
Stronger Password-Based Encryption Using
All-or-Nothing Transforms

Greg Zaverucha
Microsoft

August 5, 2015

1 Introduction

When encrypting data with a low-entropy key, the primary threat to consider is a
brute-force key search. Let C = C0, . . . , Cs−1 be a ciphertext encrypting a plaintext
P = P0, . . . , Ps−1, produced by a block cipher (a concrete example is AES in CBC
mode). In a brute-force attack where P0 is known, the attacker could focus on C0,
i.e., for each candidate key K, check whether DK(C0) = P0. One idea to increase the
cost of a brute force attack is due to Rivest [8]. Apply a randomized encoding to the
plaintext, P ′ = Encode(P), such that in order to decode P ′ and obtain P , one needs
all of P ′. In this way DK(C0) = P ′0 does not give enough information about P to let
the adversary decide if K is correct. In order to check that K is the correct key, the
attacker must decrypt all s blocks of C to recover P ′, then compute P = Decode(P ′).
The Encode operation is called an all-or-nothing transform (ANT), because it cannot
be even partly reversed without all of the encoded output. The ANT is randomized,
but not keyed (no secret values are required in Encode and Decode).

This adds a factor of s to each guess, which can be considerable. For example,
when P is 1 GByte, and a 128-bit block cipher is used s ≈ 225. So the cost of brute
forcing a 40-bit key goes from 240 to 265 block cipher operations. There may also be
a significant I/O cost, as the attack must work with 225 ciphertext blocks instead of
just one.

We are unaware of any papers, systems or software that uses Rivest’s ANT idea
for password-based encryption (PBE), based on the observation that export strength
keys (Rivest’s original motivation) are similar to passwords (in that they are both

1

of low-entropy). We’ll explore this idea with two applications of password-based
encryption as examples.

1. Encryption of Microsoft Office documents. The Microsoft Office suite of ap-
plications (Word, PowerPoint, Excel) have a feature that enables users to
password-protect a document. Encryption and authentication keys are de-
rived from a password, and then used to encrypt the document. The feature is
documented in [4].

2. The SQLCipher encrypted database [10]. This is an encrypted version of the
SQLite database. SQLCipher encrypts database with a key derived from a
user-chosen password. A page is 1024 bytes. By encrypting at the page-level
instead of the file-level, random access to a large database is possible (without
a full decryption).

Both applications use PBKDF2 [6] for key derivation1, which is a salted, iterated
function, designed to increase the cost of a brute-force password search. The en-
cryption technique we describe is independent of the key derivation step, the input
to encryption is a key (rather than a password). The choice of key derivation only
becomes relevant in the security analysis of the overall PBE operation.

Similar features exist for ZIP and other archive formats, for PDF files and PFX
files (but the encryption and key derivation details are different). The scrypt encryp-
tion utility [9] can password protect any file. The key is derived from the password
using the scrypt key derivation function [7]. These other applications weren’t explic-
itly considered by this work but may benefit from the technique described here.

Memory-hard KDFs. Some password-based key derivation functions, like scrypt,
are designed to use a large amount of memory. This defense is similar to our approach
of using all-or-nothing transforms, since they both increase the memory requirement
of a brute force attack. The main difference is that our approach leverages the mem-
ory usage that the defender will use anyway, while memory use in a memory-hard
KDF is purely overhead (with respect to the encryption operation). A key differ-
ence is that our approach does not randomize access to memory to prevent efficient
parallelization of a brute-force attack, so our technique cannot directly replace a
memory-hard KDF. An open problem is to design an all-or-nothing transform with
a randomized access pattern, and investigate its use in this context. More generally,
we went modular in our design, keeping the KDF and PBE operations separate, but
it may be fruitful to look at tightly integrating them.

1Office uses a slight variation of PBKDF2, as documented in [4].

2

1.1 Summary

Our findings are as follows.

• We describe three ways of combining an all-or-nothing transform with encryp-
tion and authentication primitives to create an authenticated encryption mode
suitable for password-based encryption.

– All of them have one-pass encryption and require two-pass decryption.

– Two are generic, i.e., they work for any block cipher and MAC, and the
third uses a specific mode of operation for greater efficiency.

– The computational overhead (for the defender) in our most efficient scheme
(Scheme 3) is an additional block cipher call for each input block.

– The ANT in all three constructions is an instance of OAEP.

• In terms of security, in general re-encoding the plaintext will not decrease
security. The increase in difficulty of a brute force attack depends on multiple
factors.

– The size of the plaintext. In general a plaintext of n blocks increases the
cost of a brute force attack by a factor of n. For example, in the SQLCi-
pher use case, the plaintext is 64 AES blocks, resulting in an additional
64 AES operations per password guess in a brute-force attack. Whether
this protection is sufficient to justify the added cost to the defender is
debatable.

– The relative cost of the key derivation step. Again, using the SQLCipher
example, an additional 64 AES operations have trivial cost compared to
64k PBKDF2 iterations.

– Whether the same password is used for multiple encryptions with different
file sizes. The attacker can always choose to attack the smallest file.

To conclude, there are some settings when encoding with an ANT provides some
additional resistance to brute-force attacks in the context of PBE, however the ad-
vantage is hard to quantify, and the range of outcomes is large. In the best case brute
force attacks are made many times harder, and in the worse case the ANT technique
provides no significant benefit (though security is not reduced, only efficiency).

3

2 All-or-Nothing Transforms

In this Section we review some known all-or-nothing transforms (ANTs). Readers
familiar with OAEP may skip this section, since it is the ANT our constructions use.

Rivest’s ANTs Rivest describes two ANTs in [8]. The first uses only block cipher
operations and the second is simpler, but uses a hash function. Both are instances
of OAEP (described below). Let E denote the blockcipher. The input is a plaintext
P0, . . . , Ps−1, and the output is y0, . . . , ys, ys. The values Pi and yi are blocks of the
same size as the blocksize of E. Note the output is one block larger than the input.

• Choose a random key for E, denoted K.

• Compute yi = Pi ⊕ EK(i) for i = 0, . . . , s− 1.

• Compute ys = K ⊕ e0 ⊕ . . .⊕ es−1, where ei = EK0(yi ⊕ i), and K0 is a fixed,
publicly known value.

The first s values are encryption of the plaintext in counter mode under the
random key K. The final value is an “encryption” of K such that y0, . . . , ys−1 are
required to decrypt it.

The cost of this ANT is 2s encryptions. Encode makes a single pass over the data
(the implementation must compute ys+1 incrementally at each input block, not as
described above). Decode must make two passes.

The ANT is randomized by the choice of the key K. If K were fixed, and the
ciphertext were known then an attacker could predict the value of y0 and use this as
a shortcut in a brute force attack. It has the advantage that the same block cipher
may be used for the ANT as for the encryption, so no new primitives are added to
the overall encryption operation. Only the forward mode of encryption is used (not
decryption).

Rivest mentions ys can be computed differently. Using a hash function H, com-
pute

ys = H(y0‖ . . . ‖ys−1)⊕K

This ANT requires s encryptions, and hashing an input of length bs bits. Encode can
be done in one pass, and Decode requires two passes. This is an instance of OAEP.

Optimal Asymmetric Encryption Padding (OAEP) The OAEP padding
mode [2], used for RSA encryption, is an all-or-nothing-transform. A formal proof of
this is given by Boyko [3], in the random oracle model. OAEP is a randomized ANT,

4

and uses two functions G and H. G is analogous to the counter mode encryption
in Rivest’s constructions used to compute y0, . . . , ys−1, and H plays the role of the
function used to compute ys. Aside from the padding step of standard OAEP (which
is only necessary when the output is required to have a fixed length), the Rivest
constructions are the same, but with different choices of G and H.

OAEP is defined as follows. Let G : {0, 1}b → {0, 1}sb be a PRF that expands
the seed r to a random value as large as the input message. We use the notation
Gr(i) to denote the i-th b-bit block of G(r). The function H : {0, 1}∗ → {0, 1}b is a
cryptographic hash function. The Encode operation is defined:

• Choose a random b-bit value r.

• Compute yi = Gr(i)⊕ Pi for i = 0, . . . , s− 1

• Compute ys = r ⊕H(y0‖ . . . ‖ys−1).

The Decode operation is defined:

• Compute y′s = H(y0‖ . . . ‖ys−1).

• Compute r′ = y′s ⊕ ys.

• Compute Pi = yi ⊕Gr′(i), for i = 0, . . . , s− 1.

We’ve defined r to be a b-bit value for convenience, but it does not have to match
the blocksize. A possible choice for H is SHA-256 truncated to b-bits, and G could
be AES in CTR mode.

Variable-Length Block Ciphers Rivest observes that variable-length block ci-
phers, such as BEAR and LION [1], can be inherently “all-or-nothing” because de-
crypting one block can mean decrypting the whole message (when the block size
equals the message size). We chose not to investigate using variable-length block
ciphers since the costs are comparable to applying OAEP before encryption.

Information Theoretic ANTs Stinson [12] looks at unconditionally secure ANTs,
and gives very efficient constructions based on linear transforms. Unfortunately the
definition is not strong enough for our application. In [12], an ANT is defined by
three conditions; the first two ensure correctness, and the third is:

H(Pi‖y1, . . . , yi−1, yi+1, . . . , ys) = H(Pi)

5

where H is the entropy function. However in our case, some of the Pi are known, so
H(Pi) = 0. For some of the constructions in [12] it is easy to see that given, e.g., y1
and y2, one can check whether y1 encodes P1.

The stronger definition given by Boyko [3] is required for our generic PBE con-
structions. However, we will see that with a careful choice of block cipher mode, a
weaker transform is sufficient (albeit one with different properties from [12]).

3 Password-Based Encryption

Our goal is to combine an all-or-nothing transform with an authenticated encryption
scheme to get a encryption scheme that requires O(s) work to determine whether
a candidate key is correct. After considering multiple ways to combine the ANT,
encryption and MAC algorithms, we present three constructions for comparison. The
first two are generic, loosely following the MAC-then-encrypt and encrypt-then-MAC
designs. The third uses a specific encryption mode and ANT to reduce the cost.

The threat model assumes the attacker knows some portion of the plaintext, and
could use this to check whether a password guess is correct. The known-ciphertext
attack starts by by choosing a password (probably from a dictionary, or according to
some rules). Then, a key is derived from the password (and optionally a salt), with
key derivation algorithm specified by the PBE scheme. Finally, part of the ciphertext
is decrypted, and the attacker outputs correct if the plaintext matches the known
portion. For simplicity, assume the attacker knows one or more blocks of plaintext.

We also ignore the key derivation step. The inputs for our schemes are the MAC
and encryption keys, K and K ′, along with a randomly chosen IV (when required by
the encryption mode). We do not recommend deriving an IV from the password since
we don’t assume that the encryption algorithm will keep the IV secret (in general
this is not a requirement of block cipher modes of operation).

3.1 Scheme 1: MAC-then-Encrypt

The first scheme uses a “MAC-then-encrypt” approach, the ciphertext is

C = EK(ANT (P ||MK′(P)))

where

ANT is OAEP with functions G and H (as described in §2).

P is the plaintext, divided into s blocks each of b-bits, P = P0‖ . . . ‖Ps.

6

EK is a blockcipher encryption with the key K. The blocksize is b bits.

MK′ is a MAC with the key K ′. In our description the length of the authenti-
cation tag is b bits.

H is the hash function used for OAEP. It has two functions, to work on streams
of data: H.ProcessData(d) appends d to the data to be hashed, and H.Finalize()
returns the b-bit digest.

Gr The PRG used for OAEP with seed r. Gr(i) denotes the i-th b-bit block of
output.

Algorithm 1 gives the pseudocode to implement Scheme 1 with one-pass encryption
and two-pass decryption.

Remarks OAEP has the required properties, and our construction use it leaving
open the choice of G and H. However, there may be other ANTs that are also
suitable for Scheme 1, provided they have similar security properties as OAEP.

3.2 Scheme 2: Encrypt-then-MAC

In Scheme 2, ciphertexts are a pair (C, T) where

C = EK(ANT (P)), and

T = MK′(C)

(the notation of §3.1). Algorithm 2 gives pseudocode to implement Scheme 2.

Remarks Note that any nonce or IV used by E must be authenticated, included
with C in the computation of T . Decryption must be done carefully to use only two
passes and not decrypt before validating the MAC2. A näıve implementation might
require three-passes, one to check the MAC, one to decrypt and a third to decode.
Alternatively, we use two passes, but combine MAC verification with decryption.
The trick is to decrypt while recomputing the MAC, but to validate the MAC before
decrypting the last block of C (which is required to decode the ANT). This works for
the OAEP family of ANTs, but care must be taken with other ANT constructions.

2This property is sometimes called the “cryptographic doom principle”[5] since decryption before
authentication has led to multiple security flaws.

7

Algorithm 1 Pseudocode for Scheme 1: MAC-then-Encrypt

Parameters: Algorithms E, M , G, and H, blocksize b (bits)
Keys: K and K ′,∈ {0, 1, }b
Plaintext: P = P0‖ . . . ‖Ps−1 (b-bit blocks)
Ciphertext: C = C0‖ . . . ‖Cs+1 (b-bit blocks)

Encrypt(K,K ′, P)
Choose r ∈R {0, 1}b.
Initialize EK , MK′ , Gr, H
for i = 0, . . . , s− 1 do

MK′ .ProcessData(Pi)
temp = Gr(i)⊕ Pi

H.ProcessData(temp)
Ci = EK(temp)

end for
temp = MK′ .Finalize()⊕Gr(s)
H.ProcessData(temp)
Cs = EK(temp)
temp = H.Finalize()⊕ r
Cs+1 = EK(temp)
Output C = C0‖ . . . ‖Cs+1

Decrypt(K,K ′, C)
Initialize DK ,MK′ , H
for i = 0, . . . , s− 1 do

Pi = DK(Ci)
H.ProcessData(Pi)

end for
tag = D(Cs)
H.ProcessData(tag)
r = H.Finalize()⊕DK(Cs+1)
Initialize Gr

for i = 0, . . . , s− 1 do
Pi = Pi ⊕Gr(i)
MK′ .ProcessData(Pi)

end for
tag = tag ⊕Gr(s)
if tag != MK′ .Finalize() then

return error

end if
Output P = P0‖ . . . ‖Ps−1

3.3 Scheme 3: OFB and OAEP−

This is a variant of the encrypt-then-MAC scheme that uses a specific encryption
mode and an OAEP variant (denoted OAEP−). OAEP− simplifies OAEP by re-
moving H, or equivalently, by setting H(x) = 0 for all inputs x. OAEP− reduces
the defender’s computational overhead, by avoiding the hash function H. OAEP−

is not an all-or-nothing transform. The ciphertext for Scheme 3 is (C, T) where C is
computed as

C = EK(OAEP−(P))

= EK((G(r)⊕ P)‖r)

8

Algorithm 2 Pseudocode for Scheme 2: Encrypt-then-MAC

Parameters: Algorithms E, M , G, and H, blocksize b (bits)
Keys: K and K ′,∈ {0, 1, }b,
Plaintext: P = P0‖ . . . ‖Ps−1 (b-bit blocks)
Ciphertext: C = C0‖ . . . ‖Cs+1 (b-bit blocks)

Encrypt(K,K ′, P)
Choose r ∈R {0, 1}b.
Initialize EK , MK′ , Gr, H
for i = 0, . . . , s− 1 do

temp = Gr(i)⊕ Pi

H.ProcessData(temp)
Ci = EK(temp)
MK′ .ProcessData(Ci)

end for
temp = H.Finalize()⊕ r
Cs = EK(temp)
MK′ .ProcessData(Cs)
Cs+1 = MK′ .Finalize()
Output C = C0‖ . . . ‖Cs+1

Decrypt(K,K ′, C)
Initialize DK ,MK′ , H
for i = 0, . . . , s− 1 do

MK′ .ProcessData(Ci)
Pi = DK(Ci)
H.ProcessData(Pi)

end for
MK′ .ProcessData(Cs)
if Cs+1 != MK′ .Finalize() then

return error

end if
r = H.Finalize()⊕DK(Cs)
Initialize Gr

for i = 0, . . . , s− 1 do
Pi = Pi ⊕Gr(i)

end for
Output P = P0‖ . . . ‖Ps−1

and

T = MACK′(IV ||C) .

The cipher E is chosen to be AES in OFB mode, since OFB mode has the property
that it is not possible to decrypt a block without decrypting all previous blocks in the
ciphertext. Therefore, the attacker can’t decrypt the last block to recover r, without
making a pass over the whole ciphertext. In our implementation, M is GMAC, and
G is AES-CTR. The remarks from Scheme 2 apply to Scheme 3 as well. Algorithm
3 gives the pseudocode to implement Scheme 3.

3.4 Other Possible Variants

There are some additional combinations that we did not investigate, which may have
interesting properties. Replacing H in OAEP with HMAC and omitting a separate

9

Algorithm 3 Pseudocode for Scheme 3: OFB and OAEP−

Parameters: Algorithms E, M , G, blocksize b (bits)
Keys: K,K ′,∈ {0, 1, }b,
Plaintext: P = P0‖ . . . ‖Ps−1 (b-bit blocks)
Ciphertext: C = C0‖ . . . ‖Cs+1 (b-bit blocks)

Encrypt(K,K ′, P, IV)
Choose r ∈R {0, 1}b.
Initialize EK , MK′ , Gr

MK′ .ProcessData(IV)
for i = 0, . . . , s− 1 do

temp = Gr(i)⊕ Pi

Ci = EK(temp)
MK′ .ProcessData(Ci)

end for
Cs = EK(r)
MK′ .ProcessData(Cs)
Cs+1 = MK′ .Finalize()
Output C = C0‖ . . . ‖Cs+1

Decrypt(K,K ′, C, IV)
Initialize DK ,MK′

MK′ .ProcessData(IV)
for i = 0, . . . , s− 1 do

MK′ .ProcessData(Ci)
Pi = DK(Ci)

end for
MK′ .ProcessData(Cs)
if Cs+1 != MK′ .Finalize() then

return error

end if
r = DK(Cs)
Initialize Gr

for i = 0, . . . , s− 1 do
Pi = Pi ⊕Gr(i)

end for
Output P = P0‖ . . . ‖Ps−1

MAC may be a way to reduce the space overhead of encryption by one block. The
ANT could also be applied outside the encryption (i.e, encode the ciphertext rather
than the plaintext). Do other modes of operation have the same property as OFB?
Namely, that the blocks must be decrypted in order. The requirement of a random
IV may sometimes be removed, since the plaintext is randomized by the ANT.

10

4 Evaluation

In this section we discuss some of the advantages and disadvantages of using an ANT
with password based encryption. The evaluation is informal.

Two-Pass Decryption All three ANT PBE schemes require two passes for de-
cryption. This is a drawback when compared to common AES schemes like GCM
and encrypt-then-MAC combinations of AES and HMAC, which can be implemented
with a single pass. Many implementations choose to use two passes, in order to avoid
decryption before checking the MAC (aka. the crypto doom principle [5]). If this is
the case, then the overhead of a second decryption pass is already present, so only
the computational overhead of of the new schemes is relevant.

Overhead vs. Attack Cost Adding an ANT to the the encryption scheme should
increase the cost of a brute-force attack, but it also has a cost. We can easily compare
the computational costs. Table 4 counts the number of cryptographic operations per
input block, i.e., the number of inputs blocks that must be encrypted, hashed or
MAC’d. This is a rough measure, but is still informative. The ratio (overhead/attack
costs), describes how much of the defender work translates to attacker work. A ratio
α means that for α defender operations the attacker must do one operation. Of the
new schemes, Scheme 1 has the lowest ratio (α = 2), while Scheme 2 has the highest
(α = 4) and Scheme 3 is in between (α = 3) because OAEP− is cheaper than OAEP
by a factor of s. For comparison, in GCM, since the attacker must only decrypt one
block per guess, the ratio is ≈ s. An attack with cost s + 1 seems inherent in the
encrypt-then-MAC design, since the attacker can always verify the MAC to check
a candidate password. By contrast, in the MAC-then-encrypt design, the MAC is
protected by the encryption and ANT operations.

Our estimate of the attack cost is näıve, because it does not account for the
memory and I/O costs of processing s-block ciphertexts, or any costs that might be
amortized by a parallel attack or specialized hardware. (Recall that in a brute force
attack multiple candidate password may be tried simultaneously, sharing computa-
tions or data, if this benefits the attacker.)

ANT and PBE We must also consider whether the benefits of using an ANT
are sufficient in the context of PBE to justify the increased costs of encryption and
decryption, and the increased implementation complexity. Since the attack cost
increases by a factor of s, the plaintext size is important. In the extreme case of a
1-block plaintext (i.e., s = 1), there is no benefit to using an ANT.

11

Scheme 1 (MtE) Scheme 2 (EtM) Scheme 3 AES-GCM
Enc/Dec cost 4(s+ 1) 4(s+ 1) 3s+ 2 ≈ 2s
Attack cost 2(s+ 1) + 2 s+ 1 s+ 1 2
Ratio ≈ 2 4 ≈ 3 ≈ s
Decrypt before Yes No No Optional
MAC check

Table 1: Comparison of Schemes 1–3 (presented in this paper), and AES-GCM (for
comparison). For the first three rows, the number of cryptographic operations per
block is given. The final row indicates whether an implementation can check that
the MAC is valid before decrypting any ciphertext.

The increased attacker work caused by the ANT must be put in context, since the
key derivation step is designed to be expensive. We can make some rough estimates
to determine when it becomes beneficial to use an ANT as the plaintext size increases.
Table 4 estimates the benefit provided by using an ANT, by comparing the number of
cryptographic operations (hash function and block cipher calls), required per guess
in a brute-force attack when an ANT is used, compared to when it isn’t. More
precisely, if A is the number of operations per guess when an ANT is used, and
B is the number when an ANT is not used, then the slowdown factor is A/B. A
slowdown factor of two means that each guess in a bruteforce attack is twice as slow
when the ANT construction is used. In Table 4 we show the slowdown factor when
the number of PBKDF2 iterations varies. With smaller iteration counts, the ANT
technique is more effective for smaller plaintexts. For example, at 50K iterations,
the slowdown factor is 1.6 for a 1MB plaintext, while at 5K iterations it is 1.6 for a
100KB plaintext.

Again, we stress that this is a rough comparison, because it makes the following
simplifications. i) It assumes attacker must make a single additional pass over the
data, true for Schemes 2 and 3 but not Scheme 1 (it would require two additional
passes). We also count a PBKDF2 iteration as two hash function calls (ignoring the
specific hash function used), and assume these have the same cost as a block cipher
call. We’ve also again assumed the attack uses the näıve algorithm.

From these examples, we can conclude that the technique can provide meaningful
defense against brute force attacks, especially when the plaintext is large. Going
back to our examples of Section 1, ANT PBE could strengthen encryption of Office
documents.

For the SQLCipher example, the plaintext size is small and fixed at 1024 bytes.

12

Plaintext size Decryption PBKDF2 Without ANT With ANT Ratio
100KB 6250 200K 200K + 1 206250 1.03
1 MB 62500 200K 200K + 1 262500 1.31
10 MB 625000 200K 200K + 1 825000 4.12
100 MB 6250000 200K 200K + 1 6450000 32.25

Table 2: Comparison of brute-force attack costs with various plaintext sizes. The
Decryption column gives the number of block cipher operations to decrypt the plain-
text, the PBKDF2 column shows the number of hash function calls when PBKDF2
is configured to use 100K iterations, the Without ANT column is the attack cost in
cryptographic operations when no ANT is used, and With ANT is the attack cost
when an ANT is used. The Ratio column is the slowdown factor (with/without
ANT).

PBKDF2 Iterations Plaintext size Ratio
5K 100KB 1.62

1 MB 7.24
100 MB 625.93

10K 200KB 1.62
1 MB 4.12
100 MB 313.48

50K 1 MB 1.62
10 MB 7.25
100 MB 63.5

Table 3: Sample plaintext sizes where the ratio from Table 4 is 1.5 or greater, for
three sample PBKDF2 iteration counts.

13

The default PBKDF2 iteration count is 64K3, therefore the slowdown factor when
using an ANT is only 1.00049. The additional 64 AES decryptions are negligible
compared to the cost of the 128K hash computations.

Password re-use A deployment challenge of the ANT approach is that it is sen-
sitive to password re-use, and this can’t easily be communicated to users. Once a
small file is encrypted with a password, all files encrypted with the same password
can be attacked with the same cost as the small ciphertext, regardless of their size.
If a minimum plaintext size cannot be ensured (say by padding), the ANT technique
is at best an opportunistic defense (meaning it only provides additional security if
all files happen to be large).

Dynamic KDF workfactor The overall (attacker) workfactor of a password-
based encryption operation is the the sum of the costs of the KDF and decryption
steps. With the ANT technique, it’s possible to reduce the workfactor of the KDF,
while keeping the overall workfactor constant. For example, a large plaintext would
be encrypted with a relatively cheap KDF step, as the encryption/decryption step
keeps the overall workfactor high. Conversely, with small plaintexts the decryption
workfactor is low, so the KDF workfactor must be large.

5 Acknowledgments

Thanks to Tolga Acar, Josh Benaloh, Marsh Ray and Dan Shumow for helpful dis-
cussions about this idea.

References

[1] R. Anderson and E. Biham. Two practical and provably secure block ciphers:
BEAR and LION. Proceedings of FSE’96, LNCS 1039 (1996), 113-120.

[2] M. Bellare, P. Rogaway. Optimal Asymmetric Encryption. Proceedings of EU-
ROCRYPT’94, LNCS 950 (1994), 92–111.

[3] V. Boyko. On the Security Properties of OAEP as an All-or-Nothing Transform.
Proceedings of CRYPTO’99, LNCS 1666 (1999), 503–518.

3As of October 2014.

14

[4] Microsoft Corporation. MS-OFFCRYPTO: Office Document Cryptography Struc-
ture. Revision 3.0, April 2014. Available online http://msdn.microsoft.com/

en-us/library/cc313071%28v=office.12%29.aspx

[5] M. Marlinspike. The Cryptographic Doom Principle. December 2011,
accessed October 2014. Available online www.thoughtcrime.org/blog/

the-cryptographic-doom-principle

[6] B. Kaliski. PKCS #5: Password-Based Cryptography Specification. IETF RFC
2898, version 2.0, September 2000. www.ietf.org/rfc/rfc2898.txt

[7] C. Percival. Stronger key derivation via sequential memory-hard functions. Pre-
sented at BSDCan’09, May 2009 (2009). Available online www.daemonology.net/
papers/scrypt.pdf.

[8] R. Rivest. All-or-Nothing Encryption and the Package Transform. Proceedings
of FSE’97 (2009).

[9] Tarsnap. The scrypt encryption utility. www.tarsnap.com/scrypt.html

[10] Zetetic. SQLCipher. http://sqlcipher.net

[11] SQLite. http://sqlite.org

[12] D. Stinson. Something about all or nothing (transforms). Designs, Codes and
Cryptography 22 (2001), 133-138.

15

