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Abstract

Modern computer systems are instrumented to gen-
erate huge amounts of system log data. This data con-
tains valuable information for managing the system, lo-
calizing failures, and recovery. However, the complex-
ity of these systems greatly surpasses what can be un-
derstood by human operators and thus automated anal-
ysis systems are beginning to be used. Due to prepro-
cessing required by the statistical algorithms, the ex-
tremely high volume of data cannot be processed using
ad-hoc scripts. We present a 
exible, modular and scal-
able architecture for statistical learning from large data
streams that can easily process lots of data. We built a
prototype that is evaluated using system log data from
a commercial on-line service. Moreover, the results of
the analysis were genuinely useful for the on-line ser-
vice operators.

1. Introduction

Data analysis and collection in general

Most on-line services such as Amazon or eBay su�er
from various user-visible failures. As reported by vari-
ous authors (such as [14]), the most common causes of
failure in computer systems are software bugs, human
operator errors and hardware failures. These failures
cause system downtime which is very expensive; for ex-
ample, [15] estimates that 1 hour of downtime of a large
on-line service can cost up to $1 million. Predicting,
detecting or localizing these failures is a very di�cult
task { some systems consist of hundreds of software
components running on up to 50,000 servers [13].

A standard approach of most companies is to in-
strument the system so that it reports various statis-
tics such as performance of each machine, execution
details for each request, or network statistics. Human
operators monitoring the system use the log data and
their experience to detect failures and identify possible

root causes.

This approach has several limitations: computer
systems are too complex and their behavior cannot be
easily understood by humans. The systems today gen-
erate as much as 1 TB of log data every day [4]. Using
more �ne-grained instrumentation they could generate
100x more log data, but it is impossible to manually
process such large data sets.

Motivation

The recorded data contains more useful information
than the operators can discern. The data might be
used to predict that a particular machine is likely to
crash in a few minutes or that a certain software com-
ponent has a bug. This extra information can expedite
detection and localization of failures. A fully auto-
mated analysis would be cheaper, more reliable and
could potentially understand more complex behaviors.
However, most of the companies today use very limited
automated analysis of the log data they collect.

One of the reasons why it is di�cult to build an
automated analysis system is that it is hard to manage
so much data in real time. A lot of preprocessing (such
as sampling, adding/removing attributes, merging data
from di�erent sources, and so on) is required before the
data reach the algorithms. Our experience shows that
systems based on Python scripts are not 
exible enough
to analyze the scale of log data produced in on-line
services. Using ad-hoc scripts for parallel preprocessing
of data is tedious and does not allow easy modi�cation
of data streams and algorithms.

Instead, we need a better data model for the system
log, and a scalable, modular architecture that can be
distributed over a cluster of machines to process the
data quickly. We need to be able to easily add new
data streams of di�erent types and data rates, create
new features/attributes on-line, and try di�erent types
of algorithms. Since we need to test the system in pro-
duction environments, it needs to be easily deployable
for testing.



Contribution

In this paper we propose the use of stream-based pro-
cessing and present a prototype of a system that allows
us to preprocess data for any o�-line or on-line statis-
tical learning algorithm against massive quantities of
system logs. The system can be easily distributed over
a cluster of machines and new data streams and algo-
rithms can be added on-the-
y. Although our architec-
ture is designed for analyzing system log data, it can be
used in other situations where data mining and statisti-
cal learning theory (SLT) algorithms need to be applied
to huge amounts of data. To demonstrate its bene�ts,
we implemented a decision tree algorithm for generat-
ing interesting rules from the log data. The algorithms
and the architecture are evaluated on a data set from
an on-line service with data rate of about 150GB per
day.

The structure of the paper is as follows: in Sec-
tion 2 we present a set of decision-tree-based algorithms
for o�-line detection of interesting rules/behavior in a
typical computer system; Section 3 highlights practi-
cal problems we ran into when trying to implement
them. Sections 4 and 5 describe the new system and
our experience with it. The results of the algorithms
in Section 6 are followed by the details of the design
and implementation of the system in Section 7.

2. System log data analysis

In this section we describe a typical data set ob-
tained from an on-line service that we use in our ex-
periments. We also describe a few types of algorithms
that would be useful for system operators and present
some speci�c examples. These algorithms and prob-
lems with their implementation serve as motivation for
our stream-based system.

2.1. Data set X

Our data set comes from a commercial on-line ser-
vice (similar to AOL) running on 440 nodes. Since fail-
ure information is sensitive, the company sharing this
data prefers to be anonymous (we refer to it as com-
pany X or system X). The data was recorded during a
20-day period and its size is about 2.5 TB.

The data set contains three types of data:
Request data. Every request executed in the sys-

tem reports at least the following attributes: time, ma-
chine, user id, and application. In addition to that, a
request reports a subset of 450 attributes including re-
quest type, content length or queue duration; the actual
attributes that are reported depend on the application
that is executed and the events that happen during

the execution. Note that requests are not restricted to
requests from users; requests from other parts of the
system are also included. Due to privacy reasons, some
of the attributes were anonymized ; replaced by a hash
of their string value. The peak rate of requests is about
11,000 requests per second. Each 1 minute of request
data from all machines is stored in one compressed �le
of size � 20 MB (uncompressed size is � 80 MB).
Performance data. Every node reports its perfor-

mance statistics every �ve minutes { 17 attributes such
as: memory utilization, swap utilization, load average,
CPU idle time, or TCP segments received in error. The
size of the performance data for 20 days is � 850 MB;
the data rate is about 10,000 times slower than for the
request data.
Trouble ticket data. The problems detected by

operators were written to a log (� 450 kB) that in-
cludes possible causes for the failures.

2.2. What is useful

Our experience with several companies suggests that
the following types of automatic log data analysis
would be useful in general:

1. localizing the root cause of a failure: Often
the system operators know that something in the
system failed, but localization of the root cause
is a signi�cant problem. As reported by [9], one
large site estimates that about 93% of recovery
time from application-level failures is spent in de-
tecting and diagnosing them.

2. predicting failures before they happen: If we
could predict failures of particular machines, we
could redirect the tra�c from the a�ected machine
and avoid service disruptions.

3. detecting (unexpected) patterns in the
data: During the post-mortem analysis of a failure
it would be useful to have models of typical and
unexpected system behavior. These models would
allow the operators to better understand the sys-
tem.

The automated analysis systems should not replace
the operators but help them understand the system
better. Human operators are experienced with the sys-
tem, so we need to exploit it in our analysis. The analy-
sis systems should thus also incorporate feedback from
the operators.

2.3. Analyzing the data

It is still not known what algorithms work best for
system log analysis. However, as summarized in Sec-

2



tion 8, current research mostly applies o�-line algo-
rithms such as decision trees, Bayes nets or associa-
tion rules along with time series analysis and statisti-
cal tests. For analysis of our data set we decided to
start with a simple decision tree algorithm and then
gradually extend it.

Decision trees for important attributes

The basic algorithm uses decision trees to generate in-
teresting rules about the behavior of the system. Some
of the reported attributes indicate a possible error:
error-code, response-code, result, or db-error. For the
system operators it is important to understand what re-
quests report di�erent values of such attributes. Since
we prefer output in human-readable format, it is nat-
ural to use decision trees to classify the values of such
attributes using the values of the remaining attributes.

Thus, this simple algorithm would look at all re-
quests on one machine during a speci�ed time interval
(say, an hour), treat one of the attributes as a class
attribute and train a decision tree using this data set.
An operator can then easily extract useful rules that
de�ne the classes.

It is often not enough to use only the original at-
tributes from the raw data. An operator who under-
stands the system might like to add new attributes that
he would like to classify or use in classi�cation of other
attributes. For example, since most attributes are not
reported most of the time (such as error-code), the
presence of an attribute indicates an event of inter-
est. Therefore, for every attribute A in the original
raw log data, we de�ne new boolean attribute R A: "is
attribute A reported?".

An anomalous value of a numeric attribute (such as
duration) is yet another interesting event. For every
numeric attribute B in the original raw data, we de�ne
new boolean attribute O B: "is attribute B anoma-
lous?". We compute the average �B and standard de-
viation �B of the past values and de�ne the new at-
tribute to be true if its value is outside the following
interval: (�B � 3�B ; �B + 3�B).

The algorithm described in this subsection (referred
to as algorithm A1) was implemented and the results
are presented in Section 6.

Alternate algorithms

In the more advanced algorithm (A2) we would like to
correlate the performance and request data. We no-
ticed many short peaks in the performance data that
last only for one 5-minute interval; values in the pre-
vious and the following 5-minute intervals appear nor-
mal. It would be interesting to compare the requests
during the anomalous interval with the requests dur-
ing the previous or the following interval. The details

of the algorithm are as follows: 1) look at the per-
formance data and detect outliers/peaks, and 2) after
detecting an outlier at time interval T , build a data set
from requests during interval T � 1 (class normal) and
requests during interval T (class outliers). The deci-
sion tree algorithm will then try to classify the requests
into these two classes; the resulting tree would indicate
the most important di�erences between the classes.

Other extensions include using data from all ma-
chines to detect types of requests of particular machines
that cause problems and using a better outlier detec-
tion algorithm such as a one-class SVM (algorithm A3).

We tried to perform the required preprocessing ad-
hoc using Python scripts, but we found that it is very
tedious and time consuming to do, as described in the
next section.

3. Practical problems of log data process-

ing

When presented with terabytes of data, before try-
ing out any SLT algorithm, we need to think about
how to handle it e�ciently. In this section, we describe
our experience with analyzing huge amounts of data.
We �rst describe our early attempts which use ad-hoc
Python scripts and traditional relational database sys-
tems for handling the data. We discuss the need for a

exible architecture both for processing raw log data
and for providing input for SLT algorithms.

3.1. Preprocessing data for SLT algorithms

In practice, system log data are in arbitrary for-
mats, and thus, far from ready to be fed into an SLT
algorithm. The required preprocessing includes the fol-
lowing:

� Sampling: we need to sample the original log be-
cause we are not able { and it is not necessary
{ to look at all the observed data. Other reasons
for sampling include temporally variable data rate,
dealing with unbalanced data sets, removing du-
plicate entries or removing entries that do not re-
port the class attribute. Thus, a recon�gurable
sampling algorithm must be supported.

� Cleaning the data: we need to �lter out some
unnecessary attributes from each of the event log
entries: attributes not reported by any sample and
attributes with constant values.

� Adding new attributes: the original attributes
in the raw data are often not enough or not suit-
able for analysis using SLT algorithms, as de-
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scribed in Section 2.3. Values of some new at-
tributes are easily generated; "is attribute A re-
ported?". However, other attributes { such as "is
attribute B anomalous?" { might require running
a simple algorithm.

� Integrating streams from multiple sources:
System logs are generated on separate machines
describing di�erent aspect of the system. For ex-
ample, our data set contains performance statis-
tics, request log and problem tickets, as described
in Section 2.1. It is also often necessary to inte-
grate data sources unanticipated at design time,
since we might �nd more related information as
our familiarity of the system increases.

� Running multiple algorithms: Applying sev-
eral di�erent algorithms to our data is an im-
portant part of our research. However, di�erent
types of algorithms (such as on-line and o�-line)
require di�erent experiment setup and many pub-
licly available implementations require di�erent
format of input data. Because of huge amounts
of raw log data, accessing it is a very expensive
operation. Thus, we need to produce a separate
output �le for each algorithm with one scan of the
raw data.

We needed a 
exible system that can be con�gured
to generate input data for SLT algorithms in a more
convenient way.

3.2. Early experience with Python scripts

At the early stages of this project, we did not realize
all of the practical problems discussed in the previous
section. In order to get started testing the algorithms
as soon as possible, we began writing Python scripts
to process the data.

Python is a scripting language, which is very e�cient
(in terms of code length) in processing text �les. The
simplest preprocessing (scan through the data, project
certain attributes of each entry and output them as
a text �le) can be expressed in about 50 lines of code,
and some of our original results were obtained with the
data preprocessed in this manner.

However, as we were trying out more algorithms, we
found ourselves frustrated by the following problems:

1. It takes a huge amount of time to scan
through the data. In our case, a single scan
through one minute of log data takes more than
10-12 minutes. Most of the time is spent on read-
ing the data from disk, uncompressing it, and pars-
ing it.

2. It is hard to handle multiple queries in a
single script. Producing data for multiple algo-
rithms in a single script makes the Python scripts
signi�cantly more complex. A couple of aggrega-
tion queries take about 150 lines of Python code.
It became even more complex when we wanted to
save some of the intermediate results to disk for
future use.

3. It is hard to add/modify existing queries.
Adding one query to the code may require chang-
ing the code for existing queries, because we share
the bu�er and intermediate results among the
queries.

4. Fine grained parallelism is much harder to
achieve. We observed that preprocessing is CPU
bounded (instead of I/O bounded) on our cluster,
so speedup can only be obtained by using multiple
processors. Parallel processing of the data is very
hard to implement in �ne granularities (such as at
single-request level).

Our experience shows that even though ad-hoc
scripts are enough for small data sets, they can be very
di�cult to maintain if re-running the script is slow and
the set of SLT algorithms we need to preprocess the
data for is not known in advance.

3.3. Problems with relational databases

We also considered using traditional relational
databases for our data, since the preprocessing can be
speci�ed as SQL queries, reducing the complexity of
preprocessing scripts. We rejected this approach for
the following reasons:

1. System logs do not have a �xed schema.
System logs usually have no �xed schema. E�-
cient relational database operations require a well
designed schema; both logical (tables) and phys-
ical (�le organization, indexing etc.). Changing
schema is assumed rare and expensive. However,
the format of system logs changes as the system
evolves.

2. One-time-queries are not suitable for gen-
erating multiple data output. The queries in
a relational database are one-time queries; gen-
erating another result usually requires a separate
query. If a scan is required on a terabyte data
base, each of the queries will take days to run.

3. It is hard to support queries involving tem-
poral properties of data. However, this is es-
sential in temporal data analysis.
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4. The cost of using a relational database is
high. Importing multi-terabytes of data into a
relational database would have brought to us very
high initial cost (both I/O and CPU) and storage
cost.

4. A 
exible architecture

In this section, we introduce a better data model {
data streams and Telegraph Continuous Query proces-
sor to solve the problem described in previous section.

We focus on the functionality and 
exibility of our
software architecture and experience we get from run-
ning a prototype implementation. For the interested
readers, we describe the details of the design and im-
plementation of the system in Section 7.

4.1. Stream model of system log data

As our early experience suggests, a good data model
is necessary for processing huge amounts of system log
data. A data model is a collection of high-level data de-
scription constructs that hides the underlying low-level
storage details [16]. It helps people to understand the
data better and they can build proper data processing
systems to manipulate the data.

We found that system logs �t the stream data mod-
els well, because of the following characteristics [2]:

1. Log data entries arrive on-line. The rate is deter-
mined by the data source and the temporal rate
variation can be large. Also, the stream processor
does not have any control over the order in which
data elements arrive. In large scale distributed
computer systems, such as the system X, logs are
generated continuously on each of the machines
with di�erent data rate.

2. A data stream is an in�nitely long sequence of data
elements, but the memory on the stream processor
is limited. Once a data element is processed, it has
to be either discarded or archived, which makes it
hard to locate the element and process it again.
This situation �ts our application well, since old
system events are much less valuable, for failure
detection, and even for long term client behavior
analysis. Once the desired statistics have been ob-
tained from the raw data, it becomes less impor-
tant, and people usually do not have a chance to
look into the old data again. Typical companies
archive raw system log data for a few weeks before
discarding them, but the statistics and data rep-
resenting interesting system events are preserved.

Stream processing and SLT can help us �nd and
preserve the interesting data more e�ciently.

3. A time stamp is attached to every entry in the
data stream explicitly or implicitly (i.e., the arrival
time at the stream processing system). Therefore,
the system preserves the temporal properties of
the data. It also allows most recent data to be ac-
cessed more e�ciently so that temporal algorithms
can be used easily.

The bene�ts of using data stream over ad-hoc scripts
and relational databases are the following:

Continuous queries

The queries on data streams are usually continuous
queries, in contrast to one-time-queries. One-time-
queries run on a snapshot of the data, and return a
single result to the user, while continuous queries are
evaluated as data elements in the stream arrive.

Here is an example of a continuous query: Which
machine has handled 5 times more requests than any
other machine over the last 10 minutes? This query
has to be re-evaluated each time a new system log entry
arrives, and thus produces an output data stream con-
taining the name of machines. The output stream can
be used directly as an indicator of system failures or can
be used as a regular data stream, for example, as an
input to an SLT algorithm. Continuous queries can ei-
ther be pre-de�ned or ad-hoc, and multiple queries can
run on a single data stream concurrently. The ability
to perform continuous queries has great advantage for
preparing data for SLT algorithms.

O�-line SLT algorithms can be used too

As described in Section 8, many commonly used SLT
algorithms are o�-line algorithms (e.g., our decision
tree algorithm), which work on chunks of data instead
of streams. It is trivial to accumulate preprocessed
stream in a bu�er to get a data chunk large enough
for the o�-line algorithm. It is better than traditional
methods in that preprocessing the data before bu�er-
ing it allows us to save only the data we want, thus
making the bu�ering much more e�cient.

Easy-to-change schemas

It is easy to change stream schema, since there is no
data stored in database. This makes it easy to add new
streams and modify the output desired. For example,
to generate the data for algorithm A2 (Section 2.3) we
needed to integrate performance and request data.

The idea of stream processing has been commonly
used in the past. For example, grep in UNIX is a pro-
gram that processes stream queries speci�ed as regu-
lar expressions. The Python scripts we wrote are also
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Figure 1. A general structure of the system. We used publicly available TCQ implementation as our major building
block, and other components are currently written in Python. Our data are originally stored in a single data �le. To
make the data processing rate as fast as possible, we used 4 machines as stream sources, and load splitter is used to
split the the stream round-robin by time to a set of (up to) 36 identical TCQ instances. Before splitting, a unique
sequence number is assigned to all the entries of the log to allow a later reconstruction of the original order. The
�rst tier of TCQ nodes performs queries that are independent of time (i.e. queries that do not have a time window
speci�cation). The output streams are directed to the stream combiner to reconstruct the time order. If many output
streams are required, multiple combiners can be implemented. After the streams are combined, the second tier of TCQ
instances performs time dependent queries. The �nal output streams are output to SLT algorithms. The output from
SLT algorithms is also modelled as a data stream which can be displayed in a GUI and/or redirected to a centralized
controller as feedback from the system.

stream processors. However, they resulted in ad-hoc
and complex solutions.

4.2. Overview of the architecture

We wanted to build an infrastructure to support
data analysis research of system log data. A major
concern is simplicity. It should be simple enough that
the initial con�guration should either be automatically
generated or be speci�ed with a high-level description.
The interface between our architecture and the system
monitored should allow easy deployment in produc-
tion environment. This architecture should be 
exible
enough to accommodate many algorithms, both on-
line and o�-line, without signi�cant re-con�guration.
It should also be easy to add or remove data streams
and components.

The purpose of the system is also to make the algo-
rithm implementation as easy as possible, so that SLT
researchers can focus on the algorithm rather than on
tedious job of accommodating various input formats of
raw data.

We tried to make use of available software from
other research projects. The major component we use
is Telegraph Continuous Query engine (TCQ) [12, 18].
TCQ is a continuous data
ow processing engine build
on the code base of PostgreSQL, a popular open-source
object-relational database system. It contains func-
tionality of both relational database and stream pro-
cessing. It supports continuous queries over streams,
the cost of query evaluation is shared among all queries

and the executor adapts to the characteristic change of
the streams. It overcomes the problems with relational
databases discussed in Section 3.3.

The use of TCQ helped us to easily specify and
add/remove continuous queries, which solved the sec-
ond and third problem discussed in Section 3.2.

Turn-around time is our next concern, or more
speci�cally, the delay before one can start evaluating an
SLT algorithm. We organized our architecture in mul-
tiple tiers and run each tier in parallel. Our software
architecture is build on TCQ, which has all bene�ts of
TCQ and it allows user to specify �ne-grained paral-
lel execution over a computer cluster to achieve short
turn-around time and scalability. The main features
include:

1. Data in the system are modelled as data streams,
which are easy to understand and manipulate. De-
sign of the system is driven by the 
ow of data.
The output of one stream processor can be used as
input of another and any stream can be bu�ered
and used by an o�-line algorithm. Another ad-
vantage of using streams, is that users unfamiliar
with SQL can simply specify their queries in other
languages such as Java.

2. It is easy to bu�er a stream of data for a certain
period of time to support o�-line algorithms that
require chunks of data. Result-saving policy can
be speci�ed separately for each stream in order to
deal with temporal variation of stream data rate,
importance of di�erent streams and storage con-
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select avg(f_delay) as f_delay_avf,
stddev(f_delay) as f_delay_stddev

from rawlog
where f_app='http'
group by f_app window r ['30sec'];

Figure 2. A continuous query that computes the av-
erage latency for HTTP requests in the input stream
over the last 30 seconds. This query can only run on
tier 2 in Figure 1, since it involves time-dependent
queries.

straints.

3. It is also simple to cache/store any intermediate
stream to disk and reuse it later. This is espe-
cially important for research purposes, as we are
constrained by the hardware resources available to
us.

The architecture also supports the functionality de-
scribed in Section 3.1, which we present with an exam-
ple in the following section.

5. Experience with our prototype

We implemented a prototype of software architec-
ture on a local cluster. The prototype is designed to
be modular enough so each component can be easily
replaced as long as it follows a simple stream interface.
Major components include: data source, load splitter,
stream combiner, TCQ processor, and SLT algorithm
wrapper. The structure of the system is easily speci-
�ed in an object oriented way (description of the com-
ponents and the interconnections among them), and
then automatically translated into a sequence of scripts
which start all the components on multiple nodes of the
cluster.

The general structure of the architecture is described
in Figure 1. The functionality and interface of these
components are described in more detail in Section 7.
Here we focus on how to use the system and the bene�ts
of using it, which we believe is of more interest to our
readers.

This example uses two tiers; the �rst tier per-
forms time-independent sampling and processing that
reduces the size of the stream for time-dependent pro-
cessing. The data are currently processed in the order
they enter the system for the ease of implementation.
We consider more advanced load balancing as an im-
portant part of our future work.

A simple query

We start with a simple query from a traditional moni-
toring system; query R: the average latency for HTTP

request data A1Q

request data

performance data

anomaly
detectionQ

buffer

A2R

control stream

request data

performance data

Q

buffer

A3R

use SVM

build SVM

control stream

Figure 3. System architecture for algorithm A1. The
outer rounded rectangle corresponds to the whole ar-
chitecture from Figure 1. For this algorithm the input
stream consists of 450 attributes. If an attribute is
not present in the entry, its value is de�ned as NULL.

select f_class, f_app, f_machine, f_bytes-served, f_ip,
(f_error-code is not null) as f_error-code_reported,
(f_duration < LOW OR HIGH < f_duration)

as f_duration_outlier
from rawlog
where f_app='proxy'

f_machine='machine54'
f_class is not NULL

Figure 4. Query Q for algorithm A1: the �rst line
projects the speci�ed attributes and the next two
lines generate two new attributes (Section 2.3) from
raw log. The where clause speci�es that only accepted
entries are from machine machine54 and application
proxy that also report a value for the class attribute.
Note that we prefer to let this query run on tier 1
(Figure 1), since the output stream is much smaller
than the input.

requests over last 30 seconds. Note that this query
cannot be run on TCQ instances of tier 1 (query Q on
Figure 1), since not all the data for "last 30 seconds"
is present in either one of the queries Q. Instead, query
Q just performs sampling to decrease the size of the
stream (time independent) and the actual query R is
executed after the combiner in the second tier of TCQ
instances. Adding a query (as speci�ed in Figure 2)
only takes one SQL statement and running a single-
line shell command and can be done on-line without
stopping the stream sources.

Supporting Algorithm A1

Figure 3 presents the simpli�ed system con�guration
for algorithm A1 (Section 2.3). In particular, we
want to generate a decision tree for attribute f class
for requests from machine machine54 and application
proxy. Query Q on Figure 4 shows all the required
preprocessing. The output stream generated by Q is
formatted as comma-separated-values and can be di-
rectly used in a decision tree implementation. Note
that this stream must be bu�ered to form a chunk be-
fore passed to the algorithm. The description of the
system takes 48 lines of code.

The speedup when using multiple machines in par-
allel is shown in Figure 5. We used 4 parallel stream
sources (i.e., we split the log �le containing data for all
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Figure 5. When increasing the number of TCQ in-
stances running in parallel, average throughput in-
creases linearly. System X generates about 8360 log
data entries per second which can be handled on 8
TCQ nodes in real-time. 36 TCQ nodes can handle
36500 entries per second which is � 600GB of log
data per day. We used 4 parallel data sources; with
fewer data sources, their throughput will eventually
become bottleneck of the system.

of the 430 machines into four pieces and used 4 nodes
to generate stream). Running up to 36 TCQ instances
in parallel, we observed linear speedup and the system
processed 1 minute of the system log (501572 log en-
tries) in 13.7 seconds. We think that this turn-around
time is good enough for us. Also, since the data are
produced in time order, we can run algorithms on the
output streams without waiting for the processing to
complete. In a real world implementation, the data
source itself is naturally parallel since the logs are gen-
erated on di�erent machines.

Supporting algorithms A2 and A3

To support algorithm A2, we need to add the perfor-
mance data stream to the system. This can be done
by simply adding a data source and since the data rate
is very low, a load splitter is not required. We connect
this stream directly to one of the TCQ instances in
the second tier, after the �rst tier processing is done.
This TCQ instance looks at the performance metrics
and uses their average and standard deviation to de-
tect outliers. The output stream of this query (called a
control stream) is non-zero when an outlier is detected.
The control stream is then connected to another TCQ
instance in the �rst tier that generates an appropriate
stream for A2.

The architecture for A3 presented on Figure 6 is

request data A1Q

request data

performance data Q

buffer

decision
tree alg.R

control stream

use SVM

build SVM
update
model

request data

performance data

anomaly
detectionQ

buffer

A2R

control stream

Figure 6. structure of the architecture that supports
A3. The data stream is used to build a Support Vec-
tor Machine (SVM), which is an o�-line algorithm.
the SVM built is then used on-line to detect outliers.
Once an outlier is detected, a new query is initiated so
that the data from last 10 minutes are preprocessed
for decision tree algorithm C4.5 as described in Sec-
tion 2.3.

very similar to A2. The outlier detection is now per-
formed by an external algorithm { an o�-line one-class
SVM. The performance data stream is thus forwarded
to two components: one that generates the model and
another one that use a previously generated model for
outlier detection. The rest of the architecture remains
unchanged. These simple changes to the architecture
for A1 show the 
exibility of the system.

Supporting any algorithm

Since the data 
ows in streams that can be bu�ered
we can use this architecture with any on-line or o�-line
data mining or SLT algorithm. All entries entering the
system contain a time stamp and, in addition, we assign
them a unique sequence number. All the processing
(such as SQL queries or merging di�erent data streams)
preserves the original order of entries and thus tempo-
ral algorithms can be used too. Further, because the
output of any algorithm is also modelled as a stream,
we can arbitrarily combine multiple algorithms.

Updating a component of the system

In our initial setup, we used a very simple stream
source component which was implemented using a
single-threaded Python script. After the system was up
and running, we found its performance unsatisfactory,
so we implemented a new stream source with multi-
threading. Removing the old source and adding the
new one took only two shell commands (one to stop the
old one and the other to start the new one), while all
other components were left intact without restarting.
The whole process took only a couple of minutes, be-
fore the system continued to produce new output data.

8



All the stream source implementations are straightfor-
ward and even the multi-threaded one consists of only
90 lines of Python code.

6. Results of algorithm A1

In this section we present results of the algorithm A1
from Section 2.3. We used the standard implementa-
tion of C4.5 decision tree algorithm from the machine
learning tools package Weka [23]. The depth of the
trees was constrained to be no more than 7 and the
minimal number of samples in a leaf was set to 10.

The results are based on 4 hours of request data from
a single machine running mainly the proxy application.
The following preprocessing was applied: a) add new
attributes as described in Section 2.3, b) remove useless
samples (ones that did not report the class attribute),
c) remove useless attributes (ones that are constant),
and d) resample the data to obtain smaller data set
(about 20 - 30 MB) and to balance the classes of the
class attribute. The resulting trees are presented in
Figure 7. The decision trees B' and C' were generated
from the original data set after �ltering out attributes
R cache-served and duration, respectively.

How useful this is for the operators

As this is work in progress, we didn't yet carry out any
extensive evaluation of this algorithm. However, the
early results are encouraging; we showed these decision
trees to one of the operators in company X and he
thinks they are very useful.

For the operators, there are two main characteristics
that make this approach very valuable. First, the de-
cision tree algorithm can automatically search through
the large number of attributes and �nd a small subset
that is correlated with the class attribute. For example,
the �rst decision tree for attribute R error-code says
the following: "the requests that report an error-code

(almost certainly) do not report attributes cache-served
and server-duration". The structure of the decision
tree also allows the operator to quickly identify points
of interest: for example URLs 6520... and 2336...

(see the decision tree B') almost always generate an
error-code. The possibility of de�ning new attributes
on-the-
y makes this very attractive.

We can hardly expect an automated analysis system
to replace the operators; an ideal system will thus ac-
cept feedback from the operators and improve its anal-
ysis accordingly. Decision trees allow a simple version
of this: if the decision tree generates rules that are triv-
ial for the operator and he understands them, a few
attributes can be �ltered out from the data set and the
algorithm can generate an alternative explanation.

A: class attribute: error-code
bytes-served <= 195: 145 (135/9)
bytes-served > 195
| R_content-len = yes: 32 (98)
| R_content-len != yes
| | R_not-cached-reason = yes: 32 (45/19)
| | R_not-cached-reason != yes
| | | duration <= 15.2
| | | | bytes-received <= 2680: -13 (39)
| | | | bytes-received > 2680
| | | | | bytes-received <= 2805: 131 (30/7)
| | | | | bytes-received > 2805: -13 (85/13)
| | | duration > 15.2: 131 (69/6)

_____________

B: class attribute: R error-code
R_cache-served = yes: no (10469)
R_cache-served != yes
| R_server-duration = yes: no (7686)
| R_server-duration != yes: yes (18094/5)

B': class attribute: R error-code
attribute R_cache-served removed
duration <= 2.25
| client-write-duration <= 0.0: yes (200/4)
| client-write-duration > 0.0
| | bytes-served <= 210
| | | R_server-duration = yes: no (873)
| | | R_server-duration != yes: yes (1969/10)
| | bytes-served > 210
| | | visit-url = 6520...: yes (69)
| | | visit-url != 6520...
| | | | visit-url = 2336...: yes (72/1)
| | | | visit-url != 2336...: no (18909/1934)
duration > 2.25
| R_server-duration = yes: no (291)
| R_server-duration != yes: yes (13866/6)

_____________

C: class attribute: O client-write-duration
duration <= 9.71: false (18018)
duration > 9.71: true (18231/71)

C': class attribute: O client-write-duration
attribute duration removed
bytes-served <= 67958
| R_error-code = yes
| | R_content-type = yes: true (253/6)
| | R_content-type != yes: false (17)
| R_error-code != yes
| | gmt = 2003-06-24 00:01:07: true (54)
| | gmt != 2003-06-24 00:01:07
| | | user-id = 96848766314153157: true (99/6)
| | | user-id != 96848766314153157
| | | | gmt = 2003-06-24 02:23:28: true (45)
| | | | gmt != 2003-06-24 02:23:28
| | | | | visit-url = 8227...: true (43)
| | | | | visit-url != 8227...: false (18005)
bytes-served > 67958: true (17733/55)

Figure 7. Binary decision trees for the attributes
error-code, P error-code, and O client-write-duration.
Every line represents one conditional branch in the
tree. The class attribute is in bold. The numbers
in brackets represent the number of samples in that
leaf (x) or number of samples and number of false
positives for that leaf (x/y). The top of the tree
A thus means: "If bytes-served � 195, the value of
error-code is 145 (if the error code is reported). This
rule is valid for 135 samples and invalid for 9 sam-
ples. If bytes-served > 195 ..." (we move to the other
branch). The attribute "R attr" represents a newly
generated attribute "was attribute attr reported?",
"O attr" represents "is attribute attr an outlier?".
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An example can be seen in the decision tree for
attribute O client-write-duration; the �rst decision
tree generated a simple decision tree that is prob-
ably clear for the operator ("attribute duration is
almost perfectly correlated with the outliers in at-
tribute client-write-duration"). After removing the
attribute duration from the data set, the alternative
decision tree o�ers more interesting insights.

Remember that these results were generated using
data from a single machine and a single application
running on that machine. After we add requests from
all the machines and all the applications we get a much
more powerful tool that allows us to correlate events
across the whole cluster.

7 Design and Implementation details

In this section, we describe the components and
their interfaces in our architecture in more detail.

7.1. Key component, Telegraph Continuous Query
Engine

General stream processing techniques have been
studied in database community in great depth [1, 6]. A
number of general purpose stream processing systems
have been built [2, 12]. We use Telegraph Continuous
Query engine [12], which is designed to process data
streams with adaptive, continuous queries.

The queries are speci�ed in PostgreSQL SQL, with
all data types and functions. One query is usually spec-
i�ed by a few lines of SQL and all the query plans are
automatically optimized. This makes adding and mod-
ifying queries signi�cantly easier than ad-hoc scripts.

As the characteristics of the data stream change, the
query execution changes adaptively. For example, dur-
ing a system failure the average delay may suddenly
go very high and thus a selection condition "delay >

10 sec", which normally throws away almost all tu-
ples suddenly becomes not selective. Without adaptive
query execution, the query evaluation may become very
ine�cient for other operators in the query plan.

TCQ supports running multiple queries on a single
data stream and generating multiple outputs concur-
rently. This best �ts our case of running di�erent SLT
algorithms requiring di�erent input data on a single
log �le. The computation and storage are shared ag-
gressively, so running more queries on the same stream
does not increase workload signi�cantly.

TCQ is still in its early research stage [18]. The
released version is functional, but not optimized for
performance. A single node running TCQ takes 7 to
14 minutes to process one minute of system log data in

our data set, which is the reason why we used multiple
instances of TCQ running in parallel. We are interact-
ing with the TCQ research team to investigate higher
performance and new features.

7.2. Other building blocks

Modularity is an important goal of our design. We
designed the system so that it consists of simple build-
ing blocks (see Figure 1) that communicate with each
other using sockets. They can be deployed on a sin-
gle physical node or over multiple nodes in a cluster.
These components were written in Python and com-
prise about 750 lines of code.

Data source is the interface for getting the various
kinds of data, translating them into data streams and
feed them into the stream processing system. It pro-
vides a small interface to the production system, and
can be overridden to use multiple types of data, such
as logs stored on disk, network monitoring readings, or
live stream of system event reports.

Load splitter is a small component used for load
balancing that takes a single input stream, divides it
into multiple streams and redirects them on to multi-
ple nodes. When the data rate cannot be handled by a
single TCQ instance, we create multiple instances and
use the load splitter to route the stream to all the in-
stances. The data processing within the load splitter
should be simple and fast, since it is on the critical
path of the system and always sees a large data rate.
Currently we think the best algorithm is splitting by
time, i.e. sending data elements in round-robin man-
ner to each of the stream processors. This provides
best throughput since there is no cost for examining
and parsing the data. Of course, more advanced load
splitter can be built, especially considering the proper-
ties of the source stream. Load splitter can be changed
in the system without a�ecting any other components.

Stream combiner is a component used to combine
multiple streams generated by load splitter to re-create
the original order of entries. It works on the original
time-stamp attached to each entry in the stream. If the
time-stamp is too coarse grained to order the entries
(for example, there are 600 events in a single second
and some of them have causal dependency), we attach
a unique sequence number to each entry when it is
pushed into the system.

TCQ instances, as described in Section 7.1, are
the key components in the system. They take in mul-
tiple SQL queries, multiple data streams and output
the results of the queries as data streams. The output
data streams can be bu�ered for o�-line algorithms or
written to �les for future use. The raw stream can
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be con�gured to be archived. The TCQ instances also
output its own performance statistics as data streams
(which is called introspective query) to centralized con-
trollers.
SLT algorithms are de�ned as a components tak-

ing data streams or a �le as input and output another
data stream. The data stream can be interpreted by
a GUI component for human administrators to review
or achieved for future reference. Publicly available al-
gorithms can be plugged into the system with only a
minor wrapper for reading data streams (for example,
through JDBC or simply through a UNIX pipe).

Note that the data streams between each component
are not necessary in the same format. They can be im-
plemented as text streams, but we can also use binary
streams with type de�nition which saves parse time.
Changing the format of a stream is simple; it only re-
quires to change the output format of the sender and
input format of the receiver or add a separate wrapper
around the receiver.

7.3. Putting everything together

We provided a simple way to build the system from
components with simple object oriented speci�cations.
All the components are modeled as a class. To build
the system, one only needs to specify the parameters
of the components or override some of the functionali-
ties and the interconnections among them. A program
we provide automatically generates a shell script that
starts the components on multiple machines in the clus-
ter. There are separate scripts for adding and removing
streams and queries from each.

There are two steps to add a new SLT algorithm.
First, the algorithm "subscribes" a stream from the
system, which is done by specifying a new query. Sec-
ond, the user may need to write a simple wrapper to
generate the correct format and/or add a header.

We feel that although now it takes only less than
half an hour to write the script that generate the ar-
chitecture in Section 5, it would be more convenient to
use a GUI.

8. Related work

This research is a multi-disciplinary research involv-
ing SLT, data mining, dependable system design, data
warehousing and processing.

SLT for systems

Recently, a few researchers started using SLT algo-
rithms for detecting and localizing system failures and
software bugs.

In [4], Chen uses decision trees for localization of
failures on the eBay web site. Each executed request
reports attributes such as name, type, machine, version
and status of the request. A decision tree is trained to
predict the status attribute and the generated rules
are used to localize what machine, type of request, or
version of software is causing problems.

In his work on Pinpoint [3, 9], Kiciman instrumented
the JBoss application server so that a J2EE application
reports execution paths of all requests. The path is a
list of J2EE components that the particular request
used. Pinpoint can detect anomalous paths and corre-
late them to identify the failed components.

Cohen et al. [5] uses Tree-Augmented Bayes Nets for
automated performance analysis. 124 types of perfor-
mance metrics are measured on a sample server and the
induced model is used for prediction of Service Level
Objective violation.

Researchers at IBM Research [21, 22, 17] apply tem-
poral data mining and time series analysis to predict
critical events in computer system such as high CPU
utilization or imminent router failure.

Liblit [10] proposes a sampling infrastructure for
gathering information about execution of C programs.
He instruments the source code of the program at every
branch, assignment and function call. The recorded
information from runs of the program that crash are
correlated to obtain the possible bugs.

Most of the work mentioned above has the same
goal as our research { use automated analysis of com-
puter systems. However, experiments conducted in the
referenced papers use smaller data sets (10 { 100MB)
compared to our data set of a few terabytes.

System monitoring and management

There have been a lot of e�orts on monitoring sys-
tems in both academia and industry. Simple Network
Management Protocol (SNMP) [8] allows user to in-
strument and monitor aggregated performance of het-
erogeneous component in a network environment. It
provides a visualized and hierarchical infrastructure to
support high volume data collection and separating
management boundaries.

There are commercial tools that allow user to mon-
itor and do simple analysis on the data collected.
The major tools include HP OpenView (http://-
www.openview.hp.com/), IBM Tivoli (http://www-
306.ibm.com/software/tivoli/), Microsoft Operations
Manager (http://www.microsoft.com/mom/). These
tools allow user to navigate through the collected and
stored data, and run statistical analysis on them. How-
ever, they are not designed for preparing data for SLT
algorithms.
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Traditionally, the collected data are sent to some
centralized servers which may waste bandwidth. Both
Astrolabe [20] and PIER [7] manage to collect and an-
alyze the data on the node where they are generated.
Astrolabe makes use of gossip protocol and the archi-
tecture is formed in a hierarchical structure of domains.
PIER is implemented on a DHT [19]. Both allow user
to run queries in SQL which are then evaluated in a
distributed way in the system.

Stream data processing and mining

Our work is also related to the stream processing and
data mining work in database community. Stream pro-
cessing addressed the issue of dealing with data that
arrive in multiple, continuous, rapid and time-varying
data streams [2].

A number of stream processing systems have been
proposed to handle continuous queries over a data
stream [2, 1]. TelegraphCQ [12] addresses this problem
with eddy query processing framework that adapts the
temporal variation of data streams in data rate and sta-
tistical characteristic of the data stream. It also allows
to share evaluation path among multiple queries.

Several new algorithms that are suitable for mining
data streams were proposed. The characteristic of most
of these algorithms is that they only look at every tuple
in the stream once [6]. In contrast, for most of the
SLT algorithms it is not enough to look at each data
tuple just once. Bu�ering and caching of old data are
supported in our work to solve this problem.

Stream processing is also used in sensor network
data monitoring and analysis [11]. Though the data
rate from sensor network can also be high, it is much
less complex than logs generated by a large cluster of
computers.

9. Future work

As a joint disciplinary research project, we have two
tracks of future research that are interleaved.

SLT algorithms

There are a few interesting challenges for SLT re-
searchers. To understand a system better, we can {
in the extreme case { instrument every line of source
code of the applications running on the servers. How-
ever, this instrumentation is highly redundant and so
an interesting question to ask is "how much instrumen-
tation do we need to get the best results?" Source code
instrumentation at even a much coarser level will gen-
erate a few orders of magnitude more attributes; "how
can we select a subset that contains the most interesting
attributes?"

Another problem of current SLT algorithms is that
they assume global knowledge of all the data. However,
with tens of thousands of machines, the central stor-
age will certainly become a bottleneck; we cannot even
download all the data. The possible solutions include:
a) store history of the raw log data in the machines,
monitor only a few selected attributes and download
the necessary data only after we detect a problem, b)
do early processing of the log data in the machines, or
c) sample all the attributes and over time decide which
ones are less/more important and sample slower/faster.

Software architecture

We will turn the prototype discussed in the paper into
a more general toolkit and make it publicly available
to the SLT researchers. There are several other com-
ponents that we plan to add into our system, which are
not implemented in the prototype.

� We want to support the operator-automated sys-
tem interaction. We want to implement this by a
GUI for viewing the output of the algorithm, mod-
ify the parameters and data fed into the algorithm
to generate better result. We also want to model
human input as another stream into the system
and let the system adjust queries automatically.

� Adding a centralized controller to the architecture,
which collects statistics from di�erent components
and dynamically allocates physical nodes to each
of the components. This gives us the ability to
monitor and analyze the architecture itself. We
can monitor the load of each component of the
system and dynamically balance load when sudden
load change happens or query behavior changes.

� A distributed optimizer for query evaluation. Cur-
rently adaptive query executor only works on sin-
gle node, but we need a centralized/distributed
query optimizer in order to remove the job of rout-
ing the stream manually among the nodes, and
thus providing a single system image of the dis-
tributed architecture.

10. Conclusion

Our experience suggests that we cannot use ad-hoc
systems for automated analysis of huge system log data
set from on-line services. Instead, we propose a mod-
ular architecture that was shown to easily handle 600
GB of system log data a day. The architecture is 
exi-
ble enough to be used for any type of on-line or o�-line
data analysis algorithm.
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