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Abstract. This practical tutorial introduces the features available in
Haskell for writing parallel and concurrent programs. We first describe
how to write semi-explicit parallel programs by using annotations to ex-
press opportunities for parallelism and to help control the granularity of
parallelism for effective execution on modern operating systems and pro-
cessors. We then describe the mechanisms provided by Haskell for writing
explicitly parallel programs with a focus on the use of software transac-
tional memory to help share information between threads. Finally, we
show how nested data parallelism can be used to write deterministically
parallel programs which allows programmers to use rich data types in
data parallel programs which are automatically transformed into flat
data parallel versions for efficient execution on multi-core processors.

1 Introduction

The introduction of multi-core processors has renewed interest in parallel func-
tional programming and there are now several interesting projects that explore
the advantages of a functional language for writing parallel code or implicitly par-
alellizing code written in a pure functional language. These lecture notes present
a variety of techniques for writing concurrent parallel programs which include
existing techniques based on semi-implicit parallelism and explicit thread-based
parallelism as well as more recent developments in the areas of software trans-
actional memory and nested data parallelism.

We also use the terms parallel and concurrent with quite specific meanings.
A parallel program is one which is written for performance reasons to exploit
the potential of a real parallel computing resource like a multi-core processor.
For a parallel program we have the expectation of some genuinely simultaneous
execution. Concurrency is a software structuring technique that allows us to
model computations as hypothetical independent activities (e.g. with their own
program counters) that can communicate and synchronize.

In these lecture notes we assume that the reader is familiar with the pure
lazy functional programming language Haskell.



2 Applications of concurrency and parallelism

Writing concurrent and parallel programs is more challenging than the already
difficult problem of writing sequential programs. However, there are some com-
pelling reasons for writing concurrent and parallel programs:

Performance. We need to write parallel programs to achieve improving per-
formance from each new generation of multi-core processors.

Hiding latency. Even on single-core processors we can exploit concurrent pro-
grams to hide the latency of slow I/O operations to disks and network de-
vices.

Software structuring. Certain kinds of problems can be conveniently repre-
sented as multiple communicating threads which help to structure code in a
more modular manner e.g. by modeling user interface components as sepa-
rate threads.

Real world concurrency. In distributed and real-time systems we have to
model and react to events in the real world e.g. handling multiple server
requests in parallel.

All new mainstream microprocessors have two or more cores and relatively
soon we can expect to see tens or hundreds of cores. We can not expect the
performance of each individual core to improve much further. The only way to
achieve increasing performance from each new generation of chips is by dividing
the work of a program across multiple processing cores. One way to divide an ap-
plication over multiple processing cores is to somehow automatically parallelize
the sequential code and this is an active area of research. Another approach is
for the user to write a semi-explicit or explicitly parallel program which is then
scheduled onto multiple cores by the operating systems and this is the approach
we describe in these lectures.

3 Compiling Parallel Haskell Programs

To reproduce the results in this paper you will need to use a version of the GHC
Haskell compiler later than 6.10.1 (which at the time of printing requires building
the GHC compiler from the HEAD branch of the source code repository). To
compile a parallel Haskell program you need to specify the -threaded extra flag.
For example, to compile the parallel program contained in the file Wombat.hs

issue the command:

ghc --make -threaded Wombat.hs

To execute the program you need to specify how many real threads are available
to execute the logical threads in a Haskell program. This is done by specifying
an argument to Haskell’s run-time system at invocation time. For example, to
use three real threads to execute the Wombat program issue the command:

Wombat +RTS -N3

In these lecture notes we use the term thread to describe a Haskell thread
rather than a native operating system thread.



4 Semi-Explicit Parallelism

A pure Haskell program may appear to have abundant opportunities for auto-
matic parallelization. Given the lack of side effects it may seem that we can
productively evaluate every sub-expression of a Haskell program in parallel. In
practice this does not work out well because it creates far too many small items
of work which can not be efficiently scheduled and parallelism is limited by
fundamental data dependencies in the source program.

Haskell provides a mechanism to allow the user to control the granularity
of parallelism by indicating what computations may be usefully carried out in
parallel. This is done by using functions from the Control.Parallel module. The
interface for Control.Parallel is shown below:

1 par :: a −> b −> b
2 pseq :: a −> b −> b

The function par indicates to the Haskell run-time system that it may be benefi-
cial to evaluate the first argument in parallel with the second argument. The par

function returns as its result the value of the second argument. One can always
eliminate par from a program by using the following identity without altering
the semantics of the program:

1 par a b = b

The Haskell run-time system does not necessarily create a thread to compute
the value of the expression a. Instead, the run-time system creates a spark which
has the potential to be executed on a different thread from the parent thread.
A sparked computation expresses the possibility of performing some speculative
evaluation. Since a thread is not necessarily created to compute the value of a

this approach has some similarities with the notion of a lazy future [1].
Sometimes it is convenient to write a function with two arguments as an infix

function and this is done in Haskell by writing quotes around the function:

1 a ‘par‘ b

An example of this expression executing in parallel is shown in Figure1.
We call such programs semi-explicitly parallel because the programmer has

provided a hint about the appropriate level of granularity for parallel operations
and the system implicitly creates threads to implement the concurrency. The user
does not need to explicitly create any threads or write any code for inter-thread
communication or synchronization.

To illustrate the use of par we present a program that performs two compute
intensive functions in parallel. The first compute intensive function we use is the
notorious Fibonacci function:

1 fib :: Int −> Int

2 fib 0 = 0
3 fib 1 = 1
4 fib n = fib (n−1) + fib (n−2)

The second compute intensive function we use is the sumEuler function [2]:



thread1 

eval a

a `par` b

eval b

thread2 

spark for a

created

spark

converted to thread

time

Fig. 1. Semi-explicit execution of a in parallel with the main thread b

1 mkList :: Int −> [Int]
2 mkList n = [1..n−1]
3

4 relprime :: Int −> Int −> Bool

5 relprime x y = gcd x y == 1
6

7 euler :: Int −> Int

8 euler n = length (filter (relprime n) (mkList n))
9

10 sumEuler :: Int −> Int

11 sumEuler = sum . (map euler) . mkList

The function that we wish to parallelize adds the results of calling fib and
sumEuler:

1 sumFibEuler :: Int −> Int −> Int

2 sumFibEuler a b = fib a + sumEuler b

As a first attempt we can try to use par the speculatively spark off the compu-
tation of fib while the parent thread works on sumEuler:

1 parSumFibEuler :: Int −> Int −> Int

2 parSumFibEuler a b
3 = f ‘par‘ (f + e)
4 where

5 f = fib a
6 e = sumEuler b

To help measure how long a particular computation is taking we use the Sytem.Time

module and define a function that returns the difference between two time sam-
ples as a number of seconds:

1 secDiff :: ClockTime −> ClockTime −> Float

2 secDiff (TOD secs1 psecs1) (TOD secs2 psecs2)



3 = fromInteger (psecs2 − psecs1) / 1e12 + fromInteger (secs2 − secs1)

The main program calls the sumFibEuler function with suitably large arguments
and reports the value

1 r1 :: Int

2 r1 = sumFibEuler 38 5300
3

4 main :: IO ()
5 main
6 = do t0 <− getClockTime
7 pseq r1 (return ())
8 t1 <− getClockTime
9 putStrLn (”sum: ” ++ show r1)

10 putStrLn (”time: ” ++ show (secDiff t0 t1) ++ ” seconds”)

The calculations fib 38 and sumEuler 5300 have been chosen to have roughly the
same execution time.

If we were to execute this code using just one thread we would observe
the sequence of evaluations shown in Figure 2. Although a spark is created for
the evaluation of f there is no other thread available to instantiate this spark
so the program first computes f (assuming the + evaluates its left argument
first) and then computes e and finally the addition is performed. Making an
assumption about the evaluation order of the arguments of + is unsafe and
another valid execution trace for this program would involve first evaluating e

and then evaluating f.

thread1 eval f + eeval e

f `par` (f + e)

eval f

spark for f

created

Fig. 2. Executing f ‘par‘ (e + f) on a single thread

The compiled program can now be run on a multi-core computer and we
can see how it performs when it uses one and then two real operating system
threads:

$ ParSumFibEuler +RTS -N1

sum: 47625790

time: 9.274 seconds

$ ParSumFibEuler +RTS -N2

sum: 47625790

time: 9.223 seconds



The output above shows that the version run with two cores did not perform
any better than the sequential version. Why is this? The problem lies in line
3 of the parSumFibEuler function. Although the work of computing fib 38 is
sparked off for speculative evaluation the parent thread also starts off by trying
to compute fib 38 because this particular implementation of the program used
a version of + that evaluates its left and side before it evaluates its right hand
side. This causes the main thread to demand the evaluation of fib 38 so the
spark never gets instantiated onto a thread. After the main thread evaluates fib

38 it goes onto evaluate sumEuler 5300 which results in a performance which is
equivalent to the sequential program. A sample execution trace for this version
of the program is shown in Figure 3. We can obtain further information about

thread1 eval f + eeval e

f `par` (f + e)

eval f

spark for f

created

thread2

Fig. 3. A spark that does not get instantiated onto a thread

what happened by asking the run-time system to produce a log which contains
information about how many sparks were created and then actually evaluated
as well as information about how much work was performed by each thread. The
-s flag by itself will write out such information to standard output or it can be
followed by the name of a log file.

$ ParSumFibEuler +RTS -N2 -s

.\ParSumFibEuler +RTS -N2 -s

sum: 47625790

time: 9.223 seconds

...

SPARKS: 1 (0 converted, 0 pruned)

INIT time 0.00s ( 0.01s elapsed)

MUT time 8.75s ( 8.79s elapsed)

GC time 0.42s ( 0.43s elapsed)

EXIT time 0.00s ( 0.00s elapsed)

Total time 9.17s ( 9.23s elapsed)

...

This report shows that although a spark was created it was never actually taken
up for execution on a thread. This behaviour is also reported when we view
the execution trace using the ThreadScope thread profiler as shown in Figure 4



which shows one thread busy all the time but the second thread performs no
work at all. Purple (or black) indicates that a thread is running and orange (or
gray) indicates garbage collection.

Fig. 4. A ThreadScope trace showing lack of parallelism

A tempting fix is to reverse the order of the arguments to +:

1 parSumFibEuler :: Int −> Int −> Int

2 parSumFibEuler a b
3 = f ‘par‘ (e + f)
4 where

5 f = fib a
6 e = sumEuler b

Here we are sparking off the computation of fib for speculative evaluation with
respect to the parent thread. The parent thread starts off by computing sumEuler

and hopefully the run-time will convert the spark for computing fib and execute
it on a thread located on a different core in parallel with the parent thread. This
does give a respectable speedup:

$ ParFibSumEuler2 +RTS -N1

sum: 47625790

time: 9.158 seconds

$ ParFibSumEuler2 +RTS -N2

sum: 47625790

time: 5.236 seconds

A sample execution trace for this version of the program is shown in Figure 5
We can confirm that a spark was created and productively executed by look-

ing at the log output using the -s flag:

$ .\ParFibSumEuler2 +RTS -N2 -s

.\ParSumFibEuler2 +RTS -N2 -s

...

SPARKS: 1 (1 converted, 0 pruned)

INIT time 0.00s ( 0.01s elapsed)

MUT time 8.92s ( 4.83s elapsed)



thread1 eval e + f

eval f

f `par` (e +f )

eval e

thread2 

spark for f

created

spark for f

instantiated onto thread

Fig. 5. A lucky parallelization (bad dependency on the evaluation order of +)

GC time 0.39s ( 0.41s elapsed)

EXIT time 0.00s ( 0.00s elapsed)

Total time 9.31s ( 5.25s elapsed)

...

Here we see that one spark was created and converted into work for a real thread.
A total of 9.31 seconds worth of work was done in 5.25 seconds of wall clock time
indicating a reasonable degree of parallel execution. A ThreadScope trace of this
execution is shown in Figure 6 which clearly indicates parallel activity on two
threads.

Fig. 6. A ThreadScope trace showing a lucky parallelization

However, it is a Very Bad Idea to rely on the evaluation order of + for the
performance (or correctness) of a program. The Haskell language does not define
the evaluation order of the left and right hand arguments of + and the compiler
is free to transform a + b to b + a. What we really need to be able to specify
what work the main thread should do first. We can use the pseq function from
the Control.Monad module for this purpose. The expression a ‘pseq‘ b evaluates
a and then returns b. We can use this function to specify what work the main
thread should do first (as the first argument of pseq) and we can then return the



result of the overall computation in the second argument without worrying about
things like the evaluation order of +. This is how we can re-write ParFibSumEuler

with pseq:

1 parSumFibEuler :: Int −> Int −> Int

2 parSumFibEuler a b
3 = f ‘par‘ (e ‘pseq‘ (e + f))
4 where

5 f = fib a
6 e = sumEuler b

This program still gives a roughly 2X speedup as does the following version
which has the arguments to + reversed but the use of pseq still ensures that the
main thread works on sumEuler before it computes fib (which will hopefully have
been computed by a speculatively created thread):

1 parSumFibEuler :: Int −> Int −> Int

2 parSumFibEuler a b
3 = f ‘par‘ (e ‘pseq‘ (f + e))
4 where

5 f = fib a
6 e = sumEuler b

An execution trace for this program is shown in Figure 7.

thread1 eval f + e

eval f

f `par` (e `pseq` (f + e))

eval e

thread2 

spark for f

created

spark for f

instantiated onto thread2

Fig. 7. A correct parallelization which is not dependent on the evaluation order of +

4.1 Weak Head Normal Form (WHNF)

The program below is a variant of the fib-Euler program in which each parallel
workload involves mapping an operation over a list.



1 module Main
2 where

3 import System.Time
4 import Control.Parallel
5

6 fib :: Int −> Int

7 fib 0 = 0
8 fib 1 = 1
9 fib n = fib (n−1) + fib (n−2)

10

11 mapFib :: [Int]
12 mapFib = map fib [37, 38, 39, 40]
13

14 mkList :: Int −> [Int]
15 mkList n = [1..n−1]
16

17 relprime :: Int −> Int −> Bool

18 relprime x y = gcd x y == 1
19

20 euler :: Int −> Int

21 euler n = length (filter (relprime n) (mkList n))
22

23 sumEuler :: Int −> Int

24 sumEuler = sum . (map euler) . mkList
25

26 mapEuler :: [Int]
27 mapEuler = map sumEuler [7600, 7600]
28

29 parMapFibEuler :: Int

30 parMapFibEuler = mapFib ‘par‘
31 (mapEuler ‘pseq‘ (sum mapFib + sum mapEuler))
32

33 main :: IO ()
34 main
35 = putStrLn (show parMapFibEuler)

The intention here is to compute two independent functions in parallel:

– mapping the fib function over a list and then summing the result
– mapping the sumEuler function over a list and the summing the result

The main program then adds the two sums to produce the final result. We have
chosen arguments which result in a similar run-time for mapFib and mapEuler.

However, when we run this program with one and then two cores we observe
no speedup:

satnams@MSRC-LAGAVULIN ~/papers/afp2008/whnf

$ time WHNF2 +RTS -N1

263935901



real 0m48.086s

user 0m0.000s

sys 0m0.015s

satnams@MSRC-LAGAVULIN ~/papers/afp2008/whnf

$ time WHNF2 +RTS -N2

263935901

real 0m47.631s

user 0m0.000s

sys 0m0.015s

What went wrong? The problem is that the function mapFib does not return a
list with four values each fully evaluated to a number. Instead, the expression is
reduced to weak head normal form which only return the top level cons cell with
the head and the tail elements unevaluated as shown in Figure 8. This means
that almost no work is done in the parallel thread. the root of the problem here
is Haskell’s lazy evaluation strategy which comes into conflict with our desire
to control what is evaluated when to help gain performance through parallel
execution.

:

fib 37 map fib [38, 39, 40]

Fig. 8. parFib evaluated to weak head normal form (WHNF)

To fix this problem we need to somehow force the evaluation of the list. We
can do this by defining a function that iterates over each element of the list and
then uses each element as the first argument to pseq which will cause it to be
evaluated to a number:

1 forceList :: [a] −> ()
2 forceList [] = ()
3 forceList (x:xs) = x ‘pseq‘ forceList xs

Using this function we can express our requirement to evaluate the mapFib

function fully to a list of numbers rather than to just weak head normal form:

1 module Main
2 where

3 import Control.Parallel
4

5 fib :: Int −> Int

6 fib 0 = 0
7 fib 1 = 1



8 fib n = fib (n−1) + fib (n−2)
9

10 mapFib :: [Int]
11 mapFib = map fib [37, 38, 39, 40]
12

13 mkList :: Int −> [Int]
14 mkList n = [1..n−1]
15

16 relprime :: Int −> Int −> Bool

17 relprime x y = gcd x y == 1
18

19 euler :: Int −> Int

20 euler n = length (filter (relprime n) (mkList n))
21

22 sumEuler :: Int −> Int

23 sumEuler = sum . (map euler) . mkList
24

25 mapEuler :: [Int]
26 mapEuler = map sumEuler [7600, 7600]
27

28 parMapFibEuler :: Int

29 parMapFibEuler = (forceList mapFib) ‘par‘
30 (forceList mapEuler ‘pseq‘ (sum mapFib + sum mapEuler))
31

32 forceList :: [a] −> ()
33 forceList [] = ()
34 forceList (x:xs) = x ‘pseq‘ forceList xs
35

36 main :: IO ()
37 main
38 = putStrLn (show parMapFibEuler)

This gives the desired performance which shows the work of mapFib is done in
parallel with the work of mapEuler:

satnams@MSRC-LAGAVULIN ~/papers/afp2008/whnf

$ time WHNF3 +RTS -N1

263935901

real 0m47.680s

user 0m0.015s

sys 0m0.000s

satnams@MSRC-LAGAVULIN ~/papers/afp2008/whnf

$ time WHNF3 +RTS -N2

263935901

real 0m28.143s

user 0m0.000s



sys 0m0.000s

Question. What would be the effect on performance if we omitted the call of
forceList on mapEuler?

An important aspect of how pseq works is that it evaluates its first argument
to weak head normal formal. This does not fully evaluate an expression e.g. for
an expression that constructs a list out of a head and a tail expression (a CONS
expression) pseq will not evaluate the head and tail sub-expressions.

Haskell also defines a function called seq but the compiler is free to swap the
arguments of seq which means the user can not control evaluation order. The
compiler has primitive support for pseq and ensures the arguments are never
swapped and this function should always be preferred over seq for parallel pro-
grams.

4.2 Divide and conquer

Exercise 1: Parallel quicksort. The program below shows a sequential imple-
mentation of a quicksort algorithm. Use this program as a template to write a
parallel quicksort function. The main body of the program generates a pseudo-
random list of numbers and then measures the time taken to build the input list
and then to perform the sort and then add up all the numbers in the list.

1 module Main
2 where

3 import System.Time
4 import Control.Parallel
5 import System.Random

6

7 −− A sequential quicksort
8 quicksort :: Ord a => [a] −> [a]
9 quicksort [] = []

10 quicksort (x:xs) = losort ++ x : hisort
11 where

12 losort = quicksort [y | y <− xs, y < x]
13 hisort = quicksort [y | y <− xs, y >= x]
14

15 secDiff :: ClockTime −> ClockTime −> Float

16 secDiff (TOD secs1 psecs1) (TOD secs2 psecs2)
17 = fromInteger (psecs2 − psecs1) / 1e12 + fromInteger (secs2 − secs1)
18

19 main :: IO ()
20 main
21 = do t0 <− getClockTime
22 let input = (take 20000 (randomRs (0,100) (mkStdGen 42)))::[Int]
23 seq (forceList input) (return ())
24 t1 <− getClockTime
25 let r = sum (quicksortF input)
26 seq r (return ()) −− Force evaluation of sum
27 t2 <− getClockTime



28 −− Write out the sum of the result.
29 putStrLn (’’Sum of sort: ’’ ++ show r)
30 −− Write out the time taken to perform the sort.
31 putStrLn (’’Time to sort: ’’ ++ show (secDiff t1 t2))

The performance of a parallel Haskell program can sometimes be improved
by reducing the number of garbage collections that occur during execution and
a simple way of doing this is to increase the heap size of the program. The size
of the heap is specified has an argument to the run-time system e.g. -K100M

specifies a 100MB stack and -H800M means use a 800MB heap.

satnams@msrc-bensley /cygdrive/l/papers/afp2008/quicksort

$ QuicksortD +RTS -N1 -H800M

Sum of sort: 50042651196

Time to sort: 4.593779

satnams@msrc-bensley /cygdrive/l/papers/afp2008/quicksort

$ QuicksortD +RTS -N2 -K100M -H800M

Sum of sort: 50042651196

Time to sort: 2.781196

You should consider using par and pseq to try and compute the sub-sorts in
parallel. This in itself may not lead to any performance improvement and you
should then ensure that the parallel sub-sorts are indeed doing all the work you
expect them to do (e.g. consider the effect of lazy evaluation). You may need to
write a function to force the evaluation of sub-expressions.

You can get some idea of how well a program has been parallelized and how
much time is taken up with garbage collection by using the runtime -s flag to
dump some statistics to the standard output. We can also enable GHC’s parallel
garbage collection and disable load balancing for better cache behaviour with
the flags -qg0 -qb.

$ ./QuicksortD.exe +RTS -N2 -K100M -H300M -qg0 -qb -s

After execution of a parallel version of quicksort you can look at the end of the
file n2.txt to see what happened:

.\QuicksortD.exe +RTS -N2 -K100M -H300M -qg0 -qb -s

1,815,932,480 bytes allocated in the heap

242,705,904 bytes copied during GC

55,709,884 bytes maximum residency (4 sample(s))

8,967,764 bytes maximum slop

328 MB total memory in use (2 MB lost due to fragmentation)

Generation 0: 10 collections, 9 parallel, 1.62s, 0.83s elapsed

Generation 1: 4 collections, 4 parallel, 1.56s, 0.88s elapsed

Parallel GC work balance: 1.29 (60660834 / 46891587, ideal 2)



Task 0 (worker) : MUT time: 2.34s ( 3.55s elapsed)

GC time: 0.91s ( 0.45s elapsed)

Task 1 (worker) : MUT time: 1.55s ( 3.58s elapsed)

GC time: 0.00s ( 0.00s elapsed)

Task 2 (worker) : MUT time: 2.00s ( 3.58s elapsed)

GC time: 2.28s ( 1.25s elapsed)

Task 3 (worker) : MUT time: 0.00s ( 3.59s elapsed)

GC time: 0.00s ( 0.00s elapsed)

SPARKS: 7 (7 converted, 0 pruned)

INIT time 0.00s ( 0.03s elapsed)

MUT time 5.89s ( 3.58s elapsed)

GC time 3.19s ( 1.70s elapsed)

EXIT time 0.00s ( 0.02s elapsed)

Total time 9.08s ( 5.31s elapsed)

%GC time 35.1% (32.1% elapsed)

Alloc rate 308,275,009 bytes per MUT second

Productivity 64.9% of total user, 110.9% of total elapsed

This execution of quicksort spent 35.1% of its time in garbage collection. The
work of the sort was shared out amongst two threads although not evenly. The
MUT time gives an indication of how much time was spent performing compu-
tation. Seven sparks were created and each of them was evaluated.

5 Explicit Concurrency

Writing semi-implicitly parallel programs can sometimes help to parallelize pure
functional programs but it does not work when we want to parallelize stateful
computations in the IO monad. For that we need to write explicitly threaded
programs. In this section we introduce Haskell’s mechanisms for writing explic-
itly concurrent programs. Haskell presents explicit concurrency features to the
programmer via a collection of library functions rather than adding special syn-
tactic support for concurrency and all the functions presented in this section are
exported by this module.

5.1 Creating Haskell Threads

The basic functions for writing explicitly concurrent programs are exported by
the Control.Concurrent which defines an abstract type ThreadId to allow the identi-



fication of Haskell threads (which should not be confused with operating system
threads). A new thread may be created for any computation in the IO monad
which returns an IO unit result by calling the forkIO function:

1 forkIO :: IO () −> IO ThreadId

Why does the forkIO function take an expression in the IO monad rather
than taking a pure functional expression as its argument? The reason for this is
that most concurrent programs need to communicate with each other and this
is done through shared synchronized state and these stateful operations have to
be carried out in the IO monad.

One important thing to note about threads that are created by calling forkIO

is that the main program (the parent thread) will not automatically wait for the
child threads to terminate.

Sometimes it is necessary to use a real operating system thread and this can
be achieved using the forkOS function:

1 forkOS :: IO () −> IO ThreadId

Threads created by this call are bound to a specific operating system thread
and this capability is required to support certain kinds of foreign calls made by
Haskell programs to external code.

5.2 MVars

To facilitate communication and synchronization between threads Haskell pro-
vides MVars (“mutable variables”) which can be used to atomically communicate
information between threads. MVars and their associated operations are exported
by the module Control.Concurrent.MVar. The run-time system ensures that the op-
erations for writing to and reading from MVars occur atomically. An MVar may
be empty or it may contain a value. If a thread tries to write to an occupied
MVar it is blocked and it will be rewoken when the MVar becomes empty at which
point it can try again to atomically write a value into the MVar. If more than
one thread is waiting to write to an MVar then the system uses a first-in first-out
scheme to wake up just the longest waiting thread. If a thread tries to read from
an empty MVar it is blocked and rewoken when a value is written into the MVar

when it gets a chance to try and atomically read the new value. Again, if more
than one thread is waiting to read from an MVar the run-time system will only
wake up the longest waiting thread.

Operations are provided to create an empty MVar, to create a new MVar with
an initial value, to remove a value from an MVar, to observe the value in an MVar

(plus non-blocking variants) as well as several other useful operations.

1 data MVar a
2

3 newEmptyMVar :: IO (MVar a)
4 newMVar :: a −> IO (MVar a)
5 takeMVar :: MVar a −> IO a
6 putMVar :: MVar a −> a −> IO ()



7 readMVar :: MVar a −> IO a
8 tryTakeMVar :: MVar a −> IO (Maybe a)
9 tryPutMVar :: MVar a −> a −> IO Bool

10 isEmptyMVar :: MVar a −> IO Bool

11 −− Plus other functions

One can use a pair of MVars and the blocking operations putMVar and takeMVar

to implement a rendezvous between two threads.

1 module Main
2 where

3 import Control.Concurrent
4 import Control.Concurrent.MVar
5

6 threadA :: MVar Int −> MVar Float −> IO ()
7 threadA valueToSendMVar valueReceiveMVar
8 = do −− some work
9 −− now perform rendezvous by sending 72

10 putMVar valueToSendMVar 72 −− send value
11 v <− takeMVar valueReceiveMVar
12 putStrLn (show v)
13

14 threadB :: MVar Int −> MVar Float −> IO ()
15 threadB valueToReceiveMVar valueToSendMVar
16 = do −− some work
17 −− now perform rendezvous by waiting on value
18 z <− takeMVar valueToReceiveMVar
19 putMVar valueToSendMVar (1.2 ∗ z)
20 −− continue with other work
21

22 main :: IO ()
23 main
24 = do aMVar <− newEmptyMVar
25 bMVar <− newEmptyMVar
26 forkIO (threadA aMVar bMVar)
27 forkIO (threadB aMVar bMVar)
28 threadDelay 1000 −− wait for threadA and threadB to finish (sleazy)

Exercise 2: Re-write this program to remove the use of threadDelay by using
some other more robust mechanism to ensure the main thread does not complete
until all the child threads have completed.

1 module Main
2 where

3 import Control.Parallel
4 import Control.Concurrent
5 import Control.Concurrent.MVar
6

7 fib :: Int −> Int

8 −− As before
9



10 fibThread :: Int −> MVar Int −> IO ()
11 fibThread n resultMVar
12 = putMVar resultMVar (fib n)
13

14 sumEuler :: Int −> Int

15 −− As before
16

17 s1 :: Int

18 s1 = sumEuler 7450
19

20 main :: IO ()
21 main
22 = do putStrLn ”explicit SumFibEuler”
23 fibResult <− newEmptyMVar
24 forkIO (fibThread 40 fibResult)
25 pseq s1 (return ())
26 f <− takeMVar fibResult
27 putStrLn (”sum: ” ++ show (s1+f))

The result of running this program with one and two threads is:

satnams@MSRC-1607220 ~/papers/afp2008/explicit

$ time ExplicitWrong +RTS -N1

explicit SumFibEuler

sum: 119201850

real 0m40.473s

user 0m0.000s

sys 0m0.031s

satnams@MSRC-1607220 ~/papers/afp2008/explicit

$ time ExplicitWrong +RTS -N2

explicit SumFibEuler

sum: 119201850

real 0m38.580s

user 0m0.000s

sys 0m0.015s

To fix this problem we must ensure the computation of fib fully occurs inside
the fibThread thread which we do by using pseq.

1 module Main
2 where

3 import Control.Parallel
4 import Control.Concurrent
5 import Control.Concurrent.MVar
6

7 fib :: Int −> Int

8 −− As before



9

10 fibThread :: Int −> MVar Int −> IO ()
11 fibThread n resultMVar
12 = do pseq f (return ()) −− Force evaluation in this thread
13 putMVar resultMVar f
14 where

15 f = fib n
16

17 sumEuler :: Int −> Int

18 −− As before
19

20 s1 :: Int

21 s1 = sumEuler 7450
22

23 main :: IO ()
24 main
25 = do putStrLn ”explicit SumFibEuler”
26 fibResult <− newEmptyMVar
27 forkIO (fibThread 40 fibResult)
28 pseq s1 (return ())
29 f <− takeMVar fibResult
30 putStrLn (”sum: ” ++ show (s1+f))

Writing programs with MVars can easily lead to deadlock e.g. when one thread
is waiting for a value to appear in an MVar but no other thread will ever write
a value into that MVar. Haskell provides an alternative way for threads to syn-
chronize without using explicit locks through the use of software transactional

memory (STM) which is accessed via the module Control.Concurrent.STM. A sub-
set of the declarations exposed by this module are shown below.

1 data STM a −− A monad supporting atomic memory transactions
2 atomically :: STM a −> IO a −− Perform a series of STM actions atomically
3 retry :: STM a −− Retry current transaction from the beginning
4 orElse :: STM a −> STM a −> STM a −− Compose two transactions
5 data TVar a −− Shared memory locations that support atomic memory operations
6 newTVar :: a −> STM (TVar a) −− Create a new TVar with an initial value
7 readTVar :: TVar a −> STM a −− Return the current value stored in a TVar
8 writeTVar :: TVar a −> a −> STM () −− Write the supplied value into a TVar

Software transactional memory works by introducing a special type of shared
variable called a TVar rather like a MVar which is used only inside atomic blocks.
Inside an atomic block a thread can write and read TVars however outside an
atomic block TVars can only be created and passed around around but not read or
written. These restrictions are enforced by providing read and write operations
that work in the STM monad. The code inside an atomic block is executed as if
it were an atomic instruction. One way to think about atomic blocks is to assume
that there is one special global lock available and every atomic block works by
taking this lock, executing the code in the atomic block, and then releasing this
lock. Functionally, it should appear as if no other thread is running in parallel
(or no other code is interleaved) with the code in an atomic block. In reality the



system does allow such parallel and interleaved execution through the use of a
log which is used to roll back the execution of blocks that have conflicting views
of shared information.

To execute an atomic block the function atomically takes a computation in
the STM monad and executes it in the IO monad.

To help provide a model for how STM works in Haskell an example is shown
in Figures 9 and 10 which illustrates how two threads modify a shared variable
using Haskell STM. It is important to note that this is just a model and an actual
implementation of STM is much more sophisticated.

Thread 1 tries to atomically increment a shared TVar:

1 atomically (do v <− readTVar bal
2 writeTVar bal (v+1)
3 )

Thread 2 tries to atomically subtract three from a shared TVar:

1 atomically (do v <− readTVar bal
2 writeTVar bal (v−3)
3 )

Figure 9(a) shows a shared variable bal with an initial value of 7 and two
threads which try to atomically read and update the value of this variable.
Thread 1 has an atomic block which atomically increments the value represented
by bal. Thread 2 tries to atomically subtract 3 from the value represented by bal.
Examples of valid executions include the case where (a) the value represented
by bal is first incremented and then has 3 subtracted yielding the value 5; or (b)
the case where bal has 3 subtracted and then 1 added yielding the value 6.

Figure 9(b) shows each thread entering its atomic block and a transaction
log is created for each atomic block to record the initial value of the shared
variables that are read and to record deferred updates to the shared variable
which succeed at commit time if the update is consistent.

Figure 9(c) shows thread 2 reading a value of 7 from the shared variable and
this read is recorded its local transaction log.

Figure 9(d) shows that thread 1 also observes a value of 7 from the shared
variable which is stored in its transaction log.

Figure 9(e) shows thread 1 updating its view of the shared variable by incre-
menting it by 1. This update is made to the local transaction log and not to the
shared variable itself. The actual update is deferred until the transaction tries
to commit when either it will succeed and the shared variable will be updated
or it may fail in which case the log is reset and the transaction is re-run.

Figure 9(f) shows thread 2 updating its view of the shared variable to 4 (i.e.
7-3). Now the two threads have inconsistent views of what the value of the shared
variable should be.

Figure 9(g) shows thread 1 successfully committing its changes. At commit
time the run-time system checks to see if the log contains a consistent value for
bal i.e. is the value that has been read in the log the same as the value of the
actual bal shared variable? In this case it is i.e. both are 7 so the updated value 8



bal :: TVar Int

7

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

bal :: TVar Int

7

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

What Value

Read

Value

Written

bal

transaction log

What Value

Read

Value

Written

bal

transaction log

(a) Two threads each with an atomic block and

      one shared variable

(b) Both threads enter their atomic block

      and a log is created to track the use of bal

bal :: TVar Int

7

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

What Value

Read

Value

Written

bal

transaction log

What Value

Read

Value

Written

bal

transaction log

7

(c) Thread 2 reads the value 7 from the shared

      variable and this read is recorded in its log

bal :: TVar Int

7

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

What Value

Read

Value

Written

bal

transaction log

What Value

Read

Value

Written

bal

transaction log

77

(d) Thread 1 also reads the value 7 from the shared

      variable and this read is recorded in its log

bal :: TVar Int

7

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

What Value

Read

Value

Written

bal

transaction log

What Value

Read

Value

Written

bal

transaction log

77 8

(e) Thread 1 updates its local view of the 

      value of bal to 8 which is put in its own log 

bal :: TVar Int

7

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

What Value

Read

Value

Written

bal

transaction log

What Value

Read

Value

Written

bal

transaction log

77 8 4

(f) Thread 2 updates its local view of the 

      value of bal to 4 which is put in its own log 

bal :: TVar Int

8

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

What Value

Read

Value

Written

bal

transaction log

7 4

• Thread1 commits

• Shared bal  variable is updated

• Transaction log is discarded

(g) Thread 1 finoshes and updates the shared

      bal variable and discards its log.

bal :: TVar Int

8

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

What Value

Read

Value

Written

transaction log

• Attempt to commit thread 2 fails, 

   because value in memory is not

   consistent with the value in the log

• Transaction re-runs from the beginning

(h) Thread 2 tries to commit its changes which are

      now inconsistent with the updated value of bal  

Fig. 9. A model for STM in Haskell



bal :: TVar Int

8

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

What Value

Read

Value

Written

transaction log

8bal

(i) Thread 2 re-executes its atomic block from

      the start, this time seeing a value of 8 for bal  

bal :: TVar Int

8

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

What Value

Read

Value

Written

transaction log

8bal 5

(j) Thread 2 updates it local value for bal   

bal :: TVar Int

5

Thread 1

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v+1)

4                        )

Thread 2

1  atomically (do

2                               v <- readTVar bal

3                               writeTVar bal (v-3)

4                        )

(k) Thread 2 now successfully commits its updates 

Fig. 10. A model for STM in Haskell (continued)

is written in the shared value. These sequence of events occur atomically. Once
the commit succeeds the transaction log is discarded and the program moves
onto the next statement after the atomic block.

Figure 9(h) shows how the commit attempt made by thread 2 fails. This is
because thread 2 has recorded a value of 7 for bal but the actual value of bal is
8. This causes the run-time system to erase the values in the log and restart the
transaction which will cause it to see the updated value of bal.

Figure 10(i) shows how thread 2 re-executes its atomic block but this time
observing the value of 8 for bal.

Figure 10(j) shows thread 2 subtracting 3 from the recorded value of bal to
yield an updated value of 5.

Figure 10(k) shows that thread 2 can now successfully commit with an update
of 5 to the shared variable bal. Its transaction log is discarded.

The retry function allows the code inside an atomic block to abort the current
transaction and re-execute it from the beginning using a fresh log. This allows
us to implement modular blocking. This is useful when one can determine that a
transaction can not commit successfully. The code below shows how a transaction
can try to remove money from an account with a case that makes the transaction
re-try when there is not enough money in the account. This schedules the atomic
block to be run at a later date when hopefully there will be enough money in
the account.

1 withdraw :: TVar Int −> Int −> STM ()
2 withdraw acc n
3 = do { bal <− readTVar acc;
4 if bal < n then retry;



5 writeTVar acc (bal−n)
6 }

The orElse function allows us to compose two transactions and allows us to
implement the notion of choice. If one transaction aborts then the other transac-
tion is executed. If it also aborts then the whole transaction is re-executed. The
code below tries to first withdraw money from account a1 and if that fails (i.e.
retry is called) it then attempts to withdraw money from account a2 and then
it deposits the withdrawn money into account b. If that fails then the whole
transaction is re-run.

1 atomically (do { withdraw a1 3
2 ‘orElse‘
3 withdraw a2 3;
4 deposit b 3 }
5 )

To illustrate the use of software transaction memory we outline how to rep-
resent a queue which can be shared between Haskell threads. We shall represent
a shared queue with a fixed sized array. A thread that writes to a queue that is
full (i.e. the array is full) is blocked and a thread that tries to read from a queue
that is empty (i.e. the array is empty) is also blocked. The data-type declaration
below for an STM-based queue uses transactional variables to record the head
element, the tail element, the empty status and the elements of the array that
is used to back to queue.

1 data Queue e
2 = Queue
3 { shead :: TVar Int,
4 stail :: TVar Int,
5 empty :: TVar Bool,
6 sa :: Array Int (TVar e)
7 }

A picture of an empty queue using this representation is shown in Figure 11.

head

tail

0

empty: True
1 2 3 4 5 6

Fig. 11. An empty queue

Exercise. Implement the following operations on this STM-based queue rep-
resentation.



– Create a new empty queue by defining a function with the type:

1 newQueue :: IO (Queue a)

– Add an element to the queue by defining a function with the type:

enqueue :: Queue a −> a −> IO ()

If the queue is full the caller should block until space becomes available and
the value can be successfully written into the queue.

– Remove an element from the queue and return its value:

dequeue :: Queue a −> IO a

If the queue is empty the caller should block until there is an item available
in the queue for removal.

– Attempt to read a value from a queue and if it is empty then attempt to
read a value from a different queue. The caller should block until a value can
be obtained from one of the two queues.

dequeueEither :: Queue a −> Queue a −> IO a

6 Nested data parallelism

This chapter was written in collaboration with Manuel Chakravarty,
Gabriele Keller, and Roman Leshchinskiy (University of New South
Wales, Sydney).

The two major ways of exploiting parallelism that we have seen so far each have
their disadvantages:

– The par/seq style is semantically transparent, but it is hard to ensure
that the granularity is consistently large enough to be worth spawning new
threads.

– Explicitly-forked threads, communicating using MVars or STM give the pro-
grammer precise control over granularity, but at the cost of a new layer of
semantic complexity: there are now many threads, each mutating shared
memory. Reasoning about all the inter leavings of these threads is hard,
especially if there are a lot of them.

Furthermore, neither is easy to implement on a distributed-memory machine, be-
cause any pointer can point to any value, so spatial locality is poor. It is possible
to support this anarchic memory model on a distributed-memory architecture,
as Glasgow Parallel Haskell has shown [3], but it is very hard to get reliable,
predictable, and scalable performance. In short, we have no good performance

model, which is a Bad Thing if your main purpose in writing a parallel program
is to improve performance.

In this chapter we will explore another parallel programming paradigm: data

parallelism. The basic idea of data parallelism is simple:



Do the same thing, in parallel, to every element of a large collection of

values.

Not every program can be expressed in this way, but data parallelism is very
attractive for those that can, because:

– Everything remains purely functional, like par/seq, so there is no new se-
mantic complexity.

– Granularity is very good: to a first approximation, we get just one thread
(with its attendant overheads) for each physical processor, rather than one
thread for each data item (of which there are zillions).

– Locality is very good: the data can be physically partitioned across the pro-
cessors without random cross-heap pointers.

As a result, we get an excellent performance model.

6.1 Flat data parallelism

Data parallelism sounds good doesn’t it? Indeed, data-parallel programming is
widely and successfully used in mainstream languages such as High-Performance
Fortran. However, there’s a catch: the application has to fit the data-parallel
programming paradigm, and only a fairly narrow class of applications do so.
But this narrow-ness is largely because mainstream data-parallel technology only
supports so-called flat data parallelism. Flat data parallelism works like this

Apply the same sequential function f, in parallel, to every element of a
large collection of values a. Not only is f sequential, but it has a similar
run-time for each element of the collection.

Here is how we might write such a loop in Data Parallel Haskell:

sumSq :: [: Float :] -> Float

sumSq a = sumP [: x*x | x <- a :]

The data type [: Float :] is pronounced “parallel vector of Float”. We use a
bracket notation reminiscent of lists, because parallel vectors are similar to lists
in that consist of an sequence of elements. Many functions available for lists are
also available for parallel vectors. For example

mapP :: (a -> b) -> [:a:] -> [:b:]

zipWithP :: (a -> b -> c) -> [:a:] -> [:b:] -> [:c:]

sumP :: Num a => [:a:] -> a

(+:+) :: [:a:] -> [:a:] -> [:a:]

filterP :: (a -> Bool) -> [:a:] -> [:a:]

anyP :: (a -> Bool) -> [:a:] -> Bool

concatP :: [:[:a:]:] -> [:a:]

nullP :: [:a:] -> Bool

lengthP :: [:a:] -> Int

(!:) :: [:a:] -> Int -> a -- Zero-based indexing



These functions, and many more, are exported by Data.Array.Parallel. Just
as we have list comprehensions, we also have parallel-array comprehensions, of
which one is used in the above example. But, just as with list comprehensions,
array comprehensions are syntactic sugar, and we could just as well have written

sumSq :: [: Float :] -> Float

sumSq a = sumP (mapP (\x -> x*x) a)

Notice that there is no forkIO, and no par. The parallelism comes implicitly
from use of the primitives operating on parallel vectors, such as mapP, sumP, and
so on.

Flat data parallelism is not restricted to consuming a single array. For ex-
ample, here is how we might take the product of two vectors, by multiplying
corresponding elements and adding up the results:

vecMul :: [:Float:] -> [:Float:] -> Float

vecMul a b = sumP [: x*y | x <- a | y <- b :]

The array comprehension uses a second vertical bar “|” to indicate that we
interate over b in lockstep with a. (This same facility is available for ordinary
list comprehensions too.) As before the comprehension is just syntactic sugar,
and we could have equivalently written this:

vecMul :: [:Float:] -> [:Float:] -> Float

vecMul a b = sumP (zipWithP (*) a b)

6.2 Pros and cons of flat data parallelism

If you can express your program using flat data parallelism, we can implement
it really well on a N-processor machine:

– Divide a into N chunks, one for each processor.
– Compile a sequential loop that applies f successively to each element of a

chunk
– Run this loop on each processor
– Combine the results.

Notice that the granularity is good (there is one large-grain thread per proces-
sor); locality is good (the elements of a are accessed successively); load-balancing
is good (each processor does 1/N of the work). Furthermore the algorithm works
well even if f itself does very little work to each element, a situation that is a
killer if we spawn a new thread for each invocation of f.

In exchange for this great implementation, the programming model is hor-
rible: all the parallelism must come from a single parallel loop. This restriction
makes the programming model is very non-compositional. If you have an existing
function g written using the data-parallel mapP, you can’t call g from another
data-parallel map (e.g. mapP g a), because the argument to mapP must be a
sequential function.



Furthermore, just as the control structure must be flat, so must the data
structure. We cannot allow a to contain rich nested structure (e.g. the elements
of a cannot themselves be vectors), or else similar-run-time promise of f could
not be guaranteed, and data locality would be lost.

6.3 Nested data parallelism

In the early 90’s, Guy Blelloch described nested data-parallel programming. The
idea is similar:

Apply the same function f, in parallel, to every element of a large col-
lection of values a. However, f may itself be a (nested) data-parallel
function, and does not need to have a similar run-time for each element
of a.

For example, here is how we might multiply a matrix by a vector:

type Vector = [:Float:]

type Matrix = [:Vector:]

matMul :: Matrix -> Vector -> Vector

matMul m v = [: vecMul r v | r <- m :]

That is, for each row of the matrix, multiply it by the vector v using vecMul.
Here we are calling a data-parallel function vecMul from inside a data-parallel
operation (the comprehension in matMul).

In very regular examples like this, consisting of visible, nested loops, modern
FORTRAN compilers can collapse a loop nest into one loop, and partition the
loop across the processors. It is not entirely trivial to do this, but it is well within
the reach of compiler technology. But the flattening process only works for the
simplest of cases. A typical complication is the matrices may be sparse.

A sparse vector (or matrix) is one in which almost all the elements are zero.
We may represent a sparse vector by a (dense) vector of pairs:

type SparseVector = [: (Int, Float) :]

In this representation, only non-zero elements of the vector are represented, by
a pair of their index and value. A sparse matrix can now be represented by a
(dense) vector of rows, each of which is a sparse vector:

type SparseMatrix = [: SparseVector :]

Now we may write vecMul and matMul for sparse arguments thus1:

1 Incidentally, although these functions are very short, they are important in some
applications. For example, multiplying a sparse matrix by a dense vector (i.e.
sparseMatMul) is the inner loop of the NAS Conjugate Gradient benchmark, con-
suming 95% of runtime [4].



sparseVecMul :: SparseVector -> Vector -> Float

sparseVecMul sv v = sumP [: x * v!:i | (i,x) <- sv :]

sparseMatMul :: SparseMatrix -> Vector -> Vector

sparseMatMul sm v = [: sparseVecMul r v | r <- sm :]

We use the indexing operator (!:) to index the dense vector v. In this code,
the control structure is the same as before (a nested loop, with both levels being
data-parallel), but now the data structure is much less regular, and it is much

less obvious how to flatten the program into a single data-parallel loop, in such
a way that the work is evenly distributed over N processors, regardless of the
distribution of non-zero data in the matrix.

Blelloch’s remarkable contribution was to show that it is possible to take
any program written using nested data parallelism (easy to write but hard to
implement efficiently), and transform it systematically into a program that uses
flat data parallelism (hard to write but easy to implement efficiently). He did
this for a special-purpose functional language, NESL, designed specifically to
demonstrate nested data parallelism.

As a practical programming language, however, NESL is very limited: it
is a first-order language, it has only a fixed handful of data types, it is im-
plemented using an interpreter, and so on. Fortunately, in a series of papers,
Manuel Chakravarty, Gabriele Keller and Roman Leshchinskiy have generalized
Blelloch’s transformation to a modern, higher order functional programming
language with user-defined algebraic data types – in other words, Haskell. Data
Parallel Haskell is a research prototype implementation of all these ideas, in the
Glasgow Haskell Compiler, GHC.

The matrix-multiply examples may have suggested to you that Data Parallel
Haskell is intended primarily for scientific applications, and that the nesting
depth of parallel computations is statically fixed. However the programming
paradigm is much more flexible than that. In the rest of this chapter we will give
a series of examples of programming in Data Parallel Haskell, designed to help
you gain familiarity with the programming style.

Most (in due course, all) of these examples can be found at in the Darcs repos-
itory http://darcs.haskell.org/packages/ndp, in the sub-directory examples/.
You can also find a dozen or so other examples of data-parallel algorithms written
in NESL at http://www.cs.cmu.edu/~scandal/nesl/algorithms.html.

6.4 Word search

Here is a tiny version of a web search engine. A Document is a vector of words,
each of which is a string. The task is to find all the occurrences of a word
in a large collection of documents, returning the matched documents and the
matching word positions in those documents. So here is the type signature for
search:

type Document = [: String :]



type DocColl = [: Document :]

search :: DocColl -> String -> [: (Document, [:Int:]) :]

We start by solving an easier problem, that of finding all the occurrences of a
word in a single document:

wordOccs :: Document -> String -> [:Int:]

wordOccs d s = [: i | (i,s2) <- zipP [:1..lengthP d:] d

, s == s2 :]

Here we use a filter in the array comprehension, that selects just those pairs
(i,s2) for which s==s2. Because this is an array comprehension, the implied
filtering is performed in data parallel. The (i,s2) pairs are chosen from a vector
of pairs, itself constructed by zipping the document with the vector of its indices.
The latter vector [: 1..lengthP d :] is again analogous to the list notation
[1..n], which generate the list of values between 1 and n. As you can see, in
both of these cases (filtering and enumeration) Data Parallel Haskell tries hard
to make parallel arrays and vectors as notationally similar as possible.

With this function in hand, it is easy to build search:

search :: [: Document :] -> String -> [: (Document, [:Int:]) :]

search ds s = [: (d,is) | d <- ds

, let is = wordOccs d s

, not (nullP is) :]

6.5 Prime numbers

Let us consider the problem of computing the prime numbers up to a fixed
number n, using the sieve of Erathosthenes. You may know the cunning solution
using lazy evaluation, thus:

primes :: [Int]

primes = 2 : [x | x <- [3..]

, not (any (‘divides‘ x) (smallers x))]

where

smallers x = takeWhile (\p -> p*p <= x) primes

divides :: Int -> Int -> Bool

divides a b = b ‘mod‘ a == 0

(In fact, this code is not the sieve of Eratosthenes, as Melissa O’Neill’s elegant
article shows [5], but it will serve our purpose here.) Notice that when considering
a candidate prime x, we check that is is not divisible by any prime smaller than
the square root of x. This test involves using primes, the very list the definition
produces.

How can we do this in parallel? In principle we want to test a whole batch of
numbers in parallel for prime factors. So we must specify how big the batch is:



primesUpTo :: Int -> [: Int :]

primesUpTo 1 = [: :]

primesUpTo 2 = [: 2 :]

primesUpTo n = smallers +:+

[: x | x <- [: ns+1..n :]

, not (anyP (‘divides‘ x) smallers) :]

where

ns = intSqrt n

smallers = primesUpTo ns

As in the case of wordOccs, we use a boolean condition in a comprehension to
filter the candidate primes. This time, however, computing the condition itself
is a nested data-parallel computation (as it was in search). used here to filter
candidate primes x.

To compute smallers we make a recursive call to primesUpTo. This makes
primesUpTo unlike all the previous examples: the depth of data-parallel nesting is
determined dynamically, rather than being statically fixed to depth two. It should
be clear that the structure of the parallelism is now much more complicated than
before, and well out of the reach of mainstream flat data-parallel systems. But
it has abundant data parallelism, and will execute with scalable performance on
a parallel processor.

6.6 Quicksort

In all the examples so far the “branching factor” has been large. That is, each
data-parallel operations has worked on a large collection. What happens if the
collection is much smaller? For example, a divide-and-conquer algorithm usually
divides a problem into a handful (perhaps only two) sub-problems, solves them,
and combines the results. If we visualize the tree of tasks for a divide-and-conquer
algorithm, it will have a small branching factor at each node, and may be highly
un-balanced.

Is this amenable to nested data parallelism? Yes, it is. Quicksort is a classic
divide-and-conquer algorithm, and one that we have already studied. Here it is,
expressed in Data Parallel Haskell:

qsort :: [: Double :] -> [: Double :]

qsort xs | lengthP xs <= 1 = xs

| otherwise = rs!:0 +:+ eq +:+ rs!:1

where

p = xs !: (lengthP xs ‘div‘ 2)

lt = [:x | x <- xs, x < p :]

eq = [:x | x <- xs, x == p:]

gr = [:x | x <- xs, x > p :]

rs = mapP qsort [: lt, gr :]

The crucial step here is the use of mapP on a two-element array [: lt, gr :].
This says “in data-parallel, apply qsort to lt and gr”. The fact that there are



only two elements in the vector does not matter. If you visualize the binary tree
of sorting tasks that quicksort generates, then each horizontal layer of the tree is
done in data-parallel, even though each layer consists of many unrelated sorting
tasks.

6.7 Barnes Hut

All our previous examples worked on simple flat or nested collections. Let’s now
have a look at an algorithm based on a more complex structure, in which the
elements of a parallel array come from a recursive and user-defined algebraic
data type.

In the following, we present an implementation2 of a simple version of the
Barnes-Hut n-body algorithm[7], which is a representative of an important class
of parallel algorithms covering applications like simulation and radiocity compu-
tations. These algorithms consist of two main steps: first, the data is clustered
in a hierarchical tree structure; then, the data is traversed according to the hi-
erarchical structure computed in the first step. In general, we have the situation
that the computations that have to be applied to data on the same level of the
tree can be executed in parallel. Let us first have a look at the Barnes-Hut al-
gorithm and the data structures that are required, before we discuss the actual
implementation in parallel Haskell.

An n-body algorithm determines the interaction between a set of particles by
computing the forces which act between each pair of particles. A precise solution
therefore requires the computations of n2 forces, which is not feasible for large
numbers of particles. The Barnes-Hut algorithm minimizes the number of force
calculations by grouping particles hierarchically into cells according to their spa-
tial position. The hierarchy is represented by a tree. This allows approximating
the accelerations induced by a group of particles on distant particles by using
the centroid of that group’s cell. The algorithm has two phases: (1) The tree
is constructed from a particle set, and (2) the acceleration for each particle is
computed in a down-sweep over the tree. Each particle is represented by a value
of type MassPoint, a pair of position in the two dimensional space and mass:

type Vec = (Double, Double)

type Area = (Vec, Vec)

type Mass = Double

type MassPoint = (Vec, Mass)

We represent the tree as a node which contains the centroid and a parallel array
of subtrees:

data Tree = Node MassPoint [:Tree:]

Notice that a Tree contains a parallel array of Tree.
Each iteration of bhTree takes the current particle set and the area in which

the particles are located as parameters. It first splits the area into four subareas

2 Our description here is based heavily on that in [6].
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Fig. 12. Hierarchical division of an area into subareas

subAs of equal size. It then subdivides the particles into four subsets according to
the subarea they are located in. Then, bhTree is called recursively for each subset
and subarea. The resulting four trees are the subtrees of the tree representing
the particles of the area, and the centroid of their roots is the centroid of the
complete area. Once an area contains only one particle, the recursion terminates.
Figure 12 shows such a decomposition of an area for a given set of particles, and
Figure 13 displays the resulting tree structure.

bhTree :: [:MassPnt:] -> Area -> Tree

bhTree p area = Node p [::]

bhTree ps area =

let

subAs = splitArea area

pgs = splitParticles ps subAs

subts = [: bhTree pg a| pg <- pgs | a <- subAs :]

cd = centroid [:mp | Node mp _ <- subts :]

in Node cd subts

The tree computed by bhTree is then used to compute the forces that act
on each particle by a function accels. It first splits the set of particles into
two subsets: fMps, which contains the particles far away (according to a given
criteria), and cMps, which contains those close to the centroid stored in the
root of the tree. For all particles in fMps, the acceleration is approximated by
computing the interaction between the particle and the centroid. Then, accels
is called recursively for with cMps and each of the subtrees. The computation
terminates once there are no particles left in the set.

accels:: Tree -> [:MassPoint:] -> [:Vec:]

accels _ [::] = [::]

accels (Node cd subts) mps =

let

(fMps, cMps) = splitMps mps

fAcs = [:accel cd mp | mp <- fMps:]

cAcs = [:accels t cMps| t <- subts:]

in combine farAcs closeAcs
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accel :: MassPoint -> MassPoint -> Vec

-- Given two particles, the function accel computes the

-- acceleration that one particle exerts on the other

The tree is both built and traversed level by level, i.e., all nodes in one level
of the tree are processed in a single parallel step, one level after the other. This
information is important for the compiler to achieve good data locality and load
balance, because it implies that each processor should have approximately the
same number of masspoints of each level. We can see the tree as having a se-
quential dimension to it, its depth, and a parallel dimension, the breadth, neither
of which can be predicted statically. The programmer conveys this information
to the compiler by the choice the data structure: By putting all subtrees into
a parallel array in the type definition, the compiler assumes that all subtrees
are going to be processed in parallel. The depth of the tree is modeled by the
recursion in the type, which is inherently sequential.

6.8 A performance model

One of the main advantages of the data parallel programming model is that it
comes with a performance model that lets us make reasonable predictions about
the behavior of the program on a parallel machine, including its scalability – that
is, how performance changes as we add processors. So what is this performance
model?



First, we must make explicit something we have glossed over thus far: data-
parallel arrays are strict. More precisely, if any element of a parallel array di-
verges, then all elements diverge3. This makes sense, because if we demand any
element of a parallel array then we must compute them all in data parallel; and
if that computation diverges we are justified in not returning any of them. The
same constraint means that we can represent parallel arrays very efficiently. For
example, an array of floats, [:Float:], is represented by a contiguous array of
unboxed floating-point numbers. There are no pointers, and iterating over the
array has excellent spatial locality.

In reasoning about performance, Blelloch [9] characterizes the work and depth

of the program:

– The work, W , of the program is the time it would take to execute on a single
processor.

– The depth, D, of the program is the time it would take to execute on an
infinite number processors, under the assumption that the additional pro-
cessors leap into action when (but only when) a mapP, or other data-parallel
primitive, is executed.

If you think of the unrolled data-flow diagram for the program, the work is the
number of nodes in the data-flow diagram, while the depth is the longest path
from input to output.

Of course, we do not have an infinite number of processors. Suppose instead
that we have P processors. Then if everything worked perfectly, the work be
precisely evenly balanced across the processors and the execution time T would
be W/P . That will not happen if the depth D is very large. So in fact, we have

W/P ≤ T ≤ W/P + L ∗ D

where L is a constant that grows with the latency of communication in the
machine. Even this is a wild approximation, because it takes no account of
bandwidth limitations. For example, between each of the recursive calls in the
Quicksort example there must be some data movement to bring together the
elements less than, equal to, and greater than the pivot. Nevertheless, if the net-
work bandwidth of the parallel machine is high (and on serious multiprocessors
it usually is) the model gives a reasonable approximation.

How can we compute work and depth? It is much easier to reason about
the work of a program in a strict setting than in a lazy one, because all sub-
expressions are evaluated. This is why the performance model of the data-parallel
part of DPH is more tractable than for Haskell itself.

The computation of depth is where we take account of data parallelism.
Figure 15 shows the equations for calculating the depth of a closed expression
e, where D[[e]] means “the depth of e”. These equations embody the following
ideas:

– By default execution is sequential. Hence, the depth of an addition is the
sum of the depths of its arguments.

3 What if the elements are pairs? See Leshchinskiy’s thesis for the details [8].



D[[k]] = 0 where k is a constant
D[[x]] = 0 where x is a variable

D[[e1 + e2]] = 1 + D[[e1]] + D[[e2]]

D[[if e1 then e2 else e3]] = D[[e1]] + D[[e2]] if e1 = True

= D[[e1]] + D[[e3]] if e1 = False

D[[let x=e in b]] = D[[b[e/x]]]

D[[e1 +:+ e2]] = 1 + D[[e1]] + D[[e2]]
D[[concatP e]] = 1 + D[[e]]
D[[mapP f e]] = 1 + D[[e]] + max

x∈e
D[[f x]]

D[[filterP f e]] = 1 + D[[e]] + D[[f ]]

D[[sumP e]] = 1 + D[[e]] + log(length(e))

Fig. 15. Depth model for closed expressions

– The parallel primitive mapP, and its relatives such as filterP, can take
advantage of parallelism, so the depth is the worst depth encountered for
any element.

– The parallel reduction primitive sumP, and its relatives, take time logarithmic
in the length of the array.

The rule for mapP dirctly embodies the idea that nested data parallelism is
flattened. For example, suppose e :: [:[:Float:]:]. Then, applying the rules
we see that

D[[mapP f (concatP e]] = 1 + D[[concatP e]] + max
x∈concatP eD[[f x]]

= 1 + 1 + D[[e]] + max
x∈concatP eD[[f x]]

= 2 + D[[e]] + max
xs∈e

max
x∈xs D[[f x]]

D[[mapP (mapP f) e]] = 1 + D[[e]] + max
xs∈e D[[mapP f xs]]

= 1 + D[[e]] + 1 + max
xs∈e

max
x∈xs D[[f x]]

= 2 + D[[e]] + max
xs∈e

max
x∈xs D[[f x]]

Notice that although the second case is a nested data-parallel computation, it
has the same depth expression as the first: the data-parallel nesting is flattened.

These calculations are obviously very approximate, certainly so far as con-
stant factors are concerned. For example, in the inequality for execution time,

W/P ≤ T ≤ W/P + L ∗ D

we do not know the value of the latency-related constant L. However, what we
are primarily looking for is the Asymptotic Scalability (AS) property:



A program has the Asymptotic Scalability property if D grows asymp-
totically more slowly than W , as the size of the problem increases.

If this is so then, for a sufficiently large problem and assuming sufficient network
bandwidth, performance should scale linearly with the number of processors.

For example, the functions sumSq and search both have constant depth, so
both have the AS property, and (assuming sufficient bandwidth) performance
should scale linearly with the number of processors after some fairly low thresh-
old.

For Quicksort, an inductive argument shows that the depth is logarithmic in
the size of the array, assuming the pivot is not badly chosen. So W = O(nlogn)
and D = O(logn), and Quicksort has the AS property.

For computing primes, the depth is smaller: D = O(loglogn). Why? Because

at every step we take the square root of n, so that at depth d we have n = 22
d

.
Almost all the work is done at the top level. The work at each level involves
comparing all the numbers between

√
n and n with each prime smaller than

√
n.

There are approximately
√

n/logn primes smaller than
√

n, so the total work is
roughly W = O(n3/2/logn). So again we have the AS property.

Leshchinskiy et al [10] give further details of the cost model.

6.9 How it works

NESL’s key insight is that it is possible to transform a program that uses nested

data-parallelism into one that uses only flat data parallelism. While this little
miracle happens behind the scenes, it is instructive to have some idea how it
works, just as a car driver may find some knowledge of internal combustion
engines even if he is not a skilled mechanic. The description here is necessarily
brief, but the reader may find a slightly more detailed overview in [11], and in
the papers cited there.

We call the nested-to-flat transformation the vectorization transform. It has
two parts:

– Transform the data so that all parallel arrays contain only primitive, flat
data, such as Int, Float, Double.

– Transform the code to manipulate this flat data.

To begin with, let us focus on the first of these topics. We may consider it as
the driving force, because nesting of data-parallel operations is often driven by
nested data structures.

Transforming the data As we have already discussed, a parallel array of
Float is represented by a contiguous array of honest-to-goodness IEEE floating
point numbers; and similarly for Int and Double. It is as if we could define the
parallel-array type by cases, thus:

data instance [: Int :] = PI Int ByteArray

data instance [: Float :] = PF Int ByteArray

data instance [: Double :] = PD Int ByteArray



In each case the Int field is the size of the array. These data declarations are
unusual because they are non-parametric: the representation of an array depends
on the type of the elements4.

Matters become even more interesting when we want to represent a parallel
array of pairs. We must not represent it as a vector of pointers to heap-allocated
pairs, scattered randomly around the address space. We get much better locality
if we instead represent it as a pair of arrays thus:

data instance [: (a,b) :] = PP [:a:] [:b:]

Note that elements of vectors are hyperstrict. What about a parallel array of
parallel arrays? Again, we must avoid a vector of pointers. Instead, the natural
representation is obtained by literally concatenating the (representation of) the
sub-vectors into one giant vector, together with a vector of indices to indicate
where each of the sub-vectors begins.

data instance [: [:a:] :] = PA [:Int:] [:a:]

By way of example, recall the data types for sparse matrices:

type SparseMatrix = [: SparseVector :]

type SparseVector = [: (Int, Float) :]

Now consider this tiny matrix, consisting of two short documents:

m :: SparseMatrix

m = [: [:(1,2.0), (7,1.9):], [:(3,3.0):] :]

This would be represented as follows:

PA [:0,2:] (PP [:1, 7, 3 :]

[:1.0, 1.9, 3.0:])

The array (just like the leaves) are themselves represented as byte arrays:

PA (PI 2 #<0x0,0x2>)

(PP (PI 3 #<0x1, 0x7, 0x3>)

(PF 3 #<0x9383, 0x92818, 0x91813>))

Here we have invented a fanciful notation for literal ByteArrays (not supported
by GHC, let alone Haskell) to stress the fact that in the end everything boils
down to literal bytes. (The hexadecimal encodings of floating point numbers are
also made up because the real ones have many digits!)

We have not discussed how to represent arrays of sum types (such as Bool,
Maybe, or lists), nor of function types — see [14] and [8] respectively.

4 None of this is visible to the programmer, but the data instance notation is in
fact available to the programmer in recent versions of GHC [12, 13]. Why? Because
GHC has a typed intermediate language so we needed to figure out how to give a
typed account of the vectorization transformation, and once that is done it seems
natural to offer it to the programmer. Furthermore, much of the low-level support
code for nested data parallelism is itself written in Haskell, and operates directly on
the post-vectorization array representation.



Vectorising the code As you can see, data structures are transformed quite
radically by the vectorisation transform, and it follows that the code must be
equally radically transformed. Space precludes proper treatment here; a good
starting point is Keller’s thesis [15].

A data-parallel program has many array-valued sub-expressions. For exam-
ple, in sumSq we see

sumSq a = sumP [: x*x | x <- a :]

However, if a is a big array, it would be silly to compute a new, equally big array
of squares, only to immediately consume it with sumP. It would be much better
for each processor to zip down its chunk of a, adding the square of each element
into a running total, and for each processor’s total to be combined.

The elimination of intermediate arrays is called fusion and is crucial to im-
prove the constant factor of Data Parallel Haskell. It turns out that vectorisation
introduces many more intermediate arrays, which makes fusion even more im-
portant. These constant factors are extremely important in practice: if there is
a slow-down of a factor of 50 relative to C, then even if you get linear speedup
by adding processors, Data Parallel Haskell is unlikely to become popular.

6.10 Running Data Parallel Haskell

GHC 6.6 and 6.8 come with support for Data Parallel Haskell syntax, and a
purely sequential implementation of the operations. So you can readily try out
all of the examples in this paper, and ones of your own devising thus:

– Use ghc or ghci version 6.6.x or 6.8.x.
– Use flags -fparr and -XParallelListComp.
– Import module GHC.PArr.

Some support for genuinely-parallel Data Parallel Haskell, including the all-
important vectorisation transformation, will be in GHC 6.10 (planned release:
autumn 2008). It is not yet clear just how complete the support will be at that
time. At the time of writing, for example, type classes are not vectorized, and
neither are lists. Furthermore, in a full implementation we will need support for
partial vectorisation [16], among other things.

As a result, although all the examples in this paper should work when run
sequentially, they may not all vectorise as written, even in GHC 6.10.

A good source of working code is in the Darcs repository http://darcs.

haskell.org/packages/ndp, whose sub-directory examples/ contains many ex-
ecutable examples.

6.11 Further reading

Blelloch and Sabot originated the idea of compiling nested data parallelism into
flat data parallelism [17], but an easier starting point is probably Blelloch sub-
sequence CACM paper “Programming parallel algorithms” [9], and the NESL
language manual [18].



Keller’s thesis [15] formalized an intermediate language that models the cen-
tral aspects of data parallelism, and formalized the key vectorisation transforma-
tion. She also studied array fusion, to eliminate unnecessary intermediate arrays.
Leshchinskiy’s thesis [8] extended this work to cover higher order languages ([19]
gives a paper-sized summary), while Chakravarty and Keller explain a further
generalization to handle user-defined algebraic data types [14].

Data Parallel Haskell is an ongoing research project [11]. The Manticore
project at Chicago shares similar goals [20].
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