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Abstract. This paper studies the properties and performance of mdolebs-
timating local probability distributions which are usedasnponents of larger
probabilistic systems — history-based generative pansindels. We report ex-
perimental results showing that memory-based learningesfdrms many com-
monly used methods for this task (Witten-Bell, Jelinek-bgwith fixed weights,
decision trees, and log-linear models). However, we camecnthese results
with the commonly used general class of deleted interpmiatiodels by showing
that certain types of memory-based learning, includincgthe that performed so
well in our experiments, are instances of this class. Intamdiwe illustrate the
divergences between joint and conditional data likelihaad accuracy perfor-
mance achieved by such models, suggesting that smoothéegl loe optimizing
accuracy directly might greatly improve performance.

1 Introduction

Many disambiguation tasks in Natural Language Processimgat easily tackled by
off-the-shelf Machine Learning models. The main challengased are the complexity
of classification tasks and the sparsity of data. For exarspteactic parsing of natural
language sentences can be posed as a classification taskenr-aggentencs, find a
most likely parse treéfrom the set of all possible parsesoéccording to a grammar
G. But the set of classes in this formulation varies acrostesees and can be very
large or even infinite.

A common way to approach the parsing task is to learn a genetdstory-based
model P(s,t), which estimates the joint probability of a senterscand a parse tree
t [2]. This model breaks the compléx, t) pair into pieces which are sequentially gen-
erated, assuming independence on most of the already getheteucture. More for-
mally, the general form of the history-based parsing mosl&l() = [\, P(yi|z;).
Here the parse tree is generated in some order, where evegyaged piecg; (future)
is conditioned on some contexf (history).

The most important factors in the performance of such moaiels) the chosen
generative model, including the representation of paeseriodes, andif the method
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for estimating the local probability distributions needigthe model. Due to the sparse-
ness of NLP data, the method of estimating the local distiobs P (y;|x;) plays a very
important role in building a good model. We will sometimeferdo this problem as
smoothing.

The goals of the paper are three-foldl1¢ empirically evaluate the accuracy achieved
by previously proposed and new local probability estimatimdels; ii) to characterize
the form of a kind of memory-based models that performed inestir study, showing
their relation to deleted interpolation models; aiid o study the relationship among
joint and conditional likelihood, and accuracy for moddishis type.

While various authors have described several smoothinfpadst such as using
a deleted interpolation model [5], or a decision tree leafh8], or a maximum en-
tropy inspired model [3], there has been a lack of compasisairdifferent learning
methods for local decisions within a composite system. Bseaour ultimate goal
here is to have good classifiers for choosing trees for seaseaccording to the rule
t = argmax, P(s,t'), where the modeP(s,t') is a product of factors given by the
local modelsP(y;|z;), one can not isolate the estimation of local probabilifég;|z;)
as a stand-alone problem, choosing a model family and gginameters to optimize
the likelihood of test data. The bias-variance tradeoff rhaydifferent [9]. We find
interesting patterns in the relationship between joint aodditional data likelihood
and accuracy performance achieved by such compound medglggsting that heavier
smoothing is needed to optimize accuracy and that fittingallsamber of parameters
to optimize it directly might greatly improve performance.

The experimental study shows that memory-based learnitgpdorms commonly
used methods for this task (Witten-Bell, Jelinek Mercehwiiked weights, decision
trees, and log-linear models). For example, an error réatuof 5.8% in whole sentence
accuracy is achieved by using memory-based learning ilstE@/itten-Bell, which is
used in the state-of-the art model [5].

2 Memory-Based and Deleted Interpolation Models

In this section we demonstrate the relationship betweegtektlinterpolation models
and a class of memory-based models that performed best stualy.

2.1 Deleted Interpolation Models

Deleted interpolation models estimate the probability ofeessy given a feature vec-
tor (context) ofn features,P(y|z1,- .., z,), by linearly combining relative frequency
estimates based on subsets of the full contexf. .., z,), using statistics from lower-
order distributions to reduce sparseness and improve theats. To write out an ex-
pression for this estimate, let us introduce some notatMewill denote byS; subsets
of the set{1,...,n} of feature indicesS; can take or2™ values ranging from the
empty set to the full sefl,...,n}. We will denote byX¢ the tuple of feature values
of X for the features whose indices arednFor exampleX; 5 33 = (1,72, 23). For
convenience, we will add another set, denotee byhich we will use to include in the
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interpolation the uniform distributio®(y) = -, whereV is the number of possible
classey. The general form of estimate is then:

PylX)= Y As(X)P(ylXs) 1)
Sig{l,...,n}VSi:*

HereP are relative frequency estimates aRy| X,) = + by definition. The inter-
polation weights\ are shown to depend on the full contékt= (z1,...,z,) as well
as the specific subsét of features. In practice parameters as general as that eee ne
estimated. For strictly linear feature subsets sequemeetiods have been proposed
to fit the parameters by maximizing the likelihood of held-data through EM while
tying parameters for contexts having equal or similar cefint

2.2 (A Kind of) Memory-Based Learning Models

We will show that a broad class of memory-based learning atstthave the same
form as Equation 1 and are thus a subclass of deleted inggiguoimodels. While [18]
have noted that memory-based and back-off models are similhhe way they use
counts and in the way they specify abstraction hierarchiesng context subsets, the
exact nature of the relationship is not made precise. Theghesize the case df
nearest neighbor and show that it is equivalent to a speicidld strict back-off (non-
interpolated) model. Our experimental results suggestahaumber of neighbor&
much larger tharl works best for local probability estimation in parsing misdd@he
exact form of the interpolation weightsas dependent on contexts and their counts is
therefore crucial for combining more specific and more galrmridence. We will look
at memory-based learning models determined by the follgywarameters:

— K, the number of nearest neighbors.

— A distance functiomA(X, X') between feature vectors. This function should de-
pend only on thgositionsof matching/mis-matching features.

— A weighting functionw(X, X'), which is the weight of neighboY’ of X. We will
assume that the weight is a function of the distanceyi(&’, X') = w(A(X, X")).

Let us denote bWk (X) the set ofK nearest neighbors df. The probability of a
classy givenX is estimated as:

ZX’ENK (X) w(A(X, X")d(y,y")
2 xreng (x) WAX, X))

Herey' is the label of the neighboX’, andd(y,y') = 1iff y = ¢', and0 otherwise.
For nominal attributes, as always used in conditioning extstfor natural language
parsers, the distance function commonly distinguisheg lbbetween matches and mis-
matches on feature values, rather than specifying a riaktardte between values. We

P(ylx) = ()

3 When not limited to linear subsets sequences, it is possildptimize tied parameters, but EM
is difficult to apply and we are not aware of work trying to opize interpolation parameters
for models of this more general form.
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will limit our analysis to this case as specified in the coiodis above. In the majority
of applications of k-NN to natural language tasks, simp#tatice functions have been
used [6]*

The distance functiorA\(X, X') will take on one of2” values depending on the
indices of the matching features between the two vectorpractice we will addlV
artificial instances to the training set, one of each classybid zero probabilities).
These instances will be at an additional distance véjyg,.:», which will normally be
larger that the other distances. We require that the distat{c{, X') be no smaller
thanA(X, X") if X" matchesX on a superset of the attributes on whi€h matches.

The commonly used overlap distance functigh(X, X') = 7", w;d(z;,z}),
satisfies these constraints. Every feature has an impertaeightw; > 0. This is the
distance function we have used in our experiments, but itasemestrictive than the
general case for which our analysis holds, because it hgwohl1l parameters — the
w; anddsmootn. The general case would requie + 1 parameters.

We go on to introduce one last bit of notation. We will say tihat schema' of an
instanceX’ with respect to an instanck is the set of feature indices on which the two
instances match. (We are herer using similar terminolodiL8)). It is clear that the
distanceA(X, X') depends only on the schenfeof X' with respect taX. The same
holds true for the weight o’ with respect taX. We can therefore think of th&
nearest neighbors as groups of neighbors that have the shema. Let us denote by
Sk (X) the set of schemata of ttf€ nearest neighbors df. We assume that instances
in the same schema are either all included or excluded frenméfarest neighbors set.
The same assumption has commonly been made before [18]. Weetlina following
relationships between schema&a< S if the schemaS’ is more specific thaiy, i.e.
the set of feature indice®' is a superset of the s8t We will useS’ < S forimmediate
precedence, i.68’ < S iff S’ < S and there are no schemata between the two in the
ordering. We can rearrange Equation 2 in terms of the ppétitig schemata and then
after an additional re-bracketing, we obtain the same fafEguation 1.

PuiX)= 3 A, (X)P(ylXs,) (3)
S;ESK(X)

The interpolation coefficients have the form:

(W(A(S7)) = Xs; <8151 e50(x) WAS))))

/\Sj (X) = Z(X) C(XSJ') (4)

Z(X)= Y | w(A(sy)) - > w(A(S)) |e(Xs,)  (5)

SjESK(X) Sj<5;.,S;.ESK(X)

This concludes our proof that memory-based models of tipie Bre a subclass of
deleted interpolation models. It is interesting to obsaheeform of the interpolation

4 Richer distance functions have been proposed and showraa@tageous [18, 12, 8]. How-
ever, such distance functions are harder to acquire and) ukém raises significantly the
computational complexity of applying the k-NN algorithm.héh simple distance functions
are used, clever indexing techniques make testing a cdrigtanoperation.
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coefficients. We can notice that they depend on the total mumfinstances matching
the feature subset as is usually true of other linear sulblgdt¢ted interpolation meth-
ods such as Jelinek-Mercer smoothing and Witten-Bell shingt However they also
depend on the counts of more general subsets as seen in thraidator. The different
counts are weighted according to the functien

In practice the most widely used deleted interpolation nodeclude some of the
feature subsets and estimates are interpolated from a fieegtaire subsets order. These
models can be represented in the form:

P(ylzy, ... @n) = Xay,on P(ylza, - 20) + (1= Aoy, 0 ) P(yl2a, o @0m1)  (6)

The recursion is ended with the uniform distribution as ab&emory-based mod-
els will be subclasses of deleted interpolation modelsisfftrm if we defineA(S) =
A({1,...,i}), wherei is the largest numbers such tHat ..., i} > S. If suchi does
not existA(S) = A({}) or A(x) for the artificial instances.

3 Experiments

We investigate these ideas via experiments in probakifigtise selection from among
a set of alternatives licensed by a hand-built grammar irctéimext of the newly devel-
oped RedwoodePsaGtreebank [14]HPsG(Head-driven Phrase Structure Grammar) is
a modern constraint-based lexicalist (unification) gramihascribed in [15].

The Redwoods treebank makes available syntactic and sieraaalyses of much
greater depth than, for example, the Penn Treebank. Thertfere are a large number
of features available that could be used by stochastic rsddeldisambiguation. In
the present experiments, we train generative historyebasmlels for derivation trees.
The derivation trees are labeled via the derivation rulashhbild them up; an example
is shown in Figure 1. All models use tl&efeatures shown in Figure 2. They estimate
the probability P(expansion(n)|history(n)), whereexpansionis the tuple of node
labels of the children of the current node dmdtory is the8-tuple of feature values.
The results we obtain should be applicable to Penn Treebansig as well, since we
use many similar features such as grand-parent informatidrbuild similar generative
models.

The accuracy results we report are averaged over a ten+fodd-walidation on the
data set summarized in Table 1. Accuracy results denotesttoe ptage of test sentences
for which the highest ranked analysis was the correct onis. Mieasure scores whole
sentence accuracy and is therefore stricter than the éabptecision/recall measures,
and more appropriate for the task of parse selection.

3.1 Linear Feature Subsets Order

In this first set of experiments, we compare memory-basedileggmodels restricted
to linear order among feature subsets to deleted inteipolatodels using the same

® Therefore we should expect to obtain lower figures for thimsnee compared to labelled
precision/recall. As an example, the state of the art uoddizied parser [11] achieves 86.9%
F measure on labelled constituents and 30.9% exact matahaagc
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Table 1. Annotated corpus used in experiments: The columns are, lefmo right, the total
number of sentences, average length, average lexical aitybfgumber of lexical entries per to-
ken), average structural ambiguity (number of parses pgesee), and the accuracy of choosing
at random

sentenceggengthlex ambiguitystruct ambiguityrandom baseline

5312 | 7.0 4.1 8.3 25.81%
No.|Name Example
IMITER 1 |[Node Label HCOMP
HCOMP 2 |Parent Node Label HCOMP
. 3 |Node Direction left
HCOMP SEEV3 4 |Parent Node Direction | none
—— [ 5 |Grandparent Node LabhelMPER
LET.V1 us see 6 |Great Grandparent Lahel yes
| | 7 |Left Sister Node Label | HCOMP
Let us 8 |Category of Node verb
Fig. 1. Example of a Derivation Tree Fig. 2. Features over derivation trees

linear subsets order. The linear interpolation sequence thea same for all models
and was determined by ordering the features of the histogay-ratio. The resulting
orderwasi, 8,2, 3,5,4,7,6 (see Table 2). Numerous methods have been proposed for
estimation of parameters for linearly interpolated mo§éisthis section we survey the
following models:

Jelinek Mercer with a fixed interpolation weighk for the lower-order model (and
1 — X for the higher-order model). This is a model of the form of Etipn 6, where the
interpolation weights do not depend on the feature hisidg/report test set accuracy
for varying values of\. We refer to this model a3M.

Witten-Bell smoothing [17] uses as an expression for the weights;, ..., z;) =

c(T1y...,5) . .. . )
I R e TR SR We refer to this model ag/Bd. The original Witten

Bell smoothing is the special case witth = 1, but use of an additional parametér
which multiplies the number of observed outcomes in the denator is commonly
used in some of the best-performing parsers and nameg-gtignizers [1, 5].
Memory-basedmodels restricted to linear sequence, with varying weightfion
and varying values oK. The restriction to linear sequence is obtained by defining
the distance function to be of the special form describeth@tehd of section 2. We
define the distance function as follows for subsets of tresligeneralization sequence:
A{1,...,n}) =0,---,A({}) = n, A(x) = n+1. We implemented several weighting
methods, including inverse, exponential,informatiomgaind gain-ratio. The weight
functions inverse cubellfV3) and inverse to the fourthNV4) worked best. They are

® In addition to models of the form of Equation 6 there are metieit use modified distributions
(not the relative frequency). Comparison to these othedguodels (e.g., forms of Kneser-
Ney and Katz smoothing [4] is not the subject of this study andld be an interesting topic
for future research.

" Method G also used in [4].
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Fig. 3.Linear Subsets Deleted Interpolation Models: Jelinek Me¢@M) (a) Witten-Bell (b) and
k-NN (c).

defined as followsINV3(d)=(1/(d + 1))® INV4(d)=(1/(d + 1))*. We refer to these
models ad KNN3 and LKNN4, standing for linear k-NN using weightinglVV3 and
linear k-NN using weighting functioiNV4 respectively.

Figure 3 shows parse selection accuracy for the three mdéslassed above —
JM in (a), WBd in (b) and LKNN3 and LKNN4 in (c). We can note that the maxi-
mal performance oM (79.14% at A = .79) is similar to the maximal performance
of WBd (79.60% atd = 20). The best accuracies are achieved when the smoothing
is much heavier than we would expect. For example, one wdutdk that the higher
order distributions should normally receive more weiglgt,X < .5 for JIM. Similarly,
for Witten-Bell smoothing, the value d@fachieving maximal performance is larger than
expectedWB is an instance o¥WBd and we see that it does not achieve good accu-
racy. [5] reports that values dfbetweer2 and5 were best. The over-smoothing issue
is related to our observations on the connection between jgelihood, conditional
likelihood, and parse selection accuracy, which we wiltdss at length in Section 4.

The best performance 8KNN3is 79.94% at K = 3,000 and the best performance
of LKNN4 is 80.18% at K = 15,000. Here we also note that much higher valuegof
are worth considering. In particular, the commonly uséd= 1 (74.07% for LKNN4)
performs much worse than optimal. The difference betwa€NN4 at K = 15,000
andJM at A = 0.79 is statistically significant according to a two-sided pditd¢est at
level o = .05 (p-value=.024). The difference betweEKNN4 and the best accuracy
achieved bywWBd is not significant according to this test but the accurackKiNN4
is more stable across a broad rangekof/alues and thus the maximum can be more
easily found when fitting on held-out data.

We saw that using k-NN to estimate interpolation weights #trit linear interpo-
lation sequence works better thald andWBd. The real advantage of k-NN, however,
can be seen when we want to combine estimates from more djéswtae contexts but
do not limit ourselves to strict linear deleted interpalatsequences. The next section
compares k-NN in this setting to other proposed alterngtive

3.2 General k-NN, Decision Trees, and Log-linear Models

In this second group of experiments we study the behaviorarhory-based learning
not restricted to linear subset sequences, using differeigthting schemes and number
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of neighbors, comparing this result to the performance ofsilen trees and log-linear
models. The next paragraphs describe our implementatidghese models in more
detail.

Fork-NN we define the distance metric as follows({i1, .. .,ix}) = n—k; A({}) =
n, A(x) = n + 1. We report the performance of inverse weighting cuddi/g) and
inverse weighting to the fourth{V4) as for lineark-NN. We refer to these two models
askKNN3 andKNN4 respectively.

Decision trees have been used previously to estimate pilitesbfor statistical
parsers [13f We found that smoothing the probability estimates at theds#y linear
interpolation with estimates along the path to the root imnpd the results significantly,
as reported in [13]. We us&ilBd and obtained final estimates by linearly interpolating
the distribution at the leaf up to the root and the uniformriistion. We can think
of this as having a different linear subset sequence forydeaf. The obtained model
is thus an instance of a deleted interpolation model ([18B. denote this model as
DecTreeWBd.

Log-linear models have been successfully applied to mahyraldanguage prob-
lems, including conditional history-based parsing moftetg, part-of-speech tagging,
PP attachment, etc. In [3], the use of a “maximum entropyiirdp estimation tech-
nique leads to the currently best performing pafstne space of possible maximum
entropy models that one could build is very large. In our enpéntation here, we
are using only binary features over the history and expansfahe following form:
Svit,oovin,ezpansion(T1, - - -, Th, expansion’) = 1 iff expansion’ = expansion and
Ty = v - - Ty = vi. Gaussian smoothing was used by all models. We trained three
models differing in the type of allowable features (temgdt

— Single attributes only. This model has the fewest numbegatifres. Here we allow
the features to be defined by specifying a value for a singtibate for a history.
We denote this modélogLinSingle.

— This model includes features looking at the values of pdigtoibutes. However,
we did not allow all pairs of attributes, but only pairs inding attribute numbet
(the node label). These are a totaRBgfairs (including the singleton set containing
only attributel). We denote this modélogLinPairs.

— This final model mimics the linear feature subsets deletepolation models of
section 3.1. It uses all subsets in the linear sequence hwhakes fo9 subsets.
We denote this modélogLinBackoff.

Figure 4 shows the performancelofNN using the two inverse weighing functions
for varying values o andDecTreeWBd for varying values ofl. Table 2 shows the
best results achieved B§NN4, DecTreeWbd and the three log-linear models.

8 We induce decision trees using gain-ratio as a splittingdn (information gain divided by
the entropy of the attribute). We stopped growing the treemdl samples in a leaf had the
same class, or when the gain ratio v@as

% In [3], estimates based on different feature subsets aréiptied and the model has a form
similar to that of a log-linear model. The obtained disttibos are not normalized but are
close to summing to one.
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k-NN Accuracy Decision Tree Accuracy
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(@) (b)
Fig. 4. k-NN usingINV3 andINV4(a) andDecTreeWBd (b).

Table 2. Best Parse Selection Accuracies Achieved by Models

Model |KNN4 [DecTreeWBd] LogLinSingle|LogLinPairs|LogLinBackoff|
Accuracy|80.79%79.66% 78.65%  |78.91%  |77.52% |

The results suggest that memory-based models perfornt liedte decision trees
and log-linear models in combining information for probapiestimation. The differ-
ence between the accuracyKiNiN4 andWBd is 5.8% error reduction and is statisti-
cally significant at levek = 0.01 according to a two-sided paired t-tegt(alue=0.0016).

This result agrees with the observation in [7] that memaagea models should be
good for NLP data, which is abundant with exceptions andigpeases. The study
in [7] is restricted to the classification case akid= 1 or other very small values of
K are used. Here we have shown that these models work partyculell for proba-
bility estimation. Relative frequency estimates from eiéint schemata are effectively
weighted based on counts of feature subsets and distarigbtimg. It is especially sur-
prising that these models performed better than log-lineadels. Log-linear/logistic
regression models are the standardly promoted statistickior these sorts of nominal
problems, but actually we find that simple memory-based risquformed better. The
log-linear models we have surveyed perform more abstra¢hip just including some
features) and are less easily controllable for overfittatstracting away information is
not expected to work well for natural language according’o [

4 Log-likelihoods and Accuracy

Our discussion up to now included only parse selection t&sBut what is the rela-
tion to the joint likelihood of test data (likelihood accand to a model of the correct
parses) or the conditional likelihood (the likelihood oétborrect parse given the sen-
tence)? Work in smoothing for language models optimizeamaters on held-out data
to maximize the joint likelihood, and measures test setquerénce by looking at per-
plexity (which is a monotonic function of the joint likelilod) [4]. Results on word
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JMFW Data Log-likelihoods k-NN Data Log-likelihoods
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Fig.5.JM (a) and k-NN usingNV4(b).

error rate for speech recognition are also often report8jl put the training process
does not specifically try to minimize word error rate (beeatigs hard). In our exper-
iments we observe that much heavier smoothing is neededxibniza accuracy than
to maximize joint log-likelihood.

We show graphs for the modéM for the joint log-likelihood averaged per ex-
pansion, and the conditional log-likelihood averaged petence in Figure 5a). The
corresponding accuracy curve is shown in Figur@)3 The graph in 5l§) shows joint
and conditional log-likelihood curves for mod€NN4; its accuracy curve is in Figure
4 (a).

The pattern of the points of maximum for the test data joigtlikelihood, condi-
tional log-likelihood and parse selection accuracy idfaipnsistent across smoothing
methods. The joint likelihood increased in the beginninthvemoothing up to point,
and then started to decrease. The accuracy followed therpatt the joint likelihood,
but the peak performance was reached long after the bestgsetor joint likelihood
(and before the best settings for conditional likelihodd)jis relationship between the
maxima — first joint log-likelihood, followed by the accusamaximum holds for all
surveyed models. This phenomenon could be partly expldige@ference to the in-
creased significance of the variance in classification grabl[9]. Smoothing reduces
the variance of the estimated probabilities. In models efkimd we study here, where
many local probabilities are multiplied to obtain a final pability estimate, assuming
independence between model sub-parts, the bias-variau=off may be different and
over-smoothing even more beneficial. There exist smootmathods that would give
very bad joint likelihood but still good classification asitpas the estimates are on the
right side of the decision boundary. We can also note thathfomodels we surveyed,
achieving the highest joint likelihood did not translatd®ing the best in accuracy. For
example, the best joint log-likelihood was achievedscTreeWBd followed very
closely byWBd. The joint log-likelihood achieved by linear k-NN was worsed the
worst was achieved by general k-NN (which performed bestaueacy). Therefore fit-
ting a small number of parameters for a model class to optivedidation set accuracy
is worth it for choosing the best model.
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Fig. 6. PP Attachment Task: Jelinek-Mercer with Fixed Weighfor the higher order modedj
and Witten-BelWBd for varyingd (b).

Another interesting phenomenon is that the conditionallilkglihood continued
to increase with smoothing and the maximum was reached dteheiest amount of
smoothing for almost all surveyed models 3M, WBd, DecTreeWBd, and KNN3.
For the other forms of k-NN the conditional log-likelihoodree was more wiggly and
peaked at several points going up and down. We explain teigése in conditional
log-likelihood with heavy smoothing by the tendency of syehduct models to be
over-confident. Whether they are wrong or right, the conddi probability of the best
parse is usually very close 10 The conditional log-likelihood can thus be improved by
making the model less confident. Additional gains are péssiben long after the best
smoothing amount for accuracy.

One could think that this phenomenon may be specific to oliaselection of the
best parse from a set of possible analyses, and not fromraépéo which the model
would assign non-zero probability. To further test thetieteship between likelihoods
and accuracy, we performed additional experiments on ardift domain. The task is
PP (prepositional phrase) attachment given only the foudsimvolved in the depen-
dency —v,n1, p, na, such as e.geat salad with forkThe attachment of the PP phrase
p,no is either to the preceding noun or to the verlbv. We tested a generative model
for the joint probability P(Att, V, Ny, P, N5), where Att is the attachment and can
be either noun or verb. We graphed the likelihoods and acgwehieved when using
Jelinek-Mercer with fixed weight and Witten-Bell with vang parameted, as for the
parsing experiments. Figure 6 shows curves of accuragie@rjoint log-likelihood
and conditional log-likelihood. We see that the patterrcdbed above repeats.

5 Summary and Future Work

The problem of effectively estimating local probabilitgttibutions for compound deci-
sion models used for classification is surprisingly unesgdo\We empirically compared
several commonly used models to memory-based learningeowiesl that memory-
based learning achieved superior performance. The addebilitg of an interpola-

tion sequence not limited to a linear feature sets geneataiz order paid off for the
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task of building generative parsing models. Further retemr necessary studying the
performance of memory-based models — such as comparingesdfsNey and Katz
smoothing, and fitting the k-NN weights on held-out data.

Our experimental study of the relationship among joint amaditional likelihood,
and classification accuracy conveyed interesting rediglarior such models. A more
theoretical quantification of the effect of the bias andamagcie of the local distributions
on the overall system performance is a subject of futurearebe
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