, we used the inference engine

to infer the set of procedures in this module that do not raise
an exception. We first annotated the kernel procedures like
KeRaiseStatus with __may_throw(WHEN) to denote the con-
strains on its inputs WHEN under which the procedure may
throw an exception. Next, we added a candidate contract
__may_throw(FALSE) to each procedur. The interprocedural
inference algorithm removes __may_throw(FALSE) from pro-
cedures that may potentially raise an exception. The set of
procedures on which __may_throw(FALSE) is inferred denotes
the procedures that never throw an exception. To improve
the precision of inference, we had to manually add contracts
for internal procedures that could raise an exception only
under certain conditions.

6. RESULTS
In this section, we describe our experience with applying

HAVOC on Comp. Figure 6 summarizes the annotation effort
and the distribution of the 45 bugs found for the four proper-
ties listed above. The “Property” annotations are specifica-
tions written to describe the property and also to specify the
behavior of kernel procedures. The “Manual” annotations
correspond to procedure contracts, loop invariants and type
invariants for this module. Finally, the “Inferred” annota-
tions are a set of contracts that are automatically generated
by the contract inference described in Section 3.3.

Annotations LOC
Property 250
Manual 600
Inferred 3000

Total 3850

Property # of bugs
Ref-count 14
Lock usage 12
Data races 13
Teardown 6

Total 45

Figure 6: Annotation overhead and bugs.

Currently, our checker runs on the annotated code for
Comp, and generates 125 warnings over the approximately
1500 procedures in 93 minutes — this corresponds to roughly
3.7 seconds spent analyzing each procedure on average. Most
of the runtime (roughly 70%) is spent in a non-optimized im-
plementation for converting C programs into BoogiePL pro-
grams, which can be significantly improved. Further, each
source file (roughly 60 of them in Comp) in the module can
be analyzed separately, and hence the process can be easily
parallelized to reduce the runtime.
Out of the 125 warnings, roughly one third of the warn-

ings correspond to confirmed violations of the four properties
listed above. This is a fairly low false positive rate, given

...
__try{

...
NodeA = CompCreateNodeA(Context, ..);

if (!CompAcquireExclNodeA(Context, NodeA,
NULL, ACQUIRE_DONT_WAIT )) {

NodeA->ReferenceCount += 1;
...
CompAcquireExclNodeA(Context, NodeA,

NULL, 0 );
...
NodeA->ReferenceCount -= 1;

}
...

} __finally {
...

}
...

Figure 7: Reference count leak.

that we have not invested in various domain-specific filters
to suppress the unlikely bugs.

In the following sections, we discuss details of a few bugs,
the breakup of the manual annotations and the inferred an-
notations, and the assumptions that might lead to missed
bugs.

6.1 Bugs found
In this section, we describe two representative bugs from

the set of 45 violations to the different properties. An inter-
esting nature of most of the bugs is that they appear along
exceptional paths — paths where some procedure raises an
exception. This suggests the maturity and well-tested na-
ture of the code as well as the fact that HAVOC can find these
subtle corner cases. Besides, some of these synchronization
bugs are hard to reproduce in a dynamic setting; the devel-
opers of the codebase suspected a leak in the Reference-

Count field but had been unable to reproduce it.
Reference count leak. Figure 7 illustrates an example

of a bug that leads to a violation of the Ref-count usage
property. In the example, an object NodeA of type NODEA is
created in CompCreateNodeA and then an attempt is made
to acquire the Resource in NodeA using the procedure Com-

pAcquireExclNodeA. The procedure CompAcquireExclNodeA
has the behavior that it can return immediately or perform
a blocking wait on the Resource depending on whether the
flag ACQUIRE_DONT_WAIT is specified or not. Hence, if the
first non-blocking acquire fails in the if statement, then it
tries a blocking acquire. Before doing that, it increments the
ReferenceCount field to indicate a handle on this NODEA ob-
ject; the field is decremented once the Resource is acquired.
However, if the procedure CompAcquireExclNodeA throws an
exception, then the __finally block does not decrement the
ReferenceCount field, and hence this NODEA object will al-
ways have a spurious handle and will never be reclaimed.

Data-race. Figure 8 illustrates an example of data-race
on the fields of NODEA object. The procedure first acquires
the Resource lock of an object NodeA in the first if block.
The fields of NodeA are modified in the SetFlag macro and
in the CompUpdateNodeAAndNodeB procedure. The access in
SetFlag is protected by the Resource lock. However, the
procedure CompPerformSomeTask calls the procedure Com-

pReleaseAllNodeAResources transitively with a deeply nested
call chain, which might release the Resource lock in any



...
if (!CompAcquireExclNodeA(Context, NodeA, NULL,

ACQUIRE_DONT_WAIT)) {
...
CompAcquireExclNodeA(Context, NodeA, NULL, 0);
...

}

SetFlag(NodeA->NodeAState, NODEA_STATE_REPAIRED);
...
CompPerformSomeTask(Context, ...);
...
if (FlagOn( ChangeContext.Flags, ... )) {

CompUpdateNodeAAndNodeB(Context, NodeA,
ChangeContext.Flags);

}
...

Figure 8: Data race on NODEA object.

NODEA object. This means that the Resource lock is not
held at entry to CompUpdateNodeAAndNodeB, although the
procedure expects this lock to be held at entry to modify
the fields of NodeA.

6.2 Manual contracts
We classify the main source of manual contracts in this

section. In addition to the aliasing constraints and type
invariants described in Section 2, we also annotated a variety
of interesting conditional specifications and loop invariants.
Conditional specifications. Consider the contract on

the procedure CompAcquireExclNodeA that was present in
the two bugs described in Section 6.1.

__acquire_nodeA_excl(NodeA, !__thrown && __return != FALSE)
__ensures(!FlagOn(Flags, ACQUIRE_DONT_WAIT) &&

!__thrown
==> __return != FALSE)

BOOLEAN CompAcquireExclNodeA (PCONTEXT Context,
PNODEA NodeA, PNODEB NodeB, ULONG Flags);

Recall (from Section 5.4) that __thrownindicates whether
a procedure has a normal return or an exceptional return.
The first annotation (an annotation macro composed of __re-
quires, __ensures and __modifies) describes the condi-
tion under which the Resource field of NodeA parameter
is acquired. The second annotation specifies that if AC-

QUIRE_DONT_WAIT flag is not set, and the procedure does not
throw an exception, then the return value is never FALSE.
Loop invariants. We also specified loop invariants when

the property being checked depends on the fields or vari-
ables being modified inside a loop. The procedure Comp-

ClearChildState in Figure 3 provides an example of such a
loop invariant. But a more common form of loop invariant
arises due to the following code pattern:

BOOLEAN CompTryAcquireNodeA(PNODEA NodeA,..)
{

BOOLEAN AcquiredFlag = FALSE;
...
__try{

...
__loop_inv(AcquiredFlag == FALSE)
while (true) {

CallMightRaise1();
if (..){

CompAcquireNodeAExcl(NodeA);
AcquiredFlag = TRUE;
CallMightRaise2();
return TRUE;

}

}
} __finally {

...
if (AcquiredFlag)

CompReleaseNodeA(NodeA);
...
return FALSE;

}
}

The callers of CompTryAcquireNodeA expect that the pro-
cedure acquires the resource of NodeA at normal exit. How-
ever, in the absence of the loop invariant, the checker would
report a false warning where the CompReleaseNodeA tries to
release a resource without first acquiring it. This happens
because in the absence of the loop invariant, the checker will
report a path where the value of AcquiredFlag is TRUE at
the loop head, the procedure CallMightRaise1 throws an
exception and control reaches the __finally block.

6.3 Inferred contracts
HAVOC’s automatic inference capability generated a ma-

jority of the simple contracts (around 3000 of them) and
was crucial to the automation of the tool for such a com-
plex codebase (i.e. only 600 manually written contracts on
around 1500 functions analyzed by the tool).

Contracts type # of inferred annot
May throw 914
NodeResource held 107
NodeMutex not held 674
NODEAResource held 360
NODEAResource release all 210
OUT parameter modified 271
Parameter flag set 331

Total 2867

Figure 9: Distribution of inferred contracts.

Figure 9 summarizes the main classes of contracts that
were generated using the automated inference mechanism.
In addition to the inference about __may_throw contracts
and modifies clauses for the out parameters of a procedure,
we employed the inference engine to infer a certain type-
state property on some objects of type NODEA or NODEB on
the procedures in the module.

1. May throw: As described in Section 5.4, this denotes
the set of procedures that do not raise an exception.

2. NodeResource held: This infers a set of procedures
where the lock NodeResource on the global NODE object
is held at entry to ensure data-race freedom.

3. NodeMutex not held: This infers a set of procedures
where the NodeMutex field of the global NODE is not held
at entry. Since most procedures acquire and release
this lock locally inside a procedure, this contract is
useful for proving that locks are not acquired twice.

4. NODEAResource held: This infers that the Resource

field for an NODEA parameter or the Resource field for
the parent of an NODEB or NODEC object is held at entry
to a set of procedures. This along with NodeResource

ensures absence of data-races.



5. NODEAResource release all: This infers the set of pro-
cedures that could release the Resource field of any
NODEA object by a transitive call to the procedure Com-
pReleaseAllNodeAResources.

6. OUT parameter modified: This adds a __modi-

fies(x) contract for an out parameter x that is modi-
fied inside a procedure, as described in Section 5.2.

7. Parameter flag set: This infers a set of procedures
where a certain field of a parameter is set to TRUE on
entry to the procedures. The parameter captures the
state of computations that span multiple procedures
and is threaded through the nested procedure calls.
The parameter Context in Figures 7 and Figure 8 is
an example of such a parameter.

6.4 Assumptions
HAVOC provides a set of options that allows the user to in-

troduce a class of explicit assumptions into the verification,
which can be enumerated and discharged later with more
contracts or a separate analysis. This allows the user of the
tool to control the degree of unsoundness in the verification,
and to recover from them using more contracts. This is in
contrast to most other static analysis tools that bake these
assumptions into the analysis and there is no way to recover
from them. There are three main sources of such assump-
tions in our current analysis: (1) field safety, (2) type invari-
ant assumptions and (3) free modifies for the heap fields.
The first two sources were discussed in Section 5.1 and the
third in Section 5.2.
Of the three options, we believe that both field safety

and the type invariants hold for the module with very few
exceptions and separate the proof of the high-level properties
from the proofs of type-safety and type/shape invariants.
Eliminating the free modifies clauses for the heap fields are
the assumptions that we would like to eliminate to increase
the confidence in the checking.

6.5 False warnings
As mentioned earlier, the tool generates a total of 125

warnings, and roughly one third of the warnings correspond
to confirmed violations of the four properties listed above.
Unlike typical static analyzers, the remaining warnings are
not violation of the properties being checked. Instead, most
of these warnings are violations of intermediate procedure
contracts which were used to discharge the properties of in-
terest.
Of course, the soundness of a modular proof can be com-

promised by the presence of even a single warning. How-
ever, for large code bases, it is very difficult to verify every
contract. To obtain a balance, we require that the remain-
ing warnings are not violations of automatically generated
assertions (for the property), but rather violation of user-
specified contracts. The rationale being that user provided
contracts are a result of understanding the code, and have a
good chance of being true; although they may need not be
inductive. However, proving these contracts require adding
contracts on other fields of these structures, or devising a
new template for contracts (e.g. checking which fields of an
object are non-null).

7. RELATED WORK

There is a rich literature on static analysis tools for finding
various defects in software programs. We discuss some of
these tools in this section, to perform a qualitative analysis
of the strengths and weaknesses of using these tools for our
case study.

Contract-based checkers. HAVOC is closely based on
the principles of ESC/Java [17] tool for Java programs and
Spec# [4] tool for C# programs. The main difference lies
in our intent to analyze systems program written in C, that
requires support for low-level operations in both the source
and the contract language. Although ESC/Java was applied
to real life Java programs to demonstrate the usefulness of
contract inference [16, 17], these case studies did not answer
the feasibility question because of several reasons. First, the
properties being checked were mostly generic defects such
as null dereference and index out of bounds. Secondly, al-
though inference reduced the number of warnings in such
modules, the tool still produced close to a thousand warn-
ings in a 11,000 line module (one of the largest examples
where inference was applied), out of which only a dozen
were considered bugs. Finally, it is unclear from previous
applications whether such tools can be used effectively to
provide value on well-tested systems modules an order of
magnitude more complex than previous case-studies.
SAL in an annotation language for documenting buffer re-

lated properties for C programs and espX is a checker for the
language [18]. This is one of the few examples of annotation
based checker for a specific property. The language is not
extensible, and does not allow specifying new user-defined
properties.

Dedicated property checkers. A majority of the nu-
merous static analysis tools developed for systems software
in the last decade fall in this category — we highlight only a
representative sample for the different properties that scale
to several thousand lines of code. Examples of data-race
checkers include Relay [22], LOCKSMITH [21], RacerX [13].
CALYSTO [2] finds null dereference bugs in C programs by
using SAT solvers. The ASTREÉ analyzer [8] uses abstract
interpretation [7] to prove the absence of certain runtime er-
rors such as buffer overruns, integer overflows in embedded
safety-critical software. Most of these tools do not require
user annotations, use novel algorithms based on data-flow
analysis, often with the intent of finding bugs at the cost of
unsound assumptions.

Extensible property checkers. Tools such as SLAM [3],
BLAST [19] and ESP [10] are examples of software model
checkers that check a property by exhaustively analyzing
models of C programs. Their property languages allow spec-
ifying simple state-machines over the typestate of objects,
and can express simple lock usage properties. These tools
are most suited for checking properties on global variables,
and lose precision and soundness when dealing with low-level
operations and relationships between objects in the heap.
Our case study shows the need for both in checking the syn-
chronization protocol.

Meta-level compilation [14] provides compiler extensions
to encode patterns of violations for system-specific proper-
ties in a state-machine language metal, which are checked
at compile time. The technique finds serious errors in sys-
tems code, but does not attempt to maintain soundness or
guarantees about the absence of such bugs. These tools
are suitable for describing bug patterns in a code, but once
again are poorly suited for describing detailed properties of



the heap (for example the absence of teardown race).
Saturn [1] uses a logic programming framework to specify

static analysis. Saturn also uses a concrete operational se-
mantics similar to HAVOC. While HAVOC’s meta-theory is fixed
and based on contracts, the meta-theory of Saturn may be
extended by analyses expressed in a logic programming lan-
guage. The ability to add inference rules adds flexibility in
analysis design but comes at two different costs. First, ex-
tending Saturn requires an expert analysis designer whereas
extending HAVOC could be done by a programmer simply by
the use of contracts. Second, the meta-theory behind the
analyses is usually not proved correct and could therefore
introduce unexpected unsoundness into the system.

8. CONCLUSIONS
In this work, we have demonstrated the feasibility of ap-

plying contract-based checkers for scalable user-defined prop-
erty checking, and the challenges involved in scaling such an
approach to large code bases with modest annotation over-
head, low false alarms, without sacrificing a lot of coverage.
Our work points out several immediate directions of future
work that would improve the usability of modular check-
ers such as HAVOC in the hand of a user: better inference
of conditional contracts can relieve a lot of annotation bur-
den, inference of modifies clauses will allow us to remove un-
soundness issues related to the unchecked modifies clauses,
and finally, we need easy-to-use annotations for specifying
invariants at the level of types.
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