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We discuss multiclass-multilabel classification probléemehich the set
of candidate labels is extremely large. Most existing noldts-multil-
abel learning algorithms expect to observe a statisticdjpificant sam-
ple from each class, and falil if they receive only a handfuéxémples
per class. We propose and analyze the following two-stageoagh: first
use an arbitrary (perhaps heuristic) classification algorito construct
an initial classifier, then apply a simple but principled hoet to augment
this classifier by removing harmful labels from the label satcareful
theoretical analysis allows us to justify our approach ursdene reason-
able conditions (such as label sparsity and power-lawibigton of label
frequencies), even when the training set does not providatestgcally
significant representation of most classes. Surprisirmly, theoretical
analysis continues to hold even when the number of labeleesiscthe
sample size. We demonstrate the merits of our approach antbéious
task of categorizing the entire web using the million categories defined
on Wikipedia.



Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
http://ww. research. m crosoft.com



1 Introduction

In multiclass-multilabel classification, our goal is to igesone or more labels, from
a given set oft labels, to instances in some domain. An example of a muiticla
multilabel problem is document categorization, which s pinoblem of assigning one
or more topics to each document in a corpus (e.g. [11]). Maks-multilabel prob-
lems are also abundant in other fields, such as computen\sjand computational
biology [3]. If a training set ofn labeled examples is available, a multiclass-multilabel
classifier can be learned using a supervised machine Igaatgorithm. Typically,
learning algorithms for multiclass-multilabel problenme developed and analyzed un-
der the assumption thatis held constant as: grows. In this paper, we consider a
different version of the multiclass-multilabel problemheve the label set grows with
the number of examples (i.&.> Q(m)). For example, this situation occurs when the
set of labels is a so-calldgblksonomya set of labels that emerges from a collaborative
tagging or a social tagging scheme.

The concrete problem that motivates this work is the proldéirategorizing the
entire web using the set of categories defined by the Wikigpedibsite. At the very
bottom of every Wikipedia article there is a short list ofezgiries, and we define our
label set to be the union of these lists. The Wikipedia asithemselves can be used
as training examples, since they are labeled web pages. Wéwerrticles are added
to Wikipedia, they often introduce new categories. As oetpdVikipedia contains 2.9
million articles and almost 1.5 million categories.

The Internet provides many other examples wheggows withm. For instance,
photo sharing websites allow users to annotate their platbkeywords. The implied
classification task is to recommend keywords whenever neoglare uploaded. As-
suming that the site does notimpose any restrictions ondi&drds that may be used,
the set of distinct keywords is likely to grow as more and nmgretos are uploaded to
the site.

For such datasets, applying standard techniques is prakiefor two reasons:
First, sincek scales withm, many labels occur only a handful of times in the train-
ing set, so we do not have a statistically significant samgmfeach class; Second,
the concrete values of andk we deal with are very large, to the point that most ex-
isting multiclass-multilabel learning algorithms becoommputationally intractable.
For example, the most common approach to multiclass-rabélllearning is to train
a separate binary classifier for each class. For the datasetsve in mind, such an
approach is both statistically untenable (due to the snuafitrer of examples per class)
and computationally impractical (as it requires maintagninillions of hypotheses for
all the classes). Similar problems are encountered for sth@dard approaches, such
as those based on ranking (e.g. [2, 6, 9]).

In practice, the only realistic solution is to turn to muchpler classification al-
gorithms, such as nearest neighbor methods. For exampisides once again the
problem of categorizing the entire web using Wikipedia gatees, and assume that
we have access to the log of an Internet search engine. Weseaheilog to construct
a click graph a bipartite graph whose vertices include all web pages drgliaries
ever issued to the search engine. An edge is drawn betweenrg @Quand a web
pageW if enough users issued the quépyand then clicked o’. We can use the



graph distance induced by the click graph to define a metec web pages. Given a
set of labeled Wikipedia pages, we can label the entire welguwsnearest neighbor
type algorithm over this metric. In other words, labels ai@pagated from the labeled
Wikipedia pages along the edges of the click graph to theafetfte web. Such sim-

ple algorithms can be implemented in a way that is almostegtinsensitive to the

size of the label-set, but their simplicity often comes attbst of lower classification
accuracy.

One way to improve the accuracy of a simple classificatioorélym is to add a
separate post-learning step. Taking such a two-stage agpi®also common in other
areas of machine learning. For example, in ranking problénis common to run a
simple and fast algorithm to obtain an initial ranking, ahdrt to run a more accurate
re-ranking algorithm only on the top few results. In this papve focus on a post-
learning step that modifies a classifier by pruning certdielg from its output. In
other words, the original classifier outputs a set of labetl the post-learning step
deletes labels from this set. The intuition behind this apph is that in such massive
multiclass-multilabel datasets, many labels are inhgrentisy and hard to learn, and
attempting to predict them decreases the overall accurfamyralassifier.

We propose and analyze, both theoretically and experitignéasimple label-
pruning method. The method is based on comparing the nunfilbersspositives and
false-positives of each predicted label, and discardibglsawhere their ratio exceeds a
certain threshold. Returning to the example of categayitie web, the initial nearest
neighbor algorithmiis likely to find that many web pages alotagsical composers turn
out to be close neighbors of the Wikipedia article dozart The nearest neighbor
classifier indiscriminantly assigns all of the Wikipediaezgories that are associated
with the article onMozart to all of these pages. One of these categorieReigple
Born in 1756 which is likely to have many false positives across thedaion set.
Intuitively, the labelPeople Born in 1756s incompatible with the click-graph based
metric we have chosen, namely, our metric is unlikely to pffiedent web pages from
this class in close proximity to each other. In this situatiour label-pruning method
removes this label from the set of labels the classifier mgdd to output.

While our method is simple and straightforward to impleméstanalysis is quite
tricky, since it is based on premises that appear to be titatlg unacceptable. Af-
ter all, our basic assumption is that most labels are vesy;, s the decision to dump
a label may be based on statistically insufficient evider®ay that we see two false-
positives and one true-positive of a given label in our \atiioh set: can we confidently
decide to remove that label? The key to the formal analysisiofechnique is to think
of its overall effect rather than considering its effect @ckeindividual label. Indeed,
we cannot conclusively evaluate each label and our tecknigilimost certainly mis-
take some good labels for bad ones. Nevertheless, we canteabwur pruning cri-
terion removes more bad labels than good ones, and ovegaibiras the accuracy of
our classifier, under mild conditions that often hold in pige Concretely, we assume
that the label frequencies follow a power-law distributaord that every example only
belongs to a bounded number of different classes.

To our knowledge, our theoretical approach is unique ang@listinct from previ-
ous analyses of multiclass-multilabel learning algorishiMost previous such analyses
build on techniques originally developed for the analy$ibinary classification algo-



rithms, and therefore require at least some degree of laisel-convergence.

We conclude our paper with a set of experiments, in which vidai@ our approach
on the task of categorizing web pages using the setahillion Wikipedia categories.
The simplicity of our approach enables us to perform thege®gments on a single
server, without requiring a large cluster computer.

Related Work

The work in [12] deals with multiclass classification anddseamilarities to our work,
in that the space of possible classes can be very large cenhjgethe size of the dataset.
However, the analysis there is specific to multiclass ratih@n multiclass-multilabel
learning (i.e. each instance is assigned only a single)gdrad focuses on large margin
classifiers with a particular rule for choosing the labeladkeinstance.

A more closely related paper is [8], which also deals with sias multiclass-
multilabel classification. It proposes a clever method, ke predictor is trained on
a compressed representation of the original label vectbing original labels are re-
constructed using techniques from compressed sensingprobkem setting and some
of the assumptions made (such as label sparsity) are sitoilemr work. However,
the approach of [8] applies only to learning algorithms tieggress on a real-valued
compressed label vector. This is often not the case withrigihges designed for mas-
sive datasets, such as the click-graph based approaclitéesearlier. In contrast, our
approach makes no assumptions about the learning algorithm

2 Setting and Notation

We assume that the learning task at hand is a supervisecctasgtimultilabel prob-
lem. Formally, letY’ be an arbitrary measurable spage= {0, 1}*, and letD be an
unknown distribution on the product spatex ). Each elemen(tx, y) in this space is
composed of an instaneeand a vector of indicatorg = (y1, ..., yx) that represents
the set of labels associated with We assume that label vectors sampled frbrare
sparsenamely, thabr(>_, y; < s) = 1 for some constant A classifier is a function
h: X — ), that maps an instanceto a label vectoy = h(x). We restrict our discus-
sion to classifiers that output sparse label vectors, naﬁglﬂj < 5. We evaluate the
accuracy of a classifier using a loss functi@h(x), y), which measures the disparity
between the predicted label set and the actual label sehidmpéper, we focus on a
simple weighted loss function that is parameterized lay (0, 1) and defined as

® | =

k
> (=N =0,y; = 1) +y1(G; = 1,5, = 0), 1)

j=1

where 1(+) is the indicator function. The parametecontrols the importance of false
negatives vs. false positives, and the normalization bgsures that the loss is always
bounded in0, 1]. Our ultimate goal is to obtain a classifiemwith a small risk, which
is defined a¥ . y)~p[{(h(x),y)].



We distinguish between two phases of the learning procagbkelearning phase
we use some learning algorithm to obtainiaitial classifier h. We then perform a
post-learning phasevhere we find dabel transformation functiop : ) — Y, such
that the final classifier is the compositigrne h. In this paper, we focus on the post-
learning phase, and make no assumptions on the learning phas the quality of the
initial classifier. From the perspective of the post-leagihase, the initial classifiér
is simply a predefined function. For simplicity, we assuna the data used to train
is independent from the data used in the post-learning phasain .

In principle, the label transformation functigncan be arbitrarily complex. In this
paper, we focus on the simple setlabel pruning rules Formally, a label pruning
rule ¢y corresponds to an elemepte {0, 1}*, and is defined agy (y) = max{y —
v,0}. In words, we simply remove the labels representeg lfisom the set of labels
represented by. Such rules are simple to implement and are particularlyulise
massive multilabel problems, where many labels are botararitly noisy and very
rare. In such cases, refraining from predicting these fabah actually improve the
final classifier's performance.

The four basic quantities we work with are the risk and theieogd risk of » and of
poh. Letting S denote ani.i.d. sample of sizefrom D, we define thénitial empirical
risk Ry = 1/m Y, yyegl(h(x),y), theinitial risk Ry = E(xy)[¢(h(x),y)], the
final empirical risk R, = 1/m > (xy)es Ll o h(xi),y), and thefinal risk R, =
E(x,y)[£(¢ o h(x),y)]. Our goalis to find a pruning rule such thatR,, is as small as
possible.

For the analysis, we need to describe these quantities intenmative form, as
specified in the following easy-to-prove lemma:

Lemma 1. For a given classifieh(-), define

. 1-
Pj11 = 77 > Ah(x); =y =1)

(x,y)€S
A Y
Piao = — Z 1(h(x) =1,y; =0)
(x,y)€S
R 1
Pit= (I =) 1(h(x); =0,y; =1)
(x,y)€S

Letpj +,pj11, and p; 10 be the expected values (over the samgleof p; -, p; 11,
andp; 1o respectively. Also, for a fixed pruning ruje-), let li(label ; pruned be an
indicator that equald if and only if the pruning rulep(-) removes labej. Then it



holds that
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3 ThePruning Method

Recall that our goal is to reduce the final rigk,. The expression foR, given in
Lemma 1 suggests th&t, can be reduced by removing those labels for whigh, >
pj11. Unfortunately,p; 11 andp; 10 are unknown quantities that depend Dn and
we must resort to using their empirical counterpgsts; andp; 0. Specifically, our
simple label pruning procedure proceeds as follows: givearapleS, calculatep; 11
andp,.10, and choose the label pruning rytehat removes all labels for whigh 11 <
Pj10. In other words, this procedure prunes any label for whiah rditio of false
positives to true positives exceefls — v)/v. Notice that this makeg a random
function that depends on the randomness of the saspt@r the theoretical analysis,
it will be convenient to viewR,, and i, as random variables, which depend on the
random draw of5.

This algorithm essentially attempts to decrease the finpligeral risk Rg, in lieu of
R,. However, notice that in our setting (wherscales withn), we cannot assume that
each and every; 11, p; 10 IS an accurate estimate pf 11, p;,10. In fact, our analysis
shows thatf%w is generallynot a good estimator of?,. Nevertheless, we can prove
that our method reduces the final rigk, compared to the initial risk?, with high
probability, under mild conditions.

4 Theoretical Analysis

Our pruning procedure works by making the empirical r}sj; as small as possible.
In this section, we show that that this is also likely to makesmaller thanR,. The
straightforward theoretical approach would be to show fiiateasonably large sam-
ples, Ry is close toR, andl?w is close toR,. While the first premise is easy to show
via a large deviation inequality, it turns out tl'i%sg does not necessarily convergeig
when the number of labels grows with the number of examplks i§ implied by the
following theorem and the discussion which follows. Itsqfris a simple consequence
of the definitions, and is omitted due to lack of space.



Theorem 1. E[R, — R,] is lower bounded by

k
1 .
" Z Pr(label j pruned)(p; .11 — pj,10)-

Jj=1

If we were to assume thdt is fixed, we might expegi; 11, p; 10 to converge to
Pj 115 Pj,10 uniformly for all j = 1,..., k. Since our method prunes labels for which
Pij1n < Pj10, Wwe would have thaPr(IabeI] pruned(p; 11 — pj10) converges to a
non-positive quantity uniformly for any, and thus our lower bound would converge
to 0. However, when we assume thagrows withm, p; 11, p;,10 need not converge
uniformly to p; 11, p;.10, and the correlation betwedtr(label j pruned) and the sign
of (p;11 — pj,10) can remain weak regardless of the sample size. To give aetncr
example, if we takey = 1/2, s = 10 and assume that 11 = s/3k,p;j 10 = s/6k for
all j, then we have by the theorem above that

k
I 1
E[R, — _k Z r(labelj pruned.

It can be shown that whem, k — oo but (say)m/k = 3, the right hand side above
converges to a strictly positive constant. Therefore, jitdssible that our lower bound
will remain larger than some positive constant regardlésample size, which implies
that 2, does not converge tf,, in such cases.

This observation precisely captures the difficulty of wackiwith a sample that
does not sufficiently represent many of the individual @asis the problem, and is
the reason why most existing algorithms are inadequate wemumber of labels
is not fixed. Nevertheless, we can show that it is possiblen&dyae the behavior of
R, directly. Specifically, we prove thak, is well behaved when the training set is
large enough, even whénis very large and grows with. Namely, although the
empirical quantities do not necessarily correspond ta thedected values, we can still
provide high probability guarantees that our pruning metremluce the overall risk of
the classifier. In a nutshell, the analysis consists of prgthat| R, — E[R,]| is small
with high probability (where the expectations are takenrakie random draw of the
sampleS), and then directly proving th&@[R,,] is strictly smaller tharR?y, under mild
conditions.

The first part of the proposed approach is formalized in thleviing theorem. In-
formally, it states that whem is large enoughk,, is arbitrarily close to its expectation
with arbitrarily high probability. Note that this bound dorot depend at all ok, the
number of labels.

Theorem 2. For any fixede > 0, it holds that

2m71/6+e
Pr <|R@ - E[R¢]| > m

< 2sm?/3 exp (—mQE) ,

+m?3exp (—m2€)>



The proof is presented in the appendix. Intuitively, theaid®to distinguish be-
tween labels for whichp, 11 — pj10] is large, and labels for which this difference is
small. The first type of labels are more common in the datatlansiwe can reliably
estimatep; 11 — pj;,10 and decide whether to prune them or not. On the other hand,
there cannot be too many such labels, bec@§@j,11 + pj 10 is a bounded quantity.
This effectively limits the dimensionality of the probleegardless of the parameter
Whenevelp; 11 — pj 10| is small, the pruning process is noisy and prone to errots, bu
it can be shown that these cases do not influghgéoo much. A careful formalization
of these ideas, using Bernstein and McDiarmid’s large diewvidbounds, allows us to
show thatR, concentrates around its expectation with high probabilégardless of
k.

Next, we need to show thét, —E[R,] is strictly positive, to prove that our method
indeed reduces the final risk. It turns out that the exactevafi?) — E[R,,] is highly
dependent on the specific valuespefi; andp; 1o for eachy. Intuitively, if labels for
whichp; 10 > p; 11 are pruned with high probability and labels for whichio < pj 11
are pruned with low probability, we expefy — E[R,] to be large. Although it is
possible to provide positive lower bounds 8p — E[R,,] in terms of these quantities,
they are not particularly enlightening. Instead, the teeobelow will allow us to
characterize a mild condition, under which we can exgéct- E[R,] to be strictly
positive. A proof appears in the appendix.

Theorem 3. The difference?, — E[R,] is at least

k
1 1 p], 1 +p7,10
S Z (pj,10 — pja1) B ;

JiPj,102Pj,11

Moreover, if we assume that 1o + p; 11 are sorted in descending order, and there
exists some # 2 such thatp; 10 + pj,11 < O(j7") for all j, thenRy — E[R,] is at

least
L fmax{2—r,0}
; Z (pJ}lO - pj,ll) -0 <\/$> )

JiPj,102Pj,11

The requirement that # 2 is for technical reasons and can easily be treated sepa-
rately.

What does this theorem tell us? The non-negative et | -, ., (pj10—pj11)
can be arbitrarily small, but we can expectit to be lower tnimhby a positive constant
(independent ofn, k) if a fixed fraction of the labels are such thgt;o > p; 11, and if
Dj10 — Pj,11 IS proportional ta; 10 + pj,11. SO we turn our attention to the term

k

EZ /pj 11+ Dj10

5 4 m ’
J=1

which can indeed be large in the regime whieseales withn. For example, ip; 11 +
pj,10 = s/k for all j, the above equalg/k/sm > (1), and Thm. 3 may become
vacuous. Luckily, assuming that 11 + p; 10 is equal for allj is unrealistic. By



definition,p; 11 + p;.10 i closely related to the probability that our learned hjzests
labels a random instance with labellf the marginal label distribution of the classifier

is similar to the marginal label distribution of the datagrhthis distribution is often
observed to follow gpower law which corresponds to the assumption thato +

pji1 < O(j~") for all j. Under this assumption, we obtain the second statement
in Thm. 3. This power-law behavior, sometimes known as Bipdiv, is a very well
known and well documented phenomenon for many rank vs. &necudatasets (see
examples in [10, 1, 7]), and in particular for the applicaiove have in mind. We
verify this property in our experiments, presented below.

Overall, this lower bound implies that if we let, k. — oo, we can expeck, —
E[R,] to be positive whenevern grows faster thark?~". In particular, ifr > 1
(which happens quite often in practice, including in ourexments), we obtain the
interesting result that the lower bound remains meaningftén when the number of
labelsk grows faster than the number of examples

5 Experiments

We applied our technique to the task of categorizing web pageng thel.5 million
categories defined in Wikipedia. As mentioned in the inticiiun, we first used search
engine logs to create a click graph, which is a bipartite lytagtween queries and web
pages. A link between querg and web pagél? indicates that a sufficiently large
number of users issued the que&pyand then clicked on the link to pad®. Next,
we randomly split the set of Wikipedia articles into thre¢ss&0% training, 30%
validation, and20% test. Each Wikipedia article is associated with a set ofgmates
and also corresponds to a node in the click graph. Next, weggated the categories
from each Wikipedia training article along the edges of thekagraph, to all of the
web pages that have a query in common with that article (nanteelall web pages
whose distance to the training article2s We call the resulting labeling of the web
labeling A The rationale behind this labeling procedure is the assomfhat two web
pages that were clicked on (by different people, at diffetiemes) after the same query
are likely to share many topics. Next, we propagated thegoaies along the edges of
the click graph a second time, extending the reach of eaegaeat to all pages with
graph distancé from the original article. We call thibeling B

We repeated the process described above a second timenthiséeded with a
larger set of labels per Wikipedia training article. We ushkeel fact that Wikipedia
categories are themselves categorized by higher-leveyocges. For example, the
Wikipedia article onDogsis associated with the categddpmesticated Animalsand
the latter is associated with the categémyimals We added all of these second-order
categories to each Wikipedia article. We propagated thenebed category sets along
the edges of the click graph as before, to obkalreling C We then performed a second
iteration of label-propagation to obtdimbeling D.

We applied our label-pruning technique independently wheaf the four initial
labellings. Namely, we revealed the true categories of thépadia validation articles
and compared them to the propagated labels in the four versitour experiment. For
each label we counted true and false positives, and decitiedhuabels to prune.
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Figure 1: Ratios between the best attainable test loss antéshloss attained by three
different techniques, on four different initial labelliag

The set of Wikipedia categories is problematic in that itvemcomplete. Many
categories have duplicates or near-duplicates; soméesrtice labeled by one category
while other articles are labeled by its near-duplicategatg Also the false-positives
in all four labellings significantly outnumber the true-fin®s. For these reasons,
false-positives should be treated with great suspicion.eiMive see a false-positive,
either our classification is wrong or the Wikipedia editoryne@ave simply neglected
to add this category. Spot-checking reveals that many-fadsitives are actually quite
reasonable. On the other hand, false-negatives should/allataken seriously: a
human editor explicitly added a category to the article andadgorithm concluded
that it is not relevant. To correct this imbalance, wesigt Eq. (1) to give more weight
to false-negatives. Specifically, we seto values betweed.01 and0.1.

After using the validation set to identify and remove harhtdibels, we revealed
the categories in the Wikipedia test set, and evaluated ¢h@nmance of our algo-
rithm. For each of the four labellings and for each valueypive also calculated an
oracle pruning which provides a lower bound on the test loss of arssiate pruning
algorithm. This was done by cheating and finding the bestipguon the test set (in
terms of eachy-weighted loss). The loss attained by the oracle varieslgredh ~,
so it is meaningless to plot absolute loss values for diffevalues ofy on the same
figure. To get a coherent visualization of our results, wdtetbthe ratio between the



oracle loss and the loss of our algorithm. The performanaaoflgorithm is shown
in solid lines in Fig. 1. Values close toindicate that our test loss is very close to the
loss of the ideal pruning.

For comparison, the plots in Fig. 1 also show the performahtso other simple
algorithms. The first is the algorithm that performs no pngrand just keeps the initial
labeling. The second is an algorithm that uses our methoctterishine how many
labels to remove, and then removes labels randomly. Theszienental results clearly
show the amount of improvement achieved by our algorithmspile the statistical
challenge of generalizing with only a handful of examples glass, our algorithm
performs very well across a wide range-of

Finally, using a simple least-squares fitting technique,vaidated that all four
datasets satisfy the power-law assumption used in ourdlieakanalysis (see Thm. 3
and the discussion which follows). Namely, when we sort #ieels by frequency in
the data, we see that the frequency of lajeis proportional toj ", with r ~ 1.3 for
labeling A; » ~ 1.6 for labeling B; » ~ 1.9 for labelingC'; andr = 2.3 for labeling
D.

6 Conclusions

In this paper, we studied the problem of massive multictasétilabel learning, where
the set of labels scales with the number of available trgimixamples. This setting
is very relevant when the label-set results from a collatderdagging scheme, such
as Wikipedia categories or keywords in media hosting websiin this regime, the
standard assumption of a fixed label set is too simplistid,straightforward general-
izations of methods for binary classification (such as rolaiis SVM) may be imprac-
tical.

Motivated by the computational issues faced by practitisie this area, we pro-
posed and analyzedpost-learningmethod on top of any desired learning algorithm,
which for our purposes can be treated as a black-box. Ouriexpets demonstrate
that the method works quite well on real-world, large scalad

Theoretically, this setting poses a challenge, since wadaiamope to get statisti-
cally significant data on each and every label. As far as wevktius setting violates
the assumptions underlying most previous theoretical vaorkmulticlass-multilabel
learning. Nevertheless, a careful analysis allows us tifyusur approach, using some
non-trivial but mild sufficient conditions, such as sparsit labels per instance and a
power-law behavior of the label frequencies.

While our approach seems to work in practice, and has soraeesting theoreti-
cal properties, the algorithm we have focused on is obvjoaslery simple one, and
several extensions immediately come to mind. One diredfdn utilize additional
knowledge about label dependencies, rather than treaticly label separately. Also,
we have dealt only with very simple label transformatioresjlwhich prune a subset
of labels (i.e. “if labelA appears, remove it"). However, it is possible to envisiomeéno
complex rules, such as “if label$ and B appear, but not labél, replace labeD by
label E”. Understanding how to implement these extensions effelgtiand in a theo-
retically justified manner, even when there are as manydadebxamples, remains a
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topic for future research.
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A Technical Proofs
A.1 Proof of Thm. 2

We need the following two lemmas. The first lemma follows dilefrom Bernstein’s
inequality (see for instance [4]). We note that using an iradity that relies on variance
is crucial to obtain a non-trivial bound with our proof teddue. The second lemma
follows directly from the definitions. The proofs are omittidue to lack of space.

11



Lemma 2. Foranyj, if pj 10 < pj11, thenPr(p; 10 > pj,11) is at most

( m(pji0 — pj11)? >
exp — )
2((1 = v)pj11 +pj10 + [P0 — pjial/3)
A similar bound holds Oﬁ’r(ﬁj710 < ﬁj,ll) if Pj,10 > Pj11-
Lemma 3. It holds that
k k

Z|pj,11 —Ppj0| < ij.,ll +Ppj0 = s
=1 j=1

Let « > 0 be an arbitrary parameter to be specified later, and definéabied
subsets/; = {j : |pj11 —pj10] < a}, Jo ={1,...,k}\ Ji. We have by definition of
the pruning procedure and Lemma 1 th@g, — E[R.]| is at most

1 - .
5 > Piar = pin0) (g, 105550 — Pr(Bja0 > Pj1))
JEJ
1 A .
+ D Ipiar = pioll s, 1o55,0, — Pr (B0 > pinn) | (2)

Jj€J2

Focusing on the first line in the expression, note that if wange any single in-
stance in our sample, at maxt terms will change by at mosp; 11 — pji0| < o
Therefore, the expression in the first line will change by astfia. Applying McDi-
armid’s inequality, and noting that the expectation of vidhaitside the absolute value
is zero, we get that with probability of at least- 9, it is upper bounded by

v/ 2ma?log(1/46). (3)

Turning to the second line in Eq. (2), and applying Lemma 2geighat for anyj,
with probability of at least — g(m, p; 11, pj,10), it holds that

| 1(pj,10 > Pj11) — Pr(pj 0 > pjn)| < g(m,pjai.pj10),

whereg(m, pj 11, pj,10) €quals

exp (_ m(pj11 — pj10)° ) .
2((1 =v)pjar +vpj0 + [pjao — pj1al/3)
Letc > 0 be another parameter to be determined latef((If — v)p;.11 + vpj.10) <
Ipj,10 — pj,11|, we can upper boung(m, p; 11, p;j,10) by

exp <_ mc?((1 = ~)pjan +7pj10)? )
2((1- Y)Pj11 +vpj10 + |pj,1o — pj,11|/3)
Dividing the numerator and denominator of the fraction méiponent byl —~)p; 11+

vpj.10, and using the easily verified fact that for amy> 0,6 > 0,~ € (0, 1) it holds
that|a — b|/((1 — v)a +~b) < 1/(~(1 —~)), we get the upper bound

ex (_mc2((1 - '7)pj,11 + ’ijJo))
20T/ )

(4)
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On the other hand, we always have

| 1(pj,10 > Pj11) — Pr(pji0 > pji1)| < 1 5)

with probability1. Applying Eq. (4) and Eq. (5) on the second line of Eq. (2), weay
probabilistic upper bound for it, of the form

Ipj11 — P10l ~mc((1 = )pja1 +pji0)
2 s eXp( 201+ 1/3y(1- 7)) >

J€J2,1

1
+3 Z [pja1 — pjaol; (6)

]6(12)2
whereJo; = {j € Jo : ¢ < %} andJao = {j € J2\ J21}. Bya
union bound, Eq. (5) holds with probability at least
mc*((1 = ~)pj11 + pji10)

1- . = : 7
I O T g

JjeJ1

We now make four observations. First, by Lemm@j [pia1 — pjol < s, sothere
can be at most/« labels;j such thatp; 11 — pj,10| > «. Second, it is easy to verify
thatif |p; 11 — pj10| > « (which holds for anyj € J2 1), then(1 —v)p;11 +vpj10 >
ay(1—). Third, foranyj € Jz22, [pj,11 — pj,10l < e((1 = ¥)pj11 +vpj10). Fourth,
> jets,(L=7)pj11+7pj10) < s by Lemma 3 and the fact thate (0, 1). Applying
these four observations on Eq. (6) and Eq. (7), we can wedkebaund to the form

1 . ( mc2ay(1 —7) ) e
ey
o P\ 20 131 —))) "
which holds with probability of at least
1_ 5, ( mc2ay(1 —7) )
— —exp | — .
a P 2(14+1/3v(1 — 7))

To get the theorem statement, we combine this with the bouriti (3), substitute
into Eq. (2), choose = m~2/3,§ = sm?/3 exp (—m?*®) (for somee > 0), let

T \/ 2(1+1/37(1- 1))

(1 =) ’

and perform some straightforward simplifications. O

A.2 Proof of Thm. 3
We have thaR?y — E[R,] equals

k

1

3 E (pj0 — pji1) Pr(pji0 > Dj11)- (8)
Jj=1
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For anyy, if pj 10 — pj,11 > 0, we have by Lemma 2 thdtr(p; 10 > p;.11) is lower
bounded by

1 —exp (— m(pj.10 — pj11)? >
2((1 - 7)pj,10 + ij,ll) + |pj710 — pj,lll/?)

>1—exp (- m(pj 10 — pji1)° )
- 2(pj=10 +pj711 + (pj,l() —|—pj711)/3)

=1—exp (—3m(pj’10 - pj,11)2>
8(pj,10 + pj11)

If pj 10— pj11 <0, we have by Lemma 2 in a similar manner that

m(pj,lo - pj,11)2>
8(pj,10 + Pj11)

Pr(pj o > pj1) < exp (—

Substituting these results into Eq. (8), we get tRat- E[R,] is lower bounded by

1
S Z (pj,10 — pj11)

JiPj,10>Pj 11

k
1 3m(pj 10 — Pj 11)2)
= =3 [pja0 —pjafexp [ -2 ) (9

sz:;| 310 ~ P ( 8(pj,10 + pj11) ®)

In order to upper bound the second line in the expressioin (admething which does
not depend op; 10 — p;,11), it is enough to upper bound for arjthe expression

3m(pj,10 - pj,u)Q)
8(pj,10 + pj11)

max |pj.,10 — pj,11| exp (— (10)

[pj,10—pj,11]
For that, it is sufficient to find the maximal value of the fuinotf (z) = x exp(—3ma?/8p),
wherep := p; 11 + pj10, foranyz € [0, p|. It can be verified that this function is max-
imized atz = \/4p/3m. Substituting this value fop; 1o — p; 11| in Eq. (10), we get
an upper bound of the forry4(p;,10 + pj,11)/3m exp(1). Substituting this bound in

Eq. (9), and simplifying by noting thay/4/3 exp(1) ~ 0.7 < 1, we get the required
lower bound

k
1 1 Pj11 + Pjio0 +p7,10
S Z (pj,10 = pja1) 3 ;

JiPj,102Pj5,11

on Ry — E[R,]. To derive from it the second inequality in the theorem, cothat
under the assumptions stated th@fbl VPji1 + pji0 is at mosiC Z;?:l §/% for
some constan®'. This sum isO(k'~7/2) if r < 2, O(log(k)) if r = 2, andO(1) if
r > 2. Ignoring the case = 2 for simplicity, we upper bound the different cases by
O(V kmax{2—-r,0}) "and the inequality stated in the theorem follows. O
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