
Discriminative state tracking for spoken dialog systems

Angeliki Metallinou1∗, Dan Bohus2, and Jason D. Williams2
1University of Southern California, Los Angeles, CA, USA

2Microsoft Research, Redmond, WA, USA
metallin@usc.edu dbohus@microsoft.com jason.williams@microsoft.com

Abstract

In spoken dialog systems, statistical state
tracking aims to improve robustness to
speech recognition errors by tracking a
posterior distribution over hidden dialog
states. Current approaches based on gener-
ative or discriminative models have differ-
ent but important shortcomings that limit
their accuracy. In this paper we discuss
these limitations and introduce a new ap-
proach for discriminative state tracking
that overcomes them by leveraging the
problem structure. An offline evaluation
with dialog data collected from real users
shows improvements in both state track-
ing accuracy and the quality of the pos-
terior probabilities. Features that encode
speech recognition error patterns are par-
ticularly helpful, and training requires rel-
atively few dialogs.

1 Introduction

Spoken dialog systems interact with users via nat-
ural language to help them achieve a goal. As the
interaction progresses, the dialog manager main-
tains a representation of the state of the dialog
in a process called dialog state tracking. For ex-
ample, in a bus schedule information system, the
dialog state might indicate the user’s desired bus
route, origin, and destination. Dialog state track-
ing is difficult because automatic speech recog-
nition (ASR) and spoken language understand-
ing (SLU) errors are common, and can cause the
system to misunderstand the user’s needs. At
the same time, state tracking is crucial because
the system relies on the estimated dialog state to
choose actions – for example, which bus schedule

information to present to the user.
The dialog state tracking problem can be for-

malized as follows (Figure 1). Each system turn
in the dialog is one datapoint. For each datapoint,
the input consists of three items: a set of K fea-
tures that describes the current dialog context, G
dialog state hypotheses, and for each dialog state
hypothesis, M features that describe that dialog
state hypothesis. The task is to assign a probabil-
ity distribution over the G dialog state hypotheses,
plus a meta-hypothesis which indicates that none
of the G hypotheses is correct.

Note that G varies across turns (datapoints) –
for example, in the first turn of Figure 1, G = 3,
and in the second and third turns G = 5. Also
note that the dialog state tracker is not predicting
the contents of the dialog state hypotheses; the di-
alog state hypotheses contents are given by some
external process, and the task is to predict a proba-
bility distribution over them, where the probability
assigned to a hypothesis indicates the probability
that it is correct. It is a requirement that the G
hypotheses are disjoint; with the special “every-
thing else” meta-hypothesis, exactly one hypoth-
esis is correct by construction. After the dialog
state tracker has output its distribution, this distri-
bution is passed to a separate, downstream process
that chooses what action to take next (e.g., how to
respond to the user).

Dialog state tracking can be seen an analogous
to assigning a probability distribution over items
on an ASR N-best list given speech input and the
recognition output, including the contents of the
N-best list. In this task, the general features de-
scribe the recognition overall (such as length of
utterance), and the hypothesis-specific features de-
scribe each N-best entry (such as decoder cost).
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Another analogous task is assigning a probabil-
ity distribution over a set of URLs given a search
query and the URLs. Here, general features de-
scribe the whole set of results, e.g., number of
words in the query, and hypothesis-specific fea-
tures describe each URL, e.g., the fraction of
query words contained in page.

For dialog state tracking, most commercial sys-
tems use hand-crafted heuristics, selecting the
SLU result with the highest confidence score,
and discarding alternatives. In contrast, statisti-
cal approaches compute a posterior distribution
over many hypotheses for the dialog state. The
key insight is that dialog is a temporal process in
which correlations between turns can be harnessed
to overcome SLU errors. Statistical state track-
ing has been shown to improve task completion
in end-to-end spoken dialog systems (Bohus and
Rudnicky (2006); Young et al. (2010); Thomson
and Young (2010)).

Two types of statistical state tracking ap-
proaches have been proposed. Generative ap-
proaches (Horvitz and Paek (1999); Williams and
Young (2007); Young et al. (2010); Thomson and
Young (2010)) use generative models that capture
how the SLU results are generated from hidden
dialog states. These models can be used to track
an arbitrary number of state hypotheses, but can-
not easily incorporate large sets of potentially in-
formative features (e.g. from ASR, SLU, dialog
history), resulting in poor probability estimates.
As an illustration, in Figure 1, a generative model
might fail to assign the highest score to the correct
hypothesis (61C) after the second turn. In contrast,
discriminative approaches use conditional mod-
els, trained in a discriminative fashion (Bohus and
Rudnicky (2006)) to directly estimate the distribu-
tion over a set of state hypotheses based on a large
set of informative features. They generally pro-
duce more accurate distributions, but in their cur-
rent form they can only track a handful of state hy-
potheses. As a result, the correct hypothesis may
be discarded: for instance, in Figure 1, a discrim-
inative model might consider only the top 2 SLU
results, and thus fail to consider the correct 61C
hypothesis at all.

The main contribution of this paper is to de-
velop a new discriminative model for dialog state
tracking that can operate over an arbitrary number
of hypotheses and still compute accurate proba-
bility estimates. We also explore the relative im-

portance of different feature sets for this task, and
measure the amount of data required to reliably
train our model.

2 Data and experimental design

We use data from the public deployment of two
systems in the Spoken Dialog Challenge (Black
et al. (2010)) which provide bus schedule infor-
mation for Pittsburgh, USA. The systems, DS1
and DS2, were fielded by AT&T, and are de-
scribed in Williams et al. (2010) and Williams
(2012). Both systems followed a highly directed
flow, separately collecting 5 slots. All users were
asked for their bus route, origin, and destination;
then, they were optionally prompted for a date and
time. Each slot was explicitly or implicitly con-
firmed before collecting the next. At the end, bus
times were presented. The two systems differed in
acoustic models, confidence scoring model, state
tracking method and parameters, number of sup-
ported routes (8 vs 40, for DS1 and DS2 respec-
tively), presence of minor bugs, and user popu-
lation. These differences yield distinctions in the
distributions in the two corpora (Williams (2012)).

In both systems, a dialog state hypothesis con-
sists of a value of the user’s goal for a certain
slot: for example, a state hypothesis for the origin
slot might be “carnegie mellon university”. The
number G of state hypotheses (e.g. slot values)
observed so far depends on the dialog, and turn
within that dialog. For instance, in Fig. 1, G pro-
gressively takes values 3, 5 and 5. Dialog state
hypotheses with identical contents (e.g., the same
bus route) are merged. The correctness of the SLU
results was manually labeled by professional an-
notators.

2.1 Experimental setup

To perform a comparative analysis of various state
tracking algorithms, we test them offline, i.e., by
re-running state tracking against the SLU results
from deployment. However, care must be taken:
when the improved state-tracker is installed into a
dialog system and used to drive action selection,
the distribution of the resulting dialog data (which
is an input for the state tracker) will change. In
other words, it is known a priori that the train
and test distributions will be mismatched. Hence,
when conducting offline experiments, if train and
test data were drawn from the same matched dis-
tribution, this may overstate performance.



Figure 1: Overview of dialog state tracking. In this example, the dialog state contains the user’s desired
bus route. At each turn, the system produces a spoken output. The user’s spoken response is processed
to extract a set of spoken language understanding (SLU) results, each with a local confidence score. A
set of G dialog state hypotheses is formed by considering all SLU results observed so far, including
the current turn and all previous turns. For each state hypothesis, a feature extractor produces a set of
M hypothesis-specific features, plus a single set of K general features that describes the current dialog
context. The dialog state tracker uses these features to produce a distribution over theG state hypotheses,
plus a meta-hypothesis rest which accounts for the possibility that none of the G hypotheses are correct.

dataset train set test set

MATCH1 half calls from DS2 remaining calls in DS2
MATCH2 half calls from DS1,

half from DS2
remaining calls from
DS1 and DS2

MISMATCH all calls from DS1 all calls from DS2

Table 1: Train-test data splits

To account for this effect, we explicitly study
train/test mismatch through three partitions of data
from DS1 and DS2 (see Table 1): MATCH1 con-
tains matched train/test data from the DS2 dataset;
MATCH2 contains matched train/test data from
both datasets; finally, MISMATCH contains mis-
matched train/test data. While the MISMATCH

condition may not identically replicate the mis-
match observed from deploying a new state tracker
online (since online characteristics depend on user
behavior) training on DS1 and testing on DS2 at
least ensures the presence of some real-world mis-
match.

We assess performance via two metrics: accu-
racy and L2 norm. Accuracy indicates whether the
state hypothesis with the highest assigned proba-
bility is correct, where rest is correct iff none of
the SLU results prior to the current turn include the
user’s goal. High accuracy is important as a dialog
system must ultimately commit to a single inter-
pretation of the user’s needs – e.g., it must commit
to a route in order to provide bus timetable infor-
mation. In addition, the L2 norm (or Brier score,
Murphy (1973)) also captures how well calibrated
the output probabilities are, which is crucial to de-
cision theoretic methods for action selection. The
L2 norm is computed between the output poste-
rior and the ground-truth vector, which has 1 in
the position of the correct item and 0 elsewhere.
Both metrics are computed for each slot in each
turn, and reported by averaging across all turns
and slots.



2.2 Hand-crafted baseline state tracker

As a baseline, we construct a hand-crafted state
tracking rule that follows a strategy common in
commercial systems: it returns the SLU result
with the maximum confidence score, ignoring all
other hypotheses. Although this is very a simple
rule, it is very often effective. For example, if the
user says “no” to an explicit confirmation or “go
back” to an implicit confirmation, they are asked
the same question again, which gives an opportu-
nity for a higher confidence score. Of the G pos-
sible hypotheses for a slot, we denote the number
actually assigned a score by a model as G̃, so in
this heuristic baseline G̃ = 1.

The performance of this baseline (BASELINE

in Table 3) is relatively strong because the top
SLU result is by far most likely to be correct, and
because the confidence score was already trained
with slot-specific speech data (Williams and Bal-
akrishnan (2009), Williams (2012)). However,
this simple rule can’t make use of SLU results on
the N-best list, or statistical priors; these limita-
tions motivate the use of statistical state trackers,
introduced next.

3 Generative state tracking

Generative state tracking approaches leverage
models that describe how SLU results are gener-
ated from a hidden dialog state, denoted g. The
user’s true (unobserved) action u is conditioned on
g and the system action a via a user action model
P (u|g, a), and also on the observed SLU result
ũ via a model of how SLU results are generated
P (ũ|u). Given a prior distribution b(g) and a re-
sult ũ, an updated distribution b′(g) can be com-
puted by summing over all hidden user actions u:

b′(g) = η
∑
u

P (ũ|u) · P (u|g, a)b(g) (1)

where η is a normalizing constant (Williams and
Young (2007)). Generative approaches model the
posterior over all possible dialog state hypotheses,
including those not observed in the SLU N-best
lists. In general this is computationally intractable
because the number of states is too large. One ap-
proach to scaling up is to group g into a few par-
titions, and to track only states suggested by ob-
served SLU results (Young et al. (2010); Williams
(2010); Gašić and Young (2011)). Another ap-
proach is to factor the components of a dialog

state, make assumptions about conditional inde-
pendence between the components, and apply ap-
proximate inference techniques such as loopy be-
lief propagation (Thomson and Young (2010)).

In deployment, DS1 and DS2 used the AT&T
Statistical Dialog Toolkit (ASDT) for dialog state
tracking (Williams (2010); AT&T Statistical Dia-
log Toolkit). ASDT implements a generative up-
date of the form of Eq 1, and uses partitions to
maintain tractability. Component models were
learned from dialog data from a different dia-
log system. A maximum of G̃ = 20 state hy-
potheses were tracked for each slot. The per-
formance (GENONLINE in Table 3), was worse
than BASELINE: an in-depth analysis attributed
this to the mismatch between train and test data
in the component models, and to the underlying
flawed assumption of eq. 1 that observations at
different turns are independent conditioned on the
dialog state – in practice, confusions made by
speech recognition are highly correlated (Williams
(2012)).

For all datasets, we re-estimated the models on
the train set and re-ran generative tracking with
an unlimited number of partitions (i.e., G̃ = G);
see GENOFFLINE in Table 3. The re-estimated
tracker improved accuracy in MATCH conditions,
but degraded accuracy in the MISMATCH condi-
tion. This can be partly attributed to the difficulty
in estimating accurate initial priors b(g) for MIS-
MATCH, where the bus route, origin, and destina-
tion slot values in train and test systems differed
significantly.

4 Discriminative State Tracking:
Preliminaries and existing work

In contrast to generative models, discriminative
approaches to dialog state tracking directly predict
the correct state hypothesis by leveraging discrim-
inatively trained conditional models of the form
b(g) = P (g|f), where f are features extracted
from various sources, e.g. ASR, SLU, dialog his-
tory, etc. In this work we will use maximum en-
tropy models. We begin by briefly introducing
these models in the next subsection. We then de-
scribe the features used, and finally review exist-
ing discriminative approaches for state tracking
which serve as a starting point for the new ap-
proach we introduce in Section 5.



4.1 Maximum entropy models
The maximum entropy framework (Berger et al.
(1996)) models the conditional probability distri-
bution of the label y given features x, p(y|x) via
an exponential model of the form:

P (y|x, λ) =
exp(

∑
i∈I λiφi(x, y))∑

y∈Y exp(
∑

i∈I λiφi(x, y))
(2)

where φi(x, y) are feature functions jointly de-
fined on features and labels, and λi are the model
parameters. The training procedure optimizes the
parameters λi to maximize the likelihood over the
data instances subject to regularization penalties.
In this work, we optimize the L1 penalty using a
cross-validation process on the train set, and we
use a fixed L2 penalty based on heuristic based on
the dataset size. The same optimization is used for
all models.

4.2 Features
Discriminative approaches for state tracking rely
on informative features to predict the correct di-
alog state. In this work we designed a set of
hypothesis-specific features that convey informa-
tion about the correctness of a particular state hy-
pothesis, and a set of general features that convey
information about the correctness of the rest meta-
hypothesis.

Hypothesis-specific features can be grouped
into 3 categories: base, history and confusion fea-
tures. Base features consider information about
the current turn, including rank of the current SLU
result (current hypothesis), the SLU result confi-
dence score(s) in the current N-best list, the differ-
ence between the current hypothesis score and the
best hypothesis score in the current N-best list, etc.
History features contain additional useful informa-
tion about past turns. Those include the number of
times an SLU result has been observed before, the
number of times an SLU result has been observed
before at a specific rank such as rank 1, the sum
and average of confidence scores of SLU results
across all past recognitions, the number of possi-
ble past user negations or confirmations of the cur-
rent SLU result etc.

Confusion features provide information about
likely ASR errors and confusability. Some recog-
nition results are more likely to be incorrect than
others – background noise tends to trigger certain
results, especially short bus routes like “p”. More-
over, similar sounding phrases are more likely to

be confused. The confusion features were com-
puted on a subset of the training data. For each
SLU result we computed the fraction of the time
that the result was correct, and the binomial 95%
confidence interval for that estimate. Those two
statistics were pre-computed for all SLU results
in the training data subset, and were stored in a
lookup table. At runtime, when an SLU hypoth-
esis is recognized, its statistics from this lookup
table are used as features. Similar statistics were
computed for prior probability of an SLU result
appearing on an N-best list, and prior probability
of SLU result appearance at specific rank positions
of an N-best list, prior probability of confusion be-
tween pairs of SLU results, and others.

General features provide aggregate information
about dialog history and SLU results, and are
shared across different SLU results of an N-best
list. For example, from the current turn, we use
the number of distinct SLU results, the entropy
of the confidence scores, the best path score of
the word confusion network, etc. We also include
features that contain aggregate information about
the sequence of all N-best lists up to the current
turn, such as the mean and variance of N-best list
lengths, the number of distinct SLU results ob-
served so far, the entropy of their corresponding
confidence scores, and others.

We denote the number of hypothesis-specific
features as M , and the number of general features
asK. K andM are each in the range of 100−200,
although M varies depending on whether history
and confusion features are included. For a given
dialog turn with G state hypotheses, there are a to-
tal of G ∗M +K distinct features.

4.3 Fixed-length discriminative state
tracking

In past work, Bohus and Rudnicky (2006) intro-
duced discriminative state tracking, casting the
problem as standard multiclass classification. In
this setup, each turn constitutes one data instance.
Since in dialog state tracking the number of state
hypotheses varies across turns, Bohus and Rud-
nicky (2006) chose a subset of G̃ state hypothe-
ses to score. In this work we used a similar
setup, where we considered the top G1 SLU re-
sults from the current N-best list at turn t, and the
top G2 and G3 SLU results from the previous N-
best lists at turns t − 1 and t − 2. The problem
can then be formulated as multiclass classification



over G̃+1 = G1+G2+G3+1 classes, where the
correct class indicates which of these hypotheses
(or rest) is correct. We experimented with differ-
ent values and found that G1 = 3, G2 = 2, and
G3 = 1 (G̃ = 6) yielded the best performance.

Feature functions are defined in the standard
way, with one feature function φ and weight λ for
each (feature,class) pair. Formally, φ of eq. 2 is
defined as φi,j(x, y) = xiδ(y, j), where δ(y, j) =
1 if y = j and 0 otherwise. i indexes over the
G̃M +K features and j over the G̃ + 1 classes.1

The two-dimensional subscript i, j if used for clar-
ity of notation, but is otherwise identical in role to
the one-dimension subscript i in Eq 2. Figure 2 il-
lustrates the relationship between hypotheses and
weights.

Results are reported as DISCFIXED in Table 3.
In the MATCH conditions, performance is gener-
ally higher than the other baselines, particularly
when confusion features are included. In the MIS-
MATCH condition, performance is worse that the
BASELINE.

A strength of this approach is that it enables
features from every hypothesis to independently
affect every class. However, the total number
of feature functions (hence weights to learn) is
(G̃ + 1) × (G̃M +K), which increases quadrat-
ically with the number of hypotheses considered
G̃. Although regularization can help avoid over-
fitting per se, it becomes a more challenging task
with more features. Learning weights for each
(feature,class) pair has the drawback that the ef-
fect of hypothesis-specific features such as confi-
dence have to be learned separately for every hy-
pothesis. Also, although we know in advance that
posteriors for a dialog state hypothesis are most
dependent on the features corresponding to that
hypothesis, in this approach the features from all
hypotheses are pooled together and the model is
left to discover these correspondences via learn-
ing. Furthermore, items lower down on the SLU
N-best list are much less likely to be correct: an
item at a very deep position (say 19) might never
be correct in the training data – when this occurs,
it is unreasonable to expect posteriors to be esti-
mated accurately.

As a result of these issues, in practice G̃ is lim-
ited to being a small number – here we found that
increasing G̃ > 6 degraded performance. Yet with

1Although in practice, maximum entropy model con-
straints render weights for one class redundant.

G̃ = 6, we found that in 10% of turns, the correct
state hypothesis was present but was being dis-
carded by the model, which substantially reduces
the upper-bound on tracker performance. In the
next section, we introduce a novel discriminative
state tracking approach that addresses the above
limitations, and enables jointly considering an ar-
bitrary number of state hypotheses, by exploiting
the structure inherent in the dialog state tracking
problem.

5 Dynamic discriminative state tracking

The key idea in the proposed approach is to use
feature functions that link hypothesis-specific fea-
tures to their corresponding dialog state hypoth-
esis. This approach makes it straightforward to
model relationships such as “higher confidence for
an SLU result increases the probability of its cor-
responding state hypothesis being correct”. This
formulation also decouples the number of models
parameters (i.e. weights to learn) from the number
of hypotheses considered, allowing an arbitrary
number of dialog states hypotheses to be scored.

Figure 2: The DISCFIXED model is a traditional
maximum entropy model for classification. Every
feature in every hypothesis is linked to every hy-
pothesis, requiring (G̃+ 1)(G̃M +K) weights.

We begin by re-stating how features are in-
dexed. Recall each dialog state hypothesis has M
hypothesis-specific features; for each hypothesis,
we concatenate these M features with the K gen-
eral features, which are identical for all hypothe-
ses. For the meta-hypothesis rest, we again con-
catenateM+K features, where theM hypothesis-
specific features take special undefined values. We
write xgi to refer to the ith feature of hypothesis g,
where i ranges from 1 to M +K and g from 1 to
G+ 1.



Figure 3: The DISCDYN model presented in this
paper exploits the structure of the state tracking
problem. Features are linked to only their own
hypothesis, and weights are shared across all hy-
potheses, requiring M +K weights.

algorithm description

BASELINE simple hand-crafted rule
GENONLINE generative update, in deployed system
GENOFFLINE generative update, re-trained and run offline
DISCFIXED discr. fixed size multiclass (7 classes)
DISCDYN1 discr. joint dynamic estimation
DISCDYN2 discr. joint dynamic estimation, using indicator

encoding of ordinal features
DISCDYN3 discr. joint dynamic estimation, using indicator

encoding and ordinal-ordinal conjunctions
DISCIND discr. separate estimation

Table 2: Description of the various implemented
state tracking algorithms

The model is based on M + K feature func-
tions. However, unlike in traditional maximum
entropy models such as the fixed-position model
above, these features functions are dynamically
defined when presented with each turn. Specif-
ically, for a turn with G hypotheses, we define
φi(x, y = g) = xgi , where y ranges over the
set of possible dialog states G + 1 (and as above
i ∈ 1 . . .M +K). The feature function φi is dy-
namic in that the domain of y – i.e., the number of
dialog state hypotheses to score – varies from turn
to turn. With feature functions defined this way,
standard maximum entropy optimization is then
applied to learn the corresponding set of M + K
weights, denoted λi. Fig. 3 shows the relationship
of hypotheses and weights.

In practice, this formulation – in which general
features are duplicated across every dialog state
hypothesis – may require some additional feature
engineering: for every hypothesis g and general
feature i, the value of that general feature xgi will

be multiplied by the same weight λi. The result
is that any setting of λi affects all scores identi-
cally, with no net change to the resulting poste-
rior. Nonetheless, general features do contain use-
ful information for state tracking; to make use of
them, we add conjunctions (combinations) of gen-
eral and hypothesis-specific features.

We use 3 different feature variants. In DIS-
CDYN1, we use the original feature set, ignor-
ing the problem described above (so that the gen-
eral features contribute no information), result-
ing in M + K weights. DISCDYN2 adds indi-
cator encodings of the ordinal-valued hypothesis-
specific features. For example, rank is encoded
as a vector of boolean indicators, where the first
indicator is nonzero if rank = 1, the second is
nonzero if rank = 2, and the third if rank ≥
3. This provides a more detailed encoding of
the ordinal-valued hypothesis-specific features, al-
though it still ignores information from the gen-
eral features. This encoding increases the number
of weights to learn to about 2(M +K).

Finally, DISCDYN3 extends DISCDYN2 by in-
cluding conjunctions of the ordinal-valued general
features with ordinal-valued hypothesis-specific
features. For example, if the 3-way hypothesis-
specific indicator feature for rank described above
were conjoined with a 4-way general indicator
feature for dialog state, the result would be an in-
dicator of dimension 3 × 4 = 12. This expansion
results in approximately 10(M + K) weights to
learn in DISCDYN3.2

For comparison, we also estimated a simpler
alternative model, called DISCIND. This model
consists of 2 binary classifiers: the first one
scores each hypothesis in isolation, using the M
hypothesis-specific features for that hypothesis +
the K general features for that turn, and outputs a
(single) probability that the hypothesis is correct.
For this classifier, each hypothesis (not each turn)
defines a data instance. The second binary clas-
sifier takes the K general features, and outputs a
probability that the rest meta-hypothesis is correct.
For this second classifier, each turn defines one
data instance. The output of these two models is
then calibrated with isotonic regression (Zadrozny
and Elkan (2002)) and normalized to generate the
posterior over all hypotheses.

2We explored adding all possible conjunctions, including
real-valued features, but this increased memory and computa-
tional requirements dramatically without performance gains.



Metric Accuracy (larger numbers better) L2 (smaller numbers better)
Dataset MATCH1 MATCH2 MISMATCH MATCH1 MATCH2 MISMATCH

Features b bc bch b bc bch b bc bch b bc bch b bc bch b bc bch

BASELINE 61.5 61.5 61.5 63.4 63.4 63.4 62.5 62.5 62.5 27.1 27.1 27.1 25.5 25.5 25.5 27.3 27.3 27.3
GENONLINE 54.4 54.4 54.4 55.8 55.8 55.8 54.8 54.8 54.8 34.8 34.8 34.8 32.0 32.0 32.0 34.8 34.8 34.8
GENOFFLINE 57.1 57.1 57.1 60.1 60.1 60.1 51.8 51.8 51.8 37.6 37.6 37.6 33.4 33.4 33.4 42.0 42.0 42.0
DISCFIXED 61.9 66.7 65.3 63.6 69.7 68.8 59.1 61.9 59.3 27.2 23.6 24.4 25.8 21.9 22.4 28.9 27.8 27.8
DISCDYN1 62.0 70.9 71.1 64.4 72.4 72.9 59.4 61.8 62.3 26.3 21.3 20.9 25.0 20.4 20.1 27.7 26.3 25.9
DISCDYN2 62.6 71.3 71.5 65.7 72.1 72.2 61.9 63.2 63.1 26.3 21.4 21.2 24.4 20.5 20.4 26.9 25.8 25.4
DISCDYN3 63.6 70.1 70.9 65.9 72.1 70.7 60.7 62.1 62.9 26.2 21.5 21.4 24.3 20.6 20.7 27.1 25.9 26.1
DISCIND 62.4 69.8 70.5 63.4 71.5 71.8 59.9 63.3 62.2 26.7 23.3 22.5 25.7 21.8 20.7 28.4 27.3 28.8

Table 3: Performance of the different algorithms on each dataset using three feature combinations. Base
features are denoted as b, ASR/SLU confusion features as c and history features as h. Performance for
the feature combinations bh is omitted for space; it is between b and bc.

6 Results and discussion

The implemented state tracking methods are sum-
marized in Table 2, and our results are presented in
Table 3. These results suggest several conclusions.
First, discriminative approaches for state track-
ing broadly outperform generative methods. Since
discriminative methods incorporate many features
and are trained directly to optimize performance,
this is perhaps unsurprising for the MATCH con-
ditions. It is interesting that discriminative meth-
ods are also superior in the more realistic MIS-
MATCH setting, albeit with smaller gains. This
result suggests that discriminative methods have
good promise when deployed into real systems,
where mismatch between training and test distri-
butions is expected.

Second, the dynamic discriminative DISCDYN

models also outperformed the fixed-length dis-
criminative methods. This shows the benefit of
a model which can score every dialog state hy-
potheses, rather than a fixed subset. Third, the
three variants of the DISCDYN model, which pro-
gressively contain more detailed feature encoding
and conjunctions, perform similarly. This suggests
that a relatively simple encoding is sufficient to
achieve good performance, as the feature indica-
tors and conjunctions present in DISCDYN2 and
DISCDYN3 give only a small additional increase.

Among the discriminative models, the jointly-
optimized DISCDYN versions also slightly out-
perform the simpler, independently-optimized DI-
SCIND version. This is to be expected, for two rea-
sons: first, DISCIND is trained on a per-hypothesis
basis, while the DISCDYN models are trained on a
per-turn basis, which is the true performance met-
ric. For example, some turns have 1 hypothesis
and others have 100, but DISCIND training counts

all hypotheses equally. Second, model parameters
in DISCIND are trained independently of compet-
ing hypotheses. However, they should rather be
adjusted specifically so that the correct item re-
ceives a larger score than incorrect items – not
merely to increase scores for correct items and de-
crease scores for incorrect items in isolation – and
this is what is done in the DISCDYN models.

The analysis of various feature sets indicates
that the ASR/SLU error correlation (confusion)
features yield the largest improvement – c.f. fea-
ture set bc compared to b in Table 3. The im-
provement is smallest for MISMATCH, which un-
derscores the challenges of mismatched train and
test conditions during a realistic runtime scenario.
Note, however, that we have constructed a highly
mismatched case where we train on DS1 (that sup-
ports just 8 routes) and test on DS2 (that supports
40 routes). Therefore, many route, origin and des-
tination slot values in the test data do not appear
in the training data. Hence, it is unsurprising that
the positive effect of confusion features would de-
crease.

While Table 3 shows performance measures av-
eraged across all turns, Table 4 breaks down per-
formance measures by slot, using the full feature
set bch and the realistic MISMATCH dataset. Re-
sults here show a large variation in performance
across the different slots. For the date and time
slots, there is an order of magnitude less data than
for the other slots; however performance for dates
is quite good, whereas times is rather poor. We
believe this is because the SLU confusion features
can be estimated well for slots with small cardinal-
ities (there are 7 possible values for the day), and
less well for slots with large cardinalities (there are
24 × 60 = 1440 possible time values). This sug-



Accuracy (larger numbers better)
algorithms rout origin dest. date time

BASELINE 53.81 66.49 67.78 71.88 52.32
GENONLINE 50.02 54.11 59.05 75.78 35.02
GENOFFLINE 48.12 58.82 58.98 72.66 20.25
DISCFIXED 52.83 67.81 70.67 71.88 33.34
DISCDYN1 54.28 68.24 68.53 79.69 40.51
DISCDYN2 56.18 68.42 70.10 80.47 40.51
DISCDYN3 54.52 66.24 67.96 82.81 43.04
DISCIND 54.25 68.84 70.79 78.13 38.82

L2 metric (smaller numbers better)
algorithms route origin dest. date time

BASELINE 33.15 24.67 24.68 21.61 32.35
GENONLINE 35.50 35.10 31.13 19.86 52.58
GENOFFLINE 46.42 35.73 37.76 19.97 70.30
DISCFIXED 34.09 23.92 23.35 17.59 40.15
DISCDYN1 31.30 23.01 23.07 15.29 37.02
DISCDYN2 30.53 22.40 22.74 13.58 37.59
DISCDYN3 31.58 23.86 23.68 13.93 37.52
DISCIND 36.50 23.45 23.41 15.20 45.43

Table 4: Performance per slot on dataset MIS-
MATCH using the full feature set bch.

(a) MISMATCH dataset (b) MATCH2 dataset

Figure 4: Accuracy vs. amount of training data

gests that the amount of data required to estimate a
good model may depend on the cardinality of slot
values.

Finally, in Figure 4 we show how performance
varies with different amounts of training data for
the MATCH2 and MISMATCH datasets, where the
full training set size is approximately 5600 and
4400 turns, respectively. In both cases asymptotic
performance is reached after about 2000 turns, or
about 150 dialogs. This is particularly encour-
aging, as it suggests models could be learned or
adapted online with relatively little data, or could
even be individually tailored to particular users.

7 Conclusion and Future Work

Dialog state tracking is crucial to the successful
operation of spoken dialog systems. Recently de-
veloped statistical approaches are promising as
they fully utilize the dialog history, and can in-
corporate priors from past usage data. However,

existing methodologies are either limited in their
accuracy or their coverage, both of which hamper
performance.

In this paper, we have introduced a new model
for discriminative state tracking. The key idea is to
exploit the structure of the problem, in which each
dialog state hypothesis has features drawn from
the same set. In contrast to past approaches to dis-
criminative state tracking which required a num-
ber of parameters quadratic in the number of state
hypotheses, our approach uses a constant number
of parameters, invariant to the number of state hy-
potheses. This is a crucial property that enables
generalization and dealing with an unlimited num-
ber of hypotheses, overcoming a key limitation in
previous models.

We evaluated the proposed method and com-
pared it to existing generative and discrimina-
tive approaches on a corpus of real-world human-
computer dialogs chosen to include a mismatch
between training and test, as this will be found
in deployments. Results show that the proposed
model exceeds both the accuracy and probabil-
ity quality of all baselines when using the rich-
est feature set, which includes information about
common ASR confusions and dialog history. The
model can be trained efficiently, i.e. only about
150 training dialogs are necessary.

The next step is to incorporate this approach
into a deployed dialog system, and use the esti-
mated posterior over dialog states as input to the
action selection process. In future, we also hope
to explore unsupervised online adaptation, where
the trained model can be updated as test data is
processed.
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