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Abstract
The goal of query conceptualization is to map in-
stances in a query to concepts defined in a certain
ontology or knowledge base. Queries usually do
not observe the syntax of a written language, nor
do they contain enough signals for statistical infer-
ence. However, the available context, i.e., the verbs
related to the instances, the adjectives and attributes
of the instances, do provide valuable clues to under-
stand instances. In this paper, we first mine a variety
of relations among terms from a large web corpus
and map them to related concepts using a proba-
bilistic knowledge base. Then, for a given query,
we conceptualize terms in the query using a ran-
dom walk based iterative algorithm. Finally, we ex-
amine our method on real data and compare it to
representative previous methods. The experimental
results show that our method achieves higher accu-
racy and efficiency in query conceptualization.

1 Introduction
We are concerned with the problem of conceptualizing short
text such as search queries. Specifically, given a query, we
are interested in infering the most likely concepts for terms
in the query. Consider the example query watch harry
potter. The term harry potter may refer to a variety
of concepts including book, movie, and character. In this con-
text, its most likely concept is movie. Short text conceptual-
ization is important to a wide range of applications including
text classification [Wang et al., 2014a], head modifier detec-
tion [Wang et al., 2014b], web table understanding [Wang et
al., 2012], query task identification [Hua et al., 2013], etc.

There are many challenges within this problem. A docu-
ment usually contains rich context which is crucial to lexical
and syntactic disambiguation. For short text, however, neither
parsing nor topic modeling works well because there are sim-
ply not enough signals in the input. To solve the problem, we
must i) derive more signals from the input by combining it
with external knowledge bases, and ii) devise a framework
that enables the signals to fully interplay, so that we have
more power to disambiguate and understand a short text.
• Deriving signals from the input and external knowl-

edge bases. Humans usually do not have problems un-
derstanding short texts that are noisy, sparse, and am-
biguous. It is, however, very difficult for machines. This

is not surprising as most existing work treat text as bags
of words [Blei et al., 2003; Boyd-Graber et al., 2007],
and/or use statistical topic models [Phan et al., 2008;
Kim et al., 2013] for sense disambiguation [Navigli,
2009; Moro et al., 2014]. But the signals in the input
might be too subtle for bag-of-words or co-occurrence
based statistical approaches to capture. For example,
the word premiere in premiere Lincoln is an
important signal indicating Lincoln is a movie, and
the word watch in watch harry potter indi-
cates harry potter is a movie or a DVD (instead
of a book). However, such lexical knowledge, i.e.,
premiere is an important attribute for a movie and
watch usually takes a movie as a direct object, is not
explicit in the input. We need extra knowledge bases to
fill the gap.
• Building a holistic model for short text understand-

ing. Existing natural language processing techniques
adopt a multi-tiered model. For example, POS tagging
is performed first, then chunking, parsing, entity resolu-
tion, etc. Signals flow from lower tiers to upper tiers, but
not in the other direction. For short texts, we may need
a new model. Take the query watch harry potter
as an example. Here, watch is a verb because harry
potter is a movie, and harry potter is a movie
because watch is a verb. Thus, deciding the POS tag of
a word actually requires signals from entity resolution,
which happens at a much later tier in the NLP stack.
Recent work on short text understanding [Hua et al.,
2015] has put more emphasis on using signals from lex-
ical knowledge bases to assist query understanding, but
it still uses a multi-tiered model that divides the task into
three steps: text segmentation, word type detection, and
instance disambiguation. A holistic model that allows all
available signals to fully interplay in various subtasks
will enable better understanding of short texts.

In this paper, we build a semantic network to enable us
to derive more signals from the input. The knowledge we
are interested in is knowledge of the language, or knowl-
edge about how words interact with each other in a lan-
guage (instead of encyclopedic knowledge). Such knowl-
edge is important because the input often contains words
that are not instances, but provide important signals to un-
derstand the instances. These include verbs that act on the
instance, adjectives that modify the instance, or attributes
of the instance. For example, the adjective dangerous in



the query most dangerous python in the world
strongly indicates that python is a snake instead of a pro-
gramming language. More examples of such non-instance
words are shown in Table 1.

Table 1: Example of Non-Instance Terms in Queries
Query Non-Instance Word Type Instance

watch harry potter watch verb harry potter
most dangerous

python in the world
dangerous adjective python

population of china population attribute china

Figure 1: Queries Containing Non-Instance Terms
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Search queries contain many non-instance words. Figure 1
shows the percentage of queries that contain frequent non-
instance words. In certain cases, these words actually repre-
sent instances (e.g., in watch and jewelry, watch is
an instance), but in most cases they provide important signal
to help disambiguate instances in the query.

In the rest of the paper, we address the following two chal-
lenges to understand short texts.

• We use a knowledge base that maps instances to their
concepts, and build a knowledge base that maps non-
instance words, including verbs and adjectives, to con-
cepts. For example, watch maps to movie. But most
words play more than one role: The word watch may
be just a noun that maps to the concept wrist watch. One
may think that an important signal for their role detec-
tion is POS tagging. Unfortunately, POS tagging does
not perform well for queries due to their lack of lin-
guistic structure. Table 2 shows some examples based
on the Stanford Parser [Socher et al., 2013]. Thus, we
need additional signals to help make the decision. In
this paper, we derive semantic signals from a large scale,
data driven semantic network [Wu et al., 2012], and also
concept-level co-occurrence data, to solve this problem.

• Once we have access to a lot of semantic signals, we
need a model that guides us toward a coherent under-
standing of the short text. We break the boundary be-
tween the tiers in natural language processing, and adopt
a holistic framework. Specifically, we organize terms,
concepts, and all relevant signals into a graph, and use
an iterative random walk approach to reach a coherent
understanding of the input.

The rest of the paper is organized as follows: Section 2 in-
troduces some preliminary background, including that of a
knowledge base we use in our work. Section 3 explains how
we mine relationships between non-instance words and con-
cepts. Section 4 presents our model for query conceptualiza-
tion. Experimental studies are discussed in Section 5 and we
conclude in Section 6.

Table 2: Bad NLP POS Tagging Results for Queries
Query Result

adidas watch adidas/NNS watch/VBP;
orange apple pie orange/JJ apple/NN pie/NN

jump weekly anime jump/VB weekly/JJ anime/NN
weekly anime jump weekly/JJ anime/NN jump/NN

2 Preliminary
Humans can understand sparse, noisy, and ambiguous input
such as short texts because they have knowledge of the lan-
guage and the world. Many knowledge bases have emerged
in recent years, including DBpedia1, freebase [Bollacker et
al., 2008], Yago [Suchanek et al., 2007], etc. Most of them
are encyclopedic knowledge bases, containing facts such as
Barack Obama’s birthday and birthplace. They are essential
for answering questions, but not for understanding them. To
understand a question, we need knowledge of the language,
for example, the knowledge that birthplace and birthday are
properties of a person; and lexical knowledge bases are con-
structed for this purpose. In our work, we use a probabilistic
lexical knowledge base known as Probase2 [Wu et al., 2012],
but our techniques can be applied to other knowledge bases
such as Yago.

Concepts
Probase contains millions of terms. Each term is a concept,
an instance, or both. It also contains two major relation-
ships between the terms: the isA relationship (e.g., Barack
Obama isA President) and the isAttributeOf relationship
(e.g., population isAttributeOf country). For an isA rela-
tionship between an instance e and a concept c, we can calcu-
late the typicality of the concept given the instance as follows:

P ∗(c|e) = n(e, c)∑
ci
n(e, ci)

(1)

where n(e, c) is the frequency we observe the isA relation-
ship (e isA c) in a corpus. Typicality scores are critical for
conceptualization or generalization.

Concept Clusters
As we mentioned, Probase contains millions of concepts,
and a term may generalize into many concepts. For exam-
ple, tiger maps to many concepts such as animal, wild
animal, exotic animal, jungle animal, etc. Dimensionality re-
duction of the concept space is necessary to reduce compu-
tation complexity and to create more meaningful similarity
functions, both of which are essential for inference.

We adopt a K-Medoids clustering algorithm [Li et al.,
2013] to group concepts into 5,000 disjoint concept clusters.
For example, individual concepts such as animal, wild ani-
mal, exotic animal, jungle animal, etc. are all grouped into
the concept cluster animal. Thus, instead of conceptualizing
an instance to individual concepts, we can conceptualize it to
concept clusters. Specifically, the probability that an instance
e maps to a concept cluster c is defined as

P (c|e) =
∑
c∗∈c

P ∗(c∗|e) (2)

In the rest of the paper, we use concept to denote a concept
cluster.

1http://wiki.dbpedia.org
2Probase data is available at http://probase.msra.cn/dataset.aspx



Attributes
We treat attributes as the first class citizen for short text
processing. Probase contains the isAttributeOf relationship,
which is derived from the following syntactic pattern:

the 〈attr〉 of (the/a/an) 〈term〉 (is/are/was/were/...)

Here, 〈attr〉 denotes the attribute to be extracted, 〈term〉
denotes either a concept (e.g., country) or an instance (e.g.,
Italy). As an example, from the president of a
country, president is derived as an attribute of the con-
cept country. Likewise, from the capital of China,
capital is derived as an attribute of China. Then, because
China belongs to the concept country, capital is also as-
sociated with country. Probase uses a RankSVM model to
combine attributes derived from concepts and instances [Lee
et al., 2013]. In other words, it implements a function f to
compute the following typicality score for attributes:

P (c|a) = f(nc∗,a, ne1,a, · · · , nek,a) (3)

where nc∗,a denotes how frequently a is derived as an at-
tribute for a raw concept c∗ and nei,a denotes how frequently
a is derived as an attribute of ei, which is an instance of con-
cept c∗. We finally derive P (c|a) by aggregating raw concepts
into concept clusters.

Framework and Notation
Our framework consists of two parts: an offline part, which
mines relationships between non-instance words and con-
cepts, and an online part, which infers the concepts for terms
in a query. The notions used in this paper are given in Table 3.
A query contains one or multiple terms, and a term is a multi-
word expression that can be a verb, an adjective, an attribute,
or an instance. We use t to denote a term, and we use P (z|t)
to denote the type distribution of t, where type distribution
means the probability that the term is a verb, an adjective, an
attribute, or an instance.

Table 3: Basic Notions Used in this Paper
Notation Meaning

c a concept (cluster)
c∗ an individual concept in Probase
e an instance
t a term (t can be an instance, or a non-instance term)

term type any of {verb, adjective, attribute, instance}
z a random variable that denotes the term type

P (z|t) term t’s type distribution
P (t|c, z) distribution of term t given its concept c and type z
P (c|t, z) distribution of concept c given term t and its type z

3 Mining Lexical Relationships
In this section, we describe the offline process of mining lex-
ical relationships. The knowledge we obtain is used in the
online process of understanding short texts (Section 4).

Overview
Our goal is to obtain knowledge represented by the following
two distributions:
• P (z|t): For a term t, P (z|t) denotes the prior probability

that t is of a particular type z. For instance, for the word
watch that appears in web documents, we find that it is
a verb with probability P (verb|watch) = 0.8374.

• P (c|t, z): For a term t of type z, P (c|t, z) denotes
the probability of the concept that the term is asso-
ciated with. For example, P (movie|watch, verb) de-
notes how likely the verb watch is related to the con-
cept movie.

In the rest of this section, we describe how we obtain
these distributions. We use these distributions for query un-
derstanding in Sec 4.

Parsing
To obtain the probabilities mentioned above, we first use an
NLP parser to parse a large web corpus of billions of docu-
ments. Specifically, we use the Stanford Parser to obtain POS
taggings and dependency relationships between tokens in the
texts. The POS taggings reveal whether a token is an adjec-
tive or a verb, and the dependency between tokens, together
with Probase as a lexicon, will be used to derive the depen-
dency between adjectives/verbs and instances/concepts. We
will describe more details in later part of this section.

Deriving P (z|t)
We compute P (z|t) as follows:

P (z|t) = n(t, z)

n(t)
(4)

where n(t, z) is the frequency term t appears as type z in
the corpus, and n(t) is the total frequency of term t. Table 4
shows some results.

Table 4: Type distribution of a term P (z|t)
Verb Adjective Attribute instance

book 0.1033 0 0.0577 0.8389
watch 0.8374 0 0 0.1624
pink 0.0041 0.6830 0.0029 0.3101

harry potter 0 0 0 1

Deriving P (c|t, z)
Since z can be instance, attribute, verb, or adjective, we dis-
cuss each case separately.

Case 1: z is instance.
When z is instance, P (c|t, z = instance) is reduced to
P (c|e), which can be derived from Probase using Eq. 2, as
follows:

P (c|t, z = instance) = P (c|e) (5)
Case 2: z is attribute.
When z is attribute, P (c|t, z = instance) is reduced to
P (c|a), which can be derived from Probase using Eq. 3, as
follows:

P (c|t, z = attribute) = P (c|a) (6)
Case 3: z is verb or adjective.
We first find the relationships between verbs/adjectives and
instances, and then use instances as a bridge, as shown in Fig.
2, to derive relationships between verbs/adjectives and con-
cepts.

Specifically, we detect co-occurrence relationships be-
tween instances, attributes, verbs, and adjectives in web
documents parsed by the Stanford Parser. To obtain mean-
ingful co-occurrence relationships, we require that the co-
occurrence is embodied by dependency, rather than merely



Figure 2: An Example of Bipartite Graph
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appearing in the same sentence. For example, for The
girl ate a big pear, we obtain dependencies such as
(eatverb, pearinstance) and (bigadjective, pearinstance) from
the Stanford parser. We then obtain P (e|t, z), which denotes
how likely a term t of type z co-occurs with instance e
(through a dependency relationship):

P (e|t, z) = nz(e, t)∑
e∗ nz(e∗, t)

(7)

where nz(e, t) is the frequency of term t and instance e form
a dependency relationship when the type of t is z.

Then, using instances as the bridge, we obtain relationships
between adjectives/verbs and concepts. More specifically, we
have

P (c|t, verb) =
∑
e∈c

P (c, e|t, verb)

=
∑
e∈c

P (c|e, t, verb)× P (e|t, verb)

=
∑
e∈c

P (c|e)× P (e|t, verb) (8)

In the same spirit, we obtain P (c|t, adjective) as follows:

P (c|t, adjective) =
∑
e∈c

P (c|e)× P (e|t, adjective) (9)

where P (c|e) is given by Eq. 2, P (e|t, verb) and
P (e|t, attribute) are given by Eq. 7.

A Semantic Network
With the above efforts, we build a semantic network, which
is a graph among terms that denote instances, concepts, at-
tributes, adjectives, and verbs. Fig. 3 shows a subgraph of the
semantic network centered around the term watch as an ex-
ample.

As we can see, there are two types of nodes: One repre-
sents a concept (shown as a rectangle), and the other repre-
sents a word or a term (shown as an ellipse). Between these
nodes, there are three types of edges: (1) the isA relationship
between instances and concepts; (2) the typicality relationship
between verbs/adjectives/attributes and concepts; and (3) the
relatedness between two concepts.

We want to quantify the strength of each edge (relation-
ship). There are two cases. In the first case, we quantify the
strength of the relationship between a term to a concept, and
we denote it as P (c|t). This corresponds to the first two types
of relationships mentioned above. It is important to be able to
compute P (c|t), and it is known as the generalization or con-
ceptualization process. The second case, which corresponds

Figure 3: A semantic network centered around watch
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to the third type of relation mentioned above, quantifies how
strongly two concepts are related (for example, product and
company are strongly related), and we denote it as P (c2|c1).
• We assign a transition probability P (c|t) to an edge from

a non-concept term t (instance, attribute, verb, adjective)
to a concept c:

P (c|t) =
∑
z

P (c|t, z)× P (z|t) (10)

• We assign a transition probability P (c2|c1) to an edge
between two concepts c1 and c2. The probability is de-
rived by aggregating the co-occurrences between all (un-
ambiguous) instances of the two concepts.

P (c2|c1) =
∑

ei∈c1,ej∈c2 n(ei, ej)∑
c∈C

∑
ei∈c1,ej∈c n(ei, ej)

(11)

The denominator normalizes the relatedness. In practice,
we only take the top 25 related concepts for each con-
cept (P (c2|c1) = 0 if c2 is not among the top 25 related
concepts of c1).

4 Understanding Queries
In this section, we discuss how to annotate terms in a query
with their proper concepts. For example, for query apple
ipad, we want to annotate apple with company or brand,
and ipad with device or product.

Our Approach
As described, the semantic network consists of terms, con-
cepts, and their relationships (Figure 3). In particular, each
term maps to a set of concepts. For a query q, the terms in q
evoke a subgraph in the semantic network. For any term t in
q, our goal is to find argmaxc p(c|t, q). That is, we want to
rank the concepts that t maps to in the given context of q.

Consider the query watch harry potter and Fig. 3,
which contains the subgraph evoked by the query. Here,
movie is a better concept than book for harry potter
because movie can be reached by both watch and harry
potter. A random walk based approach may be appropri-
ate here to find the preferred concepts. However, traditional
random walk methods are for simple networks where nodes,
as well as edges, are homogeneous. In our case, the semantic
network is not homogeneous. For example, watch can be a
verb or an instance. In watch harry potter, the con-
cept movie is related to both the verb sense of watch and the
movie sense of harry potter. Once we are more certain
that watch is a verb, we become more confident that harry
potter refers to a movie instead of a book.

To address this problem, we use multiple rounds of random
walks to find the most likely concepts. Within each round,



Figure 4: Subgraphs of Example Queries
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we use our current belief of term-to-type and term-to-concept
mappings to weight the candidate concepts. Between two
rounds, we update our belief based on the new weights of
the concepts. After the process converges, we obtain the final
results.

Algorithm
The algorithm has 3 components. First, we segment the query
into a set of candidate terms. Second, we create a graph out
of the terms and their relationships. Finally, we use an iter-
ative process to find the most likely mapping from terms to
concepts.

Query Segmentation
We segment a query into a set of terms T = {t1, t2, . . . }. We
use the Probase as our lexicon and identify all occurrences
of terms in the query. For now, we only consider maximum
terms, that is, terms not completely contained by other terms.
For example, the query angry bird will be parsed into a
single term angry bird, although angry and bird also
belong to the lexicon. In some cases, the resulting terms may
overlap. For example, for new york times square, we
get two possible segmentations: 1) new york | times
square, and 2) new york times | square. We con-
sider both segmentations valid, and all of the terms will be
used to construct the graph, as shown in Fig. 4(a). The most
possible segmentation will be decided in the same process
as we decide the concepts of the terms. In this case, since
new york and times square reinforce concepts such
as area, location, and attraction, while new york times
and square do not reinforce any concrete concept, the for-
mer segmentation will be chosen at last. In query segmen-
tation, we ignore terms such as prepositions (e.g., of, for,
etc.) These terms provide useful linguistic clues to understand
term dependency. However, this paper focuses on labeling
terms by their concepts. Readers interested in the dependency
structure of the query may refer to [Hua et al., 2015].

Graph Construction
The set of terms we obtain after segmentation evoke a sub-
graph of the semantic network we have constructed. More
specifically, each term t ∈ T connects to its concepts in
the sematic network. The subgraph we are interested in is
formed by the terms and their concepts. Figure 4 shows the
subgraphs evoked by queries new york times square
and cheap disney watch.

Random Walks
We perform multiple random walks to find the most likely
concepts for each term. Each random walk consists of multi-
ple iterations.

In the first random walk, letE denote the vector of the edge
weights, and let V n denote the vector of node weights in the
n-th iteration of the random walk. In other words, the edge
weights do not change between iterations, while the node
weights change. Specifically, the weight of edge e in the first
random walk is:

E[e] =

{
P (c|t) e : t→ c
P (c2|c1) e : c1 → c2

(12)

where P (c|t) and P (c2|c1) are derived by Eq. 10 and Eq. 11
respectively. The weight of node v at iteration 0 is (|T | is the
number of terms):

V 0[υ] =

{
1/|T | υ is a term
0 υ is a concept (13)

We use random walk with restart [Sun et al., 2005] to up-
date the weights of the nodes. Specifically, we have

V n = (1− α)E′ × V n−1 + αV 0 (14)

where E′ is the matrix form of E defined by Eq. 12. We
perform the random walk for several iterations (as 2 itera-
tions cover all relationships among terms and concepts in the
evoked graph, there is no need to have many iterations).

After the current random walk, we obtain a new vector
of node weights. For the example in Fig. 5(b), the weight
of product becomes larger after the random walk. We then
prepare the next random walk by creating a new vector of
edge weights, that is, we update our belief about term-to-type
and term-to-concept mapping. Specifically, we adjust E, the
weights on edges, as follows:

E[e]← (1− β)× V n[c] + β × E[e] e : t→ c (15)

Intuitively, in Fig. 4(b), because product can be reached by
cheap and disney during the random walk, the weight of
product becomes larger. Hence, we assign more weight to
watch-to-product mapping and less weight to watch-to-site
mapping.

With the new node weight vector and the new edge weight
vector, we start the next random walk. The process is repeated
till convergence. We argue that our algorithm converges as
it is known that a standard random walk with restart con-
verges [Fujiwara et al., 2012]. Specifically, the convergence
of Eq 14 is guaranteed when E is constant [Strang, 2003]. In
our case, since E and V are non-negative and E ∝ V n, it
follows that the entire process will converge.

At last, we annotate concepts of a term in the given query
by normalizing its edges’ weights:

p(c|t, q) = E(t→ c)∑
ci
E(t→ ci)

t ∈ q (16)

5 Experiment
We create two labeled datasets out of randomly se-
lected search queries. The first consists of 600 queries
about 6 ambiguous terms: watch, book, pink, orange,
population, birthday (100 queries for each term). The



Table 5: Non-instance Terms Conceptualization
Term watch book pink orange

Precision GBIA 83.6% 89.7% 86.9% 78.1%
NLP 60.9% 75% 61.7% 45.6%

Recall GBIA 83.3% 83.3% 80.7% 80.6%
NLP 73.1% 57.1% 85.4% 62.5%

Table 6: Lexical Relationships of Non-instance Terms
term read (verb) dangerous (adj.) population (attribute)

top 10
concepts

passage
anime
book
novel

writer/author
magazine
writing
blogs

fairytales/story
memoir

crime
emergency

disaster
law

disease
snake

magazine
therapy

drug
sound

non-financial factor
country

city
outlying area

school
mammal

insect
foreigner

threat
micro-organisms/organisms

second also consists of 600 queries, among which 200 contain
ambiguous terms apple or fox and the other 400 are to-
tally random. We ask 12 colleagues to label the 1200 queries.
It is easy to label the type of a term in each query. For con-
cept labels, we run our algorithms first, and ask our volun-
teers to rank the top-N concepts for each term. Specifically, a
concept is assigned a score reli = 1/ 2

3/
1
3/0 if it is consid-

ered a correct/related/not-sure/false label. We use the preci-
sion of Top-N concepts [Lee et al., 2013] for evaluation, i.e.,
Precision@N =

∑N
i reli
N .

We evaluate our algorithm (denoted as GBIA or Graph-
Based Iterative Algorithm) in several aspects. We first study
precision and recall of type detection (i.e., detecting whether
a term is an instance, attribute, verb, or adjective) on the 1200
queries. We compare them with labels given by the Stanford
parser (denoted as NLP). Table 5 shows the outcome, and
our method has a clear advantage. As mentioned previously,
our type detection method is based on lexical relationships
mined from the web corpus. We also manually evaluate the
quality of the mined relationships by inspecting the lexical
relationships of several non-instance terms. We use Stanford
Parser to parse 400 million sentences, which gives us POS
taggings and dependency relationships. Then, we use Eq 6,
8, and 9 to rank concepts for each non-instance term. Table
6 shows the top 10 concepts generated for the chosen non-
instance terms. They agree with manual results.

Next, we evaluate term conceptualization. We compare our
method with the following 5 methods (2 state-of-the-art ap-
proaches and 3 variants of our method).

• IJCAI11 [Song et al., 2011]. It groups instances by their
conceptual similarity, and uses simple Bayesian analysis
to conceptualize each group.
• LDA [Kim et al., 2013]. It combines LDA (which

mostly models co-occurrence relationships) and Probase
(which mostly models isA relationships) for short text
conceptualization.
• RW (random walk). This is a variant of our method. It

is a pure random walk approach without adjusting the
weights on edges during the whole process.
• GBIA-NA. This is a variant of our method. It omits all

non-instance terms in the queries, i.e. if a term appears in
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Table 7: Query Conceptualization Example
Query Non-instance Term Concept

watch harry
potter youtube watch:verb harry potter:movie,fandoms

youtube:website,network
buy watch

and jewellery buy:verb watch:product,accessory
jewellery:product,accessory

how to bake
an apple bake:verb apple:fruit,food

tim cook
apple ceo ceo:attribute

tim cook:senior executive,leader
apple:company,brand

ceo:senior executive,learder
yummy orange yummy:adj orange:fruit,food

orange t
shirt dress orange:adj t shirt:garment,product

dress:garment,product
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Figure 6: Algorithm Efficiency

our collected non-instance term list, we remove it from
the conceptual graph.
• GBIA-AE. This is a variant of our method. It treats

all terms in Probase instance list as instances, i.e., if a
verb/adjective is also an instance in Probase, we initial-
ize its type to be an instance only.

Figure 5 shows the overall precision of the top-2 con-
cepts. The overall precision is calculated as 3

4Precision@1+
1
4Precision@2. We can see that our method achieves the
highest precision on both datasets. Table 7 shows some ex-
amples of the results.

We also examine the number of iterations and the time
requirement of our method. Figure 6 shows that the effi-
ciency of our approach is acceptable for online search, with
the Y-axis representing the percentage of queries in the 1200
queries.

6 Conclusion
Query understanding is a challenging task. We have built a
lexical knowledge base to discover fine-grained semantic sig-
nals from the input, and introduce a new graph-based iterative
framework to determine the type as well as the concepts of
the terms in the query. Experiments on real data have shown
that our method achieved great improvement over previous
methods for query understanding.
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