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We discuss multiclass-multilabel classification problemsin which the set
of candidate labels is extremely large. Most existing multiclass-multil-
abel learning algorithms expect to observe a statisticallysignificant sam-
ple from each class, and fail if they receive only a handful ofexamples
per class. We propose and analyze the following two-stage approach: first
use an arbitrary (perhaps heuristic) classification algorithm to construct
an initial classifier, then apply a simple but principled method to augment
this classifier by removing harmful labels from the label set. A careful
theoretical analysis allows us to justify our approach under some reason-
able conditions (such as label sparsity and power-law distribution of label
frequencies), even when the training set does not provide a statistically
significant representation of most classes. Surprisingly,our theoretical
analysis continues to hold even when the number of labels exceeds the
sample size. We demonstrate the merits of our approach on theambitious
task of categorizing the entire web using the1.5 million categories defined
on Wikipedia.
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1 Introduction

In multiclass-multilabel classification, our goal is to assign one or more labels, from
a given set ofk labels, to instances in some domain. An example of a multiclass-
multilabel problem is document categorization, which is the problem of assigning one
or more topics to each document in a corpus (e.g. [11]). Multiclass-multilabel prob-
lems are also abundant in other fields, such as computer vision [5] and computational
biology [3]. If a training set ofm labeled examples is available, a multiclass-multilabel
classifier can be learned using a supervised machine learning algorithm. Typically,
learning algorithms for multiclass-multilabel problems are developed and analyzed un-
der the assumption thatk is held constant asm grows. In this paper, we consider a
different version of the multiclass-multilabel problem, where the label set grows with
the number of examples (i.e.k ≥ Ω(m)). For example, this situation occurs when the
set of labels is a so-calledFolksonomy, a set of labels that emerges from a collaborative
tagging or a social tagging scheme.

The concrete problem that motivates this work is the problemof categorizing the
entire web using the set of categories defined by the Wikipedia website. At the very
bottom of every Wikipedia article there is a short list of categories, and we define our
label set to be the union of these lists. The Wikipedia articles themselves can be used
as training examples, since they are labeled web pages. Whennew articles are added
to Wikipedia, they often introduce new categories. As of today, Wikipedia contains 2.9
million articles and almost 1.5 million categories.

The Internet provides many other examples wherek grows withm. For instance,
photo sharing websites allow users to annotate their photoswith keywords. The implied
classification task is to recommend keywords whenever new photos are uploaded. As-
suming that the site does not impose any restrictions on the keywords that may be used,
the set of distinct keywords is likely to grow as more and morephotos are uploaded to
the site.

For such datasets, applying standard techniques is problematic for two reasons:
First, sincek scales withm, many labels occur only a handful of times in the train-
ing set, so we do not have a statistically significant sample from each class; Second,
the concrete values ofm andk we deal with are very large, to the point that most ex-
isting multiclass-multilabel learning algorithms becomecomputationally intractable.
For example, the most common approach to multiclass-multilabel learning is to train
a separate binary classifier for each class. For the datasetswe have in mind, such an
approach is both statistically untenable (due to the small number of examples per class)
and computationally impractical (as it requires maintaining millions of hypotheses for
all the classes). Similar problems are encountered for other standard approaches, such
as those based on ranking (e.g. [2, 6, 9]).

In practice, the only realistic solution is to turn to much simpler classification al-
gorithms, such as nearest neighbor methods. For example, consider once again the
problem of categorizing the entire web using Wikipedia categories, and assume that
we have access to the log of an Internet search engine. We can use the log to construct
a click graph, a bipartite graph whose vertices include all web pages and all queries
ever issued to the search engine. An edge is drawn between a query Q and a web
pageW if enough users issued the queryQ and then clicked onW . We can use the
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graph distance induced by the click graph to define a metric over web pages. Given a
set of labeled Wikipedia pages, we can label the entire web using a nearest neighbor
type algorithm over this metric. In other words, labels are propagated from the labeled
Wikipedia pages along the edges of the click graph to the restof the web. Such sim-
ple algorithms can be implemented in a way that is almost entirely insensitive to the
size of the label-set, but their simplicity often comes at the cost of lower classification
accuracy.

One way to improve the accuracy of a simple classification algorithm is to add a
separate post-learning step. Taking such a two-stage approach is also common in other
areas of machine learning. For example, in ranking problems, it is common to run a
simple and fast algorithm to obtain an initial ranking, and then to run a more accurate
re-ranking algorithm only on the top few results. In this paper, we focus on a post-
learning step that modifies a classifier by pruning certain labels from its output. In
other words, the original classifier outputs a set of labels,and the post-learning step
deletes labels from this set. The intuition behind this approach is that in such massive
multiclass-multilabel datasets, many labels are inherently noisy and hard to learn, and
attempting to predict them decreases the overall accuracy of our classifier.

We propose and analyze, both theoretically and experimentally, a simple label-
pruning method. The method is based on comparing the number of true-positives and
false-positives of each predicted label, and discarding labels where their ratio exceeds a
certain threshold. Returning to the example of categorizing the web, the initial nearest
neighbor algorithm is likely to find that many web pages aboutclassical composers turn
out to be close neighbors of the Wikipedia article onMozart. The nearest neighbor
classifier indiscriminantly assigns all of the Wikipedia categories that are associated
with the article onMozart to all of these pages. One of these categories isPeople
Born in 1756, which is likely to have many false positives across the validation set.
Intuitively, the labelPeople Born in 1756is incompatible with the click-graph based
metric we have chosen, namely, our metric is unlikely to put different web pages from
this class in close proximity to each other. In this situation, our label-pruning method
removes this label from the set of labels the classifier is allowed to output.

While our method is simple and straightforward to implement, its analysis is quite
tricky, since it is based on premises that appear to be statistically unacceptable. Af-
ter all, our basic assumption is that most labels are very rare, so the decision to dump
a label may be based on statistically insufficient evidence.Say that we see two false-
positives and one true-positive of a given label in our validation set: can we confidently
decide to remove that label? The key to the formal analysis ofour technique is to think
of its overall effect rather than considering its effect on each individual label. Indeed,
we cannot conclusively evaluate each label and our technique will most certainly mis-
take some good labels for bad ones. Nevertheless, we can showthat our pruning cri-
terion removes more bad labels than good ones, and overall improves the accuracy of
our classifier, under mild conditions that often hold in practice. Concretely, we assume
that the label frequencies follow a power-law distributionand that every example only
belongs to a bounded number of different classes.

To our knowledge, our theoretical approach is unique and quite distinct from previ-
ous analyses of multiclass-multilabel learning algorithms. Most previous such analyses
build on techniques originally developed for the analysis of binary classification algo-
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rithms, and therefore require at least some degree of label-wise convergence.
We conclude our paper with a set of experiments, in which we validate our approach

on the task of categorizing web pages using the set of1.5 million Wikipedia categories.
The simplicity of our approach enables us to perform these experiments on a single
server, without requiring a large cluster computer.

Related Work

The work in [12] deals with multiclass classification and bears similarities to our work,
in that the space of possible classes can be very large compared to the size of the dataset.
However, the analysis there is specific to multiclass ratherthan multiclass-multilabel
learning (i.e. each instance is assigned only a single label), and focuses on large margin
classifiers with a particular rule for choosing the label of each instance.

A more closely related paper is [8], which also deals with massive multiclass-
multilabel classification. It proposes a clever method, where a predictor is trained on
a compressed representation of the original label vectors.The original labels are re-
constructed using techniques from compressed sensing. Theproblem setting and some
of the assumptions made (such as label sparsity) are similarto our work. However,
the approach of [8] applies only to learning algorithms thatregress on a real-valued
compressed label vector. This is often not the case with algorithms designed for mas-
sive datasets, such as the click-graph based approach described earlier. In contrast, our
approach makes no assumptions about the learning algorithm.

2 Setting and Notation

We assume that the learning task at hand is a supervised multiclass-multilabel prob-
lem. Formally, letX be an arbitrary measurable space,Y = {0, 1}k, and letD be an
unknown distribution on the product spaceX ×Y. Each element(x,y) in this space is
composed of an instancex and a vector of indicatorsy = (y1, . . . , yk) that represents
the set of labels associated withx. We assume that label vectors sampled fromD are
sparse, namely, thatPr(

∑

j yj ≤ s) = 1 for some constants. A classifier is a function
h : X → Y, that maps an instancex to a label vector̂y = h(x). We restrict our discus-
sion to classifiers that output sparse label vectors, namely

∑

j ŷj ≤ s. We evaluate the
accuracy of a classifier using a loss functionℓ(h(x),y), which measures the disparity
between the predicted label set and the actual label set. In this paper, we focus on a
simple weighted loss function that is parameterized byγ ∈ (0, 1) and defined as

1

s

k
∑

j=1

(1 − γ) 11(ŷj = 0, yj = 1) + γ 11(ŷj = 1, yj = 0), (1)

where 11(·) is the indicator function. The parameterγ controls the importance of false
negatives vs. false positives, and the normalization bys ensures that the loss is always
bounded in[0, 1]. Our ultimate goal is to obtain a classifierh with a small risk, which
is defined asE(x,y)∼D[ℓ(h(x),y)].
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We distinguish between two phases of the learning process. In thelearning phase,
we use some learning algorithm to obtain aninitial classifier h. We then perform a
post-learning phase, where we find alabel transformation functionϕ : Y → Y, such
that the final classifier is the compositionϕ ◦ h. In this paper, we focus on the post-
learning phase, and make no assumptions on the learning phase or on the quality of the
initial classifier. From the perspective of the post-learning phase, the initial classifierh
is simply a predefined function. For simplicity, we assume that the data used to trainh
is independent from the data used in the post-learning phaseto trainϕ.

In principle, the label transformation functionϕ can be arbitrarily complex. In this
paper, we focus on the simple set oflabel pruning rules. Formally, a label pruning
rule ϕỹ corresponds to an elementỹ ∈ {0, 1}k, and is defined asϕỹ(y) = max{y −
ỹ,0}. In words, we simply remove the labels represented byỹ from the set of labels
represented byy. Such rules are simple to implement and are particularly useful in
massive multilabel problems, where many labels are both inherently noisy and very
rare. In such cases, refraining from predicting these labels can actually improve the
final classifier’s performance.

The four basic quantities we work with are the risk and the empirical risk ofh and of
ϕ◦h. LettingS denote an i.i.d. sample of sizem fromD, we define theinitial empirical
risk R̂0 = 1/m

∑

(x,y)∈S ℓ(h(x),y), the initial risk R0 = E(x,y)[ℓ(h(x),y)], the

final empirical riskR̂ϕ = 1/m
∑

(x,y)∈S ℓ(ϕ ◦ h(xi),y), and thefinal risk Rϕ =

E(x,y)[ℓ(ϕ ◦ h(x),y)]. Our goal is to find a pruning ruleϕ such thatRϕ is as small as
possible.

For the analysis, we need to describe these quantities in an alternative form, as
specified in the following easy-to-prove lemma:

Lemma 1. For a given classifierh(·), define

p̂j,11 =
1 − γ

m

∑

(x,y)∈S

11 (h(x)j = yj = 1)

p̂j,10 =
γ

m

∑

(x,y)∈S

11 (h(x) = 1, yj = 0)

p̂j, 6= =
1

m

∑

(x,y)∈S

(1 − γ) 11 (h(x)j = 0, yj = 1)

+ γ 11 (h(x)j = 1, yj = 0) .

Let pj, 6=, pj,11, and pj,10 be the expected values (over the sampleS) of p̂j, 6=, p̂j,11,
and p̂j,10 respectively. Also, for a fixed pruning ruleϕ(·), let 11(labelj pruned) be an
indicator that equals1 if and only if the pruning ruleϕ(·) removes labelj. Then it
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holds that

R̂0 =
1

s

k
∑

j=1

p̂j, 6= , R0 =
1

s

k
∑

j=1

pj, 6=,

R̂ϕ =
1

s

k
∑

j=1

(

p̂j, 6= + 11 (label j pruned) (p̂j,11 − p̂j,10)
)

,

Rϕ =
1

s

k
∑

j=1

(

pj, 6= + 11 (label j pruned) (pj,11 − pj,10)
)

.

3 The Pruning Method

Recall that our goal is to reduce the final riskRϕ. The expression forRϕ given in
Lemma 1 suggests thatRϕ can be reduced by removing those labels for whichpj,10 >
pj,11. Unfortunately,pj,11 andpj,10 are unknown quantities that depend onD, and
we must resort to using their empirical counterpartsp̂j,11 andp̂j,10. Specifically, our
simple label pruning procedure proceeds as follows: given asampleS, calculatep̂j,11

andp̂j,10, and choose the label pruning ruleϕ that removes all labels for whicĥpj,11 <
p̂j,10. In other words, this procedure prunes any label for which the ratio of false
positives to true positives exceeds(1 − γ)/γ. Notice that this makesϕ a random
function that depends on the randomness of the sampleS. For the theoretical analysis,
it will be convenient to viewRϕ andR̂ϕ as random variables, which depend on the
random draw ofS.

This algorithm essentially attempts to decrease the final empirical riskR̂ϕ in lieu of
Rϕ. However, notice that in our setting (wherek scales withm), we cannot assume that
each and everŷpj,11, p̂j,10 is an accurate estimate ofpj,11, pj,10. In fact, our analysis
shows thatR̂ϕ is generallynot a good estimator ofRϕ. Nevertheless, we can prove
that our method reduces the final riskRϕ compared to the initial riskR0 with high
probability, under mild conditions.

4 Theoretical Analysis

Our pruning procedure works by making the empirical riskR̂ϕ as small as possible.
In this section, we show that that this is also likely to makeRϕ smaller thanR0. The
straightforward theoretical approach would be to show thatfor reasonably large sam-
ples,R̂0 is close toR0 andR̂ϕ is close toRϕ. While the first premise is easy to show
via a large deviation inequality, it turns out thatR̂ϕ does not necessarily converge toRϕ

when the number of labels grows with the number of examples. This is implied by the
following theorem and the discussion which follows. Its proof is a simple consequence
of the definitions, and is omitted due to lack of space.
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Theorem 1. E[Rϕ − R̂ϕ] is lower bounded by

1

s

k
∑

j=1

Pr(label j pruned)(pj,11 − pj,10).

If we were to assume thatk is fixed, we might expect̂pj,11, p̂j,10 to converge to
pj,11, pj,10 uniformly for all j = 1, . . . , k. Since our method prunes labels for which
p̂j,11 < p̂j,10, we would have thatPr(labelj pruned)(pj,11 − pj,10) converges to a
non-positive quantity uniformly for anyj, and thus our lower bound would converge
to 0. However, when we assume thatk grows withm, p̂j,11, p̂j,10 need not converge
uniformly topj,11, pj,10, and the correlation betweenPr(label j pruned) and the sign
of (pj,11 − pj,10) can remain weak regardless of the sample size. To give a concrete
example, if we takeγ = 1/2, s = 10 and assume thatpj,11 = s/3k, pj,10 = s/6k for
all j, then we have by the theorem above that

E[Rϕ − R̂ϕ] ≥ 1

6k

k
∑

j=1

Pr(labelj pruned).

It can be shown that whenm, k → ∞ but (say)m/k = 3, the right hand side above
converges to a strictly positive constant. Therefore, it ispossible that our lower bound
will remain larger than some positive constant regardless of sample size, which implies
thatR̂ϕ does not converge toRϕ in such cases.

This observation precisely captures the difficulty of working with a sample that
does not sufficiently represent many of the individual classes in the problem, and is
the reason why most existing algorithms are inadequate whenthe number of labels
is not fixed. Nevertheless, we can show that it is possible to analyze the behavior of
Rϕ directly. Specifically, we prove thatRϕ is well behaved when the training set is
large enough, even whenk is very large and grows withm. Namely, although the
empirical quantities do not necessarily correspond to their expected values, we can still
provide high probability guarantees that our pruning method reduce the overall risk of
the classifier. In a nutshell, the analysis consists of proving that|Rϕ − E[Rϕ]| is small
with high probability (where the expectations are taken over the random draw of the
sampleS), and then directly proving thatE[Rϕ] is strictly smaller thanR0, under mild
conditions.

The first part of the proposed approach is formalized in the following theorem. In-
formally, it states that whenm is large enough,Rϕ is arbitrarily close to its expectation
with arbitrarily high probability. Note that this bound does not depend at all onk, the
number of labels.

Theorem 2. For any fixedǫ > 0, it holds that

Pr

(

|Rϕ − E[Rϕ]| >
2m−1/6+ǫ

γ(1 − γ)
+ m2/3 exp

(

−m2ǫ
)

)

≤ 2sm2/3 exp
(

−m2ǫ
)

,
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The proof is presented in the appendix. Intuitively, the idea is to distinguish be-
tween labels for which|pj,11 − pj,10| is large, and labels for which this difference is
small. The first type of labels are more common in the data, andthus we can reliably
estimatepj,11 − pj,10 and decide whether to prune them or not. On the other hand,
there cannot be too many such labels, because

∑

j pj,11 + pj,10 is a bounded quantity.
This effectively limits the dimensionality of the problem regardless of the parameterk.
Whenever|pj,11 − pj,10| is small, the pruning process is noisy and prone to errors, but
it can be shown that these cases do not influenceRϕ too much. A careful formalization
of these ideas, using Bernstein and McDiarmid’s large deviation bounds, allows us to
show thatRϕ concentrates around its expectation with high probability, regardless of
k.

Next, we need to show thatR0−E[Rϕ] is strictly positive, to prove that our method
indeed reduces the final risk. It turns out that the exact value of R0 − E[Rϕ] is highly
dependent on the specific values ofpj,11 andpj,10 for eachj. Intuitively, if labels for
whichpj,10 > pj,11 are pruned with high probability and labels for whichpj,10 ≤ pj,11

are pruned with low probability, we expectR0 − E[Rϕ] to be large. Although it is
possible to provide positive lower bounds onR0 − E[Rϕ] in terms of these quantities,
they are not particularly enlightening. Instead, the theorem below will allow us to
characterize a mild condition, under which we can expectR0 − E[Rϕ] to be strictly
positive. A proof appears in the appendix.

Theorem 3. The differenceR0 − E[Rϕ] is at least

1

s

∑

j:pj,10≥pj,11

(pj,10 − pj,11) −
1

s

k
∑

j=1

√

pj,11 + pj,10

m
.

Moreover, if we assume thatpj,10 + pj,11 are sorted in descending order, and there
exists somer 6= 2 such thatpj,10 + pj,11 ≤ O(j−r) for all j, thenR0 − E[Rϕ] is at
least

1

s

∑

j:pj,10≥pj,11

(pj,10 − pj,11) − O

(
√

kmax{2−r,0}

m

)

.

The requirement thatr 6= 2 is for technical reasons and can easily be treated sepa-
rately.

What does this theorem tell us? The non-negative term
∑

j:pj,10≥pj,11
(pj,10−pj,11)

can be arbitrarily small, but we can expect it to be lower bounded by a positive constant
(independent ofm, k) if a fixed fraction of the labels are such thatpj,10 ≥ pj,11, and if
pj,10 − pj,11 is proportional topj,10 + pj,11. So we turn our attention to the term

1

s

k
∑

j=1

√

pj,11 + pj,10

m
,

which can indeed be large in the regime wherek scales withm. For example, ifpj,11 +

pj,10 = s/k for all j, the above equals
√

k/sm ≥ Ω(1), and Thm. 3 may become
vacuous. Luckily, assuming thatpj,11 + pj,10 is equal for allj is unrealistic. By
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definition,pj,11 + pj,10 is closely related to the probability that our learned hypothesis
labels a random instance with labelj. If the marginal label distribution of the classifier
is similar to the marginal label distribution of the data, then this distribution is often
observed to follow apower law, which corresponds to the assumption thatpj,10 +
pj,11 ≤ O(j−r) for all j. Under this assumption, we obtain the second statement
in Thm. 3. This power-law behavior, sometimes known as Zipf’s law, is a very well
known and well documented phenomenon for many rank vs. frequency datasets (see
examples in [10, 1, 7]), and in particular for the applications we have in mind. We
verify this property in our experiments, presented below.

Overall, this lower bound implies that if we letm, k → ∞, we can expectR0 −
E[Rϕ] to be positive wheneverm grows faster thank2−r. In particular, if r > 1
(which happens quite often in practice, including in our experiments), we obtain the
interesting result that the lower bound remains meaningful, even when the number of
labelsk grows faster than the number of examplesm.

5 Experiments

We applied our technique to the task of categorizing web pages using the1.5 million
categories defined in Wikipedia. As mentioned in the introduction, we first used search
engine logs to create a click graph, which is a bipartite graph between queries and web
pages. A link between queryQ and web pageW indicates that a sufficiently large
number of users issued the queryQ and then clicked on the link to pageW . Next,
we randomly split the set of Wikipedia articles into three sets: 50% training, 30%
validation, and20% test. Each Wikipedia article is associated with a set of categories
and also corresponds to a node in the click graph. Next, we propagated the categories
from each Wikipedia training article along the edges of the click graph, to all of the
web pages that have a query in common with that article (namely, to all web pages
whose distance to the training article is2). We call the resulting labeling of the web
labeling A. The rationale behind this labeling procedure is the assumption that two web
pages that were clicked on (by different people, at different times) after the same query
are likely to share many topics. Next, we propagated the categories along the edges of
the click graph a second time, extending the reach of each category to all pages with
graph distance4 from the original article. We call thislabeling B.

We repeated the process described above a second time, this time seeded with a
larger set of labels per Wikipedia training article. We usedthe fact that Wikipedia
categories are themselves categorized by higher-level categories. For example, the
Wikipedia article onDogsis associated with the categoryDomesticated Animals, and
the latter is associated with the categoryAnimals. We added all of these second-order
categories to each Wikipedia article. We propagated the extended category sets along
the edges of the click graph as before, to obtainlabeling C. We then performed a second
iteration of label-propagation to obtainlabeling D.

We applied our label-pruning technique independently to each of the four initial
labellings. Namely, we revealed the true categories of the Wikipedia validation articles
and compared them to the propagated labels in the four versions of our experiment. For
each label we counted true and false positives, and decided which labels to prune.
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Figure 1: Ratios between the best attainable test loss and the test loss attained by three
different techniques, on four different initial labellings.

The set of Wikipedia categories is problematic in that it is over-complete. Many
categories have duplicates or near-duplicates; some articles are labeled by one category
while other articles are labeled by its near-duplicate category. Also the false-positives
in all four labellings significantly outnumber the true-positives. For these reasons,
false-positives should be treated with great suspicion. When we see a false-positive,
either our classification is wrong or the Wikipedia editor may have simply neglected
to add this category. Spot-checking reveals that many false-positives are actually quite
reasonable. On the other hand, false-negatives should always be taken seriously: a
human editor explicitly added a category to the article and our algorithm concluded
that it is not relevant. To correct this imbalance, we setγ in Eq. (1) to give more weight
to false-negatives. Specifically, we setγ to values between0.01 and0.1.

After using the validation set to identify and remove harmful labels, we revealed
the categories in the Wikipedia test set, and evaluated the performance of our algo-
rithm. For each of the four labellings and for each value ofγ, we also calculated an
oraclepruning which provides a lower bound on the test loss of any possible pruning
algorithm. This was done by cheating and finding the best pruning on the test set (in
terms of eachγ-weighted loss). The loss attained by the oracle varies greatly with γ,
so it is meaningless to plot absolute loss values for different values ofγ on the same
figure. To get a coherent visualization of our results, we plotted the ratio between the
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oracle loss and the loss of our algorithm. The performance ofour algorithm is shown
in solid lines in Fig. 1. Values close to1 indicate that our test loss is very close to the
loss of the ideal pruning.

For comparison, the plots in Fig. 1 also show the performanceof two other simple
algorithms. The first is the algorithm that performs no pruning and just keeps the initial
labeling. The second is an algorithm that uses our method to determine how many
labels to remove, and then removes labels randomly. These experimental results clearly
show the amount of improvement achieved by our algorithm. Despite the statistical
challenge of generalizing with only a handful of examples per class, our algorithm
performs very well across a wide range ofγ.

Finally, using a simple least-squares fitting technique, wevalidated that all four
datasets satisfy the power-law assumption used in our theoretical analysis (see Thm. 3
and the discussion which follows). Namely, when we sort the labels by frequency in
the data, we see that the frequency of labelyj is proportional toj−r, with r ≈ 1.3 for
labelingA; r ≈ 1.6 for labelingB; r ≈ 1.9 for labelingC; andr ≈ 2.3 for labeling
D.

6 Conclusions

In this paper, we studied the problem of massive multiclass-multilabel learning, where
the set of labels scales with the number of available training examples. This setting
is very relevant when the label-set results from a collaborative tagging scheme, such
as Wikipedia categories or keywords in media hosting websites. In this regime, the
standard assumption of a fixed label set is too simplistic, and straightforward general-
izations of methods for binary classification (such as multiclass SVM) may be imprac-
tical.

Motivated by the computational issues faced by practitioners in this area, we pro-
posed and analyzed apost-learningmethod on top of any desired learning algorithm,
which for our purposes can be treated as a black-box. Our experiments demonstrate
that the method works quite well on real-world, large scale data.

Theoretically, this setting poses a challenge, since we cannot hope to get statisti-
cally significant data on each and every label. As far as we know, this setting violates
the assumptions underlying most previous theoretical workon multiclass-multilabel
learning. Nevertheless, a careful analysis allows us to justify our approach, using some
non-trivial but mild sufficient conditions, such as sparsity of labels per instance and a
power-law behavior of the label frequencies.

While our approach seems to work in practice, and has some interesting theoreti-
cal properties, the algorithm we have focused on is obviously a very simple one, and
several extensions immediately come to mind. One directionis to utilize additional
knowledge about label dependencies, rather than treating each label separately. Also,
we have dealt only with very simple label transformation rules, which prune a subset
of labels (i.e. “if labelA appears, remove it”). However, it is possible to envision more
complex rules, such as “if labelsA andB appear, but not labelC, replace labelD by
labelE”. Understanding how to implement these extensions effectively and in a theo-
retically justified manner, even when there are as many labels as examples, remains a

10



topic for future research.
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A Technical Proofs

A.1 Proof of Thm. 2

We need the following two lemmas. The first lemma follows directly from Bernstein’s
inequality (see for instance [4]). We note that using an inequality that relies on variance
is crucial to obtain a non-trivial bound with our proof technique. The second lemma
follows directly from the definitions. The proofs are omitted due to lack of space.
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Lemma 2. For anyj, if pj,10 ≤ pj,11, thenPr(p̂j,10 > p̂j,11) is at most

exp

(

− m(pj,10 − pj,11)
2

2((1 − γ)pj,11 + γpj,10 + |pj,10 − pj,11|/3)

)

,

A similar bound holds onPr(p̂j,10 ≤ p̂j,11) if pj,10 ≥ pj,11.

Lemma 3. It holds that
k
∑

j=1

|pj,11 − pj,10| ≤
k
∑

j=1

pj,11 + pj,10 ≤ s.

Let α > 0 be an arbitrary parameter to be specified later, and define thelabel
subsetsJ1 = {j : |pj,11 − pj,10| ≤ α}, J2 = {1, . . . , k} \ J1. We have by definition of
the pruning procedure and Lemma 1 that|Rϕ − E[Rϕ]| is at most

1

s

∣

∣

∣

∣

∣

∣

∑

j∈J1

(pj,11 − pj,10)
(

11 p̂j,10>p̂j,11
− Pr (p̂j,10 > p̂j,11)

)

∣

∣

∣

∣

∣

∣

+
1

s

∑

j∈J2

|pj,11 − pj,10|| 11 p̂j,10>p̂j,11
− Pr (p̂j,10 > p̂j,11) |. (2)

Focusing on the first line in the expression, note that if we change any single in-
stance in our sample, at most2s terms will change by at most|pj,11 − pj,10| ≤ α.
Therefore, the expression in the first line will change by at most2α. Applying McDi-
armid’s inequality, and noting that the expectation of what’s inside the absolute value
is zero, we get that with probability of at least1 − δ, it is upper bounded by

√

2mα2 log(1/δ). (3)

Turning to the second line in Eq. (2), and applying Lemma 2, weget that for anyj,
with probability of at least1 − g(m, pj,11, pj,10), it holds that

| 11(p̂j,10 > p̂j,11) − Pr(p̂j,10 > p̂j,11)| ≤ g(m, pj,11, pj,10),

whereg(m, pj,11, pj,10) equals

exp

(

− m(pj,11 − pj,10)
2

2((1 − γ)pj,11 + γpj,10 + |pj,10 − pj,11|/3)

)

.

Let c > 0 be another parameter to be determined later. Ifc((1 − γ)pj,11 + γpj,10) ≤
|pj,10 − pj,11|, we can upper boundg(m, pj,11, pj,10) by

exp

(

− mc2((1 − γ)pj,11 + γpj,10)
2

2 ((1 − γ)pj,11 + γpj,10 + |pj,10 − pj,11|/3)

)

.

Dividing the numerator and denominator of the fraction in the exponent by(1−γ)pj,11+
γpj,10, and using the easily verified fact that for anya > 0, b > 0, γ ∈ (0, 1) it holds
that|a − b|/((1 − γ)a + γb) ≤ 1/(γ(1 − γ)), we get the upper bound

exp

(

−mc2((1 − γ)pj,11 + γpj,10)

2(1 + 1/3γ(1− γ))

)

. (4)
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On the other hand, we always have

| 11(p̂j,10 > p̂j,11) − Pr(p̂j,10 > p̂j,11)| ≤ 1 (5)

with probability1. Applying Eq. (4) and Eq. (5) on the second line of Eq. (2), we get a
probabilistic upper bound for it, of the form

∑

j∈J2,1

|pj,11 − pj,10|
s

exp

(

−mc2((1 − γ)pj,11 + γpj,10)

2(1 + 1/3γ(1− γ))

)

+
1

s

∑

j∈J2,2

|pj,11 − pj,10|, (6)

whereJ2,1 = {j ∈ J2 : c ≤ |pj,10−pj,11|
(1−γ)pj,11+γpj,10

}, andJ2,2 = {j ∈ J2 \ J2,1}. By a
union bound, Eq. (5) holds with probability at least

1 −
∑

j∈J1

exp

(

−mc2((1 − γ)pj,11 + γpj,10)

2(1 + 1/3γ(1 − γ))

)

. (7)

We now make four observations. First, by Lemma 3,
∑

j |pj,11 − pj,10| ≤ s, so there
can be at mosts/α labelsj such that|pj,11 − pj,10| > α. Second, it is easy to verify
that if |pj,11 − pj,10| > α (which holds for anyj ∈ J2,1), then(1− γ)pj,11 + γpj,10 >
αγ(1− γ). Third, for anyj ∈ J2,2, |pj,11 − pj,10| < c((1− γ)pj,11 + γpj,10). Fourth,
∑

j∈J2,2
((1−γ)pj,11+γpj,10) ≤ s by Lemma 3 and the fact thatγ ∈ (0, 1). Applying

these four observations on Eq. (6) and Eq. (7), we can weaken this bound to the form

1

α
exp

(

− mc2αγ(1 − γ)

2(1 + 1/3γ(1 − γ))

)

+ c,

which holds with probability of at least

1 − s

α
exp

(

− mc2αγ(1 − γ)

2(1 + 1/3γ(1− γ))

)

.

To get the theorem statement, we combine this with the bound in Eq. (3), substitute
into Eq. (2), chooseα = m−2/3, δ = sm2/3 exp

(

−m2ǫ
)

(for someǫ > 0), let

c = m−1/6+ǫ

√

2(1 + 1/3γ(1− γ))

γ(1 − γ)
,

and perform some straightforward simplifications.

A.2 Proof of Thm. 3

We have thatR0 − E[Rϕ] equals

1

s

k
∑

j=1

(pj,10 − pj,11) Pr(p̂j,10 > p̂j,11). (8)
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For anyj, if pj,10 − pj,11 ≥ 0, we have by Lemma 2 thatPr(p̂j,10 ≥ p̂j,11) is lower
bounded by

1 − exp

(

− m(pj,10 − pj,11)
2

2((1 − γ)pj,10 + γpj,11) + |pj,10 − pj,11|/3

)

≥ 1 − exp

(

− m(pj,10 − pj,11)
2

2(pj,10 + pj,11 + (pj,10 + pj,11)/3)

)

= 1 − exp

(

−3m(pj,10 − pj,11)
2

8(pj,10 + pj,11)

)

.

If pj,10 − pj,11 ≤ 0, we have by Lemma 2 in a similar manner that

Pr(p̂j,10 > p̂j,11) ≤ exp

(

−3m(pj,10 − pj,11)
2

8(pj,10 + pj,11)

)

.

Substituting these results into Eq. (8), we get thatR0 − E[Rϕ] is lower bounded by

1

s

∑

j:pj,10≥pj,11

(pj,10 − pj,11)

− 1

s

k
∑

j=1

|pj,10 − pj,11| exp

(

−3m(pj,10 − pj,11)
2

8(pj,10 + pj,11)

)

. (9)

In order to upper bound the second line in the expression (with something which does
not depend onpj,10 − pj,11), it is enough to upper bound for anyj the expression

max
|pj,10−pj,11|

|pj,10 − pj,11| exp

(

−3m(pj,10 − pj,11)
2

8(pj,10 + pj,11)

)

. (10)

For that, it is sufficient to find the maximal value of the functionf(x) = x exp(−3mx2/8p),
wherep := pj,11 + pj,10, for anyx ∈ [0, p]. It can be verified that this function is max-
imized atx =

√

4p/3m. Substituting this value for|pj,10 − pj,11| in Eq. (10), we get
an upper bound of the form

√

4(pj,10 + pj,11)/3m exp(1). Substituting this bound in
Eq. (9), and simplifying by noting that

√

4/3 exp(1) ≈ 0.7 < 1, we get the required
lower bound

1

s

∑

j:pj,10≥pj,11

(pj,10 − pj,11) −
1

s

k
∑

j=1

√

pj,11 + pj,10

m

on R0 − E[Rϕ]. To derive from it the second inequality in the theorem, notice that
under the assumptions stated there,

∑k
j=1

√
pj,11 + pj,10 is at mostC

∑k
j=1 j−r/2 for

some constantC. This sum isO(k1−r/2) if r < 2, O(log(k)) if r = 2, andO(1) if
r > 2. Ignoring the caser = 2 for simplicity, we upper bound the different cases by
O(

√
kmax{2−r,0}), and the inequality stated in the theorem follows.
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