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Chapter 1

Overview

In his seminal paper ”Why functional programming matters”, John Hughes argues
that the strength of lazy, higher order languages lies in the ability to glue different
functions of a program together. In this thesis we explore how these languages are
suited to glue not only functions but also software components written in different
languages.

The first chapter of this thesis describes the design of a foreign function interface
for the non-strict, higher order language Haskell. A foreign function interfaces
(FFI) enables a program to call programs written in other languages and vice versa.
Different languages can use different calling conventions and data representations
– the foreign language interface ensures a proper calling convention and transforms
data values into the representation of the foreign language. The transformation
of data values to their foreign representation, called marshalling, is where most
complications arise.

Since they cater for a variety of languages, foreign function interfaces tend to become
rich, complex, incomplete, and only described by example. In contrast, we offer a
formal description of our foreign function interface based on a standed interface def-
inition language (IDL). Furthermore it is carefully factored in two layers: a minimal
primitive mechanism that has to be supported by the compiler, and a separate tool,
H/Direct, that leverages on this primitive facility to support comprehensive data
marshalling.

Building on the basic foreign function interface, the second chapter describes the
binding of Haskell to Microsoft’s Component Object Model (COM) framework.
Component frameworks go beyond a basic foreign function interface by prescribing
a system wide protocol for interaction between components. It is an approach to
software construction where a program is assembled from software components,
perhaps written in different languages, glued together by a common protocol. The
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language neutral nature of these architectures offers tremendous opportunites for
exotic languages like Haskell. A Haskell program can be sealed as COM component
and can therefore interoperate with other client programs that will neither know,
nor care, that the component is written in Haskell. A would-be user of Haskell is
no longer facing an all-or-nothing choice.

COM is a rich and complex framework and it normally requires quite a bit of
C++ code to build a COM component, usually supported by “wizards”. We are
instead able to provide a library of higher-order functions that make it easy to create
components without wizard support. Furthermore, we show that we can model
inheritance interface subtyping using just parametric polymorphism and phantom
types – this has proved essential to conveniently support the object oriented nature
of most component frameworks. Even at the most primitive level, the rich type
system of Haskell can be used to ensure many properties statically, for example,
interface pointers are associated with their corresponding globally unique identifiers
and virtual method tables are paired with the appropiate instance data.

After reading the chapters about the interface between Haskell and the imperative
world, the reader may wonder whether the rewards are worth the trouble. One
potential problem is that a typical COM component is designed with an impera-
tive model in mind, and imposes an imperative style of programming within the
functional host language. In the next two chapters, we try to show that it is actu-
ally possible to build expressive functional combinator libraries on top of the basic
imperative interfaces. The resulting libraries can be seen as an embedded domain
specific language (DSL) tailored to a certain collection of components. The claim
of these chapters is that a higher-order, typed, garbage-collected language such as
Haskell can open up new avenues for scripting components. A general strategy
is described for embedding domain specific languages in the context of database
servers.

The final chapter describes the design of the lazy virtual machine (LVM). Just like
the Java virtual machine, it defines a portable instruction set and file format, but
it is specifically designed to execute languages with non-strict semantics. Part of
the design is a compiler toolkit that translates enriched lambda calculus to LVM
instructions. The goal was to build a system that lends itself well to experimentation
by being modular and extensible. In particular, the work described in the previous
chapters gave rise to various extensions to the Haskell language – the LVM proves
a great platform to test these ideas.

We focus specifically on the overall design of the instruction set, the operational
semantics, and the translation scheme. Instead of giving complex optimized trans-
lation schemes, we use a naive and straightforward translation and define a small set
of rewrite rules on instructions that achieve the same effect. The correctness of the
rewrite rules is relatively easy to prove with the operational semantics. In contrast,
an optimized translation scheme is much harder to prove correct, as one has to
show a correspondence between the operational semantics of the host language and
the generated instructions. Furthermore, the abstract machine is closely related to
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the capabilities of contemporary hardware, its state constisting of a code pointer,
a stack, and a heap. Therefore, we can reason about implementation techniques
that are normally only described informally; examples include exception handling,
returning constructors in registers, and black holing.
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Chapter 2

H/Direct: a binary language
interface for Haskell

This chapter is closely based on the following article, written together with Sigbjorn
Finne, Erik Meijer, and Simon Peyton-Jones. Sigbjorn Finne has implemented the
full version of the H/Direct compiler.

H/Direct: A Binary Foreign Language Interface to Haskell . In the
International Conference on Functional Programming (ICFP), Balti-
more,USA, 1998, (Finne et al., 1998). Also appeared in ACM SIGPLAN
Notices 34, 1, (Jan. 1999).

2.1 Introduction

In this chapter, we describe the development of a new foreign language interface
for Haskell. The interface provides direct access to libraries written in C (or any
other language using C’s calling convention), and makes it possible to write Haskell
procedures that can be called from C. Designing a foreign language interface for a
lazy, functional, and garbage collected language like Haskell is rather subtle, and
we divide the interface in two separate layers.

The lowest layer defines a set of four primitives that can perform a foreign call,
export a Haskell function, manage pointers to foreign data, and export pointers
to Haskell data. This layer is called the Foreign Function Interface (FFI) and has
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evolved into an addendum to the Haskell98 standard (Chakravarty (ed.), 2002)1. It
is currently supported by most Haskell compilers and interpreters.

However, most complications arise when transforming values built in one language
to the other (marshaling). The other part of our interface is therefore a tool, called
H/Direct that automatically generates Haskell marshaling code from an interface
description in IDL. The primitive FFI can only deal with the basic binary data that
require no marshaling – H/Direct provides the means to leverage that primitive
facility into the full glory of IDL.

Because they cater for a variety of languages, foreign-language interfaces tend to
become rich, complex, incomplete, and described only by example. The main con-
tribution of this chapter is to provide (part of) a formal description of the interface.
This precision encompasses not only the programmer’s-eye view of the interface,
but also its implementation. The bulk of this chapter is devoted to this description.

2.2 Background

The basic way in which almost any foreign-language interface works is by expressing
the signature of each foreign-language procedure in some formal notation. From this
signature, stub code is generated that marshals the parameters “across the border”
between the two languages, calls the procedure using the foreign language’s calling
convention, and then unmarshals the results back across the border. Dealing with
the different calling conventions of the two languages is usually the easy bit. The
complications come in the parameter marshaling, which transforms data values built
by one language into a form that is comprehensible to the other.

A major design decision is the choice of notation in which to describe the signatures
of the procedures that are to be called across the interface. There are three main
possibilities:

• Use the host language (Haskell, in our case). That is, write a Haskell type
signature for the foreign function, and generate the stub code from it. Green
Card uses this approach (Peyton Jones et al., 1997), as does J/Direct (Mic,
1998) (Microsoft’s foreign-language interface for Java).

• Use the foreign language (say C). In this case the stub code must be generated
from the C prototype for the procedure. SWIG (Beazley, 1996) uses this
approach.

• Use a separate Interface Definition Language (IDL), designed specifically for
the purpose.

1For reasons of presentation, some FFI definitions given in this chapter may differ in syntax from
the official standard.



2.2 Background 7

We discuss the first two possibilities in Section 2.2.1 and the third in Section 2.2.2.

2.2.1 Using the host or foreign language

At first sight the first two options look much more convenient than the third, because
the caller is written in one language and the callee in the other, so the interface is
conveniently expressed for at least one of them. Here, for example, is how J/Direct
allows Java to make foreign-language calls:

class ShowMsgBox {
public static void main(String args[])
{

MessageBox(0,"Hello!","Java Messagebox",0);
}

/** @dll.import("USER32") */
private static native

int MessageBox( int hwndOwner, String text
, String title, int fuStyle
);

}

The dll.import directive tells the compiler that the Java MessageBox method will
link to the native Windows USER32.DLL. The parameter marshaling (for example
of the strings) is generated based on the Java type signature for MessageBox.

The fatal flaw is that it is invariably impossible, in general, to generate adequate
stub code based solely on the type signature of a procedure in one language or the
other . There are three kinds of difficulties.

1. First, some practically-important languages, notably C, have a type system
that is too weak to express the necessary distinctions. For example:

• The stub code generator must know the mode of each parameter — in,
in out, or out — because each mode demands different marshaling code.

• Some pointers have a significant NULL value while others do not. Some
pointers point to values that can (and sometimes should) be copied across
the border, while others refer to mutable locations whose contents must
not be copied.

• There may be important inter-relationships between the parameters. For
example, one parameter might point to an array of values, while another
gives the number of elements in the array, or worse, the number of bytes.
The marshaling code needs to know about such dependencies.
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2. On the other hand, it may not even be enough to give the signature in a
language with an expressive type system, such as Haskell. The trouble is
that the type signature still says too little about the foreign procedures type
signature. For example, is the result of a Haskell procedure returned as the
result of the foreign procedure, or via an out- parameter of that procedure?
In the case of J/Direct, when a record is passed as an argument, Java’s type
signature is not enough to specify the layout of the record because Java does
not specify the layout of the fields of an object.

3. The signature of a foreign procedure may say too little about allocation re-
sponsibilities. For example, if the caller passes a data structure to the callee
(such as a string), can the latter assume that the structure will still be avail-
able after the call? Does the caller or callee allocate space to hold the results?

The predescessor to H/Direct, callled Green Card, used Haskell as the language in
which to give the type signatures for foreign procedures (Peyton Jones et al., 1997).
To deal with the issues described above we provided ways of augmenting the Haskell
type signature to allow the programmer to “customise” the stub code that would
be generated. However, Green Card grew larger and larger – and we realised that
what began as a modest design was turning into a full-scale language.

2.2.2 Using an IDL

Of course, we are not the first to encounter these difficulties. As part of the CORBA
standard (Object Management Group, 1993), the OMG group defined a separate
Interface Definition Language (IDL) to describe the signatures of procedures that
are to be called across the border. Many variants have been derived and IDL’s have
become rich and complicated, for precisely the reasons described above, but they
are at least somewhat standardised and come with useful tools. We focus on the
IDL used to describe COM interfaces (Mic, 1992), which is closely based on DCE
IDL(Ltd, 1993). We also provide support for the OMG IDL, using the translation
from OMG to DCE IDL defined by (Vogel and Gray, 1995; Vogel et al., 1996).

Like COM, but unlike CORBA2, we take the view that the IDL for a foreign pro-
cedure defines a language-independent, binary interface to the foreign procedure —
a sort of lingua franca. The interface thus defined is supposed to be complete: it
covers calling convention, data format, and allocation rules. It may be necessary to
generate stub code on both sides of the border, to marshal parameters into the IDL-
mandated format, and then on into the format demanded by the foreign procedure.
But these two chunks of marshaling code can be generated separately, each by a tool

2CORBA does not define a binary interface. Rather, each ORB vendor provides a language binding
for a number of supported languages. This language binding essentially provides the marshaling
required to an ORB-specific common calling convention. If you want to use a language that the
ORB vendor does not support, you are out of luck.
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Figure 2.1: The big picture

specialised to its host language. By design, however, IDL’s binary conventions are
more or less identical to C’s, so marshaling on the C side is hardly ever necessary.

Here, for example, is the IDL describing the interface to a function foo:

int foo( [out] long* l
, [string, in] char* s
, [in, out] double* d
);

The parts in square brackets are called attributes. In this case they describe the
mode of each parameter, but there are a rich set of further attributes that give
further (and often essential) information about the type of the parameters. For
example, the string attribute tells that the parameter s points to a null-terminated
array of characters, rather than pointing to a single character.

2.2.3 Overview

The “big picture” is given by Figure 2.1. The interface between Haskell and the
foreign language is specified in IDL. This IDL specification is read by H/Direct ,
which then produces Haskell and C3 source files files containing Haskell and C stub
code.

H/Direct can generate stub code that allows Haskell to call C, or C to call Haskell.
It can also generate stub code that allows Haskell to create and invoke COM com-
ponents, and that allows COM components to be written in Haskell. The interface
to COM is rather involved and described seperately in the next chapter. Much of

3 For the sake of definiteness we concentrate on C as the foreign language in this chapter.
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the work in all four cases concerns the marshaling of data between C and Haskell,
and that is what we concentrate on in this chapter.

Since H/Direct generates Haskell source code, it expresses the actual foreign lan-
guage call (or entry for the inverse case) with the Haskell foreign function interface
(Chakravarty (ed.), 2002). The FFI defines a foreign declaration that asks the
Haskell implementation to generate code for a foreign-language call (or entry). The
foreign declaration deals with the most primitive layer of marshaling, which is
necessarily implementation dependent; H/Direct generates all the implementation-
independent marshaling.

To make all this concrete, suppose we have the following IDL interface specification:

typedef struct { int x,y; } Point;

void Move( [in,out,ref] Point* p );

If asked to generate stub code to enable Haskell to call function Move, H/Direct will
generate the following (Haskell) code:

data Point = Point { x,y::Int }
marshalPoint :: Point -> IO (Ptr Point)
marshalPoint = ...

unmarshalPoint :: Ptr Point -> IO Point
unmarshalPoint = ...

move :: Point -> IO Point
move p =

do{ a <- marshalPoint p
; primMove a
; r <- unmarshalPoint a
; hdFree
; return r
}

foreign import stdcall "Move"
primMove :: Ptr Point -> IO ()

This code illustrates the following features:

• For each IDL declaration, H/Direct generates one or more Haskell declara-
tions.

• From the IDL procedure declaration Move, H/Direct generates a Haskell func-
tion move whose signature is intended to be “what the user would expect”.
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In particular, the Haskell type signature is expressed using “high-level” types;
that is, Haskell equivalents of the IDL types. For example, the signature for
move uses the Haskell record type Point. The translation for a procedure
declaration is discussed in Section 2.5.

• The body of the procedure marshals the parameters into their “low-level”
types, before calling the “low-level” Haskell function primMove. The latter
is defined using a foreign declaration; the Haskell implementation generates
code for the call to the C procedure Move. Section 2.6 specifies the high-level
and low-level type corresponding to each IDL type.

• A “low-level” type is still a perfectly first-class Haskell type, but it has the
property that it can trivially be marshaled across the border. There is fixed
set of primitive “low-level” types, including Int, Float, Char and so on. Addr
is a low-level type that holds a raw machine address. The type constructor
Ptr is just a synonym for Addr:

type Ptr a = Addr
addPtr :: Ptr a -> Int -> Ptr b

The type argument to Ptr is used to allow H/Direct to document its output
somewhat, by giving the “high-level” type that was marshaled into that Addr.
Section 2.7 describes how high-level types are marshaled to and from their
low-level equivalents.

• An IDL typedef declaration, will result in a corresponding Haskell type dec-
laration together with some marshaling functions. In general, a marshaling
function transforms a “high-level” Haskell value (in this case Point) into a
“low-level” Haskell value (in this case Ptr Point). These marshaling func-
tions are in the IO monad because, as we shall see, they often work impera-
tively by allocating some memory and explicitly filling it in, so as to construct
a memory layout that matches the interface specification. The translations
for typedef declarations are discussed in Section 2.8.

• The function hdFree :: IO () releases all the memory allocated by the mar-
shaling functions.

So much for our example. The difficulty is that IDL is a complex language, so it
is not always straightforward to construct the Haskell type that will correspond
to a particular IDL type, nor to generate correct marshaling code. (The former is
important to the programmer, the latter only to H/Direct itself.) Our goal in this
chapter is to give a systematic translation of IDL to Haskell stub code.

However, before we dive into the details of the IDL translation, we first describe
the design of the low-level foreign function interface.
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2.3 The Foreign Function Interface

Since H/Direct only generates Haskell source code, it expresses the actual for-
eign language call (or entry for the inverse case) with the low-level Haskell foreign
function interface (FFI). The FFI has currently evolved into an addendum to the
Haskell98 standard (Chakravarty (ed.), 2002) and is supported by the main Haskell
systems.

We have carefully minimised what is required from the language implementation,
while maximising the work done by H/Direct. In this way, any Haskell system
that implements our extensions can interface with foreign languages, using the
implementation-independent H/Direct to do most of the work.

Surprisingly, there are only four primitive operations needed to implement a full
fledged foreign function interface:

• Call foreign code, supported by foreign import declarations.

• Export Haskell code that can be called from foreign code, supported by
foreign export declarations.

• Manage pointers to foreign data, supported by foreign object pointers.

• Export pointers to Haskell data, supported by stable pointers.

2.3.1 Foreign static import and export

Earlier versions of GHC (the Glasgow Haskell Compiler) provided ccall (or even
casm) to invoke a C procedure (Peyton Jones and Wadler, 1993). However, while
this facility is (fairly) easy to support in a compiler that uses C as an intermediate
language, it is a bit more difficult when using a native code generator, and well-nigh
impossible when using an interpreter such as Hugs. Furthermore, it says nothing
about how to allow C to call Haskell, or how to inter-operate with procedures with
non-C calling conventions.

The new foreign function interface is much simpler. Here is an example of how to
import a foreign procedure:

foreign import "hash32" hash :: Int -> IO Int

This foreign declaration is modelled directly on the primitive declaration that
Hugs has supported for some time. The declaration defines the Haskell IO action
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hash which, when invoked, will call the external procedure hash32. The implemen-
tation of hash also takes care of converting between the Haskell representation of
an Int and the corresponding external representation.

The result of hash has type IO Int rather than Int, to signal that hash might
perform some input/output or have some other side effect.

The range of types that can be passed to and from a foreign-imported procedure is
deliberately restricted to the (small) set of primitive types. By a “primitive type”
we mean one that cannot be defined in Haskell, such as Int, Float, Char. Only
the language implementation knows the representation of primitive types, and so
only the language implementation can marshall them. For all other types, such as
lists or Bool, H/Direct is used to generate marshalling code. The same restriction
applies to the other variants of foreign that we discuss later, for the same reasons.

2.3.2 Variations on the theme

We support several variants of the basic foreign declaration:

• The name of the external procedure can be omitted, in which case it defaults
to the same as the Haskell procedure.

foreign import hash :: Int -> IO Int

• If the programmer is sure that the foreign procedure is really a function —
that is, it has no side effects — he can write the type as a non-IO type:

foreign unsafe import "sin"

sin :: Double -> Double

The “unsafe” keyword highlights the fact that the programmer undertakes a
proof obligation, namely that the function really is a function. We use this
convention uniformly (also e.g. in unsafePerformIO), so that a programmer
can find all his proof obligations by saying grep unsafe.

• By default, foreign import uses the C calling convention, but the convention
can instead be specified explicitly:

foreign unsafe import ccall "sin"

sin :: Double -> Double

We also support the standard calling convention (stdcall) used in Win32
environments.

• In many systems it is necessary to specify the (dynamic) library in which the
external procedure can be found.



14 Chapter 2. H/Direct: a binary language interface for Haskell

foreign unsafe import "MathLib" "sin"

sin :: Double -> Double

A similar declaration allows the programmer to expose a Haskell function to the
outside world:

foreign export "put_char" putChar :: Char -> IO ()

This exports a C-callable procedure put_char that in turn invokes the Haskell func-
tion putChar, marshalling the parameter appropriately. The calling convention can
be specified, just as with foreign import, and a pure (non-I/O) Haskell function
can be exported just as easily (no need for “unsafe” here):

foreign export fibonacci :: Int -> Int

Similar to the foreign import case, when the external name of the exposed function
is ommited, it defaults to the same name as the Haskell function.

2.3.3 Stable pointers and foreign objects

It is often necessary to pass a Haskell value (pointer) to an external procedure.
This raises two difficulties: first, the Haskell garbage collector cannot tell when
the Haskell value is no longer required; and second, the value may be moved by
the (copying) garbage collector. We solve both these problems by registering the
Haskell value as a stable pointer (StablePtr). This registration (a) returns a stable
value (a small integer) that names the value, and will not change during garbage
collection, and (b) tells the garbage collector to retain the value until told otherwise.
Subsequently, the stable pointer can be dereferenced (in Haskell) to recover the
original Haskell value.

An exactly dual problem arises when we want to pass to a Haskell program a pointer
to an external object (e.g. a file handle, malloc’d block, or COM interface pointer).
Often, we would like to be able to call fclose, or free, on the external reference
when the Haskell garbage collector finds that the resource is no longer required.
Such “run this finalizer when the object dies” is called finalization. The FFI defines
the ForeignPtr type to model these foreign pointers, together with functions that
attach finalizers to these pointers.

The implementation of both extensions is rather subtle and is described extensively
in a separate article (Peyton Jones et al., 1999).
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2.3.4 Dynamic import

The foreign import primitive is fine if we know the name of the C function we
want to invoke. But sometimes we don’t. Notably, when invoking a COM object,
we start from an interface pointer, which points to a location that points to a virtual
method table (we discuss this in detail in the next chapter). To invoke the method,
we must fetch the address of the method from the virtual method table, and call it.
foreign import simply doesn’t do the job; it works fine for link-time or load-time
binding, but not at all for run-time binding.

To address this deficiency, we first need a new primitive Haskell data type, Addr,
that represents a machine address. (We could have used Int, but that seems unsa-
vory.) Next, we extend foreign import with a dynamic attribute:

foreign import dynamic

hashMethod :: Addr -> (Int -> IO Int)

This defines a Haskell function hashMethod with the specified type. Function
hashMethod takes the address of the foreign procedure, which must be of type
Addr, and returns a fully-fledged Haskell function that, when applied, will invoke
the foreign procedure. Consider the following example:

do h <- ...get addr of hash procedure...

-- h has type Addr

; let hash = hashMethod h

; r1 <- hash 34

; r2 <- hash 39

; ...

h is the address of a suitable C procedure; hashMethod turns h into a Haskell
function of type Int -> IO Int, which is then invoked twice. Of course, if h is
bound to a bogus address terrible things will happen.

It is rather simple to implement foreign import dynamic. The only difference from
the static version is that the call takes place to a supplied argument, rather than
to a static label. This contrasts sharply with its dual, dynamic export, which we
study next.

2.3.5 Dynamic export

Just as foreign import is inadequate in general, so is foreign export, for two
reasons. First, foreign export only makes sense in a compiled setting, since its
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effect is to generate a code label that is visible to a linker – an interpreter cannot
reasonably implement foreign export.

Second, foreign export works on top-level functions. But we might want to export
arbitrary functions. For example, external library procedures quite often take a
callback parameter; that is, a pointer to a procedure that the external procedure
will itself call. For example, the Win32 API provides a function that allows you to
iterate over the current list of open windows:

typedef BOOL (*WNDENUMPROC)(HWND, LPARAM);

BOOL EnumWindows( WNDENUMPROC enumFunc

, LPARAM lParam

);

The system call takes a pointer to a callback procedure to invoke for each open
window, together with a value lparam that we’ll ignore for now. The callback
procedure returns a boolean value to indicate whether we should stop iterating over
the windows or not.

The system call itself can easily enough be imported into Haskell4

type BOOL = Int

type LPARAM = Int

type WNDENUMPROC = Addr

foreign import "EnumWindows"

enumWindows :: WNDENUMPROC -> LPARAM -> IO BOOL

But what to do with the callback? We want to implement it in Haskell, so the
callback will have to be dressed up to appear like a C function pointer. One way
would be to use foreign export to export a Haskell procedure as a C procedure,
and add some mechanism to give Haskell access to the address of that C procedure,
to pass to enumWindows.

But there is a much more elegant solution. We provide a dynamic form of foreign
export, thus:

type HWND = Addr

foreign export dynamic

mkWndEnumProc :: (HWND -> LPARAM -> IO BOOL)

-> IO WNDENUMPROC

4 We declare types BOOL, LPARAM, etc as Haskell type synonyms that mimic the C header file
definitions of these types. Such type declarations are usually generated automatically by H/Direct.
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This declaration defines a Haskell function mkWndEnumProc, with the type specified.
Function mkWndEnumProc takes an arbitrary Haskell function value of the given type
as its single argument, and returns a C function pointer. This C function expects
to find two arguments on the C stack; it marshalls them into the Haskell world, and
passes them to the Haskell function that was passed to mkWndEnumProc. Here is an
example of its use5:

windowTitles :: IO [String]

windowTitles =

do ref <- newIORef []

; let getTitle :: HWND -> LPARAM -> IO BOOL

getTitle hwnd lp =

do t <- getWindowTitle hwnd

; ts <- readIORef ref

; writeIORef ref (t:ts)

; return (boolToInt True)

; cback <- mkWndEnumProc getTitle

; enumWindows cback (0::Int)

; readIORef ref

Here, getTitle is the callback procedure; it is called for each window, passing the
window handle and the LPARAM value. It in turn calls getWindowTitle (another
foreign-imported procedure) to get the window title, and puts it onto the front of
a list of window titles, kept in a Haskell mutable variable ref.

The Haskell function getTitle is turned into a C-callable procedure cback (of type
Addr) by mkWndEnumProc, the function defined by the foreign export dynamic
declaration. Finally cback is passed to enumWindows.

We do not claim that this is beautiful programming style. For example, it is rather
gruesome to use a mutable variable in getTitle. But the style is dictated by the
architecture of Windows system calls; we are stuck with it. However, we are now
ready to understand quite a bit about foreign export dynamic:

• The callback function getTitle is a first class Haskell value. It is not a top-
level function, as must be the case for a static foreign export. In this case,
getTitle has a free variable, ref, the mutable cell that it updates.

This capability is modeled in C by the LPARAM parameter. The system call
accepts LPARAM as well as the callback procedure, and passes LPARAM each
time it calls the procedure. In effect, the (callback, LPARAM) pair constitutes
a closure, of code plus environment.

5The Appendix introduces IORefs.
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In this particular case, a C programmer would use LPARAM to point to a
location in which the list is accumulated, just like ref. If there were many
free variables, matters would be less simple. The Haskell programmer does
not need to bother with LPARAM — indeed, lp is unused in the definition of
getTitle. mkWndEnumProc captures a first-class Haskell value, free variables
and all. Higher-order programming in C!

• mkWndEnumProc encapsulates a Haskell value as a C function pointer. To do
this, it first registers the Haskell value as a stable pointer (Section 2.3.3),
and then embeds the stable pointer in the C function. The programmer can
explicitly free the retained Haskell value using:

freeHaskellFunctionPtr :: Addr -> IO ()

This operation cannot be done automatically, since it depends on knowing
that the exported function pointer is no longer needed externally.

• As with the other foreign declaration variants, a foreign export dynamic
also allows you to specify which calling convention the returned function
pointer should expect.

2.3.6 Implementing dynamic export

Dynamic export is considerably harder to implement than dynamic import, because
we have to generate a C function pointer that cannot be static, because it must
somehow refer to the Haskell function it encapsulates. This forces us to perform a
little bit of dynamic code generation.

Our implementation for the Glasgow Haskell Compiler works by taking advantage
of the static version of foreign export. Here, for example, is how we implement
mkWndEnumProc. We repeat its declaration here:

foreign export dynamic

mkWndEnumProc :: (HWND -> LPARAM -> IO BOOL)

-> IO WNDENUMPROC

GHC first generates code exactly as if the programmer had written:

foreign export

wndEnumProc :: HWND -> LPARAM

-> StablePtr (HWND->LPARAM->IO BOOL)

-> IO BOOL

wndEnumProc h l sp =

do f <- deRefStablePtr sp

; f h l
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wndEnumProc takes an extra argument, a stable pointer to the function value (Sec-
tion 2.3.3); it dereferences the stable pointer, and calls the function it gets back.
Now, GHC generates code for mkWndEnumProc, which does three things:

• registers the Haskell function as a stable pointer;

• dynamically generates a code fragment;

• returns the address of this dynamically generated code.

The dynamically-generated code consists of two or three instructions:

add-param <function pointer>

jump wndEnumProc

The add-param “instruction” must be whatever machine code is necessary to pass
one extra parameter — often this is just a matter of pushing it on the stack (per-
haps also moving the return address). Once this is done, the statically-exported
wndEnumProc will do the rest. Clearly, the dynamic-code-generation part is highly
architecture dependent, but it is also very short, and is not hard in practice.

Unfortunately, this solution won’t work at all for the Hugs interpreter, because an
interpreter can’t support static foreign export. Instead, the Hugs implementation
of mkWndEnumProc dynamically generates the following segment of machine code:

push <function pointer>

push <type descriptor>

jump GenericCaller

Here <type descriptor> is a (pointer to a C-format) string that encodes the type
signature of the function. The <function pointer> is a stable pointer to the
Haskell function value, as before. Finally, GenericCaller is a fixed piece of code
that (a) uses the type descriptor to marshall data from C to Haskell, (b) calls the
specified Haskell function, (c) marshalls the Haskell result back, and (d) returns to
the C caller. GenericCaller is highly machine dependent, since it must know all
about the caller’s calling conventions; but at least it need only be written once.

2.3.7 Related work

Foreign function interfaces (FFIs) are clearly of great use, but not may articles have
been written about them. Most functional programming systems provide a FFI, al-
lowing calls to external functions to be embedded within functional code. However,
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few provide equally good support for the outside to call in. The esh Scheme im-
plementation (Rose and Muller, 1992) is a notable exception; it was designed with
the explicit goal of making hybrid Scheme and C/C++ applications easier to write.
Another, more recent system is the Bigloo Scheme compiler (Serrano, 1999).

For ML-based languages, the Standard ML of New Jersey compiler’s foreign function
interface also provides support for call-ins (Huelsbergen, 1996). Function closures
can be dressed up behind a C function pointer, which can then be passed out to
the outside world, making it similar in power to foreign export dynamic.

A similar approach is provided by the Objective Caml FFI (Leroy, 1996), which
requires exported functions to be registered by giving them a name (an arbitrary
string) from within OCaml code. The run-time system provides a C callable entry
point for looking up the OCaml function closure that hides behind a name, and
invoke through a class of invocation functions. This scheme requires that the user
makes up the difference using C, writing a little bit of stub code that does the
lookup and invokes the function by marshalling and unmarshalling the arguments
and results. Contrast this with foreign export dynamic which makes the Haskell-
nature of the function pointers it returns transparent to the user.

To our knowledge, the only other Haskell system that provides support for Haskell
functions that can be called externally is the NHC 1.3 compiler (Wallace, 1998),
which provides a basic export mechanism similar to that of Objective Caml’s.

2.4 Translating IDL to Haskell

H/Direct generates Haskell marshaling code from an IDL description. However, IDL
is a complex language and it is not always straightforward to perform the translation
from IDL types to Haskell types, nor to generate correct marshaling code. (The
former is important to the programmer, the latter only to H/Direct itself.) The
rest of this chapter is concerned with a systematic and formal translation of IDL to
Haskell marshaling code. We have found this detailed treatment invaluable, both
for designing the system and in the implementation of H/Direct .

To simplify translation we assume that the IDL source is brought into a standard
form, that is, we factor the translation into a translation of full IDL to a core
subset and a translation from core IDL to Haskell. In particular, we assume that:
out parameters always have an explicit “*”, the pointer default is manifested in all
pointer types, and all enumerations have value fields. The details are unimportant
here and normalisation is straighforward to implement (although one has to take
care of many details and dialects).

IDL is a large language, and space precludes giving a complete translation here.
We do not even give a syntax for IDL, relying on the left-hand sides of the transla-
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tion rules to specify the syntax we treat. However, the framework we give here is
sufficient to treat the whole language, and our implementation does so.

2.5 Procedure declarations

The translation function D[[ ]] maps an IDL declaration into one or more Haskell
declarations. We begin with IDL procedure declarations. To start with, we concen-
trate on allowing Haskell to call C; we discuss other variants in Section 2.9. Here
is the translation rule for procedure declarations:

D[[t res f ([in]t in, [out]t out, [in,out]t inout)]]
7→
T [[f ]] :: T [[t in]] -> T [[t inout ]]

-> IO (T [[t out ]],T [[t inout ]],T [[t res]])
N [[f ]] = \m -> \n ->
do { a <- M[[t in]] m

; b <- O[[t out ]]
; c <- M[[t inout ]] n
; r <- primN [[f ]] a b c
; x <- U [[t out ]] b
; y <- U [[t inout ]] c
; z <- U [[t res]] r
; hdFree
; return (x,y,z)
}

foreign import stdcall primN [[f ]]
:: B[[t in]] -> B[[t out ]] -> B[[t inout ]]
-> IO B[[t res]]

Despite our claim of formality, the fully formal version of this rule has an inconve-
nient number of subscripts. Instead, we illustrate by giving one parameter of each
mode ([in], [out], and [in, out]); more complex cases are handled exactly anal-
ogously. The translation produces a Haskell function that takes one argument for
each IDL [in] or [in, out] parameter, and returns one result of each IDL [out]
or [in, out] parameter, plus one result for the IDL result (if any). In general,
foreign functions can perform side effects, so the result type is in the IO monad.
We have added a (non- standard) attribute [pure], that declares the procedure to
have no side effects; in this case, the Haskell procedure can simply return a tuple
rather than an IO type.

The generic translation for procedure declaration uses several auxiliary translation
schemes:
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t : b basic type
| n type names
| [{attr}+ ]t* pointer type

attr : unique | ref | ptr
| string | size is(e)

Figure 2.2: IDL type syntax

• The translation scheme T [[t ]] gives the “high-level” Haskell type corresponding
to the IDL type t .

• The translation scheme N [[n]] does the name mangling required to translate
IDL identifiers to valid Haskell identifiers. For example, it accounts for the
fact that Haskell function names must begin with a lower-case letter.

• The translation scheme B[[t ]] gives the “low-level” Haskell type corresponding
to the IDL type t .

• The translation schemeM[[t ]] :: T [[t ]] -> IO B[[t ]] will generate Haskell code
that marshals a value of IDL type t from its high-level type T [[t ]] to its low-
level form B[[t ]]. This is used to marshal all the in-parameters of the procedure
([in] and [in,out]).

• The translation scheme U [[t ]] :: B[[t ]] -> IO T [[t ]] generates Haskell code that
unmarshals a value of IDL type t . This is used to unmarshal all the out-
parameters of the procedure, and its result (if any). M[[ ]] and U [[ ]] are
mutual inverses (up to memory allocation).

• In addition, for [out] parameters the caller is required to allocate a location to
hold the result. O[[[attr]t*]] :: IO (Ptr B[[t ]]) is Haskell code that allocates
enough space to contain a value of IDL type t .

2.6 Mapping for types

Next, we turn our attention to the translations T [[ ]] and B[[ ]] that translate IDL
types to Haskell types. The syntax of IDL types that we treat is given in Figure 2.2,
while Figure 2.3 gives their translation into Haskell types. We deal with user-defined
structured types later, in Section 2.8.

Translating base types that have direct Haskell analogues, is easy. The high-level
and low-level type translations coincide, except that the high-level representation of
IDL’s 8-bit characters is Haskell’s 16 bit Char type. To give more precise mapping
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B[[short]] 7→ Int32
B[[unsigned short]] 7→ Word32

B[[float]] 7→ Float
B[[double]] 7→ Double
B[[char]] 7→ Word8
B[[wchar]] 7→ Char

B[[boolean]] 7→ Bool
B[[void]] 7→ ()

B[[[attr]t*]] 7→ Ptr T [[t ]]

T [[char]] 7→ Char
T [[b]] 7→ B[[b]]
T [[n]] 7→ N [[n]]

T [[[ref]t*]] 7→ T [[t ]]
T [[[unique]t*]] 7→ Maybe T [[t ]]

T [[[ptr]t*]] 7→ Ptr T [[t ]]
T [[[string]char*]] 7→ String

T [[[size is(v)]t*]]] 7→ [T [[t ]]]

Figure 2.3: Type translations

we have extended Haskell with new base types: Word8, Word16, and so on. Similarly,
IDL type names are translated to the (Haskell-mangled) name of the corresponding
Haskell type.

Matters start to get murkier when we meet pointers. Since a pointer is always
passed to and from C as a machine address, the low-level translation of all pointer
types is a raw machine address:

B[[[attr]t*]] 7→ Ptr T [[t ]]

(Recall that Ptr t is an abbreviation for Addr, but the Ptr form is somewhat more
informative.)

In contrast, the high-level translation of pointers depends on what type of pointer
is concerned. IDL has no fewer than five kinds of pointer, distinguished by their
attributes! We treat them one at a time (refer in each case to Figure 2.3):

• A value of IDL type [ref]t* is the unique pointer, or indirection, to a value of
type t . A value of type [ref]t* should be marshalled by copying the structure
over the border. Since pointers are implicit in Haskell, the corresponding high-
level Haskell type is T [[t ]].
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• The IDL type [unique]t* is exactly the same as [ref]t*, except that the
pointer can be NULL. The natural way to represent this possibility in Haskell
is using the Maybe type. The latter is a standard Haskell type defined like
this:

data Maybe a = Nothing | Just a

• An IDL value of type [ptr]t* is the address of a value that might be shared,
and might contain cycles. It is far from clear how such a thing should be
marshaled, so we adopt a simple convention:

T [[[ptr]t*]] 7→ Ptr T [[t ]]

That is, [ptr] values are not moved across the border at all. Instead they
are represented by a value of type Ptr T [[t ]], a raw machine address.

This is often useful. For a start, some libraries implement an abstract data
type, in which the client is expected to manipulate only pointers to the val-
ues. Similarly, COM interface pointers should be treated simply as addresses.
Finally, some operating system procedures (notably those concerned with win-
dows) return such huge structures that a client might want to marshal them
back selectively.

• A value of type [string]char* is the address of a null-terminated sequence of
characters. (Contrast [ref]char*, which is the address of a single character.)
The corresponding Haskell type is, of course, String. The [string] attribute
applies to the following array types char, byte, unsigned short, unsigned
long, structs with byte (only!) fields and, in Microsoft-only IDL, wchar.

• Sometimes a procedure takes a parameter that is a pointer to an array of
values, where another parameter of the procedure gives the size of the array.
(CORBA IDL calls such arguments “sequences”.) For example:

void DrawPolygon
( [in,size_is(nPoints)] Point* points
, [in] int nPoints
);

The [size is(nPoints)] attribute tells that the second parameter, nPoints,
gives the size of the array. (This is quite like the [string] case, except that
the size of the array is given separately, whereas strings have a sentinel at the
end.) There is a second variant in which nPoints is a static constant, rather
than the name of another parameter.

At the moment we translate an IDL array to a Haskell list, but another pos-
sibility would be to translate it to a Haskell array.

While each of these variants has a reasonable rationale, we have found the plethora
of IDL pointer types to be a rich source of confusion. The translations in Figure 2.3
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look innocuous enough, but we have found them extremely helpful in clarifying and
formalising just exactly what the translation of an IDL type should be.

Even if the translations are not quite “right” (whatever that means), we now have
a language in which to discuss variants. For example, it may eventually turn out
that the IDL [ptr] attribute is conventionally used for subtly different purposes
than the ones we suggest above. If so, the translations can readily be changed, and
the changes explained to programmers in a precise way.

2.7 Marshaling

In the translation of the IDL type signature for a procedure (Section 2.5), we invoked
marshaling functions M[[ ]] and U [[ ]] for each of the types involved. Now that we
have defined the high and low-level translations of each type, the marshaling code
is relatively easy to define. In this section we define these marshaling functions.

Marshaling a structured value consists, as we shall see, of two steps: allocate some
memory in the parameter-marshaling area to hold the value, and then actually
marshal the Haskell value into that memory. The translations are much more elegant
if we define auxiliary schemes, W[[ ]] and R[[ ]], that perform this “by-reference”
marshaling. We also need a number of functions to manipulate the parameter-
marshaling area. More precisely:

W[[t ]] :: Ptr T [[t ]] -> T [[t ]] -> IO () will marshall its second argument into the
memory location(s) pointed to by its first argument; the latter is a raw ma-
chine address.

R[[t ]] :: Ptr T [[t ]] -> IO T [[t ]] unmarshals a value of IDL type t out of memory
location(s) pointed to by its argument. W[[ ]] and R[[ ]] are mutually inverse
(up to memory allocation).

S[[t ]] :: Int is the number of bytes occupied by an IDL value of type t . The
function O[[ ]], mentioned in Section 2.5, is defined thus:

O[[[attr]t*]] 7→ hdAlloc S[[t ]]

hdAlloc :: Int -> IO (Ptr a) allocates the specified number of bytes in the
parameter-marshaling area, returning a pointer to the allocated area.

hdWriteb :: Ptr T [[b]] -> T [[b]] -> IO (), where b is a basic type, marshals a
value of IDL type b into the specified memory location(s).

hdReadb :: Ptr T [[b]] -> IO T [[b]], where b is a basic type, unmarshals a value
of IDL type t .

hdFree :: IO () frees the whole parameter-marshaling area.
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M[[t ]] :: T [[t ]] -> IO B[[t ]]

M[[char]] 7→ marshalChar
M[[b]] 7→ return
M[[n]] 7→ marshaln
M[[[ref]t*]] 7→ \x ->

do{ px <- hdAlloc S[[t ]]
; W[[t ]] px x}

M[[[unique]t*]] 7→ \x ->
case x of
Nothing -> return nullPtr
Just y -> M[[[ref]t*]] y

M[[[ptr]t*]] 7→ return
M[[[string]t*]] 7→ marshalString

W[[t ]] :: Ptr T [[t ]] -> T [[t ]] -> IO ()

W[[b]] 7→ hdWriteb
W[[[attr]t*]] 7→ \p x ->

do{ a <- M[[[attr]t*]] x
; hdWriteAddr p a}

U [[t ]] :: B[[t ]] -> IO T [[t ]]

U [[char]] 7→ unmarshalChar
U [[b]] 7→ return
U [[n]] 7→ unmarshaln
U [[[ref]t*]] 7→ R[[t ]]
U [[[unique]t*]] 7→ \p ->

if p == nullPtr then
return Nothing

else
do{ x <- R[[t ]] p

; return (Just x)}
U [[[ptr]t*]] 7→ return
U [[[string]t*]] 7→ unmarshalString

R[[t ]] :: Ptr T [[t ]] -> IO T [[t ]]

R[[b]] 7→ hdReadb
R[[[attr]t*]] 7→ \p ->

do{ a <- hdReadAddr p
; U [[[attr]t*]] a}

Figure 2.4: The marshaling schemes
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t : t[e] array type
| enum {

tag1 = v1, . . . , tagn = vn} enumeration
| struct tag {

f1 : t1; . . . ; fn : tn; } record type
| union tag1

switch ( b tag2 ) {
case v1:t1 f1; . . . case vn:tn fn;} union type

Figure 2.5: IDL constructed type syntax

With these definitions in mind, Figure 2.4 gives the marshaling schemes. We omit
the schemes for [size is] because it is tiresomely complicated. Apart from that,
the translations are easy to read:

• For basic types there is no marshaling to do, except that we convert between
the 16-bit Haskell Char and 8-bit IDL char types.

• Marshaling a typedef’d type can be done by invoking its marshaling function.

• Marshaling a [ref] pointer is done by allocating some memory with hdAlloc,
and then marshaling the value into it with W[[ ]]. Unmarshaling is similar,
except that there is no allocation step; we just invoke R[[ ]].

• Dealing with [unique] pointers is similar, except that we have to take account
of the possibility of a NULL value.

Again, it is very helpful to have a precise language in which to discuss these trans-
lations. Though they look simple, we can attest that it is very easy to get confused
by pointers to pointers to things, and we have far greater confidence in our imple-
mentation as a result of writing the translations formally.

One might wonder about the run-time cost of all this data marshalling. Indeed, his-
torically foreign-language interfaces have taken it for granted that data is not copied
across the border. However, such non-marshalling interfaces are extremely restric-
tive: they require the two languages to share common data representations to the
bit level, and to share a common address space. In moving decisively towards IDL-
based component-based programming, the industry has accepted the performance
costs of marshalling in exchange for its flexibility. This in turn discourages very
fine-grain, intimate interaction between components with many border-crossings,
instead encouraging a coarser-grain approach. We are happy to adopt this trend,
because there is no way to make (lazy) Haskell and C share data representations.
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2.8 Type declarations

On top of the primitive base types, IDL supports the definition of a number of
constructed types. For example

typedef int trip[3];
typedef struct TagPoint { int x,y; } Point;
typedef enum { Red=0, Blue=1, Green=2 } RGB;
typedef union _floats switch (int ftype) {

case 0: float f;
case 1: double d;

} Floats;

which declares array, record, enumeration and union (or sum) types, respectively.
Figure 2.5 shows the syntax of IDL’s constructed types.

The translation provides rules for converting between IDL constructed types into
corresponding Haskell representations. To ease the task of defining this type map-
ping, we assume that each constructed type appears as part of an IDL type decla-
ration. In general, a type declaration has the following form:

typedef t name;

declaring name to be a synonym for the type t , which is either a base type or one
of the above constructed types. A type declaration for an IDL type t gives rise to
the definition of the following Haskell declarations:

• A Haskell type declaration for the Haskell type N [[name]]. It is defined in
such a way that T [[name]] = N [[name]].

• marshalN [[name]] :: T [[name]] -> IO B[[t ]] this implements the translation
scheme M[[ ]] for converting from the Haskell representation T [[t ]] to the IDL
type t .

• unmarshalN [[name]] :: B[[t ]] -> IO T [[name]] which implements the dual
U [[ ]] scheme for unmarshaling.

• marshalN [[name]]At :: Ptr B[[t ]] -> T [[name]] -> IO () for types that are
marshalled by reference.

• unmarshalN [[name]]At :: Ptr B[[t ]] -> IO T [[name]] which implements the
R[[ ]] scheme for unmarshaling a constructed type by-reference.

• sizeofN [[name]] :: Int, a constant holding the size of the external repre-
sentation of the type (in 8-bit bytes.)
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D[[typedef t name;]]
7→ type N [[name]] = T [[t ]]
marshalN [[name]] = marshalT [[t ]]
marshalN [[name]]At = marshalT [[t ]]At
unmarshalN [[name]] = unmarshalT [[t ]]
unmarshalN [[name]]At = unmarshalT [[t ]]At
sizeofN [[name]] = S[[t ]]

D[[typedef t name[dim];]]
7→ type N [[name]] = [ T [[t ]] ]
marshalN [[name]] = marshalArray dim marshalT [[t ]]At
marshalN [[name]]At = marshalArrayAt dim marshalT [[t ]]At
unmarshalN [[name]] = unmarshalArray dim unmarshalT [[t ]]At
unmarshalN [[name]]At = unmarshalArrayAt dim unmarshalT [[t ]]At
sizeofN [[name]] = dim * S[[t ]]

Figure 2.6: Translating simple type declarations

The general rules for converting type declarations into Haskell types is presented in
Figure 2.6 and Figure 2.7. Here is what they generate when applied:

• In the case of a type declaration for a base type, this merely defines a type
synonym. For example

typedef int year;

is translated into the type synonym

type Year = Int

plus marshaling functions for Year.

• For a record type such as Point:

typedef struct TagPoint {int x,y;} Point;

generates a single constructor Haskell data type:

data Point = TagPoint { x:: Int, y::Int }

In addition to this, the D[[ ]] scheme generates a collection of marshaling
functions, including marshalPoint:
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D[[typedef struct tag{...; ti fieldi; ...} name;]]
7→
data N [[name]] = N [[tag ]]{ . . . ,N [[fieldi ]] :: T [[ti ]], . . . }
marshalN [[name]] rec = do
ptr <- hdAlloc S[[name]]
marshalN [[name]]At ptr rec
return ptr

marshalN [[name]]At ptr (N [[tag ]]{ . . . ,N [[fieldi ]], . . .} = do
let ptr1 = addPtr ptr 0
. . .
let ptri = addPtr ptri−1 S[[ti−1 ]]
W[[ti ]] ptri fieldi

. . .
return ()

unmarshalN [[name]] = unmarshalN [[name]]At

unmarshalN [[name]]At ptr = do
let ptr1 = addPtr ptr 0
. . .
let ptri = addPtr ptri−1 S[[ti−1 ]]
N [[fieldi ]] <- R[[ti ]] ptri

. . .
return (N [[tag ]] . . . N [[fieldi ]] . . . )

sizeofN [[name]] = structSize [ . . . ,S[[fieldi ]], . . . ]

D[[typedef enum {...,alt = value,...} name;]]
7→
data N [[name]] = . . . | N [[alt ]] | . . .
marshalN [[name]] x =
case x of { . . . ; N [[alt ]] -> N [[value]]; . . . }

unmarshalN [[name]] x =
case x of { . . . ; N [[value]] -> return N [[alt ]]; . . . }

unmarshalN [[name]]At ptr = do
v <- hdReadInt ptr
unmarshalN [[name]] v

sizeofN [[name]] = sizeofint

Figure 2.7: Translating type declarations
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marshalPoint :: Point -> IO (Ptr Point)
marshalPoint (Point x y) =
do{ ptr <- hdAlloc sizeofPoint

; let ptr1 = addPtr ptr 0
; marshalintAt ptr1 x
; let ptr2 = addPtr ptr1 sizeofint
; marshalintAt ptr2 y
; return ptr
}

It marshals a Point by allocating enough memory to hold the external repre-
sentation of the point. The size of the record type is computed as follows:

sizeofPoint :: Int32

sizeofPoint = structSize [sizeofint,sizeofint]

where structSize is a (platform specific) function that computes the size of
a struct given the field sizes.6

Point’s two fields are marshaled into the external representation of Point by
calling the by-reference marshaler for the basic type Int, supplying a pointer
that has been appropriately offset.

• For the union type example given at the start of Section 2.8, the following
Haskell type is generated:

data Floats = F Float | D Double

together with actions for marshaling between the algebraic type and a union
(omitting the type signatures for the by-reference marshalers):

marshalFloats :: Floats -> IO (Ptr Floats)
unmarshalFloats :: Ptr Floats -> IO Floats

The external representation of a union is normally a struct containing the
discriminant and enough room to accommodate the largest member of the
union. In the case of Floats, the external representation must be large enough
to contain an int and a double.

• Enumerations have a direct Haskell equivalent as algebraic data types with
nullary constructors. For example, the RGB declaration:

typedef enum {red=0,green=1,blue=2} RGB;

is translated into the Haskell type

6Similarly, a function that returns the offsets at which to marshal each field into is also provided.
Due to lack of space, marshalPoint makes the simplifying assumption that structures contain no
internal padding.
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data RGB = Red | Green | Blue

with concrete representation B[[RGB]] = Int32

The marshaling actions simply map between the nullary constructors and
Int32:

marshalRGB :: RGB -> IO Int32
marshalRGB nm =

return (case nm of {
Red -> 0
Green -> 1
Blue -> 2 })

unmarshalRGB :: Int32 -> IO RGB
unmarshalRGB v =
case v of

0 -> return Red
1 -> return Green
2 -> return Blue
_ -> fail (userError ...)

Haskell data structures can contain shared sub-components, or even cycles. How-
ever, such sharing is not observable by a Haskell program, so the marshalling code
cannot take account of it. DAGs are therefore marshalled just as if they were
trees, and a cyclic data structure (which is indistinguishable from an infinite data
structure) make the marshaler fail to terminate.

It might be possible to “fix” these shortcomings, but we are not unduly bothered
about them. Rather than marshal complex data structures (whether or not they
contain sharing) across the border, a better approach is usually to leave them where
they are and instead marshal a pointer to the data structure. When a component
technology such as COM is being used (chapter 3), the right thing to do is to marshal
an interface pointer, through which the client can access the data structure.

In short, if loss of sharing is a worry then you are probably marshalling too much
data; we look forward to learning from experience whether this viewpoint is “right”.

2.9 The inverse mapping

Once marshaling and unmarshaling functions are defined for each data type, it
is not hard to reverse the mapping and build code that allows C to call Haskell.
The translation for a typedef remains unchanged, but the translation for an IDL
procedure declaration is reversed. Since the procedure is being implemented in
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Haskell, its [in]-parameters are unmarshaled, the Haskell procedure is called, its
results are marshaled, and returned to the caller. (We omit the details, but the
translation rule can be expressed just as we did in Section 2.5.) For example, the
Move IDL declaration of that Section would be compiled to the following Haskell
code:

foreign export stdcall "Move"
primMove :: Ptr Point -> IO ()

primMove a =
do { p <- unmarshalPoint a

; q <- move p
; marshalPointAt a q
; return ()
}

move :: Point -> IO Point
move = error "Not yet implemented"

The foreign export declaration asks the Haskell compiler to make Move externally
callable with a stdcall interface. primMove does the marshaling, before calling
move, which should be provided by the programmer.

2.10 Future work

Despite the extensive capabilities of H/Direct, it is still not widely used in practice.
Perhaps surprisingly, one of the main culprits is the use of IDL! When integrating
with large (C++) libraries, one has to manually translate all the signatures to IDL.
A tool to remedy this situation is C-to-Haskell (Chakravarty, 2000) that reads C
signatures directly. However, it suffers from exactly the same problems as described
in section 2.2.1 and it has a special annotations language to specify marshalling
hints. We think that a better way to approach this problem is to extend H/Direct
to read both C signatures directly (as DCE IDL) with default IDL attributes, and
to provide a separate attribute specification file that overrides default attributes for
certain functions or classes. With this approach, many libraries could be processed
almost automatically without losing the benefits of a formal semantics.

2.11 Conclusions

H/Direct was the fourth attempt at a foreign-language interface for Haskell. The
first was ccall, a limited and low-level extension roughly equivalent to foreign
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import (Peyton Jones and Wadler, 1993). The second was Green Card, which
gradually turned into a domain-specific language (Peyton Jones et al., 1997). The
third was a pre-cursor to H/Direct , Red Card, which was specifically aimed at inter-
facing Haskell to COM objects, (Peyton Jones et al., 1998; Leijen, 1998). H/Direct
embodies the lessons we have learned – strive for implementation-independence and
avoid inventing new languages.

We do not claim great originality for these observations. What is new in this chapter
is a much more precise description of the mapping between Haskell and IDL than
is usually given. This precision has exposed details of the mapping that would
otherwise quite likely have been mis-implemented. Indeed, the specification of how
pointers are translated exposed a bug in our current implementation of H/Direct .
It also allows us automatically to support nested structures and other relatively
complicated types, without great difficulty. These aspects often go un-implemented
in other foreign-language interfaces.

In the next chapter we scale up the foundations laid in this chapter and take a look
at integrating Haskell into the object-oriented component framework COM.



Chapter 3

COM components in Haskell

This chapter is closely based on the following article, written together with Sigbjorn
Finne, Erik Meijer, and Simon Peyton Jones.

Calling Hell from Heaven and Heaven from Hell . In Proceedings of
ICFP’99, Paris, France, 1999. Also appeared in ACM SIGPLAN Notices
34, 9, (Sep. 1999). (Finne et al., 1999)

3.1 Introduction

”The physical realization of a functional component is not, in some sense, its
essence. Rather, what makes a functional component the type it is, is characterized
in terms of its role in relating inputs to outputs and its relations to other functional
components.”1

Component programming is an approach to software construction in which a pro-
gram is an assembly of software components, perhaps written in different languages,
glued together by some common substrate (Szyperski, 1998). The most widely
used substrates are Microsoft’s Component Object Model (COM) (Mic, 1992), and
the Common Object Request Broker Architecture (CORBA) (Object Management
Group, 1993). The language-neutral nature of these architectures offers a tremen-
dous new opportunity to those interested in exotic languages such as Haskell: if we
can present our programs in COM or CORBA clothing, then the client programs
will neither know nor care that the program is written in Haskell. Our Haskell

1Dept. of philosophy, Washington university,
http://artsci.wustl.edu/~philos/MindDict/functionalism.html

http://artsci.wustl.edu/~philos/MindDict/functionalism.html
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programs can thereby inter-operate with a huge variety of other software, and a
would-be user of Haskell is not faced with an all-or-nothing choice.

In this chapter, we look at the integration of Haskell with the COM (Mic, 1992;
Rogerson, 1997; Brockschmidt, 1995) architecture. COM is a language, machine,
and operating system independent architecture designed by Microsoft. It is used
extensively on Windows systems, and almost every piece of software contains or can
be scripted using a COM interface. For example, almost all aspects of the Internet
Explorer can be accessed via COM, including the entire HTML document model.

The main contribution of this chapter is the overall design of the Haskell COM
binding. More specifically:

• The design is carefully factored, so that it can easily work with a variety of
Haskell implementations, including interpreters (the latter is trickier than it
may at first appear). Most of the required functionality is encapsulated in
our separate H/Direct tool, or in library modules written in Haskell. This
“arms-length” design does not come at the price of convenience; it is still
easy to create COM components, and to implement a COM component in
Haskell. Many other COM interfaces have a tighter, and hence less portable,
integration with the compiler (Visual Java, for example).

• The only facility required from the Haskell implementation is a foreign lan-
guage interface that (a) supports the import and export of Haskell functions,
and (b) provides hooks for managing pointers from Haskell to the external
world, and back again. The previous chapter described this foreign im-
port/export mechanism.

• Even though COM does not support parametric polymorphism, we show how
polymorphism can be used to: encode the single inheritance structure of inter-
face pointers; connect interface pointers with their globally-unique identifiers
(GUIDs); and ensure that object vector tables are only paired with appropri-
ate object states (Section 3.4).

• COM is very general, but it requires quite a bit of C++ code to build a COM
object, usually supported by “wizards” of some sort. We are instead able
to provide a library of higher-order functions that make it easy to construct
COM objects without wizardly support (Section 3.6.3).

Overall, we give an elegant and easy-to-use design for building and using COM
objects in Haskell. Even though this chapter has its focus on COM, many ideas can
readily be used to interface with other object oriented libraries, as has been done
for example for the wxWindows library (Smart, 1992). Except for the typed layer,
there is nothing intrinsically hard about it, but it has nevertheless taken over two
years to evolve, so it is certainly a more subtle task than initially foreseen.
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3.2 Components

A software component is a reusable piece of software with a well defined functionality
and interface. The traditional approach to implementing software components is a
library implementing an abstract data type. This leads to a tight coupling between
client and component – function calls are resolved at link time and each update in
the component forces a relink of the entire program.

Dynamic link libraries2 (DLL’s) bind function calls at run time instead of link time.
With a DLL, it is possible to update a component without updating the client code.
An example is the Windows operating system whose API, implemented as a DLL,
has been updated many times while staying compatible with the earliest versions.

Still, a DLL has many associated problems:

• DLL’s are identified at run time with their file name. Besides portability
problems, it could give rise to ambiguities when different vendors ship DLL’s
with the same name.

• DLL’s have to be called in the same process context as the client. To call
functions in other processes, or even on remote machines, requires the call
and arguments to be explicitly transferred across process boundaries.

• There is no robust way of handling failures or sharing of DLL’s across pro-
cesses. For example, a DLL can not know whether it is still in use or if it is
safe to unload itself.

3.3 COM

The COM framework tries to solve the above problems. The naming problem is
solved by associating a globally unique class identifier (CLSID) with each compo-
nent. Clients identify their component with these CLSID’s and COM takes care
of the association between a CLSID and the file that provides the implementa-
tion. Equivalently, each set of functions (an interface) is associated with a globally
unique interface identifier (IID). Whenever there is an incompatible change in a
function, the IID changes and a client can thus never connect to an incompatible
set of functions. The IID mechanism is essentially a crude ‘global’ type checker.

The out-of-process calling mechanism is implemented by using indirect calls to
methods of the interface. It enables COM to intercept calls across process- or
machine boundaries by providing a COM generated stub that marshals the call

2On Unix, these are normally called shared object files.
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and arguments in an invisible way. A client uses all components as if they are all
in-process.

COM introduces reference counting to handle the problem of resource allocation in
the presence of failure and sharing. The COM specification (Mic, 1992) describes
precisely how COM components should behave with respect to resource allocation
and reference counting.

In the following sections, we explain the core technologies of COM. It is beyond the
scope of this chapter to explain why COM is designed this way but there are many
books written about this subject (Mic, 1992; Box, 1997; Rogerson, 1997).

3.3.1 Creating a COM component

The procedure CoCreateInstance creates a fresh COM component:

typedef long HRESULT;

HRESULT CoCreateInstance( [in] CLSID* clsid

, [in] IUnknown* outer

, [in] CLSCTX context

, [in] IID* iid

, [out] void** iface );

The HRESULT value is the standard way in COM to return a success or failure (Mic,
1992). The clsid argument specifies the class that implements our requested in-
terface. The CLSID is a globally unique identifier or GUID. Here “globally unique”
means that the GUID will not (ever) be re-used for any other purpose anywhere
on the planet. A standard utility generates locally an unlimited supply of fresh
GUID’s based on the machine’s IP address, date and time.

The code for the class is found indirectly via a global database3. This indirection
makes the client code independent of the actual machine configuration and specific
location of the code for the class. Furthermore, COM uses the registry to determine
whether the component should be loaded in-process, or in a new local or remote
process.

The outer parameter is used for aggregating components (Brockschmidt, 1995)
while the context parameter is used to configure remote components. Both pa-
rameters are beyond the scope of this chapter though. The next two parameters
determine the returned interface.

3The registry on windows.
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Interface
pointer

Vtbl pointer
(unshared)

Virtual method table
(shared by all instances)

QueryInterface
AddRef
Release

-q
object
state

-q -q
-q
-q

Figure 3.1: Interface pointers

3.3.2 Interfaces

A COM object supports one or more interfaces, each of which has its own globally-
unique interface identifier or IID. The iid parameter in CoCreateInstance specifies
the IID of the initial interface that is returned to the iface parameter. The iface
parameter receives an interface pointer. In COM there is no “object pointer”, or
“object identifier” – objects are only accessed via their interface pointers.

The IID of an interface uniquely identifies the complete signature of that interface;
that is, what methods the interface has (including what order they appear in), their
calling convention, what arguments they take, and what results they return. If
we want to change the signature of an interface, we must give the new interface a
different IID from the old one. That way, when a client asks for an interface with
a particular IID, it knows exactly what that interface provides.

An interface pointer is a pointer to a pointer to a so-called virtual method table
(VTBL) pointer (Figure 3.1). A virtual method table is an array of function point-
ers. The double indirection allows the table of function pointers to be shared among
all object instances. Instance specific data of a component can be stored at some
fixed offset from the virtual method table pointer. The format of this data is entirely
up to the component implementation, the client knows nothing about it. When a
function is called via a pointer in the virtual method table, the interface pointer
must be its first argument. This allows the component to access its instance specific
state.

For example, suppose we want to call the third method from some interface pointer
iface. Here is some (untyped) C code to do that:

(*iface)[2]( iface, ... );

None of this is language specific. That is, COM is a binary interface standard.
Provided the code that creates an object instance returns an interface pointer that
points to the structures just described, the client will be happy. In theory, the pa-
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rameter passing conventions for each method can be different (but fixed in advance).
In practice, they match the stdcall convention used by C and C++.

Interface pointers provide the sole way in which one can interact with a COM
object. This restriction makes it possible to implement location transparency (a
major COM war-cry), whereby an object’s client interacts with the object in the
same way regardless of whether or not the object is in the same address space,
or even in the same machine, as the client. All that is necessary is to build a
proxy interface pointer, that does point into the client’s address space, but whose
methods are stub procedures that marshal the data to and from across the border
to the remote object.

3.3.3 Getting other interfaces

A single COM object can support more than one interface. But as we have seen
before CoCreateInstance returns only one interface pointer. Fortunately, every
COM interface is required to support the QueryInterface method, which maps
an IID to an interface pointer for the requested IID or fails if the object does not
support the requested interface. So, from any interface pointer, iface, on an object
we can get to any other interface pointer, iface2, which that object implements.
The QueryInterface method is always the first pointer in the virtual method table,
for example:

hresult = (*iface)[0]( iface, iid2, &iface2 );

The COM specification requires that QueryInterface behaves consistently. The
standard IUnknown interface on an object is the identity of that object – queries
for IUnknown from any interface on an object should all return exactly the same
interface pointer.

Queries for interfaces on the same object should always fail or always succeed. Thus,
the call (*iface)[0](iface,iid2,&iface2) should not succeed at one point, but
fail at another. Finally, when viewed as a binary relation over interfaces on a compo-
nent, QueryInterface should be an equivalence relation (i.e. reflexive, symmetric
and transitive).

3.3.4 Reference counting

Each object keeps a reference count of all the interface pointers it has handed out.
Beside QueryInterface, every COM interface is required to support two more
methods, namely AddRef and Release. When a client discards an interface pointer
it should call the Release method via that interface pointer. Similarly, when it
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duplicates an interface pointer it holds, the client should call the AddRef method
via the interface pointer. When an object’s reference count drops to zero it can
safely unload itself – but it is up to the object, not the client, to cause this to
happen. All the client does is make correct calls to AddRef and Release.

Every COM interface supports the three methods QueryInterface, AddRef, and
Release. The three together constitute the IUnknown interface, from which every
other COM interface is derived.

3.3.5 Describing interfaces

Since every IID uniquely identifies the signature of the interface, it is useful to
have a common language in which to describe that signature. Just as H/Direct
and CORBA, COM uses the IDL (Interface Definition Language) to describe its
interfaces, but IDL is not part of the core COM standard. You do not have to
describe an interface using IDL, you can describe it in classical Greek prose if you
like. COM only requires that one IID must identify one signature and that you use
the prescribed binary layout to implement the component.

Describing an interface in IDL is useful, though, because it is a language that
all COM programmers understand. Furthermore, there are tools that read IDL
descriptions and produce language-specific declarations and glue code. For example,
the Microsoft MIDL compiler can read IDL and produce C++ class declarations
that make COM objects look exactly like C++ objects (or Java, or Visual Basic
objects). Furthermore, our H/Direct tool can read IDL and generate Haskell COM
wrappers automatically, as described in the next sections.

As an example, here is the IDL code for the IUnknown object and the DirectX media
control. Direct/X is a COM framework for graphics and sound that is used in games
and other demanding graphics applications. The media control is an interface that
can be used to play some sound. The FilGraphManager is a specific component
that implements this interface. The IDL reads:

typedef unsigned long ULONG;

[uuid(00000000-0000-0000-C000-000000000046)]

interface IUnknown {

HRESULT QueryInterface( [in] IID* iid, [out] void** iface );

ULONG AddRef(void);

ULONG Release(void);

};

[uuid(56A868B1-0AD4011CE0Bo34-0020AF0BA770)]

interface IMediaControl : IUnknown {

HRESULT Run();
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HRESULT RenderFile( [in] BSTR strFileName );

...

};

[uuid(E436EBB3-524F-11CE-9F53-0020AF0BA770)]

coclass FilGraphManager {

interface IMediaControl;

interface IMediaEvent;

...

};

3.3.6 Example in C++ and Haskell

Using the above components, we can write a small example in both Haskell and
C++ to get a feel for how COM components are used. For the C++ example, we
first use the Microsoft MIDL compiler to translate the IDL specification into a C++
header file that is used to access the components.

#include <objbase.h>

#include <stdio.h>

#include <conio.h>

#include "media.h" //the MIDL generated header file.

int main() {

IMediaControl* media = NULL;

BSTR str = NULL;

HRESULT hr = S_OK;

hr = CoInitialize(NULL) //initialize COM

if (SUCCEEDED(hr)) {

hr = CoCreateInstance( //create instance

CLSID_FilGraphManager,

NULL,

CLSCTX_INPROC_SERVER,

IID_IMediaControl,

(void**)&media

);

if (SUCCEEDED(hr)) {

str = SysAllocString( "media.wav" );

if (str!=NULL) {

hr = media->RenderFile(str); //load the file

if (SUCCEEDED(hr)) {

hr = media->Run(); //play the sound

printf("press a key to quit...");

getch();

}

SysFreeString(str); //release string

}
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media->Release(); //release interface

}

CoUninitialize(); //uninitialize

}

return (hr==S_OK ? 0 : 1);

}

COM maps nicely to C++ since the method invocation mechanism of COM is
exactly the same for C++ virtual methods and the (->) operator can directly be
used to call COM methods. However, at the same time many low level details are
exposed to the C++ programmer, like error handling and resource allocation for
strings and objects. The same example is already simpler in Java and in Haskell
even more.

Since all interfaces are described in IDL, we have extended the H/Direct compiler
with extra rules to generate marshaling code for COM components. H/Direct gen-
erates a Haskell module Media that exports the needed functionality.

module Main where

import Com -- basic COM functions

import Media -- H/Direct generated

main

= coRun $ -- does Co(Un)initialize

do media <- coCreateInstance -- create an instance

clsidFilGraphManager

iidIMediaControl

media # renderFile "media.wav"

media # run

putStr "press a key to quit.."

getChar

The coRun function initializes and uninitializes the COM library. The call to
coCreateInstance always creates an in-process component without aggregation.
Since H/Direct generates all the marshaling code according to the rules in the pre-
vious chapter, the "media.wav" string is automatically converted to string of type
BSTR. Interfaces are automatically finalized with a call to Release when they are
garbage collected. Furthermore, H/Direct automatically generates code that checks
the returned HRESULT to throw a standard IO exception on errors.

With all this support, the Haskell example is a lot more concise than the equivalent
example in C++. By careful design, all the support code is written in Haskell itself
and is therefore completely customizable and extensible – in contrast to Visual Basic
or Java where the support is built into the language itself. We will show in chapter
4 that this is a great advantage when programming more complicated examples.
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3.4 Polymorphism expresses inheritance

A problem we run into when trying to use COM components (or any other object
oriented framework) from Haskell, are inheritance relations. For example, suppose
we have a component interface IWindow with a method, say, GetSize. The naive
Haskell types would be:

createWindow :: IO IWindow

windowGetSize :: IWindow -> IO Size

Now suppose that the IFrame component extends the IWindow interface with an
extra method GetTitle:

createFrame :: IO IFrame

frameGetTitle :: IFrame -> IO String

Since IFrame extends the IWindow interface, we would expect that we can call
GetSize on a frame too. However, as it stands, the Haskell type system will not
allow that! We need some way to model the interface inheritance relationship in
Haskell. Our first design to model inheritance used a complex system of type classes.
That didn’t work well however due to hard to understand type errors and the need
to generate instance specific QueryInterface functions. Fortunately, we discovered
a particularly simple model based on plain parametric polymorphism.

Each interface is associated with an interface type. Strangely, such an interface type
is an abstract data type with no operations, nor do we ever create a value of the
type. This is why we call this a phantom type. There are many more compelling uses
of phantom types, as we will see in chapter 5 in the context of relational databases.
For our example, this looks like:

data IWindowT a = IWindowT

data IFrameT a = IFrameT

The interface type for IWindow is declared as IWindowT. Since we will never con-
struct a value of this type, it would have been better to just use a type declaration
without a definition but currently, Haskell doesn’t allow that. With each interface
type, we also define a type synonym for pointers to such an interface:

type IWindow a = IUnknown (IWindowT a)

type IFrame a = IWindow (IFrameT a)

Note how we use the type parameters to encode the inheritance relationship. We
see that an IWindow extends the IUnknown interface, while an IFrame extends an
IWindow. The types of their methods now become:
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windowGetSize :: IWindow a -> IO Size

frameGetTitle :: IFrame a -> IO String

Now, the good thing is that whenever we have an interface pointer IFrame a, we
can use it to call windowGetSize. Why? Because:

IFrame a == IWindow (IFrameT a)

(just by expanding the type synonym for IFrame). That is, every interface pointer
for an IFrame is automatically an interface pointer for IWindow, and indeed also
an interface pointer for IUnknown.

Now, we can also understand the types for the creation functions:

createWindow :: IO (IWindow ())

createFrame :: IO (IFrame ())

The function createWindow creates an IWindow interface exactly, expressed by in-
stantiating the type parameter to (). This basically enforces the covariant and
contra-variant constraints. For example, it is not possible to call frameGetTitle
with a plain window of type IWindow ().

In short, we have been able to use simple polymorphic instantiation to model single
inheritance (which is precisely what COM requires).

The polymorphic model of inheritance also carries over nicely to the COM interface
identification and creation. Since each IID uniquely determines an interface, we
parameterize each IID with its corresponding interface type. For example:

iidIWindow :: IID (IWindow ())

iidIFrame :: IID (IFrame ())

Now, we can strongly type the interface creation functions with an IID:

coCreateInstance :: CLSID -> IID iface -> IO iface

queryInterface :: IID iface -> IUnknown a -> IO iface

Note how queryInterface can be called on any component that supports the
IUnknown interface. The polymorphism in coCreateInstance and queryInterface
elegantly ensures that the interface pointer returned is statically checked to support
the same methods as the IID that was passed.

Another thing to note is that the interface pointer is the last argument to a method
like queryInterface. In most object oriented languages this pointer is actually
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passed (implicitly) as the first argument to a method. For Haskell though, the last
argument is more appropriate as we are able to define a polymorphic application
operator (#) as the Haskell equivalent of the arrow (->) in C++ or the dot (.) in
Java.

infix 5 (#)

(#) :: a -> (a -> b) -> b
object # method = method object

Although a simple function, we have used all kinds of cumbersome methods where
the interface pointer was passed as a first argument before discovering this simple
trick. Now we can call methods in a very natural way:

do window <- coCreateInterface clsidFrame iidIWindow
frame <- window # queryInterface iidIFrame
...

Note that in contrast with conventional object oriented languages, the method, the
object and the method invocation operator are all first class values. This makes it
easy to define expressive abstractions, which we will discuss further in chapter 4.

3.5 Marshaling COM components to Haskell

Just as with plain IDL functions, we can also give a formal translation from IDL
interfaces to Haskell. We have extended the H/Direct compiler with new rules to
handle the marshaling of components automatically. We need two extra cases for
the declaration translation function D[[ ]], one for class declarations (coclass) and
one for interface declarations (interface).

A class declaration is translated into a plain CLSID, the statically supported inter-
faces are ignored as they are always retrieved dynamically from Haskell.

D[[[uuid(clsid),...] coclass name { interfaces }]]
7→
clsidN [[name]] :: CLSID
clsidN [[name]] = makeCLSID "clsid"

For an interface declaration, we generate a fresh type for the interface together with
a typed IID declaration. The methods are translated separately with the Viface [[ ]]
translation function.
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D[[[uuid(iid),...] interface iface : extends { ... method; ... }]]
7→

type N [[iface]] a = N [[extends]] (N [[ifaceT]] a)
data N [[ifaceT]] a = N [[ifaceT]]

iidN [[iface]] :: IID (N [[iface]] ())
iidN [[iface]] = unsafeMakeIID "iid"

...
Viface [[method ]]
...

The function unsafeMakeIID creates a fresh IID from an IID string with an unin-
stantiated type:

data IID a = IID String -- hidden constructor

unsafeMakeIID :: String -> IID a

unsafeMakeIID iidString = IID iidString

Since the result type is still polymorphic, the function is in general unsafe as it allows
us to attach any interface type to an IID. The use of this function by H/Direct is
safe though since it has a type signature that constrains this type to the correct
interface type specified by the IDL declaration.

Methods in a class are translated with the Viface [[ ]] scheme. Just as in section 2.5
we illustrate the general concept with a specific scheme as the general version has
an inconvenient number of subscripts. Here is the scheme for a method that takes
a single argument:

Viface [[tres method( [in] tin )]]
7→
T [[method ]] :: Tin [[tin ]] -> Tin [[iface]] -> IO Tres [[tres ]]
N [[method ]] = \in -> \self ->
do { a <- M[[tin ]] in

; s <- M[[iface]] self
; m <- rdVtblPtr s (offsetN [[method ]])
; r <- primN [[method ]] s a
; x <- U [[tres ]] r
; hdFree
; return x
}

offsetN [[method ]]
= ...
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foreign import stdcall dynamic primN [[method ]]
:: Addr -> Bin [[iface]] -> Bin [[tin ]] -> IO Bres [[tres ]]

There are several small differences to the D[[ ]] scheme presented in section 2.5 for
normal procedures:

• A method gets an extra last argument that points to the interface.

• All the type translation schemes are now parameterized by their mode as
input type (Tin [[ ]]) or output type (Tres [[ ]]). The type schemes behave the
same as the previous T [[ ]] scheme except for interface types. As explained
earlier, in a covariant position, the class type has a polymorphic type variable
while in a result type, the type variable is instantiated to ().

• The marshalling scheme for an interface M[[iface]] extracts the raw interface
pointer from the Haskell interface.

• The rdVtblPtr function uses the raw interface pointer to read a specific func-
tion pointer from the virtual method table. The offset is statically determined
by the method and given by offsetN [[method ]]. The translation scheme for
method offsets is straightforward but beyond the scope of this chapter.

• Instead of normal foreign import, we use the dynamic variant (2.3.4) since
we call the method via a dynamic virtual method table pointer.

The above extensions to H/Direct are basically all that is needed to call COM
components from Haskell. There are a few more rough edges but nothing really
difficult:

• As said before, most COM methods return a value of type HRESULT to sig-
nal errors. H/Direct needs to recognize these to translate these errors into
standard Haskell IO exceptions.

• There are a few more COM specific attributes, like is_iid, that can be han-
dled by H/Direct to generate more specific type signatures or marshaling
code.

As described in the previous chapter, it is not hard to reverse the mapping and build
code that allows clients to call Haskell components. However, exposing Haskell as
COM component requires much more runtime support than just the marshalling of
the method calls to Haskell. The encapsulation of Haskell as a COM component is
therefore be the main theme for the rest of this chapter.
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3.6 Encapsulating Haskell as a COM component

The starting point of encapsulating Haskell as a COM component is an IDL spec-
ification for the interface(s) a component must offer; as a running example we use
a telephone book component. This example is closely based on the example used
in (Szyperski, 1998) to introduce Component Pascal’s support for interacting with
COM.

[uuid(...)]

interface ILookup : IUnknown {

HRESULT GetPhoneNumber( [in,string] char* name

, [string,out] char* number );

};

[uuid(...)]

interface IInsert : IUnknown {

HRESULT AddPhoneNumber( [in,string] char* name

, [in,string] char* number );

};

[uuid(...)]

coclass PhoneBook {

interface ILookup;

interface IInsert;

};

We tackle the encapsulation in three clearly-separated “layers”:

• Code written by the application programmer (section 3.6.1). An implemen-
tation is provided and the component is registered with COM.

• Code generated by H/Direct from the PhoneBook IDL (section 3.6.2). This
boilerplate code deals with marshalling arguments between Haskell and the
client; it also deals with creating the component’s virtual method tables and
interface pointers in exactly the form expected by COM clients.

• Fixed code that lives in the Com library (Section 3.6.3).

3.6.1 The programmer’s eye view

What does the Haskell programmer have to do to implement the PhoneBook in
Haskell? First H/Direct generates a Haskell module PhoneBookProxy.hs. This
module imports a Haskell module PhoneBook.hs, which provides the program-
mer’s implementation of the PhoneBook functionality. H/Direct optionally outputs
a skeleton for this module, but the programmer must complete it by providing:
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• A type declaration for the state of the PhoneBook object. This type is given
the same name as the class. For example:

type Name = String

type Number = String

type PhoneBook = IORef [(Name,Number)]

Here the state PhoneBook is held in a mutable IORef cell. The advantage of
using mutable references over a more “functional” state-transformer style is
that under the former scheme, the Haskell signatures for using components
and for implementing components in Haskell are uniform.

• An initializer, initPhoneBook, for the PhoneBook state. For example:

initPhoneBook :: IO PhoneBook

initPhoneBook = newIORef []

• An implementation for each method. The Haskell type of each method is
derived from the corresponding IDL type as described in the previous section.
For example:

getPhoneNumber :: Name -> PhoneBook -> IO Number
getPhoneNumber name phonebook

= do{ pairs <- readIORef phonebook
; case (lookup name pairs) of

Just number -> return number
Nothing -> coError E_Fail

}

When implementing components, the last parameter of each method is the
state of the object (instead of the interface pointer). The function coError
raises an exception in the IO monad, passing the E_Fail return code, which
is automatically marshaled into COM’s E_FAIL return code by H/Direct in
the proxy module.

Finally, the programmer must make the new component known to COM by sup-
plying a main module, Main.hs, as follows:

module Main where

import Com(coRegisterComponents)

import PhoneBookProxy(phoneBook)

main :: IO ()

main = coRegisterComponents [phoneBook]
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When the Haskell program is run, the call to coRegisterComponents registers the
component(s) defined in its argument list. Clients are now able to create instances
of the Haskell components. If a single Haskell program implements more than
one COM component, main would import several Proxy modules, and would have
several items in the list passed to coRegisterComponents.

And that is all the programmer has to do! Next, we look behind the scenes, and
study the generated PhoneBookProxy module and the library Com module.

3.6.2 The generated proxy module

H/Direct generates the Haskell module PhoneBookProxy.hs from the IDL speci-
fication of the PhoneBook component, which exports the single value phoneBook.
The value phoneBook encapsulates the complete implementation of the component4

phoneBook :: CoComponent

data CoComponent
= CoComponent
{ componentCLSID :: CLSID
, componentNew :: IO (IUnknown ())
}

A CoComponent contains both the CLSID of the component and an instance creation
function. The componentCLSID is easy to generate from the IDL, and we will focus
on the componentNew field.

To create an instance of a COM component we need to construct an interface pointer
that looks precisely as depicted in Figure 3.1. We represent an interface pointer as
a pointer to a malloc’d pair of (a) a virtual method table pointer and (b) a stable
pointer to the objects state5. There are two things we must be able to do:

1. Create a virtual method table. In a compiled implementation we could do
this statically, but that would rule out interpreters like Hugs, so we provide a
function that dynamically builds a virtual method table.

type CoVTable iid st = Addr

4The actual data type contains a few extra fields – for example a string giving a short description
of the component.
5In principle, we could instead create a fresh method table for each instance of the object; the
methods could then have the object state as a free variable, just like getTitle did in Section 2.3.5.
But that would mean much method-table duplication, so instead we follow COM’s hint, and use
a fixed method table, shared among all instances.
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newCoVTable :: [Addr] -> IO (CoVTable iid st)

The function newCoVTable uses malloc to allocate a fixed, vector table, re-
turning its address as a Haskell closure.

The CoVTable type is parameterized by the interface type (iid) of the inter-
face it implements, and object state (st) understood by the methods. The
method addresses passed to newCoVTable point to procedures that can be
called directly by other COM objects. These addresses are generated using
dynamic foreign export declarations. The function newCoVTable prefixes
this list with three further addresses for the standard IUnknown interface meth-
ods – QueryInterface, AddRef, and Release. (A variant of newCoVTable is
provided for those who want to write their own implementations of these
methods – see Section 3.6.4.)

2. Create an instance of the object. A COM object may support several inter-
faces, so we must pass a list of (IID,VTable) pairs for every interface the object
implements, each of type Interface:

data Interface st

= forall iid. Interface (IID iid) (CoVTable iid st)

newCoInstance :: st -> [Interface st] -> IO (IUnknown ())

Function newCoInstance takes an initial state, a list of interfaces (each spec-
ified as a (IID,VTable) pair), and returns a pointer to the IUnknown interface
of the new instance.
The data type declaration for Interface uses an existential type iid. This
extension, first suggested by Laufer (Läufer and Oderski, 1992), is imple-
mented by several Haskell compilers. The data type has one constructor,
Interface, with type:

Interface :: IID iid -> CoVTable iid st -> Interface st

The IID and CoVTable must have compatible iid types, but that type does
not show up in the type of the constructed value. It expresses elegantly that
each interface on the instance has a different virtual method table, i.e. IID, but
that all interfaces share a common state st. It is interesting that one can use
advanced type systems even at the core of a low level COM implementation.

We are finally ready to give the generated code for the PhoneProxy.hs module.
Remember that its sole export is the component phoneBook.

module PhoneBookProxy( phoneBook ) where

import PhoneBook( PhoneBook, initPhoneBook

, getPhoneNumber, addPhoneNumber )
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import Com( CoComponent(..),

Interface(..),

newCoInstance, newCoVTable,

CoIPRep, getCoState )

phoneBook :: CoComponent

phoneBook

= CoComponent {

componentCLSID = makeCLSID "...",

componentNew = newPhoneBook

}

newPhoneBook :: IO (IUnknown ())

newPhoneBook

= do{ init <- initPhoneBook

; newCoInstance init phoneBookInterfaces

}

phoneBookInterfaces :: [Interface PhoneBook]

phoneBookInterfaces

= [Interface iidILookup vtableILookup

,Interface iidIInsert vtableIInsert]

vtableILookup :: CoVTable (ILookup ()) PhoneBook

vtableILookup

= unsafePerformIO $

do addr <- wrapGetPhoneNumber primGetPhoneNumber

newCoVTable [addr]

vtableIInsert :: CoVTable (IInsert ()) PhoneBook

vtableIInsert

= unsafePerformIO $

do addr <- wrapAddPhoneNumber primAddPhoneNumber

newCoVTable [addr]

foreign export dynamic wrapGetPhoneNumber

:: (CoState PhoneBook -> Addr -> Addr -> IO Int) -> IO Addr

primGetPhoneNumber :: CoState PhoneBook -> Addr -> Addr -> IO Int

primGetPhoneNumber iface p_name p_number

= do{ st <- getUserState iface

; name <- unmarshallString p_name

; number <- getPhoneNumber name st -- call haskell implementation

; writeString p_number number

; return 0 -- HRESULT

}

‘catch‘ err -> coException err

-- Similar wrapper for AddPhoneNumber
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type ILookup a = IUnknown (ILookupT a)

data ILookupT a = ILookupT

iidILookup :: IID (ILookup ())

iidILookup = unsafeMakeIID "..."

type IInsert a = IUnknown (IInsertT a)

data IInsertT a = IInsertT

iidIInsert :: IID (IInsert ())

iidIInsert = unsafeMakeIID "..."

All the above code is automatically generated from the PhoneBook IDL by the
H/Direct compiler.

The definitions of the compnent information phoneBook, the creation function
newPhoneBook and and the interfaces phoneBookInterfaces are straightforward.
The virtual method tables, vtableILookup and vtableIInsert are allocated on
demand by using unsafePerformIO. Since they are top-level CAF’s (see section
6.3.3), we will automatically share the virtual method table across all instances.
Furthermore, since the method tables are only allocated on demand, we automati-
cally implement so called tear-off method tables, a refined form of tear-off interfaces
(Box, 1997).

The addresses in the vector table are obtained using a dynamic foreign export.
The function thus exported is a wrapper function that takes the raw “self” interface
pointer as an argument. The purpose of this interface pointer is to get the object
state, so we give it the type CoState PhoneBook, and provide the operation:

getUserState :: CoState st -> IO st

which extracts the user state component from an interface pointer. Now we can
pass that state on to the user-written method getPhoneNumber, imported from
module PhoneBook.hs. We cannot use the local state directly as we need some
extra information to implement the basic IUnknown interface (see section 3.6.3).

It may seem strange that in section 3.4 we gave interface pointers a type (IUnknown)
parameterized by an interface type, while here we parameterize a the interface
pointer (CoState) by the object state. How peculiar! However, even though both
are represented by a single address, they play quite different roles. A value of type
IUnknown iid is a client-side interface pointer for an object held elsewhere; its state
is invisible, and when it is finalized (section 2.3.3) we must call its Release method.
In contrast, a value of type CoState st is a server-side interface pointer; its state
is visible (because the ’this’ pointer is passed to the method implementation), and
when there are no further references we need only call free to return the store to
malloc.
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3.6.3 The Com library

The bottom layer of the encapsulation is the fixed Haskell library Com.lhs that
support the COM objects. It is beyond the scope of this chapter to present detailed
code – instead we focus on the harder parts of the implementation and summarize
how the operations work.

Activation

When a client calls CoCreateInstance (see section 3.3.1) to create a COM object,
COM looks in the global class database to find which DLL to activate. If the
DLL has not already been loaded, COM will load it and invoke its initialization
procedure. If the DLL holds a Haskell program, this initialization procedure runs
the Haskell program function main. As indicated in Section 3.6.1, main in turns
calls coRegisterComponents, passing it a list of all the components that this DLL
serves:

coRegisterComponents :: [CoComponent] -> IO ()

This routine will set a global variable holding a reference to all implemented com-
ponents. The global variable is implemented using unsafePerformIO as described
in (Marlow, 2000).

Once CoCreateInstance has ensured that the DLL is loaded, it calls a standard
entry point DllGetClassObject, passing the CLSID of the object to be instanti-
ated. This Haskell procedure searches the list of components that is passed to
coRegisterComponents, looking for one with a matching CLSID, and creates an
instance of that component. (In reality, it creates a so-called class factory object
for the object, which in turn can be called to create instances of the object, but the
idea stays the same.)

3.6.4 The IUnknown interface

In section 3.6.2 we said that newCoVTable and newCoInstance worked together to
provide implementation of the IUnknown methods, QueryInterface, AddRef, and
Release. In this section we outline how this is done.

The basic idea is simple enough. Recall that we represent an interface pointer by
a malloc’d pair of a pointer to the method vector table, and (a stable pointer to)
the Haskell state for the object. For COM objects that use the Com library support,
the Haskell state is a pair of two values: the user state (PhoneBook in the above
example), and the system state. The system state in turn is a pair of (a) a reference
count for the whole object, and (b) a mapping from IID’s to interface pointers.
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type CoState st = CoState{ userState :: st
, sysState :: CoSysState st
}

type CoSysState st = CoSysState{ refCount :: IORef Int
, ifaces :: [(IID (),IUnknown ())]
}

With this object state in mind, we can provide standard AddRef and Release
methods. They adjust the reference count held in the CoState. When the reference
count drops to zero, Release frees the stable pointer that keeps the object’s state
alive. That, in turn, may cause a number of finalizers to get called, see section 2.3.3.

The standard QueryInterface method uses the interface list to create new interface
pointers. The typing of the mapping looks strange, for two reasons. First, the
Haskell type system cannot express the idea of a mapping in which the argument
value determines the result type. One needs dependent types for that. Second, the
result of QueryInterface is in any case returned immediately to the external client,
so little is gained by a sophisticated typing.

With this in mind, newCoVTable uses the even-more-primitive newVTable to do its
work:

newVTable :: [Addr] -> VTable iid st

-- calls malloc

type CoVTable iid st = VTable iid (CoState st)

newtype VTable iid st = VTable Addr

The function newCoVTable prepends the standard implementations for standard
methods QueryInterface, AddRef, and Release, before calling newVTable.

Finally newCoInstance allocates an interface pointer for each requested interface.
The allocation of an interface pointer can actually be done on demand by using
unsafePerformIO – laziness ensures that we will only allocate it if demanded and
than only once. This gives the behavior of tear-off interfaces for free (Box, 1997).

3.7 Related work

Haskell is not the only advanced programming language to provide a mapping to
COM. The Harlequin Dylan system (Gray et al., 1998) provides a well-engineered
COM component framework for Dylan, letting the programmer both create and use
COM components. Equipped with such powers, Harlequin Dylan also provides a
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framework for writing ActiveX controls, something we have yet to tackle. Compo-
nent Pascal (Gruntz, 1998) and Microsoft’s implementation of Java (Mic, 1998) are
two other examples of garbage collected languages which have been integrated with
COM.

To our knowing, we have been the first though to implement a full mapping from an
imperative object-oriented component architecture, to a pure, non-strict language.
Furthermore, we were able to impose a strong type discipline upon the component
model. Component integration is becoming more widespread for other functional
languages too. Mercury has a CORBA interface (Jeffery et al., 1999) and there is
a version of OCaml that supports COM components, using an architecture similar
to that described in this paper.

3.8 Conclusions

The main goal of this chapter has been to give the details of calling and building
COM components in Haskell.

It is worth stressing that a programmer need to know little of this. All that the
programmer needs to do, is feed the IDL for the component to H/Direct and write
the application code. All the details of component construction, reference counting,
interface querying, and simple finalization (such as calling Release on interface
pointers held by the object), are handled automatically.

Behind the scenes, though, there are many details to attend to, and we have not
even discussed them all. (For example, we omitted details about object registration
and finalization.) Still, we hope to have conveyed the essential ideas.

We have made good use of Haskell’s type system to make application code com-
pletely type secure, and the H/Direct-generated code largely so and we found some
interesting uses of polymorphism in so doing. All that we described is implemented
in H/Direct and GHC (though some of the function names may differ).
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Chapter 4

Functional programming in
an imperative world

Parts of this chapter are based on the following articles:

Daan Leijen, Erik Meijer, and James Hook. Haskell as an automation
controller . In 3rd International Summerschool on Advanced Functional
Programming, 1608, Braga, Portugal, 1999. Springer Lecture Notes in
Computer Science (LNCS). (Leijen et al., 1999)

Erik Meijer, Daan Leijen, and James Hook. Client-side web scripting
with HaskellScript . In Proceedings of Practical Aspects of Declarative
Languages (PADL), 1999. (Meijer et al., 1999)

4.1 Introduction

After reading the previous chapters about the interface between Haskell and the
imperative world, the reader may wonder whether the rewards are worth the trou-
ble. One potential problem is that a typical COM component is designed with an
imperative model in mind, and imposes an imperative style of programming within
the functional host language. As we have seen, this is certainly true on the lowest
abstraction layer; for example, every COM method has a monadic IO type.

In this chapter we try to show that it is actually possible to build expressive func-
tional combinator libraries on top of the basic imperative interface we have seen so
far. The resulting libraries can be seen as an embedded domain specific language
(DSL) tailored for a certain collection of components. This idea is fairly old and
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many examples exist of embedding DSL’s as a combinator library (Hudak, 1998;
Swierstra et al., 1999), including reactive animations (Elliott and Hudak, 1997),
CGI scripting (Meijer, 2000), parsing (Swierstra and Azero Alcocer, 1999; Leijen
and Meijer, 2001), pretty printing (Wadler, 1997; Hughes, 1995) and hardware
description languages (Bjesse et al., 1998).

The advantages of using a custom DSL for programming components include:

• We can often enforce constraints on the component interface that are normally
left implicit. For example, a combinator that ensures that the close method
is always the last method that is invoked once the open method is called.

• Furthermore, it is often possible to use expressive type systems of the host
language to statically verify contraints on an interface. An extensive example
of this technique is shown in the following chapter where queries to a database
server component are statically typed.

• Finally, the designer of the DSL is guided by the clear, equational semantics
of the functional language and is less likely to make poor design decisions. In-
deed, many COM interfaces expose a rather baroque interface just to support
languages with few abstraction mechanisms. Often, these irregularities can
be hidden within a carefully designed combinator.

We can identify at least four essential ingredients to combinator libraries: para-
metric polymorphism, higher-order types, laziness and (first-class) computational
values. We have already seen how polymorphism is used to capture the notion of
interface inheritance. Higher-order types allows us to treat methods as first-class
values storing them into lists for example. Laziness is essential to capture orthogo-
nal features in seperate combinators (Hughes, 1989) and to perform computations
on demand (as shown in the next chapter when iterating through the results of a
database query). Finally, we rely on monads to control side-effects by representing
them as functional values. In particular, values of type IO, and thus COM method
calls, are treated as first-class computational values and can scheduled in arbitrary
ways by the high level combinators.

Note that not all functional languages support all these features. In particular,
the ML family of languages are eager with implicit side effects, and computational
values must be simulated. This reduces our capability to define combinator libraries
with a high level of abstraction and may indeed force an imperative model upon
the programmer.

In the rest of this chapter, we give an example of how to build a simple combinator
library on top of the basic COM interface we have seen so far. As a running example,
we use the Microsoft Agent component. This component creates cartoon characters
on the screen (see figure 4.1) which can talk, move around and react on speech
input. Microsoft Agent is freely available and there is an excellent book about
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Figure 4.1: Some agent characters.

programming the agents (Microsoft, 1998). Already, many companies are using the
agent component to guide users through web sites or as a personal assistant in an
application.

4.2 Running ‘hello world’

The agent component is freely available from the Microsoft web site1. Of course,
H/Direct is used to automatically generate the Haskell stub file agent.hs that
interfaces to the component from Haskell.

The agent component is actually a server that coordinates the agent character
components. The server can be asked to instantiate a character and to return a
unique identifier to this character. With this identifier, the server can return a
COM interface pointer to the instantiated agent character. The next listing shows
a simple agent component program:

module Main where

import Com -- basic support

import Agent -- the H/Direct generated stub module

main

= coRun $

do server <- coCreateInstance clsidAgentServer iidIAgent

(charID,_) <- server # load "genie"

genie <- server # getCharacter charID

genie <- genie # query iidIAgentCharacter

genie # showUp 0

genie # speak "Hello, COM World" ""

1http://www.microsoft.com/oledev/agent
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putStr "press enter.."

getChar

4.3 Abstraction

The previous example does not differ much from an equivalent program in C++,
Java or VB. The following sections try to show how the combination of higher-
order functions and parametric polymorphism makes it possible to abstract over
many commonly occurring code patterns.

4.3.1 Extending the characters’ repertoire

The methods play and speak are rather limited. We would like to be able to define
a new, compound method, so that

robby # dancesAndSings

would make robby execute a sequence of play and speak actions. Here’s how we
can do that in Haskell:

type Action = IAgentCharacter () -> IO ReqId

dancesAndSings :: Action
dancesAndSings agent

= do{ agent # speak "La la la"
; agent # play "Dance"
}

Here we have defined the type Action as a shorthand to denote actions that can be
performed by an agent (like play "Dance" or dancesAndSings).

In C++ or Java one could define dancesAndSings as the method of a class that
inherits from IAgentCharacter, using implementation inheritance to arrange to call
the character’s own play and speak procedure. To us, it seems rather unnatural to
introduce a type distinction between agents that can dance and sing and agents
that can danceAndSing. Object oriented languages are good in expressing new
objects as extensions of existing objects, while functional languages are good in
expressing new functions in terms of existing functions.

In Visual Basic we could certainly define a procedure like dancesAndSings, but in
that case, we can only call it using a different syntax than native methods calls:
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Sub DancesAndSings (Byref Agent)
Agent.Speak ("La la la")
Agent.Play ("Dance")

End Sub
...
Robby.Speak ("Hello")
DancesAndSings (Robby)
...

If the sequence of actions a particular agent has to perform gets long, it becomes a
bit tiresome writing all the “agent #” parts, so we can rewrite the definition as a
little script, like this:

dancesAndSings :: Action
dancesAndSings agent
= agent # sequence [ speak "La la la", play "Dance" ]

where sequence is a re-usable function that executes a list of actions from left to
right:

sequence :: [Action] -> Action
sequence [a] agent = agent # a
sequence (a:as) agent = do{ agent # a; sequence as agent }

Notice that the type of the first argument of sequence is a list of functions that
return I/O performing computations. The ability to treat functions and computa-
tions as first-class values, and to be able to build and decompose lists easily, has
a real payoff. In Java, C++, or VB it is much harder to define custom control
structures such as sequence. For example in Java 1.1 one would use the package
java.lang.reflect to reify classes and methods into first class values, or use the
Command pattern (Gamma et al., 1995) to implement a command interpreter on
top of the underlying language. Note that in our case sequence [...] is just an-
other composite method on agents, and is called exactly the same way as a native
method.

The low cost of abstraction in Haskell is even more apparent when we define a
family of higher-order functions to ease moving agents around the screen. First we
define a function movePath as:

type Pos = (Int,Int)

movePath :: [Pos] -> Action
movePath path agent
= agent # sequence (map moveTo path)
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The expression (movePath path robby) moves agent robby along all the points in
the list path. In Visual Basic (or Java) we can define a similar function quite easily
as well by using the built-in For ... Each ...Next control structure:

Sub MovePath (Byref AgentCharacter, Byref Path)
For Each Point In Path

Agent.MoveTo (Point)
Next point

End Sub

However, in Haskell we don’t have to rely on foresight of the language designers to
built in every control structure we might ever need in advance, since we can define
our own custom control structures on demand. Lazy evaluation and higher order
functions are essential for this kind of extensibility (Hughes, 1989).

We can use function movePath to construct functions that move an agent along
more specific figures, such as squares and circles:

moveSquare :: Pos -> Int -> Action
moveSquare (x,y) width agent
= agent # movePath square
where

w = width ‘div‘ 2
square = [ (x-w,y-w), (x+w,y-w)

, (x+w,y+w), (x-w,y+w)
, (x-w,y-w)
]

moveCircle :: Pos -> Int -> Action
moveCircle (x,y) radius agent
= agent # movePath circle
where
circle = [ ( x + (radius*cos t), y + (radius*sin t))

| t <- [0,pi/100..2*pi]
]

Because Haskell uses lazy evaluation, the lists of points are generated on demand and
therefore never completely in memory. Having this amount of re-use seems much
harder in VB, C++ or Java. When we would define a function like moveSquare or
moveCircle we would have to use a for-each loop each time.
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4.4 Agent combinators

The agent server manages each character as a separate, sequential process, running
concurrently with the other characters. The following example shows how two
characters concurrently sing and dance:

do erik # sings
simon # dances

It looks as if these actions take place sequentially, but they are actually performed in
parallel. Each character maintains a queue of requests that it got from the server and
performs these in sequence. Hence a call such as erik # sings returns immediately,
while erik starts singing. The same happens for the call simon # dances, and they
will perform their respective actions in parallel.

The parallelism between two agents a and b, that perform the actions A and B
respectively, is characterised by the action-swap law:

(action-swap) x <- a#A; y <- b#B
≡ y <- b#B; x <- a#A { if a 6= b }

Of course, we also require that both x and y do not occur as free variables, i.e x 6∈
fv(B) and y 6∈ fv(A). From now, this propery is implicitly assumed.

Now suppose we want daan to do something when both erik and simon have
terminated; how can we ask the Agent server to do that? The answer is that every
Action returns a request-id, of type ReqId, on which any character can wait, to
synchronize on the completion of that request. Thus:

do erikDone <- erik # sings
simonDone <- simon # dances
daan # wait erikDone
daan # wait simonDone
daan # speak "They’re both done"

The wait method also has some associated laws. For example, waiting again for
some request-id has no effect:

(wait-again) x <- a#wait r; ...; y <- a#wait r
≡ x <- a#wait r; ...; let y = x

Furthermore, it doesn’t matter in what order one waits for request-id’s:

(wait-comm) x <- a#wait r1; y <- a#wait r2
≡ y <- a#wait r2; x <- a#wait r1
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From the (wait-comm) and (action-swap) law, it follows that we can always wait in
any order:

(wait-swap) x <- a#wait r1; y <- b#wait r2
≡ y <- b#wait r2; x <- a#wait r1

Unfortunately, it is hard to create complex animations with this basic interface,
since it hinders abstraction. For example, in the previous animation, daan had
to wait for all other characters before performing the speak action. If you add
another participant, you also have add a line where daan waits for that participant
too. In this small example this may be easy, but when the animation becomes
more complex, the amount of hidden dependencies grows fast and managing them
becomes error-prone. Matters are further complicated by the fact that the agent
server dead-locks whenever an agent tries to wait for itself.

Instead of this low-level interface, we would rather describe the animations declar-
atively . For example, the previous animation could be described as:

(action erik sings) <|> (action simon dances)
<*>
(action daan (speak "They’re both done"))

We have introduced the infix operator (<*>) to compose two animations in se-
quence, and the operator (<|>) to compose two animations in parallel. The action
combinator creates an animation from an agent and an associated method.

Since all the synchronization is now implicit, we can no longer make synchronisation
errors. The declarative specification has abstracted away from all the details of the
low-level synchronization mechanism between agents. The resulting building blocks
can be combined to create complex animations.

We can state various laws about these combinators that we expect to hold. For
example, sequential composition should be associative:

a1 <*> (a2 <*> a3) ≡ (a1 <*> a2) <*> a3

while parallel composition should both be associative and commutative:

a1 <|> (a2 <|> a3) ≡ (a1 <|> a2) <|> a3
a1 <|> a2 ≡ a2 <|> a1

Since Haskell is a pure and non-strict language, we can use equational reasoning to
check our implementation against these expected laws. This means that our proofs
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and implementation are written in the same notation, and that the specifications
are actually executable programs. As we will see, the ability to treat computations
as first class values makes it much easier to reason about side effecting programs.

Proving properties about combinators is not just a technical nicety! As we have
already seen, obtaining correct synchronization among the characters is somewhat
subtle, and conducting proofs of properties like these can reveal nasty bugs or
expose unexpected side effects. In the following sections, we will prove these laws
for a particularly simple implementation, and discover that the implementation has
some unexpected behaviour.

Before we continue by giving an implementation for the (<|>), (<*>), and action
combinators, we will in the next two sections develop some machinery that allows
us to reason about unordered computations. These unordered computations are
used to model the implicit parellelism of the agents.

4.4.1 Bags

Parallelism in the agent server is expressed by a sequence of actions whose particular
order doesn’t matter due to the (action-swap) law. We are going to use bags to
reason about these unordered actions. Following Bird (1998), we use an abstract
representation of bags with the following operations:

empty :: Bag a
member :: a -> Bag a -> Bool
insert :: a -> Bag a -> Bag a
union :: Bag a -> Bag a -> Bag a

For clarity we will write ∅, (∈), (⊕), and (∪) respectively for these operations. We
will also use bag comprehension notation (({})).

We can now characterise a bag by the following axioms:

x⊕(y⊕xs) = y⊕(x⊕xs)

x ∈ ∅ = False
x ∈ (y⊕xs) = (x = y) ∨ (x ∈ xs)

xs ∪ ∅ = xs
xs ∪ (y⊕ys) = y⊕(xs ∪ ys)

The first axiom is crucial for bags: it states that it doesn’t matter in what order two
elements are inserted into the bag – a bag is unordered. A possible implementation
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for these bags would be simple lists as described by (Bird, 1998). Note that it is
not possible to specify a function that returns an arbitrary element of a bag. For
example, the definition:

choose (x⊕xs) = x

would lead to inconsistencies, as we can use it to prove that any two elements of a
bag are the same:

x
≡ choose (x⊕(y⊕xs)) { by definition }
≡ choose (y⊕(x⊕xs)) { axiom }
≡ y

We can prove that the usual bag laws, like commutativity for union, hold under the
above axioms.

4.4.2 Unordered computations

Bags can be used to reason about unordered, or parallel, computations. The seq
operation executes a bag of computations in some order:

seq ∅ = return ∅
seq (m⊕ms) = do x <- m; xs <- seq ms; return (x⊕xs)

Unfortunately, this definition leads to the same kind of inconsistencies as the pre-
vious choose function. However, we can restore the consistency in this case, if we
restrict the use of seq to bags where the elements are computations that can be
executed in any order! That is, the following commutative swap law should hold
for all possible elements:

(swap) do x <- m; y <- n
≡ do y <- n; x <- m

With this law, we can also prove a commutative law for seq itself:

(seq-swap) do x <- seq ms; y <- seq ns
≡ do y <- seq ns; x <- seq ms

The proof of this case is not entirely straighforward, and we first need to prove the
following lemma, where we assume that the (swap) law applies.

do x <- m; xs <- seq ms ≡ do xs <- seq ms; x <- m
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We prove this by induction over ms. It holds trivially for the empty bag. The
inductive case is:

do x <- m; xs <- seq (n⊕ms)
≡ do x <- m; y <- n; ys <- seq ms

let xs = (y⊕ys)
{ unfold, monad laws }

≡ do y <- n; x <- m; ys <- seq ms
let xs = (y⊕ys)

{ (swap) }

≡ do y <- n; ys <- seq ms; x <- m
let xs = (y⊕ys)

{ induction }

≡ do xs <- seq ms; x <- m { fold, monad laws }

With this lemma, we can prove the (seq-swap) law by induction over both argu-
ments. It holds trivially when one of the arguments is the empty bag. That leaves
only the case of two non-empty arguments:

do xs <- seq (m⊕ms); ys <- seq (n⊕ns)
≡ do x <- m; xx <- seq ms; y <- n; yy <- seq ns

let xs = (x⊕xx); ys = (y⊕yy)
≡ do x <- m; y <- n; xx <- seq ms; yy <- seq ns

let xs = (x⊕xx); ys = (y⊕yy)
{ lemma }

≡ do y <- n; x <- m; xx <- seq ms; yy <- seq ns
let xs = (x⊕xx); ys = (y⊕yy)

{ (swap) }

≡ do y <- n; x <- m; yy <- seq ns; xx <- seq ms
let xs = (x⊕xx); ys = (y⊕yy)

{ induction }

≡ do y <- n; yy <- seq ns; x <- m; xx <- seq ms
let xs = (x⊕xx); ys = (y⊕yy)

{ lemma }

≡ do ys <- seq (n⊕ns); xs <- seq (m⊕ms)

4.4.3 Requests

Now that we can reason about unordered computations, we are able to extend the
basic interface of the agent characters. For the implementation of the synchronisa-
tion, we will need an operator that returns the top of a bag of request-id’s. The
top is defined as the request-id that is returned from the action that is completed
last. Unfortunately, we are unable to define top directly since we can not predict
beforehand which action takes the longest time to complete.

However, there is no observable difference between waiting for the top of a bag
of request-id’s and waiting for all those request-id’s separately. That is, we can
characterise top (and wait’) as:

a#wait’ (top rs)
≡ seq ({a#wait r | r <- rs})
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Note that we can use seq here due to the (wait-comm) law. From this character-
isation, we can derive an implementation of top and wait’. First, we notice that
wait’ returns a bag of request-id’s instead of a single request-id. We take this idea
further, and let all methods return a bag of request-id’s. The top function thus
works on a bag of request-id bags, and the characterisation becomes:

a#wait’ (top rss)
≡ seq ({a#wait r | rs <- rss, r <- rs})
≡ seq ({a#wait r | r <-

⋃
rss})

With this characterisation, we can simplify and substitute top with
⋃

to derive an
implementation that satisfies the characterisation automatically.

type Request = Bag ReqId

top :: Bag Request -> Request
top rss =

⋃
rss

wait’ :: Request -> IAgentCharacter a -> IO Request
wait’ rs a = seq ({a#wait r | r <- rs})

Furthermore, we define a new operator (#’) that returns a singleton bag with a
request-id, instead of just a request-id. This is also a good opportunity to tackle
another small problem with the agent characters: an agent deadlocks whenever it
tries to wait for a request-id that it has generated itself! We can easily circumvent
this problem by tupling every request-id with its owner, and checking that no agent
tries to wait for itself. Our final implementation becomes:

type Request = Bag (IAgentCharacter (),ReqId)

a #’ method = do r <- a#method
return ({(a,r)})

top :: Bag Request -> Request
top rss =

⋃
rss

wait’ :: Request -> IAgentCharacter () -> IO Request
wait’ rs a = seq ({a#wait r | (b,r) <- rs, a 6= b })

We can prove with (seq-swap), that the (wait-swap) law also holds for wait’:

(wait’-swap) do x <- wait’ r1; y <- wait’ r2
≡ do y <- wait’ r2; x <- wait’ r1
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The proof for the swap law for (#’) is equally simple:

(action’-swap) do x <- a#’A; y <- b#’B
≡ do y <- b#’B; x <- a#’A

Due to the above laws, we can use the new primed operators freely in place of the
original operators, and we will write wait for wait’, and (#) for (#’) from now on.
We no longer need to refer to the primitive versions.

4.4.4 A first implementation

Finally, we have implemented enough machinery to start implementing the actual
animation combinators. Deriving an initial implementation is not an option since
we only have laws relating operations to themselves instead of other operations.
It is beyond the scope of this thesis to formulate a complete semantic model of
the agent combinators and to derive an implementation from this model. However,
we can formulate a simplified model of our animation combinators and derive an
implementation that corresponds to this model. We can than try to prove that this
implementation satisfies the basic laws of the animation combinators.

Our simplified interpretation function is written as ([[anim]] t), and we say that
animation anim starts after time t and that the animation ends at time ([[anim]] t).
For sequential composition, the start time of the second argument is determined by
the end time of the first:

[[a <*> b]] t = [[b]] ([[a]] t)

Both arguments of a parallel composition can start at the same time, and the
maximum of their end times is the end time of the animation:

[[a <|> b]] t = max( [[a]] t, [[b]] t )

We need an auxiliary function to define an interpretation for a basic action. We
assume that we have a function at(t,a#A) that executes action a#A at time t and
returns the ending time of that action:

[[action a A]] t = at(t,a#A)

The type of animations will be a function from time values to time values. However,
in order to execute actions, we need to lift this function into the IO monad. The
type of animations thus becomes:

type Anim = Time -> IO Time
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By lifting function composition too, we can translate the semantics of sequential
and parallel composition into an implementation:

(a <*> b) t0 = do t1 <- a t0; b t1

(a <|> b) t0 = do t1 <- a t0; t2 <- b t0; return (max t1 t2)

Before continuing to basic actions, we need to define the at function. Unfortunately,
the agent server has no direct concept of time and can only wait for requests. We will
therefore use requests as abstract time values and implement the max operation
with top. The at operation can be implemented with the wait method – if we
want to execute a method after a certain time/request, we simply wait for that
time/request and then execute the method:

type Anim = Request -> IO Request

(a <*> b) t0 = do t1 <- a t0; b t1

(a <|> b) t0 = do t1 <- a t0; t2 <- b t0; return (top t1 t2)
(action a A) t0 = do a#wait t0; a#A

We have now arrived at a particularly simple and concise implementation that
closely matches our semantic interpretation. In the next section, we prove the
various animation laws and we will see that even this simple implementation is
subtly flawed in the sense that it doesn’t maximise parallelism. This flaw is in
fact so subtle, that this implementation has been used in student projects for years
without anyone noticing!
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4.4.5 Associativity

We can use equational reasoning to show that seqential and parallel composition
are both associative. Here is the proof for parallel composition:

(a1 <|> (a2 <|> a3)) t0

≡ do t1 <- a1 t0

tx <- (a2 <|> a3) t0

return (top t1 tx)

{ unfold }

≡ do t1 <- a1 t0

t2 <- a2 t0

t3 <- a3 t0

return(top t1 (top t2 t3))

{ unfold, monad laws }

≡ do t1 <- a1 t0

t2 <- a2 t0

t3 <- a3 t0

return (top (top t1 t2) t3)

{ (top-assoc) }

≡ do tx <- (a1 <|> a2) t0

t3 <- a3 t0

return (top tx t3)

{ fold,monad laws }

≡ ((a1 <|> a2) <|> a3) t0 { fold }

The proof of associativity for sequential composition is equally straightforward.

4.4.6 Commutativity

Unfortunately, proving commutativity for parallel composition is far more involved
and will reveal some unexpected behaviour. We prove that parallel composition is
commutative by induction over the arguments. The basic case is formed by two
basic actions. However, we actually have two different cases here, one where the
same agent executes the actions, and one where the actions are executed by different
agents:
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if a 6= b:

((Action a A) <|> (Action b B)) t0

≡ do a#wait t0

t1 <- a#A
b#wait t0

t2 <- b#B
return (top t1 t2)

{ unfold }

≡ do a#wait t0

b#wait t0

t1 <- a#A
t2 <- b#B
return (top t1 t2)

{ a 6= b, (action-swap) }

≡ do b#wait t0

t2 <- b#B
a#wait t0

t1 <- a#A
return (top t1 t2)

{ a 6= b, 3∗(action-swap) }

≡ do b#wait t0

t2 <- b#B
a#wait t0

t1 <- a#A
return (top t2 t1)

{ (top-comm) }

≡ ((Action a A) <|> (Action b B)) t0

The other case is formed when a single agent executes both actions, a = b:

((Action a A) <|> (Action a B)) t0

≡ do a#wait t0

t1 <- a#A
a#wait t0

t2 <- a#B
return (top t1 t2)

{ unfold }

≡ do a#wait t0

t1 <- a#A
t2 <- a#B
return (top t1 t2)

{ (wait-again) }

≡ do a#wait t0

t2 <- a#B
t1 <- a#A
return (top t1 t2)

{ modulo single agent parallelism }

≡ do a#wait t0

t2 <- a#B
a#wait t0

t1 <- a#A
return (top t1 t2)

{ (wait-again) }

≡ ((Action a B) <|> (Action a B)) t0
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This reveals a subtility: when an agent is composed in parallel with itself, it can’t
do both actions at the same time and has to choose some action to do first. Parallel
composition is only parallel up to single agent parallelism. However, this is quite
reasonable behaviour and inherent to the agent component. In general, we can
formulate an extension to the (action-swap) law that says that we can also swap
two single agent actions A and B as long as neither action is the wait method:

(single-swap) do x <- a#A; y <- a#B
≡ do y <- a#B; x <- a#A

Under this new law, we have to synchronise every sequential action explicitly. That
is, if we would like to perform two actions sequentially, we write:

do x <- a#A; a#wait x; a#B

Before we continue with the inductive case of the proof that parallel composition is
commutative, we first establish the (anim-swap) lemma:

(anim-swap) do x <- a#A; y <- anim t0

≡ do y <- anim t0; x <- a#A { a /∈ cast anim }

This law states that we can swap an animation and action when they are not
related to each other – the agent that executes the action is not part of the cast of
the animation. The cast of animation is defined as:

cast (Action a A) = ({a})
cast (a1 <*> a2) = cast a1 ∪ cast a2

cast (a1 <|> a2) = cast a1 ∪ cast a2

We prove this law by induction on the animation. The base case consists of a
single action (do x <- a#A; y <- (Action b B) t0). First we prove that under
our assumption, a 6= b:

a /∈ cast (Action b B)
≡ a /∈ ({b})
≡ a 6= b

The proof is now a straigtforward application of our laws:
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do x <- a#A; y <- (Action b B) t0

≡ do x <- a#A
b#wait t0

y <- b#B

{ unfold }

≡ do b#wait t0

x <- a#A
y <- b#B

{ a 6= b, (action-swap) }

≡ do b#wait t0

y <- b#B
x <- a#A

{ a 6= b, (action swap) }

≡ do y <- (Action b B) t0

x <- a#A
{ fold }

Since the inductive cases are equally structured, we will only prove the (anim-swap)
law for parallel composition. First, we establish the assumption:

a /∈ cast (anim1 <|> anim2)
≡ a /∈ cast (anim1 ∪ anim2) { unfold }
≡ a /∈ cast anim1 ∧ a /∈ cast anim2 { bag laws }

The actual proof is straightforward:

do x <- a#A
y <- (a1 <|> a2) t0

≡ do x <- a#A
t1 <- a1 t0

t2 <- a2 t0

let y = (top t1 t2)

{ unfold }

≡ do t1 <- a1 t0

x <- a#A
t2 <- a2 t0

let y = (top t1 t2)

{ a /∈ cast a1, induction }

≡ do t1 <- a1 t0

t2 <- a2 t0

x <- a#A
let y = (top t1 t2)

{ a /∈ cast a2, induction }

≡ do t1 <- a1 t0

t2 <- a2 t0

x <- a#A
let y = (top t2 t1)

{ (top-comm) }

≡ do y <- (a1 <|> a2) t0

x <- a#A
{ fold }

Finally, we can use our (anim-swap) lemma, to prove an inductive case of commu-
tativity of parallel composition.
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(anim <|> (Action a A)) t0

≡ do t1 <- anim t0

a#wait t0

t2 <- a#A
return (top t1 t2)

{ unfold }

≡ do a#wait t0

t2 <- a#A
t1 <- anim t0

return (top t1 t2)

{ a /∈ cast anim, (anim-swap) }

≡ do a#wait t0

t2 <- a#A
t1 <- anim t0

return (top t2 t1)

{ (top-comm) }

≡ ((Action a A) <|> anim) t0 { fold }

Unfortunately, this only proves that parallel composition is commutative when the
action is unrelated to the animation (a /∈ cast anim). In contrast to the single agent
parallelism, we can no longer dismiss this as being reasonable behaviour. Take for
example the following animation:

(action a A <*> action b B) <|> (action b C)

We unfold this program and compare it to the program where the arguments to
(<|>) are swapped, we get the following expansions for some initial argument t0:

do a#wait t0

t1 <- a#A
b#wait t1

t2 <- b#B
b#wait t0

t3 <- b#C
return (top t2 t3)

6=
do b#wait t0

t3 <- b#C
a#wait t0

t1 <- a#A
b#wait t1

t2 <- b#C
return (top t3 t2)

Close study reveals that we have lost some parallelism. In the first fragment, the
agent b first waits until agent a has completed before executing action B and C.
In the second fragment however, agent b immediately executes action C in parallel
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with action A of agent a. This ‘flaw’ is hard to notice in practice since the loss of
parallelism is not something obvious.

How could this have surfaced when the implementation was an almost literal trans-
lation of our interpretation? The reason is that the at operation is not implemented
faithfully – the implementation executes the action after a certain time, not at a
certain time. The specification also implicitly assumed that the at operation was a
pure function that would not interact with other at invokations. However, the wait
methods are not commutative with other actions on the same agent, and therefore,
the actual implementation of at does interact with other invokations.

Fortunately, this problem can be fixed by adding an extra level of interpretation.
Instead of executing the animations directly, we first collect all actions where each
action is identified with a unique ending time and tupled with their starting time.
This can be interpreted as an explicit temporal dependency graph where each action
is executed according to its dependencies. It is beyond the scope of this chapter to
fully describe and analyse this, but the implementation is given in the appendix.

4.5 AgentScript

Using the primitive animation combinators that we analysed in the previous section,
we have built a library to describe more complex animations. For example, the
combinator seqAnim combines a list of animations:

seqAnim :: [Anim] -> Anim

seqAnim = foldr1 (<*>)

Note that the associativity law for <*> allows us to define it as:

seqAnim = foldl1 (<*>)

The animate function lifts a list of actions into an animation:

animate :: IAgentCharacter a -> [Action] -> Anim
animate a ms
= seqAnim [action a m | m <- ms]

The function runAnim runs an animation and loadCharacter extends the agentserver
to make the loading of agents more easy:

runAnim :: Anim -> IAgent a -> IO ()

loadCharacter :: String -> IAgent a -> IO (IAgentCharacter a)
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Using this library, complex agent interactions can easily be written:

module Demo where

import Com

import Agents

type Actor = [Action] -> Anim

demo :: Actor -> Actor -> Actor -> Anim

demo genie merlin robby

= seqAnim -- top level description of interaction

[ genie introduces,

merlin appears <|> robby appears,

(merlin sayshello <*> robby sayshello) <|> genie disappears

]

where

-- desription of primitive actions

introduces = [ showUp,

speak "Hello, my friends will show up now" ]

appears = [ showUp,

play "Surprised" ]

sayshello = [ speak "Hi there!" ]

disappears = [ hide ]

main :: IO ()

main = coRun $

do server <- coCreateInstance clsidAgentServer iidIAgent

robby <- server # loadCharacter "robby"

merlin <- server # loadCharacter "merlin"

genie <- server # loadCharacter "genie"

server # runAnim

(demo (animate genie) (animate merlin) (animate robby))

The resulting library enables a whole new style of programming the agents. The
combinators can be viewed as a domain specific language where the interaction
between agents ((<*>), (<|>)) can be described separately from the actual primitive
actions performed by the agents (introduces, appears)

4.6 Summary

We have shown in this chapter that it is possible to build an expressive functional
combinator library on top of a raw imperative component interface. Essential ingre-
dients for this approach are parametric polymorphism, higher-order types, laziness
and first-class computations (that is, values of type IO τ)
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With the agent component, we can define new methods that enforce constraints on
the component interface. For example, the wait’ method ensures that an agent
never waits for itself. Furthermore, we have defined a new custom designed sublan-
guage (or combinator library) for expressing parallel animations. The implemen-
tation of the combinators is consise and terse enough, that we are able to perform
simple algebraic proofs and derivations of their properties.

Other programming languages can also be used to access the agent component –
mainstream scripting languages such as Tcl and Python provide ways to interface to
COM components, and of course one can script components in Java, Visual Basic,
or C++. The claim of this chapter is that a higher-order, typed, garbage-collected
language such as Haskell can open up new avenues for scripting: it is unlikely
that one could come up with the described combinator library in any of the above
languages.

The next chapter investigates these possibilities in the context of larger component
frameworks of database servers. In that chapter we also use the expressive type
system of the host language to statically verify implicit constraints on the database
components.

4.7 Appendix: animation implementation

The full animation implementation builds an explicit temporal dependency graph
of all actions. Each node is identified by a unique ending time. A node contains
the times after which the action can execute (the dependencies), the agent and the
actual action:

type Graph = Set (Time,Times,IAgentCharacter (),Action)
type Times = Set Time
type Time = Unique

split :: Unique -> Set Unique
seed :: Unique

Since the times are only used to record the dependencies, the actual values don’t
matter at all and we can use unique values to represent them. The implementation of
the combinators is closely modelled after the semantic specification but is obscured
somewhat by the need to pass around the unique time supply:

type Anim :: Time -> Times -> (Times,Graph)

(action a A) u0 ts0 = ({u0},{(u0,ts0,a,A)})
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(a <*> b) u0 ts0 = let {u1,u2} = split u0

(ts1,g1) = a u1 ts0

(ts2,g2) = b u2 ts1

in (ts2, g1 ∪ g2)
(a <|> b) u0 ts0 = let {u1,u2} = split u0

(ts1,g1) = a u1 ts0

(ts2,g2) = b u2 ts0

in (ts1 ∪ ts2, g1 ∪ g2)

The actual interpretation function first builds the dependency graph which is sub-
sequently executed:

interp anim
= exec ∅ ∅ (snd (anim seed ∅))

The execution function interprets the dependency graph and executes actions whose
dependencies are satisfied. The function takes three arguments: a mapping from
abstract time values to requests (for already executed actions), a set of time values
that have passed (i.e. whose actions have been executed), and the dependency
graph.

exec rs0 ts0 g
| next==∅ = return ()
| otherwise = do seq ({waitfor a ts rs0 | (t,ts,a,A)<-next})

rs1 <- seq ({at a A t | (t,ts,a,A)<-next})
exec (rs0 ∪ rs1) (ts0 ∪ {t | (t,ts,a,A)<-next}) g

where
next = {(t,ts,a,A) | (t,ts,a,A)<-g, ts ⊆ ts0, t /∈ ts0}

waitfor a ts rs
= a#wait ({r1 | t0<-ts, (t1,r1 )<-rs, t0==t1})

at a A t
= do r <- a#A; return (t,r)

To gain more trust in the execution function, one can prove all kinds of interesting
properties. For example, that all actions are executed, that all actions are executed
at most once, and that we always make progress.
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Chapter 5

Database queries

This chapter is based on the following article:

Daan Leijen and Erik Meijer. Domain specific embedded compilers. In
Second USENIX Conference on Domain Specific Languages (DSL’99),
pages 109–122, Austin, Texas, October 1999. USENIX Association.
Also appeared in ACM SIGPLAN Notices 35, 1, (Jan. 2000). (Leijen
and Meijer, 1999)

5.1 Introduction

This chapter provides a comprehensive example of how to embed a domain specific
language (Hudak, 1998) (DSEL) in a higher-order, strongly typed, and lazy language
like Haskell. Our specific domain instance is the embedding of a database queries
inside Haskell but we hope to expose the general design pattern underlying this
example. H/Direct is used to create the low-level binding to the database COM
components of Microsoft SQL server.

Databases are ubiquitous in the computer industry. For instance, a web site is usu-
ally nothing more that a fancy facade around a conventional database. Sometimes,
servers are even running directly on a database query engine that generates pages
from database records on-the-fly. Hence it is not surprising that database vendors
provide hooks that enable client applications to access and manipulate their servers
in a convenient way. On UNIX platforms this is usually done via ODBC or vendor
specific methods, under Windows their are confusingly many possibilities, including
ADO, OLE DB and ODBC.
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What is common to all the above database bindings is that queries are communi-
cated as unstructured strings (usually) representing SQL expressions. This low-level
approach has many disadvantages.

• Programmers get no (static) safeguards against creating syntactically incor-
rect or ill-typed queries, which can lead to hard to find runtime errors.

• Programmers have to distinguish between at least two different programming
languages, SQL and the host language. This makes programming needlessly
complex.

• Programmers are exposed to the accidental complexity and idiosyncrasies of
the particular database binding, making code harder to write and less robust
against the vendor’s fads (Brown et al., 1998)

This chapter not only shows how an easy connection between Haskell and database
servers is established with the help of H/Direct but also provides a comprehensive
example of how to embed a domain specific language (Hudak, 1998) (DSEL) on top
of the raw imperative interface provided by the database components. Although
our specific instance is the embedding of a database queries inside Haskell but we
hope to expose a general design pattern for embedding domain specific languages.

In general, providing a composable framework for domain specific abstractions is of
greater utility than a collection of stand-alone domain specific languages.

• Programmers only have to learn one language – domain specific language
extensions are provided as a library.

• It is nearly always possible to guarantee that programmers can only produce
syntactically correct target programs, and in many cases we are able to impose
domain specific typing rules. Of course, this is all limited by the expressiveness
of the host language. In Haskell for example, the value ⊥ is a value of every
type and we can not protect programmers from producing infinite or partially
defined values.

• Programmers can seamlessly integrate with other domain specific libraries, for
example with CGI and mail protocols. These libraries are accessible in the
same way as the original library. This advantage is a largely underestimated
benefit of using the embedded approach. Connecting different domain specific
languages is one of the reasons for the existence of untyped scripting languages
like Perl.

• Programmers can leverage on the existing language infrastructure such as
modules, type systems and abstraction mechanisms.

The ideas underlying our thesis date way back to 1966 when Peter Landin (1966) al-
ready observed that all programming languages compromise a domain independent
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linguistic framework and a domain specific set of components. This chapter is novel
in the sense that we show how the terms and type system of a programming lan-
guage are embedded in Haskell, which dynamically compiles and executes programs
written in the embedded language. No changes or extensions were needed to embed
the language in Haskell. Because of the compilation step, we call this approach a
domain specific embedded compiler (DSEC) instead of the normal domain specific
embedded language (DSEL).

5.2 A crash course in relational algebra

Before we describe how we can embed SQL queries in a type-safe manner we will first
give a crash course in relational databases and how to use them from mainstream
languages.

In a relation database (Date, 1995), data is represented as sets of tuples. The fields
the tuples are called attributes. Take for example the database Boards:

brand model price freeride

Salomon Fastback $ 500 True
Burton Cascade $ 600 True
Nitro Glide $ 300 False

We can conclude from this table that Burton boards are expensive and that a Glide
is not suitable for free riding. The relational algebra allows to query the database
in a more systematic way.

The selection operator σ specifies the subset of rows of which the attributes satisfy
some property. For example, we can select all snow boards that are suitable fro free
riding using the following expression: σ(freeride=True)Boards.

brand model price freeride

Salomon Fastback $ 500 True
Burton Cascade $ 600 True

The projection operator π specifies a subset of the columns of the database. Here
are all brands that manufacture cheap boards: πbrand(σ(price≤500)Boards).

brand

Salomon
Nitro
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An attribute is renamed with the rename operator ρ.
π(company,price)(ρ(company=brand)Boards).

company price

Salomon 500
Burton 600
Nitro 300

Other typical operations are cartesian product (×), union (∪) and difference (−).
All of them pose constraints on the schemes of their arguments. For example, we
can only take the cartesian product of relations whose schemes are disjoint. The
rename operator renames attributes and can be used to ensure that the arguments
of a cartesian product have disjoint schemes. Suppose we have a table of sponsored
Riders:

brand lastname firstname

Salomon Taggart Michele
Burton Rippey Jim
Burton Haakonson Terje
Rossignol Jones Jeremy

To associate each rider with the range of snow boards they can get for free, we take
the cartesian product and rename the common brand attribute.
π(brand,model,firstname,lastname)(σ(brand=brand’)(Boards× ρ(brand’=brand)Riders)).

brand model firstname lastname

Salomon Fastback Michele Taggart
Burton Cascade Jim Rippey
Burton Cascade Terje Haakonson

Since the use of the rename operator is quite cumbersome (just think of taking a
cartesian product of a relation on itself) and since the above pattern occurs so often
in practice, a special operator is defined that doesn’t need the elaborate renaming
required for a cartesian product.

The join operator (on) takes the cartesian product of two relations but merges tuples
whose common attributes have identical values. We can rephrase our previous
expression with a join operator as: π(brand,model,firstname,lastname)(Boards on Riders).
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5.2.1 SQL

SQL is the de facto standard programming language for expressing queries on rela-
tional databases. The standard form of a SQL query is:

SELECT columns

FROM tables

WHERE criteria

This combines selections, projections and products in one powerful primitive. The
SELECT clause specifies which columns to project, the FROM clause specifies which
tables are combined in a product and the WHERE clause specifies which rows in the
tables are selected. The query σ(brand=Burton)Riders is expressed in SQL as:

SELECT *

FROM Riders AS r

WHERE r.brand = "Burton"

A more complicated query as: π(brand,model,firstname,lastname)(Boards on Riders), is
translated as:

SELECT b.brand, b.model, r.firstname, r.lastname

FROM Riders AS r, Boards AS b

WHERE r.brand = b.brand

We qualify the relations here in order to disambiguate the brand attribute we refer
to. Unfortunately, the qualification mechanism of SQL is quite restrictive and a
machine translation from relation algebra to SQL is easier with explicit renaming
in nested queries:

SELECT brand, model, firstname, lastname

FROM (SELECT brand AS brand’, firstname, lastname FROM Riders)

, Boards

WHERE brand’ = brand

5.2.2 Connecting to the database

We use ActiveX Database Objects (ADO) as our database component. ADO is a
COM framework that can use any ODBC compliant database system – Microsoft
SQL server, Oracle, IBM DB/2, MS Access and many others (even text files). We
have used H/Direct to translate the interfaces of ADO from its type library into
Haskell modules. This also provided a good test for H/Direct as ADO is a full scale,
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industrial database framework consisting of dozens of interfaces with hundreds of
methods. Indeed, entire books are written about ADO alone (Sussman, 2000). In
this chapter though, we will focus on just the tiny fraction that is needed to support
our examples.

ADO abstracts from physical databases using an IConnection object. The Open
method initialises the connection to a specific database. Once a connection has been
established, the Execute method evaluates a SQL query in the database context.
The result of such a query is returned as a set of records, the RecordSet object.

type IConnection a

open :: String -> IConnection a -> IO ()

close :: IConnection a -> IO ()

execute :: String -> IConnection a -> IO (IRecordset ())

...

The IRecordset interface exposes methods to navigate through the set of database
records.

type IRecordset a

moveNext :: IRecordset a -> IO ()

getEOF :: IRecordset a -> IO Bool

getFields :: IRecordset a -> IO (IFields ())

...

The Fields interface is subsequently used to navigate through the fields of single
record.

type IFields a

getCount :: IFields a -> IO Int

getItem :: Variant name => IFields a -> name -> IO (IField ())

...

Finally, the getValue method of a Field object can be used to retrieve the value
of a column in the current row.

type IField a

getValue :: Variant v => IField a -> IO v

getName :: IField a -> IO String

...

5.2.3 Putting it all together

Visual Basic is often used as the glue language between a database server and a
web server. Here is a small example of how ADO is used to print the results of the
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query σ(brand=Burton)Riders.

query = "SELECT *"

query = query & "FROM Riders"

query = query & "WHERE brand = ’Burton’"

Set con = CreateObject( "ADODB.Connection" )

con.Open "dsn=mydatabase;server=SQL Server"

Set rs = con.Execute query

Do While Not rs.EOF

Print rs.GetFields().GetItem("brand").GetValue()

Print rs.GetFields().GetItem("price").GetValue()

rs.MoveNext

Loop

con.Close

In Haskell, this example is structured exactly in the same way, but for good measure,
we show how we can abstract from the iteration through the record set by returning
a list of fields. The list of fields can be returned either strictly, reading all fields
into memory at once, or lazily, reading each field by demand.

Both strategies can be defined in terms of a function readFields that takes an IO
action transformer that determines the strategy.

readFields :: (IO a -> IO a) -> IRecordset a -> IO [IFields ()]

readFields perform records

= perform $

do{ atEof <- records # getEOF

; if (atEof)

then return []

else do{ fields <- records # getFields

; records # moveNext

; rest <- records # readFields perform

; return ([fields] ++ rest)

}

}

By taking perform to be the identity, we get a function that reads the complete list
of fields strictly. We can also pass the IO delaying function unsafeInterleaveIO
to obtain a function that reads the list of fields lazily.

Here is how a general version of the Visual Basic query evaluator given previously
is written in Haskell:

runQuery :: String -> IO [IFields ()]



90 Chapter 5. Database queries

runQuery sql

= do{ connection <- coCreateObject "ADODB.Connection"

iidIConnection

; connection # open "dsn=mydatabase;server=SQL Server"

; records <- connection # execute sql

; fields <- readFields id records

; connection # close

; return fields

}

5.3 Query embedding

The examples of the previous section show the essence of database programming
nowadays. We can identify at least three weaknesses that can cause a query to fail
at runtime:

• A syntactically incorrect SQL query, for example "SELECCT * FROM Riders".

• A semantically incorrect SQL query, for example "SELECT * FROM Riderss".

• A weak connection between the host language and the database, for exam-
ple GetItem("price"), where the price attribute is represented as a string
instead of an identifier. This item is related to semantically incorrect queries.

All of these items are related to the construction of the SQL query. In this chapter
we will describe how to embed database queries in the host language in such a
way that the resulting SQL query is always semantically and syntactically valid.
Moreover, the embedding naturally leads to a strong connection between the host
language and the query.

The actual embedding is accomplished via monad comprehensions. Within the
functional programming community, people have argued before that monad (or list)
comprehensions are a good query notation for database programming languages
(Buneman et al., 1996).

Using monad comprehensions, the query σ(brand=Burton)Riders is expressed as:

query = do{ r <- table riders

; restrict (r!brand .==. constant "Burton")

; return r

}

More complicated queries with multiple tables are also possible. Take for example
the query: π(brand,model,firstname,lastname)(Boards on Riders).
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query = do{ r <- table riders

; b <- table boards

; restrict (r!brand .==. b!brand)

; project (brand = b!brand, model = b!model

,firstname = r!firstname, lastname = r!lastname)

}

Only sanctioned combinators like table and restrict can be used to generate a
query. The programmer no longer writes queries as strings, and is even, constrained
by the module system, unable to do so! This garantees that only syntactically valid
queries are generated.

The combinators are also typed at compile-time, preventing semantically incorrect
SQL queries at run-time. Furthermore, the attributes and available tables are all
accessed via Haskell identifiers instead of strings, leading to a strong connection
between Haskell and the database.

Since the queries are not immediately executed but instead generate a seperate SQL
query under the hood (which is subsequently sent to the database server) we call
this approach a domain specific embedded compiler (DSEC). Indeed, the embedding
even contains an optimizer that processes the generated SQL query before sending
it to the database server.

Although the library that implements the embedding of database queries in Haskell
is large and complex, we have identified three common patterns in the definition of
a domain specific language:

1. define the abstract syntax;

2. define an embedding of the abstract syntax;

3. impose a typed layer onto the basic combinators.

The following sections therefore not only describe how an embedding is accom-
plished for database queries, but also try to give the general design patterns for
embedding any domain specific language into a strongly typed, polymorphic, higher-
order language.

5.4 Formula embedding

Although our final goal is to embed complete relational queries, we look first at
the simpler embedding of the boolean expressions f that occur in restrictions (σf ).
These expressions are normally appended to the WHERE clause in the final SQL
string. The simplest way to represent expressions is thus as a string:
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type Expr = String

This is essentially the style of programming that is in widespread use in industry
– an unstructured SQL string is send to the server and the result is a dynamically
typed set of fields. There is no mechanism that prevents the programmer to send
invalid strings to the server or to unpack fields at the wrong type, leading to errors
at runtime and/or unpredictable behavior of the server.

5.4.1 Step 1: Abstract syntax

To prevent the construction of syntactically incorrect expressions, we define an
abstract syntax for the terms of the language we are targeting, together with a
“code generator” to map abstract syntax trees into the concrete syntax of the input
language.

The abstract syntax for SQL restriction expressions defines literal constants, unary
operators, aggregate operators, binary operators, and attribute selectors. Attribute
selectors are explained in section 5.6.

data PrimExpr = AttrExpr Attribute

| BinExpr BinOp PrimExpr PrimExpr

| UnExpr UnOp PrimExpr

| AggrExpr AggrOp PrimExpr

| ConstExpr String

deriving (Read,Show)

data BinOp = OpEq | OpLt | OpLtEq | ...

deriving (Show,Read)

data UnOp = OpNot | OpAsc | OpDesc | OpIsNull | OpIsNotNull

deriving (Show,Read)

data AggrOp = AggrCount | AggrSum | AggrAvg | AggrStdDev | ...

deriving (Show,Read)

The types BinOp, UnOp and AggrOp are just enumerations of the permitted oper-
ators in the relational algebra. Enforced by the type system, we can now write
expressions that have at least a syntactically correct form (when translated into
concrete syntax). For example, we now write BinExpr OpEq (ConstExpr (show
1)) (ConstExpr (show 3)) instead of "1 = 3".

An abstract syntax tree is translated back into concrete syntax just before passing it
to the database server. The “code generator” for our expressions is straightforward:
print expressions in their fully parenthesized concrete representation by a simple
inductive function:
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pPrimExpr :: PrimExpr -> String

pPrimExpr expr

= case expr of

ConstExpr s -> s

UnExpr op x -> pUnOp op ++ parens x

BinExpr op x y -> parens x ++ pBinOp op ++ parens y

...

where

parens x = " (" ++ pPrimExpr x ++ ") "

pBinOp :: BinOp -> String

pBinOp op

= case op of

OpEq -> "="

OpLt -> "<"

...

Normally however, this step is more involved. As shown in later sections, the full
SQL query embedding even performs optimization and renaming before generating
the final query string.

5.4.2 Step 2: Abstract Syntax embedding

Writing expression directly in abstract syntax is quite cumbersome, so we provide
combinators to make the programmers life more convenient. Each expression op-
erator is represented in Haskell by the same operator surrounded by dots. Some
definitions are:

constant :: Show a => a -> PrimExpr

constant x

= ConstExpr (show x)

(.+.) :: PrimExpr -> PrimExpr -> PrimExpr

(.+.) x y

= BinExpr OpPlus x y

The constant function is unsafe since any value that is part of the Show class can
be used. In the real library we introduce a separate class ShowConstant which is
only defined on basic database types. Now we are able to write: constant 1 .==.
constant 3. This is what embedding domain specific languages is all about!

Of course, we can still use the abstraction mechanisms of the host language to define
more complicated expressions:

sum :: Int -> PrimExpr
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sum n

= if (n <= 0)

then (constant 0)

else (constant n .+. sum (n-1))

Embedding of abstract syntax consists of defining new concrete syntax tailored to
the needs of the specific domain. Since most languages are unable to redefine their
concrete syntax, we are constrained by the pecularities of the host language. For
example, in Haskell this means that we are unable to write relational expressions
directly. In this respect languages as Scheme that have an expressive macro system
are better suited for embedding the abstract syntax. Recently however, there have
been interesting proposals for adding powerful macro mechanisms (Peyton Jones
and Sheard, 2002), or even mechanisms for extending the concrete syntax dynami-
cally (Baars, 2002).

5.4.3 Step 3: Type embedding

The above embedding is already superior to unstructured strings since it is impos-
sible to construct syntactically incorrect strings but it is still possible to construct
ill typed requests: constant 42 .==. constant "world". The PrimExpr data
type is untyped and there is no mechanism to enforce that both arguments of the
equality operator are of the same type.

We used abstract syntax trees to ensure that we can only generate syntactically
correct expressions and fortunately we can use another trick to only generate type
correct expressions. The phantom types that we used to encode inheritance (chapter
3) and pointer types (chapter 2) can also be used to type expressions.

We introduce a new polymorphic type Expr a such that expr :: Expr a means
that expr is an expression of type a. The type variable a in the definition of the
Expr data type is only used to hold a type – it does not occur in the right hand
side of its definition and is therefore never physically present:

data Expr a = Expr PrimExpr

The next step is to refine our combinators to encode the typing rules of the host
language:

constant :: Show a => a -> Expr a

(.+.) :: Expr Int -> Expr Int -> Expr Int

(.==.) :: Eq a => Expr a -> Expr a -> Expr Bool

constant x = Expr (ConstExpr (show x))

(.+.) (Expr x) (Expr y) = Expr (BinExpr OpPlus x y)

(.==.) (Expr x) (Expr y) = Expr (BinExpr OpEq x y)
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Note that the definitions don’t change except for packing and unpacking the Expr
constructor. However, the type signature is needed to enforce a less general type
than would be inferred by the type inferencer!

By making the Expr type an abstract data type, we ensure that only the primitive
functions can manipulate the unsafe PrimExpr type. If we now use the combinators
to construct an ill typed expression, constant 42 .==. constant "World", the
Haskell type checker will complain at compile time that the type Expr Int of the
first operand doesn’t match with the type Expr String of the second operand.

Typing expressions through phantom types immediately extends to values built
using Haskell primitives. The example function sum for instance now has the type:
sum :: Int -> Expr Int. Later we show how multiple phantom type variables
can be used to define a type safe encoding of attribute selection in records.

5.5 Relational algebra

Before we give a precise translation from monad comprehensions to relational al-
gebra, we need a good definition of the relation algebra. Surprisingly, it is hard to
find a compact description that fits our needs and we will give a short definition of
the algebra starting from basic set theory.

5.5.1 Functions

In this section, we first introduce some basic concrete mathematics definitions. For
two sets A and B, a (partial) function f from A to B, denoted f :: A → B, is a set
of pairs (a, b) where a ∈ A and b ∈ B. Every element a occurs at most once as the
first component of a pair in f :

(a, b) ∈ f ∧ (a, c) ∈ f ⇒ b = c

Since each element a occurs at most once, we denote its corresponding element b as
f(a), i.e. (a, b) ∈ f ⇔ f(a) = b.

The domain of a function is defined as dom(f) = { a | (a, b) ∈ f }. Dually, the
codomain is defined as codom(f) = { b | (a, b) ∈ f }. A function is called finite if
its domain is a finite set. A total function f :: A → B is a function where every
element in A occurs as a first component of a pair in f :

a ∈ A ⇒ a ∈ dom(f)

A restriction of a function f to a set A′ ⊆ A is defined as: f|A′ = { (a, f(a)) | a ∈
A′ }. Note that dom(f|A) = A.
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The composition of a function f :: B → C and a function g :: A → B is defined as:

(f · g) = { (a, c) | (a, b) ∈ g ∧ (b, c) ∈ f }

The extension of a function f :: A → B with a function g :: A → B is defined as:

(f ¯ g) = { (a, b) | (a, b) ∈ g ∨ ((a, b) ∈ f ∧ a /∈ dom(g)) }

The identity function IA is defined as: IA = { (a, a) | a ∈ A }.

5.5.2 Relations

Let A be a set of names, called attributes a. D is a set of domains D. Domains
are arbitrary, non-empty sets. Every attribute has an associated domain, i.e. there
is a total function domain :: A → D that gives the domain of a certain attribute.
For example, the attribute age probably has the natural numbers as its domain,
domain(age) = N.1

Tuples are the mathematical counterpart of database records. A tuple t is a finite
function from A to D, where every attribute is mapped to a value in its correspond-
ing domain:

t(a) ∈ domain(a)

For example, the persons relation/database could contain a tuple/record like:
{(name, daan), (age, 29)}.

The domain of a tuple is also called its scheme, scheme(t) = dom(t). The signature
of a tuple t is a function from each attribute to its domain. Let T the set of all
tuples and S the set of all signatures. The function signature :: T → S is defined
as:

signature(t) = { (a, domain(a)) | a ∈ scheme(t) }

A relation r is a finite set of tuples. Just as tuples, a relation has a signature. We
assume a (now overloaded) function signature :: R→ S that gives the signature of
a relation. The scheme of a relation is the domain of its signature. It is required
that each tuple in a relation has the same signature as the relation, that is:

∀t.t ∈ r ⇒ signature(r) = signature(t)

1This is slightly more restrictive than the relation algebra defined by Codd, where attributes only
have a fixed domain within a scheme.
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Note that this implies that the scheme of a relation r equals the scheme of any tuple
t ∈ r:

scheme(r) = dom(signature(r))
= dom(signature(t)) where t ∈ r

= dom({ (a, domain(a)) | a ∈ scheme(t) })
= { a | a ∈ scheme(t) }
= scheme(t)

5.5.3 Relational expressions

The relational algebra is constructed using:

• Constant relations (T );

• Projection (π), rename (ρ) and restriction (σ);

• Union (∪), difference (−) and cartesian product (×).

We will discuss each of these operations in more detail in the following paragraphs.

Constant relations

We assume a universe of constant relations. A constant relation is written as T .
In practical terms, these constant relations are an existing database with name T .
Although we call it constant because it has the same value within an expression,
such a relation may well change over time – as databases do in practice!

Projection and rename

Projection and rename are actually instances of a more general operation which we
call extension. This operation is used to good effect within the Haskell embedding,
simplifying the implementation considerably.

The extension operator δf (r) takes a finite function f :: A → scheme(r) and a
relation r as argument. It is defined as: δf (r) = { t · f | t ∈ r }. The scheme of δ is
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derived as follows:

scheme(δf (r)) = scheme({ t · f | t ∈ r })
= scheme(t · f) where t ∈ r

= dom(t · f)
= dom(f)

The projection operator πS(r) takes a scheme S and a relation r as argument.
It is defined as: πS(r) = δ(IS)(r). Note that πS(r) is only well defined when
S ⊆ scheme(r). The scheme of a projection is scheme(πS(r)) = scheme(δ(IS)(r)) =
dom(IS) = S.

The rename operator ρf (r) takes a finite function f and a relation r, where f ::
A → scheme(r). It is defined as: ρf (r) = δg(r) where g is defined as:

g = f ∪ I(scheme(r)−dom(f)−codom(f))

The scheme of ρ is:

scheme(ρf (r)) = scheme(δg(r))
= dom(g)
= dom(f ∪ I(scheme(r)−dom(f)−codom(f)))
= dom(f) ∪ (scheme(r)− dom(f)− codom(f))

5.5.4 Restriction

Before we can discuss restriction, we first take a look at formulas. Formulas are
built using constants, attributes (in the role of variables) and functions.

We can perform substitution on a formula F in the context of a tuple t by replac-
ing the attributes in the formula with their corresponding values from that tuple.
This operation is written as F [t] and associates to the left. We therefore have the
following composition law: F [t · f ] ⇒ F [f ][t].

The scheme of a formula consists of all free attributes in the formula. Note that
F [t] = F [t|S ] where scheme(F ) ⊆ S. When F is used in a restriction, the value
F [t] should be in the set of booleans B.

The restriction operator σ is defined as: σF (r) = { t | t ∈ r ∧ F [t] }. The scheme
of a restriction stays the same:

scheme(σF (r)) = dom(t) where t ∈ r

= scheme(r)
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5.5.5 Union,Difference and Cartesian product

The union and difference on two relations r and s with scheme(r) = scheme(s),
are defined as set union and set difference respectively:

scheme(r ∪ s) = scheme(r)
scheme(r − s) = scheme(r)

The cartesian product of two relations r and s where scheme(r) ∩ scheme(s) = ∅
is defined as: r× s = { t ∪ u | t ∈ r, u ∈ s }. The scheme of × is: scheme(r× s) =
scheme(r) ∪ scheme(s).

5.6 Embedding queries

Finally, we are able to describe the embedding of database queries within Haskell.
We use the same three steps as in the embedding of the simple restriction expressions
in the previous sections.

5.6.1 Step 1: Abstract syntax

The abstract syntax is modelled directly after the relational algebra.

type TableName = String

type Attribute = String

type Scheme = [Attribute]

type Assoc = [(Attribute,Attribute)]

data PrimQuery = BaseTable TableName Scheme

| Project Assoc PrimQuery

| Restrict PrimExpr PrimQuery

| Binary RelOp PrimQuery PrimQuery

| Empty

data RelOp = Times

| Union

| Intersect

| Divide

| Difference

deriving (Show)

The Project operator actually corresponds to the extension operator δ since it
takes an association Assoc as argument and thus performs renaming too. We can
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easily define some utility functions on these primitive queries, for example scheme,
assocFromScheme and compose:

scheme :: PrimQuery -> Scheme

scheme query

= case query of

(Empty) -> []

(BaseTable nm attrs) -> attrs

(Project assoc q) -> map fst assoc

(Restrict expr q) -> scheme q

(Binary op q1 q2) -> case op of

Times -> attr1 ++ attr2

Union -> attr1

Intersect -> attr1 \\ attr2

Divide -> attr1

Difference -> attr1

where

attr1 = scheme q1

attr2 = scheme q2

assocFromScheme :: Scheme -> Assoc

assocFromScheme scheme

= map (\attr -> (attr,attr)) scheme

compose :: Assoc -> Assoc -> Assoc

compose assoc1 assoc2

= map assoc2 (\(a1,a2) ->

(a1, case lookup a2 assoc1 of

Just a3 -> a3

Nothing -> error "partial compose")

Optimizing queries

In the same way, we can define more elaborate functions to perform useful opti-
mizations. Currently, the library removes dead attributes and relations, merges
projections and pushes restrictions into sub expressions.

optimize :: PrimQuery -> PrimQuery

optimize

= mergeProject . removeEmpty . removeDead . pushRestrict

Since each of these passes are fairly straightforward, we will only describe the
pushRestrict optimization in more detail. Pushing restrictions ‘down’ can im-
prove the efficiency of the final query. Take for example the following equivalent
queries:

σprice<500(Boards× Riders) ≡ (σprice<500Boards)× Riders
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The second query is likely to be more efficient since the first query has to build a
potentially large intermediate cartesian product of both databases.

There are a whole set of ‘laws’ that enable this optimization. For example, we
can prove that a projection followed by a restriction is the same as the restriction
followed by the projection:

σF (δf (r)) = { t | t ∈ δf (r) ∧ F [t] }
= { t | t ∈ { tr · f | tr ∈ r } ∧ F [t] }
= { tr · f | tr ∈ r ∧ F [tr · f ] }
⇒ { tr · f | tr ∈ r ∧ F [f ][tr] }
= { t · f | t ∈ { tr | tr ∈ r ∧ F [f ][tr] } }
= { t · f | t ∈ σF [f ](r) }
= δf (σF [f ](r))

Another law that we need enables us to push a restriction into a branch of binary
expression.

σF (r × s) = { t | t ∈ (r × s) ∧ F [t] }
= { t | t ∈ { tr ∪ ts | tr ∈ r ∧ ts ∈ s } ∧ F [t] }
= { tr ∪ ts | tr ∈ r ∧ ts ∈ s ∧ F [tr ∪ ts] }
= { tr ∪ ts | tr ∈ r ∧ ts ∈ s ∧ F [tr] } iff scheme(F ) ∩ scheme(s) = ∅
= { t ∪ ts | t ∈ { tr | tr ∈ r ∧ F [tr] } ∧ ts ∈ s }
= { t ∪ ts | t ∈ σF (r) ∧ ts ∈ s }
= σF (r)× s

Of course, the same holds for the other branch if scheme(F )∩scheme(r) = ∅. In the
combinator library, we used these laws to implement the pushRestrict function:

pushRestrict :: PrimQuery -> PrimQuery

pushRestrict (Restrict x (Project assoc query))

= Project assoc (pushRestrict (Restrict expr query))

where

expr = substAttr assoc x

pushRestrict (Restrict x (Binary op query1 query2))

| noneIn1 = Binary op query1 (pushRestrict (Restrict x query2))

| noneIn2 = Binary op (pushRestrict (Restrict x query2)) query1

-- otherwise fall through

where

attrs = schemeOfExpr x

noneIn1 = null (attrs ‘intersect‘ scheme query1)

noneIn2 = null (attrs ‘intersect‘ scheme query2)

...
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Generating SQL

Translating relational algebra expressions into SQL queries is not entirely straight-
forward. With older SQL dialects, we need to be very careful about name conflicts.
Fortunately, the SQL/92 standard provides a rename operation on attributes and
there is a straightforward translation from relational algebra into SQL/92 queries
(Date, 1995).

The good part of having a solid intermediate form is that we can easily provide dif-
ferent back ends for different SQL dialects or even entirely different query languages
like ASN.

Another advantage is that we can extend our relational algebra with new operators
that are hard to express using the basic relational algebra. An example of these are
relational comparisons (Date, 1995). It is extremely awkward to express compar-
isons between entire relations with just the relational algebra. Suppose for example
that each rider can have multiple sponsors with a separate table sponsored that
maps sponsors to riders. Suppose we want to know pairs of riders such that both
are sponsored by exactly the same brands. This query is ‘easily’ expressed with re-
lational comparisons, where formulas can contain relational expressions themselves:

σF (δ(name1=name)riders× δ(name2=name)riders)
where

F := (π(brand)(σ(name=name1)sponsored)) = π(brand)(σ(name=name2)sponsored))

The equivalent query in the basic relational algebra requires about five times as
many operations and is (very) difficult to understand.

SQL doesn’t provide relational comparisons either and one has to resort to cumber-
some negated existential quantifiers. The above query would become:

SELECT A.name AS name1, B.name AS name2

FROM riders AS A, riders AS B

WHERE NOT EXISTS

(SELECT brand AS brand1 FROM sponsored

WHERE name = name1

AND NOT EXISTS (SELECT brand AS brand2 FROM sponsored

WHERE name = name2

AND brand1 = brand2))

Mind-boggling! Fortunately, queries like this can automatically be derived from re-
lational comparisons. With a combinator library, we can easily extend the abstract
syntax to contain relational comparisons and compile these expressions automat-
ically into the basic relational operators or an equivalent SQL expression. One
possible implementation extends the algebra with general relational restrictions:
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data PrimQuery = ...

| RelRestrict PrimRelExpr

data PrimRelExpr = RelQuery PrimQuery

| RelBin RelBinOp PrimRelExpr PrimRelExpr

data RelBinOp = RelEq | RelSub | RelSubEq | ...

Just as with the formula and query embedding, we should now define some friendly
combinators to write these expressions and extend the code generator to generate
the corresponding SQL queries.

5.6.2 Step 2: Abstract syntax embedding

We could proceed as in our earlier example and define some friendly combinators
for building relational expressions. However, there is a serious drawback to us-
ing relational expressions directly as our programming language. In the relational
algebra, attributes are only specified by name – there is no separate binding mecha-
nism to distinguish attributes from different tables. For example, when we take the
cartesian product of a relation with itself we are forced to rename every attribute
to avoid ambiguity. Indeed, the only reason why the join operator (on) exists, is
to capture a common combination of renaming, selection, projection and cartesian
products.

Besides covering only a specific combination, it is also notoriously hard to type check
join expressions (Buneman and Ohori, 1996) and we haven’t found a way to embed
those typing rules in Haskell. The join operation is problematic in a polymorphic
setting, since the result type of a join expression depends on the common attributes
of the arguments. Buneman and Ohori (1996) describe a restricted polymorphic
type system for join expressions by adding specialized type constraints just for this
operation.

SQL solves the renaming problem by using qualified attributes. There is a binding
mechanism to assign names to relational expressions, riders AS X, and qualified
attributes to refer to specific attributes in a certain relation, X.name. For example,
a query that returns pairs of riders that are sponsored by the same brand is written
as:

SELECT X.name Y.name

FROM riders AS X, riders AS Y

WHERE X.brand = Y.brand

AND X.name <> Y.name

We will use the same approach in Haskell where monad comprehensions are used
to introduce a custom binding mechanism. Instead of identifying attributes just by
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name, both a relation and name is used. The above query is formulated in Haskell
as:

do{ x <- table riders

; y <- table riders

; restrict (x!brand .==. y!brand)

; restrict (x!name .<>. y!name)

; project (name1 = x!name, name2 = y!name)

}

Under the hood, we still generate relational algebra expressions but all the renaming
is done automatically within the combinators. The following sections explain in
detail how the transformation from monad comprehensions to relational expressions
works.

Monad comprehensions

A monad (Wadler, 1992a; Wadler, 1992b) is defined by two operations, bind (>>=)
and return. The bind operation combines monadic operations and the return
operation lifts values into the monad. The do notation is syntactic sugar that gets
translated into the basic monadic operations:

do{x <- E; F} ≡ E >>= (\x -> do{F})
do{E; F} ≡ E >>= (\_ -> do{F})
do{E} ≡ E

To understand the implementation of the query monad in Haskell better, we also
give a denotational semantics that describes the correspondence between a monad
comprehension and a relational algebra expression.

Each monadic rule (M) in the semantics returns a tuple containing the relational
algebra expression r that is being build and the returned Haskell value. Each
rule takes an environment of currently bound variables and the current relation as
arguments.

The semantic rule for return does nothing – it returns the current relation and
returned value unmodified. The bind rule applies the monadic scheme to the sub
expression E which returns a new relation and some value which is bound in the
environment when translating F .
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M[[ return x ]] E r := (r, x)
M[[ do{x <- E; F} ]] E r := M[[ F ]] E ′ r′

with
(r′, f) = M[[ E ]] E r
E ′ = E ¯ {(x, f)})

The corresponding implementation in Haskell is straightforward. First we define a
data type for our Query monad:

data Query a = Query (QueryState -> (a,QueryState))

type QueryState = (Int,PrimQuery)

The state of the monad contains not only the current relational algebra expression
r in the form of a PrimQuery but also an integer that is used for creating unique
names.

The environment E in the semantics is no longer explicitly present in the Haskell
implementation but it is implicit in the lambda-bound variables. Since Haskell is
sometimes called a domain specific language for denotational semantics (Hudak,
1998), it is not surprising that the semantic rules translate almost literally into
Haskell (modulo the implicit environment):

instance Monad Query where

return x = Query (\r -> (x,r))

(Query e) >>= m = Query (\r -> let (x,r’) = e r

(Query f) = m x

in (f r’))

There are two other primitive operations give access to the state of the monad. The
updateQuery function applies a function to the current relation and the unique
function returns a unique integer.

updatePrimQuery :: (PrimQuery -> PrimQuery) -> Query PrimQuery

updatePrimQuery f

= Query (\(i,qt) -> (qt,(i,f qt)))

unique :: Query Int

unique

= Query (\(i,qt) -> (i,(i+1,qt)))

Constants

Existing databases (‘constants’) are opened with the table combinator. The effect
is to take the cartesian product with the current relation. Remember that the
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cartesian product r × s is only valid when scheme(r) ∩ scheme(s) = ∅, and thus,
the table operation needs to rename all the attributes into unique names in order
to avoid name clashes. In the semantic rules, the a∗ notation means a uniquely
renamed attributed a.

M[[ table T ]] E r := (r × δf (T ), f−1)
with

f = { (a∗, a) | a ∈ scheme(T ) }

As we can see from the rules, a unique renaming f is created. The returned value
contains the inverse of this function – a mapping from the original attribute names
into the unique ones. We call this mapping an association. This means that Haskell
values bound by a table expression are not actual relations but associations that
can be applied onto the hidden relational algebra expression to access an attribute.
The attribute selector (!) uses this association to map an association/attribute
pair into an unambiguous and unique attribute name. The scheme F translates
expressions into relational formulas.

F [[ x ! a ]] E := E [x] a
F [[ e1 .==. e2 ]] E := (F [[ e1 ]] E) = (F [[ e2 ]] E)

Before we can translate these rules in Haskell we first define data types for tables,
associations, and attributes:

data Rel = Rel Assoc

data Attr = Attr Attribute

data Table = Table TableName Scheme

Later we will see how we can use phantom types (again!) to add a typed layer
around the code that we write now. The Rel type is used for associations. It is
called after relations since that is how the user of the library will think of it – only
the implementor is interested in the association that it holds. Again, the following
Haskell implementation is almost a direct translation of the semantic rules.

(!) :: Rel -> Attr -> Expr a

(Rel assoc) ! (Attr attr)

= case lookup attr assoc of

Just realname -> Expr (AttrExpr realname)

Nothing -> error ("unknown attribute " ++ show attr)

table :: Table -> Query Rel

table (Table name scheme)

= do{ assoc <- uniqueAssoc scheme

; updatePrimQuery

(\q -> Times q (Project assoc (BaseTable name scheme)))
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; return (Rel (inverse assoc))

}

uniqueAssoc :: Scheme -> Query Assoc

uniqueAssoc scheme

= do{ i <- unique

; return (map (\attr -> (attr ++ show i,attr)) scheme)

}

inverse :: [(a,b)] -> [(b,a)]

inverse xs

= map (\(a,b) -> (b,a)) xs

Other operations

Other operations are binary operations like union and difference, and projections
and restrictions. Except for the renaming, the rules are straightforward:

M[[ restrict e ]] E r := (σ(F [[ e ]] E)(r),∅)

M[[ project p ]] E r := (δh(r), f−1)
with

f = { (a∗, a) | a ∈ dom(p) }
g = p · f
h = Ischeme(r) ∪ g

M[[ union m1 m2 ]] E r := ((δg1(r1) ∪ δg2(r2))× r, f−1)
with

(r1, f1) = M[[ m1 ]] E r
(r2, f2) = M[[ m2 ]] E r
f = { (a∗, a) | a ∈ dom(f1 ∪ f2) }
g1 = { (a, f1(b)) | (a, b) ∈ f }
g2 = { (a, f2(b)) | (a, b) ∈ f }

The translation to Haskell is straighforward and we will only show the implemen-
tation for project here:

project :: Assoc -> Query Rel

project assoc

= do{ assocF <- uniqueAssoc (map fst assoc)

; updatePrimQuery (\q ->

; Project

(assocFromScheme (scheme q) ++ compose assoc assocF) q)

; return (Rel (inverse assocF))

}
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Liveness of attributes

It might come as a surprise to the reader that both project and union actually
extend the scheme with new attributes instead of replacing them. This is because
the user might still refer to an older attribute. Here is a (contrived) example:

do{ x <- table boards

; y <- project (reducedPrice = x!price)

; project (price = y!reducedPrice, brand = x!brand)

}

In general, we can not predict the life-time of a bound lambda expression that arises
from the monadic style. This means that the current translation will produce lots
of dead attributes – attributes that are present in each sub-relation but discarded
in the final projection. In practice, it is therefore fairly essential to perform the
removeDead optimization that removes these dead attributes. Arrow-style com-
binators have the property that the life-times of their bound variables are made
explicit (Hughes, 2000) and would remove the need for a seperate removeDead pass.
However, arrow-style combinators are somewhat harder to use in practice than
monadic style combinators.

Proof of liveness

Actually, the first implementations of Haskell/DB wrongly discarded certain live
attributes. Since the problem only showed up in contrived or highly complex queries
the bug went undiscovered and was only spotted after writing down the intended
formal correspondence between monad comprehensions and relational queries. The
bug showed up when we tried to prove that ‘live’ attributes are always part of the
scheme of the relation. Of course, we were unable to do so in our first semantics
since the translation was plainly wrong! This lead to the current semantics from
which the current implementation is derived. Moreover, the implementation also
improved a lot with respect to modularity and clearness of expression by using the
semantics as a template.

The proof of liveness centers around the attribute selector (!):

F [[ x ! a ]] E := (E(x))(a)

This translation is only valid when the following conditions hold:

• x ∈ E . This condition always holds in the Haskell implementation since the
environment is implicit in the lambda bound variables and thus checked at
compile time.
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• E(x) :: A → A. This condition is enforced by the Haskell type system.

• a ∈ dom(E(x)). This condition is also enforced by the Haskell type system as
described in the next section.

The second condition garantees the value x has the correct type – a renaming from
attributes to attributes. However, in order to ensure that no arbitrary renamings
are allowed, we will strengthen the condition and only allow renamings that are
constructed by the basic combinators. We call these renamings associations. We
write assoc(f) when the renaming f is an assocation. By using an abstract type
for assocations (Rel) we can ensure within the Haskell implementation that no
arbitrary renamings can be used with attribute selection. We write E to denote the
environment constrained to association values:

E = { (x, f) | (x, f) ∈ E ∧ assoc(f) }

The substituted attribute names, E(x)(a), will eventually be used from a restriction
context:

M[[ restrict e ]] E r := (σ(F [[ e ]] E)(r),∅)

The substituted formula is only correct when all possible substituted attributes will
be part of the scheme of the relation, that is:

codom(
⋃

codom(E)) ⊆ scheme(r)

This clearly holds for the initially empty environment and all the rules that don’t
use the M scheme. That only leaves the rule for monadic bind:

M[[ do{x <- E; F} ]] E r := M[[ F ]] E ′ r′

with
(r′, f) = M[[ E ]] E r
E ′ = E ¯ {(x, f)}

By induction, we need to ensure that in the application of the monadic rule the
condition holds for the newly constructed environment:

codom(
⋃

codom(E ′)) ⊆ scheme(r′)

There are two cases to consider. The first is the case where f is an assocation:

codom(
⋃

codom(E ′))
= codom(

⋃
codom(E ¯ {(x, f)}))

⊆ codom(
⋃

codom(E ∪ {(x, f)})
⊆ codom(

⋃
codom(E)) ∪ codom(f)
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And secondly, the case where f is not an assocation:

codom(
⋃

codom(E ′))
= codom(

⋃
codom(E ¯ {(x, f)}))

= codom(
⋃

codom(E))

For each rule M[[ e ]] E r = (r′, f) we now have to show that codom(
⋃

codom(E
)) ∪ codom(f) ⊆ scheme(r′) when assoc(f) holds, or that codom(

⋃
codom(E)) ⊆

scheme(r′) when f is not an assocation.

The proof is done by straightforward induction. Here is the case for project.

M[[ project p ]] E r := (δh(r), f−1)
with

f = { (a∗, a) | a ∈ dom(p) }
g = p · f
h = Ischeme(r) ∪ g

Since f−1 is an association, we have:

codom(
⋃

codom(E)) ∪ codom(f−1)

= codom(
⋃

codom(E)) ∪ dom(f)

= codom(
⋃

codom(E)) ∪ dom(p · f)

= codom(
⋃

codom(E)) ∪ dom(g)

⊆ scheme(r) ∪ dom(g)
= scheme(δh(r)) ¤

The other cases are equally structured. Just as in the previous chapter, proving
properties like liveness give a lot more confidence in the actual implementation.
Moreover, the exact semantics have been invaluable in a clear implementation of
the combinators.

5.6.3 Step 3: Type embedding

We have already made the expression language type safe by using phantom types.
The same trick is used to add a typed layer to the comprehensions. Central to the
discussion is the attribute selection operator:

(!) :: Rel -> Attr -> Expr a
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Given a relation and an attribute name, the operator returns the attribute value
expression. Given that any attribute always has a well defined type, we parameterize
an attribute by its type to return an expression of the same type:

data Attr a = Attr Attribute

(!) :: Rel -> Attr a -> Expr a

The type of an attribute is now connected to the type of the resulting expression.
That was easy! Unfortunately, the type system does not prevent us yet from select-
ing a non-existing attribute from the relation. The solution is to parameterize the
Rel type by its “scheme”. Similarly, we parameterize the Attr type again by both
the scheme of the relation and the type of the attribute:

data Rel r = Rel Assoc

data Table r = Table TableName Scheme

data Attr r a = Attr Attribute

The Rel and Table both retain their associated scheme since we need the actual
values to create the primitive query. The types are just to assure that this will
always succeed!

The selection operator (!) now expresses in its type that given a relation with
scheme r that has an attribute of type a, it returns a value expression of type a.

(!) :: Rel r -> Attr r a -> Expr a

The type signature is almost right, but not yet what we want. We would like
to ensure that the scheme r contains at least the attribute but the scheme can
of course contain many other attributes. A better type signature, although not
possible within Haskell, would be:

(!) :: (name ∈ r) => Rel r -> Attr name a -> Expr a

There are different (partial) solutions to this problem but a particularly nice solution
are the Typed Record Extensions (TREX) of Gaster and Jones (1996).

TREX

TREX extends the Haskell language with extensible records. As an experimen-
tal system, the feature is currently only available by the Hugs implementation of
Haskell. A record is an association list of field-value pairs. For example:
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(x = 3, even = False) :: Rec (x :: Int, even :: Bool)

This record has two fields, x of type Int and even of type Bool. Note that the
type (x :: Int, even :: Bool) has kind Row. The special type constructor
Rec takes a type of kind Row into a record (with kind *), ie. Rec :: Row -> *.

A record of type Rec r can be extended by a field z provided that z doesn’t already
occur in r. This is indicated by the constraint r\z. The type of a function that
adds a field foo to a record becomes:

extendWithFoo :: r\foo => a -> Rec r -> Rec (foo :: a | r)

extendWithFoo a r = (foo = a | r)

Unfortunately, labels are not first class values in TREX, so we cannot write a generic
function that extends a given record with a new field:

-- WRONG

extendWith field a r = (field = a | r)

Schemes as TREX records

Instead of adding a qualified type that expresses that an scheme should contain at
least a certain attribute name, we make the attribute definitions polymorphic in
their row. The type signature for attribute selection stays the same as previously
defined, but now with a different kind for r!

(!) :: Rel r -> Attr r a -> Expr a

The lack of first class labels means that we have to repeat a lot of code that only
differs in the name of some labels. This shows up mostly for the definitions of at-
tributes. For every attribute attr we define an attribute definition with the following
type:

attr :: r\attr => Attr (attr :: Expr a | r ) a

This type means that the attribute attr can be applied to any row (scheme) with
at least field attr with type Expr a and possibly other fields r. Similarly, for every
base table with scheme r we have a definition with type Table r . For the example
database we have:

boards :: Table (brand :: Expr String, model :: Expr String
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, price :: Expr Int, freeride :: Expr Bool)

boards = Table "boards"

(attributes [("brand","model","price","freeride")])

brand :: r\brand => Attr (brand :: Expr String | r) String

brand = Attr "brand"

model :: r\model => Attr (model :: Expr String | r) String

model = Attr "model"

price :: r\price => Attr (price :: Expr Int | r) Bool

price = Attr "price"

freeride :: r\freeride => Attr (freeride :: Expr Bool | r) Bool

freeride = Attr "freeride"

Note that the type definitions are required to give each definition a less general type
than the type inferencer would infer. The definitions of the constants (attributes
and tables) are unsafe since they have to be defined by the user for each particular
database. This is where the connection is weak again since attributes are represented
by simple strings. However, we have written a tool, called DB/Direct, that queries
the system tables and automatically generates the suitable database definition in
Haskell. This tool is written with Haskell/DB itself! This means that the Haskell
sources are dependent on the database and a type safe system should automatically
re-generate and re-compile the client programs whenever the database definition
changes.

Kind annotations

The type checker still complains about the library as it stands. Both the Attr and
Rel data types take a type of kind Row instead of *. However, the kind inferencer
assigns the kind Rel,Attr :: * -> * for these datatypes and doesn’t accept a
type signature that applies such datatype to a row – Attr (price :: Int | r).

A kind signature should be added to the definition of these datatypes. Unfortu-
nately, Haskell doesn’t provide a way to do that explicitly. One solution is to add a
phantom constructor – a constructor that is never used but just added to force the
type inferencer to assign a specific kind to a phantom type.

data Rel r = Rel Assoc

| RelKind (Rec r)

data Attr r a = Attr Attribute

| AttrKind (Rec r)
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data Table r = Table TableName Scheme

| TableKind (Rec r)

We use the special type constructor Rec :: Row -> * to assign a Row kind to the
phantom type variable.

Another way to guide the kind inferencer is the addition of a class constraint. First
we define a class with a single phantom function that assigns the correct kind to
the class parameters:

class RecKind r where

recKind :: Rec r

instance RecKind r

The single instance declaration allows the type inferencer to instantiate any type
variable to the RecKind class but only if the kind can be instantiated into Row ->
*. By adding a class constraint to the data type declaration, the kind inferencer
will assign the correct kinds to the phantom type variables.

data RecKind r => Attr r a = Attr Attribute

Since the recKind function is never used in the program, the dictionary for the
RecKind class is also never used and passed as a hidden parameter. The last solution
can be considered better than a phantom constructor since a data declaration can
sometimes be changed into a more efficient newtype declaration.

newtype RecKind r => Attr r a = Attr Attribute

The best solution and supported in the latest release of the Glasgow Haskell com-
piler, is to add proper kind signatures to Haskell and hopefully these will also be
supported by the next standard Haskell definition.

Typing projections

The type signature for projections becomes with TREX:

project :: Rec r -> Query (Rel r)

A projection takes a record whose labels correspond with the attributes of the
resulting relation. For example:
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cheap :: Query (Rel (model :: Expr String))

cheap =

do{ x <- boards

; restrict (x!price .<. constant 500)

; project (model = x!model)

}

Unfortunately, there is nothing that prevents us from writing an arbitrary expression
as the label value, instead of an attribute expression:

project (model = "wrong") :: Query (Rel (model :: String))

This is a point where we can no longer model the type system of relational queries in
Haskell. But fortunately, the problem is not so bad as it seems: sooner or later, the
query is used in a context that expects the relation to contain attribute expressions
and the type checker will complain at the use site of this expression.

Still, the implementation of project has to overcome some obstacles that are related
to the above problem. In contrast to the earlier definition that was passed an explicit
relation association, the project function now needs to reconstruct the association
Assoc from a TREX record: the labels and its values.

project :: ShowRecRow r => Rec r -> Query (Rel r)

project rec

= do{ let assoc = zip (labels rec) (values rec)

; assocF <- uniqueAssoc (map fst assoc)

; updatePrimQuery (\q ->

; Project

(assocFromScheme (scheme q) ++ compose assoc assocF) q)

; return (Rel (inverse assocF))

}

The function labels returns the labels of a TREX record and the function values
returns the values of the record. A problem with these functions is that it potentially
destroys referential transparency. TREX therefore defines a canonical ordering on
the labels. Another problem is that the polymorphic values have to be converted
into Strings. The TREX implementation contains the special ShowRecRow class
for this purpose:

class ShowRecRow r where

showRecRow :: Rec r -> [(String, ShowS)]

The function showRecRow, together with eqRecRow, are the only generic functions
on records. The class ShowRecRow is known to the type checker, which assures that
a row r that has a ShowRecRow r constraint is never extended with values that are
not in the Show class.
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It is easy now to define the labels and values functions:

labels, values :: ShowRecRow r => Rec r -> [String]

labels r = map fst (showRecRow r)

values r = map (\(l,v) -> v "") (showRecRow r)

Of course, since the values may be arbitrary expressions (as long as they are part
of the Show class), the resulting value strings may be illegal attribute names, but
either the result is never used (and thus never evaluated under a lazy evaluation
strategy) or the type checker will complain at the use site.

Type checked queries

Finally, the Haskell typechecker can check the consistency of our queries. For ex-
ample:

cheap :: Query (Rel (model :: Expr String))

cheap =

do{ x <- boards

; restrict (x!price .<. constant 500)

; project (model = x!model)

}

As it stands, the query is correct. But when we would use an illegal attribute, like
x!name, the type checker would complain that it can’t unify the types of x and
name:

Type checking

ERROR "SAMPLE.HS" (line 63): Type error in application

*** Expression : x ! name

*** Term : x

*** Type : Rel

(brand :: Expr String, model :: Expr String

, price :: Expr Int, freeride :: Expr Bool)

*** Does not match: Rel

(name :: a

, brand :: Expr String, model :: Expr String

, price :: Expr Int, freeride :: Expr Bool | b)

*** Because : rows are not compatible
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5.7 Exam marks

In this final section we explore how different combinator libraries can be combined
to program a simple web server. Any commercial exploitation of the web today uses
server-side scripts that connect to a database and deliver HTML pages composed
from dynamic data that is obtained from querying the database using information
in the client’s request. The following example is a is a simple server-side web script
that generates an HTML page for a database of exam marks and student names.

The database is accessed via simple web page with a text entry and a submit button.
The HTML contains a form element that submits the query to the getMark script
on the server:

<HTML>

<HEAD> <TITLE>Find my mark</TITLE> </HEAD>

<BODY>

<FORM ACTION="getMark.asp" METHOD="post">

My name is:

<INPUT TYPE=text NAME="name">

<INPUT TYPE="submit" VALUE="Show my mark">

</FORM>

</BODY>

</HTML>

5.7.1 Visual Basic

Even the simplest Visual Basic solution uses no less than four different languages.
Visual Basic for the business logic and glue, SQL for the query, and HTML with
ASP directives to generate the result page.

1. In ASP pages, scripts are separated from the rest of the document by <%
and %> tags. The prelude script declares all variables, construct the query
and retrieves the results from the students database. The ASP Request ob-
ject contains the information passed by the client to the server. The Form
collection contains all the form-variables passed using a POST query. Hence
Request.Form("name") returns the value that the user typed into the name
textfield of the above HTML page.

<%

Q = "SELECT student.name, student.mark"

Q = Q & " FROM Students AS student"

Q = Q & " WHERE "student.name = "

Q = Q & Request.Form("name")
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Set RS = CreateObject("ADO.Recordset")

RS.Open Q "CS101"

%>

2. The body contains the actual HTML that is returned to the client, with a table
containing the student’s name and mark. The <%= and %> tags enclose Visual
Basic expressions that are included in the output text. Thus the snippet:

<TR>

<TD><%=RS("name")%></TD>

<TD><%=RS("mark")%></TD>

</TR>

creates a table row that contains the name and the mark of the student who
made the request:

<HTML>

<HEAD> <TITLE>Marks</TITLE> </HEAD>

<BODY>

<TABLE BORDER="1">

<TR>

<TH>Name</TH>

<TH>Mark</TH>

<TR>

<%Do While Not RS.EOF%>

<TR>

<TD><%=RS("name")%></TD>

<TD><%=RS("mark")%></TD>

<TR>

<%RS.MoveNext%>

<%Loop%>

</TABLE>

</BODY>

</HTML>

3. The clean-up phase disconnects the databases and releases the recordset:

<%

RS.Close

set RS = Nothing

%>

5.7.2 Haskell

The Haskell version of our example web page is more coherent than the Visual Basic
version. Instead of four different languages, we need only need Haskell embedded
in a minimal ASP page (Meijer, 2000):



5.7 Exam marks 119

<%@ LANGUAGE=HaskellScript %>

<%

module Main where

import Asp

import HtmlWizard

main :: IO ()

main = wrapper $ \request ->

do{ name <- request # lookup "name"

; r <- runQuery (queryMark name) "CS101"

; return (markPage r)

}

The function queryMark is the analog of code in the prelude part of the Visual
Basic page, except here it is defined as a separate function parameterized on the
name of the student:

type Student = Row(name :: Expr String, mark :: Expr Char)

queryMark :: String -> Query (Rel Student)
queryMark n =
do{ student <- table students

; restrict (student!name .==. constant n)
; project ( name = student!name, mark = student!mark)
}

Function markPage makes a nice HTML page from the result of performing the
query:

markPage :: [Row Student] -> HTML
markPage xs =
page "Marks"

[ table ( headers = [ "Name", "Mark"]
, rows = [[x!.name, x!.mark] | x <- xs ] )

]
%>

The Haskell program is more concise and more modular than the Visual Basic
version. Functions queryMark and markPage can be tested separately, and per-
haps even more important, we can easily reuse the complete program to run in a
traditional CGI-based environment, by importing the CGI module instead of Asp
(in a language such as Standard ML we would have parameterized over the server
interface).
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5.8 Status and conclusions

The main lesson of this chapter is a new design principle for embedding domain
specific languages where embedded programs are compiled on-the-fly and executed
by submitting the target code to a server component for execution. We have shown
how to embed SQL into Haskell using this principle, but there are numerous other
possible application domains where embedded compilers are the implementation
technology of choice; many UNIX services are accessible using a completely text-
based protocol over sockets.

Our ultimate goal for a Domain Specific Embedded Compiler is to provide hard
compile-time guarantees for type safety and syntactic correctness of the generated
target program. Syntactic correctness of target programs can be garanteed by
hiding the construction of programs behind abstract data types. Phantom types,
polymorphic types whose type parameter is only used at compile-time but whose
values never carry any value of the parameter type, are a very elegant mechanism
to impose the Haskell type system on the embedded language.

Our final example shows how Domain Specific Embedded Compilers can make
server-side web scripting more productive. Because we can leverage on the abstrac-
tion mechanisms of Haskell (higher-order functions, module system), compared to
the VB solution, the Haskell program is of higher quality, and easier to change and
maintain.

Both the Haskell/DB and the DB/Direct packages are available on the web at
http://www.haskell.org/haskellDB.

http://www.haskell.org/haskellDB


Chapter 6

The Lazy Virtual Machine

6.1 Introduction

This chapter describes the Lazy Virtual Machine (lvm). Just like the JVM (Lind-
holm and Yellin, 1999), it defines a portable instruction set and file format. However,
it is specifically designed to execute languages with non-strict (or lazy) semantics.
Is there need for such system? After all, there are many compilers and interpreters
for lazy languages, for example, GHC developed at the Glasgow university, the
HUGS interpreter by Mark Jones, NHC from York university (UK), the HBC com-
piler developed at Chalmers, and Clean from Nijmegen. One may think that with
this diversity of systems there is no need anymore for other compilers, as most
implementation issues have been resolved.

However, the current compilers and interpreters have become large systems that
are hard to adapt – it has become difficult to experiment with new type systems,
language constructions, compiler transformations, profiling, or debugging tools. In
particular, the work on embedded languages as described in the previous two chap-
ters gave rise to experimentation with various extensions to the Haskell language.
Eventually, this lead to the development of the LVM:

• A small portable system that can be easily adapted to support different (ex-
perimental) languages and type systems.

• A simple and robust instruction set that is an easy target for compiler front-
ends.

• Efficient interpretation or JIT compilation is possible.

• A toolkit that translates an untyped , rich intermediate language (λcore) to lvm
instructions. Note that we use untyped expressions in order to experiment
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with extensions that are hard to type at this level, examples include type
indexed records (Shields, 2001) and dependent types (Augustsson, 1998).

The lvm is currently implemented on top of the OCaml runtime system (Leroy,
1990; Leroy, 1995). The system runs on many platforms, including Windows, vari-
ous Unix’s, MacOSX and 64-bit platforms like the DEC alpha. The lvm is used as
a backend for the experimental HX system (Shields and Peyton Jones, 2001) and
the Helium compiler – this compiler implements a very large subset of Haskell and
is currently used to teach first year students Haskell at Utrecht University.

The design and implementation of the lvm is as simple and modular as possible.
However, simplicity does not imply that it is a toy system; the implementation is full
fledged including support for exotic features as (asynchronous) exceptions, concur-
rency, a foreign function interface, generational garbage collection, and execution
traces.

This chapter will focus on the translation of the intermediate language to lvm
instructions, and on the operational semantics of the instructions themselves. Many
items of this chapter have been described before, and the main contribution of this
chapter is the design of a ‘real world’ instruction set, operational semantics, and
translation scheme as a whole. More specifically:

• We define a naive and straightforward translation scheme from the low-level
λlvm language to lvm instructions. Instead of defining many optimized trans-
lation schemes (Peyton Jones, 1986; Johnsson, 1984; Plasmeijer and van Eeke-
len, 1993), we define a small set of rewrite rules on instructions that achieve
the same effect. The correctness of the rewrite rules is relatively easy to prove
with the operational semantics. In contrast, an optimized translation scheme
is much harder to prove correct, as one has to show a correspondence between
the operational semantics of the λlvm language and the generated instructions.
Furthermore, the rewrite rules are most of the time even more effective than
optimized translation rules, as the rewrite rules sometimes find optimization
opportunities between instructions that are unrelated at the language level.

• The low-level λlvm language has an operational reading and directly reflects
the capabilities of the abstract machine. As such, we are able to reason
about denotationally equivalent expressions that have a different operational
behaviour.

• We define simple operational semantics for the instructions. A state is de-
termined by just three items: the current code, the heap, and the stack.
Besides being simpler than many other instruction sets (Peyton Jones, 1992;
Peyton Jones, 1986; Johnsson, 1984; Plasmeijer and van Eekelen, 1993), the
instructions also map directly onto C instructions, reducing the number of
bugs in an implementation and improving our understanding of the relation-
ship between abstract machine and concrete implementation.
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Figure 6.1: Compilation scheme

• As the instructions can be so closely related to an actual implementation,
we can reason about implementation techniques that are normally only de-
scribed informally, or explained via pictures. Examples are exception han-
dling, returning constructors in registers, and the reason why seq frames are
a necessary addition to the STG machine (Peyton Jones, 1992).

6.2 An overview

The compilation of a high level functional language to lvm instructions goes via a
number of intermediate languages: λcore, λlvm, and extended lvm instructions. The
process is sketched in figure 6.1. The actual compilation steps involved are:

• Translate the source language to λcore; an enriched lambda calculus that cor-
responds closely to the intermediate core language of the GHC compiler (Pey-
ton Jones, 1992; Peyton Jones and Santos, 1998).

• Normalise: translate the λcore language to the λlvm language, a more re-
stricted form of λcore that maps conveniently to lvm instructions.

• Compile: translate λlvm to lvm instructions that contain pseudo instructions.
These pseudo instructions are used in the next phases to calculate correct
stack and code offsets, but should be removed completely when generating
the final instruction stream.

• Resolve: use and remove pseudo instructions that resolve stack offsets of local
variables and arguments.
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• Rewrite: optimize the instruction stream using rewrite rules.

• Flatten: remove all structure from the instructions and generate a flat stream
of instructions that can efficiently be interpreted. This phase uses (and re-
moves) the last pseudo instructions by calculating code offsets for jumps.

• Execute: execute the instruction streams according to the state transition
rules.

The next sections describe all these steps in detail, but to give a feel of what each
of these steps do, we describe each step in the context of a small example. We start
with the following Haskell program:

main = const inc (λ x → x ) 42
where

inc x = x + 1
const x y = x

The front-end language, in this case Haskell, is translated into an enriched lambda
calculus, called λcore. In this example, only the Haskell specific where binding is
translated into a let binding but in general more transformation can be necessary;
pattern matching compilation for example. Here is the translated program in λcore:

main = let inc x = x + 1
const x y = x

in const inc (λ x → x ) 42

The Normalise step translates λcore to a restricted form, called λlvm. The λlvm

language is specifically designed to reflect the capabilities of the abstract machine
and maps easily onto lvm instructions. In our example, all functions are lifted to
top-level and binary application is translated into vector application:

id x = x
inc x = x + 1
const x y = x
main = const inc id 42

Finally, the program is in a form where it can be compiled to lvm instructions, here
are the instructions for the id function:

id 7→ instr(ArgChk(1);Atom(Param(x ); PushVar(x ); NewAp(1)); Enter)

However, the compiled program does not just consist of lvm instructions, but also
contains pseudo instructions like Param and Atom. These instructions are used
during the next phases to calculate stack and code offsets. The stack offsets are
determined in the resolve step:
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id 7→ instr(ArgChk(1);PushVar(0); NewAp(1);Slide(1, 1); Enter)

As we can see, the pseudo instructions Param and Atom have dissappeared, and
variable references are replaced by a stack offset. After the stack offsets have been
resolved, the instruction stream is rewritten according to simple rewrite rules. This
step is strictly used to optimize the instruction stream. It is interesting to see that
just few rewrite rules suffice to completely replace complicated translation schemes
(Peyton Jones and Wadler, 1993; Johnsson, 1984; Plasmeijer and van Eekelen,
1993). The optimized instruction stream is:

id 7→ instr(ArgChk(1);Enter)

The final step flattens the instruction stream by calculating code offsets and it
removes the remaining pseudo instructions. The complete code for our example
becomes1:

id 7→ instr(ArgChk(1);Enter)
inc 7→ instr(ArgChk(1);PushInt(1);PushVar(1); AddInt;Return)
const 7→ instr(ArgChk(2);PushVar(0);Slide(1, 2); Enter)
main 7→ instr(ArgChk(0);PushInt(42);PushCode(id);

PushCode(inc); EnterCode(const))

The program can now be executed by the abstract lvm machine. The state of the
machine is determined by the current code, the stack, and the heap. The initial
state of the machine is always the Enter instruction with the value main on the
stack. In our example, the initial heap hp just consists of the compiled functions.
Note that we write hp[p 7→ x ] if the heap hp contains a pointer p that points to
value x . Here is a complete execution trace of our example:

Code Stack Heap

=⇒ Enter [main] hp[main 7→ instr(...)]

=⇒ ArgChk(0); PushInt(42); ... [main] hp
=⇒ PushInt(42); PushCode(id); ... [] hp
=⇒ PushCode(id); PushCode(inc); ... [42] hp
=⇒ PushCode(inc); EnterCode(const) [id , 42] hp
=⇒ EnterCode(const) [inc, id , 42] hp[const 7→ instr(...)]
=⇒ PushVar(0); Slide(1, 2); ... [inc, id , 42] hp
=⇒ Slide(1, 2); Enter [inc, inc, id , 42] hp
=⇒ Enter [inc, 42] hp[inc 7→ instr(...)]
=⇒ ArgChk(1); PushInt(1); ... [inc, 42] hp
=⇒ PushInt(1); AddInt; ... [42] hp
=⇒ AddInt; Return [1, 42] hp
=⇒ Return [43] hp
=⇒ terminate with an integer [43] hp

1Actually, some functions are compiled into more efficient code, but for clarity we use the unop-
timized version.
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The next section describes the abstract machine and instructions in detail. Section
6.4 describes the λlvm and λcore languages. Section 6.5 describes the translation from
λlvm to lvm instructions, together with the rewrite rules. The chapter closes with
an assessment of a real implementation of the lvm and is followed by conclusions
and two appendices that describe the format of binary lvm files.
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6.3 The abstract machine

In this section we look at the operational semantics of the lvm instructions. The
semantics of the lvm is given by state transitions (Plotkin, 1981). The state of the
lvm is determined by a triple: the current instructions is, the stack st , and the
heap hp.

The instruction sequence is consists of instructions and arguments of instructions.
The empty sequence is written as [] and an initial instruction with arguments x and
y , is written as Instr(x , y) : is. Arguments and instructions have the same size and
the previous expression is equivalent to Instr : x : y : is.

The stack st is a sequence of values. The empty stack is written as [] and a non-
empty stack with an initial value x as x : st . The nth value on the stack is written
as st [n] where st [0] is the top of the stack. Besides values, the stack also contains a
chain of stack markers, each taking two stack slots. A marker is associated with the
value next on the stack. A marker together with its value is called a frame. There
exist three kinds of markers, update markers (upd), continuation markers (cont),
and catch markers (catch).

The heap hp is a map from pointers p to heap values. We write hp[p 7→ x ] if the
heap hp contains a pointer p that points to value x . The extension of the heap with
a fresh pointer p to value x is written as hp ◦ [p 7→ x ]. The update of an existing
pointer p with value x is written as hp • [p 7→ x ].

Heap values are tagged and have varying sizes. Although we give a short description,
the exact meaning of each heap value becomes clear during the description of the
instruction set. There exist six kinds of heap values:

instr(is) A sequence of instructions is.
ap(x1, ..., xn) An updateable application block.
nap(x1, ..., xn) A non-updateable application block.
cont(x1, ..., xn) A constructor with tag t and arguments x1 to xn .
invn An invalid block of size n.
raise(x ) An exception block, raises exception x when entered.

The initial heap contains all global values. All instruction arguments that refer to
a global value are fixed by the runtime loader to contain the proper heap pointer.
The special value inv will point to an invalid block of size 0: inv 7→ inv0

The initial state of the abstract machine consists of: the Enter instruction, a stack
that just contains (a pointer to) the function main, and the initial heap.

Since the state of the abstract machine is so simple, it maps directly onto current
hardware. Instruction streams can be modelled with a simple instruction pointer
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as instructions are never modified. The stack can be modelled with an array and
a stack pointer. Only the heap requires extensive runtime support, but that seems
unavoidable in any garbage collected language.

6.3.1 Basic instructions

We first introduce a minimal set of instructions that support a minimal subset of
λlvm. New instructions are introduced as the need arises by taking new language
features into account. We first treat a minimal useful subset of the λlvm language,
just consisting of top-level values with (partial) function applications.

All let-bound local variables and function parameters reside on the stack. Three
instructions manipulate the stack: PushVar pushes a copy of a value that resides
on the stack (i.e. a local variable or parameter), PushCode pushes a pointer to a
top-level value, and Slide slides out unused values.

Code Stack Heap

PushCode(f ) : is st hp

=⇒ is f : st hp

PushVar(ofs) : is st hp
=⇒ is st [ofs] : st hp

Slide(n,m) : is x1 : ... : xn : ... : xn+m : st hp
=⇒ is x1 : ... : xn : st hp

The parameters of a function are pushed on the stack in a right-to-left order. This is
dual to most imperative languages that use left-to-right order, like Java and ML. The
most notable exception is the C language that uses a right-to-left calling convention
in order to support functions with a variable number of arguments. However, for
any higher-order language that allows partial applications, it is necessary to use
this calling convention. The following example illustrates why partial applications
force a right-to-left order.

id x = x
const x y = x
apply f x = f x
main = apply (const id) const

With a right-to-left order, everything works well – inside apply , the argument x is
pushed (which is const) and f is entered. This is actually the expression const id
that pushes id and enters const with a proper stack: id : const : [], where param-
eter x is id and parameter y is const . If a left-to-right order is used, the partial
application const id somehow has to insert its argument between arguments already
residing on the stack. This can not be done without whole-program analysis and
might even be impossible to do in general.
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Partial applications combined with polymorphism also lead to the famous argument
check . In a higher-order, polymorphic language it is not always possible to deter-
mine at a call site if a function is partially applied or not. In the previous example,
this is the case for the parameter f in the apply function. For this reason, each
function checks the number of arguments itself with the ArgChk instruction, which
is always the first instruction of a top-level value. If there are enough arguments on
the stack, execution continues. If there are not enough arguments on the stack, we
immediately return with a functional value as a result.

Code Stack Heap

n ≤ m ArgChk(n) : is f : x1 : ... : xm : st hp

=⇒ is x1 : ... : xm : st hp

(1) n > m ArgChk(n) : is f : x1 : ... : xm : [] hp
=⇒ [] f : x1 : ... : xm : [] hp

(1) termination with a functional value.

Due to polymorphism, it is not always possible to determine at a call site which
particular function is called. Therefore, the Enter instruction is able to enter any
kind of value that resides on top of the stack. Right now, we only have instruction
values but we will later add more values that can be entered.

Code Stack Heap

Enter : is f : st hp[f 7→ instr(isf )]

=⇒ isf f : st hp

Note that we enter a function instead of calling it. Every function application in
λlvm is a tail call and, since we don’t need to return, there is no need to push a return
address either. It is necessary however to remove any local variables and parameters
of the calling function that are still on the stack with the Slide instruction. Besides
keeping the stack from growing, it is essential for our definition of the ArgChk
instruction – if the local variables or parameters are not squeezed out, they are
misinterpreted by the argument check as if they are extra parameters! This subtle
requirement was first observed by Mountjoy in the context of the STG machine
(Mountjoy, 1998).

Here are some examples of functions that can be compiled with the current instruc-
tion set:

id x = x
swap x f = f x
main = swap id id

The final value of this program is the functional value id . With the compilation
scheme from section 6.5 we get the following initial heap:

id 7→ instr(ArgChk(1);Enter)
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swap 7→ instr(ArgChk(2);PushVar(0);PushVar(2);Slide(2, 2); Enter)
main 7→ instr(ArgChk(0);PushCode(id); PushCode(id);

PushCode(swap); Enter)

In the above program, it is clear that the swap function is called with sufficient
arguments. This special case can be optimized with the EnterCode instruction. If
a known function is called with sufficient arguments, the argument check of the
called function can be skipped. This is called the ‘direct entry point’ convention in
the STG machine (Peyton Jones, 1992). The EnterCode instruction performs this
optimization and enters a known function with sufficient arguments.

Code Stack Heap

EnterCode(f ) : is st hp[f 7→ instr(ArgChk(n) : isf )]

=⇒ isf st hp

This instruction is essentially what a C compiler would use to implement tail calls:
a jump! In contrast, the Enter instruction performs an indirect jump based on the
kind of value that is entered – object oriented people would probably call this a
‘virtual method tail-call’.

6.3.2 Local definitions

In this section we extend the instruction set to deal with local let and letrec
bindings. A let binding is non-strict and delays evaluation of its right-hand side.
The NewNap instruction allocates a (non-updateable) application node in the heap
that contains the function to be called and its arguments.

Code Stack Heap

NewNap(n) : is x1 : ... : xn : st hp

=⇒ is p : st hp ◦ [p 7→ nap(x1, ..., xn)]

Now that we have introduced a new heap value, we need to extend the Enter in-
struction to deal with this new value. When the Enter instruction sees a (non-
updateable) application node, the values are moved to the stack, and the top of the
stack is entered again.

Code Stack Heap

Enter : is p : st hp[p 7→ nap(x1, ..., xn)]

=⇒ Enter : is x1 : ... : xn : st hp
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6.3.3 Sharing

Although the NewNap instruction delays the evaluation of an expression, it is not
lazy since it doesn’t share the result. Take for example the following program:

main = let x = nfib 10 in x + x

The expression nfib 10 is calculated twice if the let binding uses the NewNap in-
struction. To share the computation, we use graph reduction instead of simple
tree reduction. The NewAp instruction allocates an updateable application node
in the heap. When this node is evaluated it is updated with its evaluated value,
thus sharing the result of the computation. The Enter instruction puts a special
update marker on the stack as a reminder that the node has to be updated with its
evaluated value. The ArgChk instruction looks for these update frames – if there
are insufficient arguments, the updateable application node is overwritten with a
non-updateable one. At the moment, the only weak-head-normal-form values are
functional values, but in the following sections we will see how updateable applica-
tion nodes can also be overwritten by integers for example.

Code Stack Heap

NewAp(n) : is x1 : ... : xn : st hp

=⇒ is p : st hp ◦ [p 7→ ap(x1, ..., xn)]

Enter : is p : st hp[p 7→ ap(x1, ..., xn)]
=⇒ Enter : is x1 : ... : xn :upd : p : st hp

n > m ArgChk(n) : is f : x1 : ... : xm :upd : p : st hp
=⇒ ArgChk(n) : is f : x1 : ... : xm : st hp • [p 7→ nap(f , x1, ..., xm)]

The argument check instruction suddenly looks expensive: previously, the number
of arguments on the stack was equal to the depth of the stack, but now it seems
the argument check has to search the stack for an update marker to determine
the number of arguments! Fortunately, we can use some conventional compiler
technology to overcome this inefficiency.

An implementation uses a frame pointer fp that points to the top frame on the
stack. Now we also see why a marker takes up two stack slots: one slot is the real
marker while the second is a link back to the previous stack frame. When a frame
is pushed, the current frame pointer is saved in the marker and the frame pointer is
updated to point to the new top frame. When a frame is popped, the frame pointer
is updated with the back-link. The argument check can now substract the frame
pointer from the stack pointer to obtain the number of arguments on the stack.

Not only local values should be shared but top-level values that take no arguments
should be shared too. These values are called constant applicative forms or caf’s.
The initial heap contains an ap node for each caf. In the previous example, main
takes no arguments and its initial heap nodes are:
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main 7→ ap(main ′)
main ′ 7→ instr(ArgChk(0); ...)

Note that we can’t generate an EnterCode instruction for function calls with zero
arguments: their values point to either an ap node, or to any other value with
which they are updated! We can certainly not jump to their instructions directly.

6.3.4 Recursive values

Recursive values are constructed in two steps: dummy values are allocated first,
and later initialized. This allows the values to refer to each other. The AllocAp
instruction allocates an application node without initializing its fields. Later the
Pack(N)Ap instruction initializes the fields.

Code Stack Heap

AllocAp(n) : is st hp

=⇒ is p : st hp ◦ [p 7→ invn ]

p = st [ofs − n] PackAp(ofs,n) : is x1 : ... : xn : st hp
=⇒ is st hp • [p 7→ ap(x1, ..., xn)]

p = st [ofs − n] PackNap(ofs,n) : is x1 : ... : xn : st hp
=⇒ is st hp • [p 7→ nap(x1, ..., xn)]

6.3.5 Algebraic data types

The lvm supports open ended algebraic data types. Constructor blocks are allo-
cated just like application blocks. The AllocCon and PackCon are used to construct
recursive constructor definitions.

Code Stack Heap

NewCon(t ,n) : is x1 : ... : xn : st hp

=⇒ is p : st hp ◦ [p 7→ cont(x1, ..., xn)]

AllocCon(t ,n) : is st hp
=⇒ is p : st hp ◦ [p 7→ cont(...)]

p = st [ofs − n] PackCon(ofs,n) : is x1 : ... : xn : st hp[p 7→ cont(...)]
=⇒ is st hp • [p 7→ cont(x1, ..., xn)]

When the Enter instruction sees a constructor value, it behaves like the Return
instruction:
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Code Stack Heap

Enter : is p : st hp[p 7→ cont(x1, ..., xn)]

=⇒ Return : is p : st hp

Return : is p :upd : u : st hp[p 7→ cont(x1, ..., xn)]
=⇒ Return : is p : st hp • [u 7→ cont(x1, ..., xn)]

(1) Return : is p : [] hp
=⇒ [] p : [] hp

(1) Termination with a constructor value.

The Return instruction is used when the final value is known to be a constructor.
Just like the ArgChk instruction, the Return instruction looks for frames on the stack
where an update frame causes the value to be updated with the constructor value.
When the stack is empty, execution stops with the constructor value as the result.

Note that we have two instructions that look at the stack configuration, ArgChk
and Return, and one instruction that looks at the type of an heap value, Enter.

6.3.6 Strict evaluation

Before describing how values of algebraic data types are matched, we first look at
their evaluation. The let! binding strictly evaluates its right-hand side before
evaluating the body. A continuation marker is pushed on the stack before the
evaluation of the right-hand side. When the right-hand side is evaluated, execution
resumes at the instructions in the continuation frame.

Code Stack Heap

PushCont(n) : is st hp

=⇒ is cont : drop n is : st hp

Return : is p : cont : is ′ : st hp
=⇒ is ′ p : st hp

n > m ArgChk(n) : is f : x1 : ... : xm : cont : is ′ : st hp
=⇒ is ′ p : st hp ◦ [p 7→ nap(f , x1, ..., xm)]

Continuation frames resemble conventional calling conventions closely – a C com-
piler pushes a return address before calling a function. The STG machine (Pey-
ton Jones, 1992) also uses plain return adresses instead of continuation frames. This
seems impossible at first sight – The argument check builds a partial application
block if there are insufficient arguments, which is checked by looking at the top
frame. If only a plain return address is pushed instead of a frame, the number
of arguments can’t be determined as the return address is misinterpreted as just
another argument! However, the STG machine only evaluates expressions that are
scrutinized by a case expression. These expressions can never have a functional
type, and the STG machine therefore never reaches this machine configuration –
quite a subtly dependency on the host language. Indeed, the STG machine has spe-
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cial seq frames to support the polymorphic seq function of Haskell that can take
functional values as its argument. The seq frames are treated like our continuation
frames. As we always use explicit continuation frames, the seq function can be
expressed directly in the λlvm language: seq x y = let! z = x in y

6.3.7 Matching

Once a value is evaluated to weak head normal form, it can be matched. The
MatchCon instruction matches on algebraic datatypes.

Code Stack Heap

∃i . t = ti MatchCon(n, o, t1, o1, ..., tn , on) : is p : st hp[p 7→ cont(x1, ..., xm)]

=⇒ drop oi is x1 : ... : xm : st hp

∀i . t 6= ti MatchCon(n, o, t1, o1, ..., tn , on) : is p : st hp[p 7→ cont(x1, ..., xm)]
=⇒ drop o is p : st hp

The MatchCon instruction pops the argument p when a constructor matches. This
opens up the possibility of an important optimization. Many constructors are al-
located in the heap and immediately deconstructed with a match. The ReturnCon
instruction tries to avoid many of these allocations. ReturnCon behaves denotation-
ally exactly like a NewCon followed by a Return:

ReturnCon(t ,n) ⇒ NewCon(t ,n); Return

However, there exist a more efficient implementation that sometimes avoids an
expensive heap allocation. This is called the ‘return in registers’ convention in the
STG machine (Peyton Jones, 1992).

Code Stack Heap

(1) ReturnCon(t ,n) : is x1 : ... : xn : cont : is ′ : st hp

=⇒ drop oi is ′′ x1 : ... : xn : st hp

ReturnCon(t ,n) : is st hp
=⇒ NewCon(t ,n) :Return : is x1 : ... : xn : st hp

(1) is ′ = MatchCon(n, o, t1, o1, ..., tn , on) : is ′′ ∧ ∃ i . t = ti

In the special but common case that a constructor returns immediately into a Match-
Con instruction, the ReturnCon instruction avoids the allocation of the constructor
in the heap. In all other cases, it behaves like a NewCon/Return pair. This hap-
pens for example when there is an update frame before the continuation or when
the constructor is not immediately matched after being evaluated. The ‘return in
register’ convention is no longer used in GHC as it lead to too much complexity in
the generated code. For the lvm this doesn’t seem the case and the lvm interpreter
uses this optimization on every constructor that is returned.
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6.3.8 Synchronous exceptions

Any robust programming language needs to handle exceptional situations. The lvm
instruction set supports exception handling at a fundamental level for two reasons.
The first reason is efficiency – since exceptional situations are exceptional, normal
execution shouldn’t be penalized. Furthermore, lvm instructions, like division, can
raise exceptions themselves and thus, the lvm needs a standard mechanism for
raising exceptions.

The Catch instruction installs an exception handler. The instruction pushes a catch
frame on the stack. When an exception is raised, execution is continued at the
exception handler. When no exception is raised, the catch frame is simply ignored
by other instructions that look for stack frames, i.e. ArgChk and Return.

Code Stack Heap

Catch : is h : st hp

=⇒ is catch : h : st hp

n > m ArgChk(n) : is x1 : ... : xm : catch : h : st hp
=⇒ ArgChk(n) : is x1 : ... : xm : st hp

Return : is x : catch : h : st hp
=⇒ Return : is x : st hp

Note that a catch frame should immediately follow another frame or the end of the
stack. If this is not the case, the Return instruction could end up in an undefined
configuration. In practice, an implementation can actually deal quite easily with
catch frames that don’t follow another frame directly. When the Return instruction
pops the catch frame, it also pops any values up to the next frame on the stack.

An exception is raised explicitly with the Raise instruction. It unwinds the stack
until it finds a catch frame. Execution is continued at the exception handler with
the exception as its argument.

Code Stack Heap

Raise : is x : catch : h : st hp

=⇒ Enter : is h : x : st hp

(1) Raise : is x : [] hp
=⇒ [] x : [] hp

Raise : is x :upd : p : st hp
=⇒ Raise : is x : st hp • [p 7→ raise(x )]

Raise : is x : cont : is ′ : st hp
=⇒ Raise : is x : st hp

Raise : is x : y : st hp
=⇒ Raise : is x : st hp

(1) Termination with an exceptional value.
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Again, we assume that there is another frame immediately following the Catch
frame. Otherwise, the Raise instruction has to pop any values following the Catch
frame to prevent that they are treated as extra arguments by the Enter instruction.
Note that having explicit continuation frames helps out in practice to find more
information about the exception at runtime. In our lvm implementation we have
special functions that inspect the stack when an exception occurs – the update
and continuation markers give the execution trace that lead to the exception. This
proved especially useful in the Helium compiler that is used mainly for educational
purposes where good error messages are highly important.

When the Raise instruction encounters an update frame it updates the value with
a raise block – indeed, if a value raises an exception once, it will always raise that
exception when evaluated, and should be updated with that exception. When a
raise block is entered, it raises the exception again.

Code Stack Heap

Enter : is p : st hp[p 7→ raise(x )]

=⇒ Raise : is x : st hp

An example of an exceptional situation is a stack overflow. In the lvm the ArgChk
instruction conservatively checks for thousand available stack slots. If there are
fewer, a stack overflow exception is raised.

Code Stack Heap

free(st) < 1000 ArgChk(n) : is st hp

=⇒ Raise : is p : st hp ◦ [p 7→ stackoverflow ]

The stackoverflow heap block is just a constructor of the predefined Exception data
type and contains for example the source and line number of the function where
the stack overflowed. Together with the execution trace, this normally pins down
an unbounded recursion.

6.3.9 Blackholing

Certain forms of infinite loops can be detected at runtime. In particular, if we enter
an updateable application node, we should not re-enter that node again during
the update. To prevent this kind of infinite loop, we can overwrite an application
node with a raise node when we enter it. When the value is finally updated, the
raise node is overwritten again with the computed value. Whenever the value is
re-entered during the update, a black hole exception is raised automatically. Here
is the refined Enter rule for application nodes.
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Code Stack Heap

Enter : is p : st hp[p 7→ ap(x1, ..., xn)]

=⇒ Enter : is x1 : ... : xn :upd : p : st hp • [p 7→ raise(blackhole)]

However, it is fairly expensive to overwrite all application nodes whenever they are
entered. A more efficient technique is to delay the overwrite, called lazy blackholing.
With this technique, execution is sometimes stopped to do lazy blackholing, where
every value in an update frame on the stack is overwritten with a blackhole. Since
this kind of infinite loop always grows the stack, a good moment to do this is when
the stack needs to be extended, but it can also be done during garbage collection
or when a thread yields. We can describe this technique formally by a generic rule
that allows us to execute a Blackhole instruction at any time. This instruction saves
the current stack pointer and then walks the stack, updating any update frames
with a blackhole.

Code Stack Heap

is st hp

=⇒ Blackhole(st) : is st hp

Blackhole(st) : is [] hp
=⇒ is st hp

Blackhole(st ′) : is upd : p : st hp
=⇒ Blackhole(st ′) : is st hp • [p 7→ raise(blackhole)]

Blackhole(st ′) : is : st hp
=⇒ Blackhole(st ′) : is st hp

6.3.10 Garbage collection

Another generic rule that can be applied at any time is the garbage collection rule.
This rule models a garbage collector as part of the abstract machine.

Code Stack Heap

(1) is st hp

=⇒ is st hp′

(1) Where hp′ is constrained to the reachable pointers:

hp′ = [ p 7→ x | p 7→ x ∈ hp ∧ p ∈ reachable(st , hp) ]

The reachable(st,hp) predicate returns all pointers that can be reached from the
stack st in the heap hp. Note that the reachable set includes all pointers can
potentially be used later, and it is a superset of the live pointers that encompasses
the set the pointers that are actually used later on. As such it is a conservative
estimate of liveness.

However, we should always try to keep the reachable set as small as possible to
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avoid space leaks. For one thing, we can see that it is actually a good strategy to
perform lazy blackholing just before a garbage collection as it makes the reachable
set potentially smaller. This was first observed by Jones (Jones, 1994). Other
techniques are stack stubbing where we overwrite values in the stack with dummy
values if we can statically determine that the values are never referenced again.
This happens often in alternatives of a match statement:

Code Stack Heap

Stub(n) : is x0 : ... : xn−1 : st hp

=⇒ is x0 : ... : inv : st hp

The garbage collection rule is also essential to prove the correctness of the rewrite
rules presented in the next section. As an illustrative example, we show that the
important rule for avoiding allocation of application nodes is correct:

NewAp(n); Slide(1,m); Enter ⇒ Slide(n,m); Enter

We can prove that this transformation is correct by showing that it leads to the
same machine configuration at runtime. Here, we need the garbage collection rule
to discard the intermediate application node.

Code Stack Heap

NewAp(n); Slide(1,m);Enter x1 : ... : xn : ... : xn+m : st hp

=⇒ Slide(1,m); Enter p : ... : xn+m : st hp ◦ [p 7→ ap(x1, ..., xn)]
=⇒ Enter p : st hp ◦ [p 7→ ap(x1, ..., xn)]
=⇒ Enter x1 : ... : xn : st hp ◦ [p 7→ ap(x1, ..., xn)]

{garbage collection}
=⇒ Enter x1 : ... : xn : st hp
⇐= Slide(n,m); Enter x1 : ... : xn : ... : xn+m : st hp
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6.4 The LVM language

Now that we have described the instruction set in detail, it is time to look more
closely at how we can map a functional language onto these instruction. We define
a low level language called λlvm, that closely relates to the lvm instructions. The
abstract syntax for λlvm is given in figure 6.3.10. Allthough the form of expressions
is restrictive, any enriched lambda calculus expression can be translated into a λlvm

expression.

Just like the STG language (Peyton Jones, 1992), we attach an operational reading
to λlvm: let and letrec bind expressions to variables, let! evaluates expressions
to weak head normal form and match distinguishes evaluated values.

The λlvm language does not contain lambda-expressions or local function definitions
– we assume that all functions have been lambda-lifted to toplevel (Johnsson, 1985).
This means that λlvm functions contain no free variables and a program consists
just of a set of combinator definitions.

The let! expression is a strict version of let. It evaluates its right hand side to
weak-head-normal-form before evaluating the body of the expression. The usual
case expression of lazy languages is easily translated into a let! and match pair:

case e of alts
⇒

let! x = e in match x with alts

The let! binding is also used to translate strict languages to λlvm. The letrec
binding of O’Caml and ML can only be used with recursive functions, which are
lifted to toplevel, and present no problem.

Primitive expressions

Primitive expressions are functions that are not expressed in λlvm itself. They may
consist of instructions, like integer addition, statically linked functionality like the
sin function, or user imported foreign functions. All these variants are accomodated
with the prim expression. This has proved very convenient in the implementation
of the compiler, as it can treat these expressions uniformly up to code generation
time.

Separate primitive declarations describe the different kinds. The syntax is exactly
the same as foreign import declarations – here are some examples:

foreign instruction "AddInt" addInt :: Int -> Int -> Int

foreign import "sin" sin :: Double -> Double
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Program program → {top {var}∗ = expr;}∗
Expression expr → let! var = expr in expr

| match var with { {pat -> expr;}+ }

| primn {atom}n

| let in expr
| atom

Let let → letrec { {var = atom;}+ }

| let var = atom

Atomic atom → let in atom
| id {atom}∗
| conn

t {atom}n

| literal

Pattern pat → var
| conn

t {var}n

| literal

Literal literal → int | float | bytes
Identifier id → var | top
Variable var → local identifier (x)

Global top → top level identifier (f)
Constructor conn

t → constructor with tag t and arity n
Primitive primn → instruction or foreign function of arity n
Integer int → integer (i)
Float float → floating point number
Bytes bytes → a sequence of bytes (packed string)

Notation {p}∗ → zero or more p

{p}+ → one or more p
{p}n → exactly n occurrences of p

Figure 6.2: Abstract syntax of the λlvm language
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Note that instructions are also described as foreign functions – they just have an
extremely efficient calling convention and encoding!

Atomic expressions

The distinction between atomic and normal expressions is more than a syntactic
convenience. During execution, the instructions that are generated for an atomic
expression will always succeed and terminate2. In contrast, a let!, match or prim
expression can raise an exception or go into an infinite loop. This is the reason why
let expressions can only contain atomic expressions on their right-hand side. In
contrast with the STG language, let expressions can contain nested let expressions
on their right-hand side (as they are also atomic).

The STG paper (Peyton Jones, 1992) recommends special compilation techniques
to avoid the creation of nested let bindings. With the lvm language, this can be
avoided as nested let bindings can be compiled directly. Consider the following
Haskell expression:

f = let x = [1, 2] in e

This is translated to:

f = let x = (let y = Cons 2 Nil in Cons 1 y) in e

The STG machine can not deal with nested let bindings and will implicitly lift it
to top-level, as in:

fy = Cons 2 Nil
f = let x = Cons 1 fy in e

However, it is hard to garbage collect a top level binding without arguments and
it is not recommended to lift bindings to top level in general (Peyton Jones et al.,
1996). The translation recommended in the STG paper therefore, is to float the
let binding one level up:

f = let y = Cons 2 Nil in let x = Cons 1 y in e

Both programs are denotationally equivalent but operationally different. Under the
compilation scheme presented in the next section, the first program slides out the
y value from the stack and therefore uses slightly less stack space with slightly
more work. In contrast to the STG machine, both programs will construct the
Cons 2 Nil node, even when x is never demanded. Since everything in the lvm
language is explicit and has a formal operational reading, we are able to explicitly
express all three variants and reason about their operational behaviour.

2Modulo fatal situations like heap exhaustion.
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Strictness and speculative evaluation

In general, we can not float other constructs like let! or match since they might fail
or perform an unbounded amount of computation. It is possible when a strictness
analyser determines that the value is demanded later, but in that case it is easier
to transform the let binding into a let! binding, which can have full expressions
at its right-hand side.

If the strictness analyser can not prove that a value is demanded but if we are
reasonably sure that the expression uses a bounded amount of computation, we
could speculatively evaluate the expression. The value is computed eagerly but if it
fails or uses too much resources, in terms of time or space, it is suspended. Currently,
this is still an area of research (Peyton Jones and Ennals, 2003) but we plan to
add the atomic let$ construct for speculative bindings. Again, the operational
semantics described later in this chapter allows us to reason very specifically about
the operational behaviour of eager evaluation.

6.4.1 Translating λcore to λlvm

It is convenient to use an intermediate language that is less restrictive than λlvm in a
compiler. We define λcore as an enriched lambda calculus with lambda expressions,
free variables, no distinction between atomic expresions and normal expression,
binary application, and unsaturated constructors and primitives.

The λcore language can be mapped to the λlvm by applying the following transfor-
mations:

• Replace binary application with vector application.

(... ((id e1) e2) ...) en ⇒ id e1 ... en

• Saturate all applications to constructors and primitives.

conn
t e1 ... em | (m < n) ⇒ \x(m+1) ... xn. conn

t e1 ... em x(m+1) ... xn

• Introduce a let expression for all anonymous lambda expressions.

\x1 ... xn . e ⇒ let x x1 ... xn = e in x

• Introduce a let expression for all non-atomic arguments.

e (match x with alts) ⇒ let y = (match x with alts) in e y
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• Introduce a let expression for all applications to terms that are not variables
or constructors:

e x1 ... xn ⇒ let x = e in x x1 ... xn

• Pass all free variables in non-atomic expressions as explicit arguments. This
corresponds essentially to lambda-lifting (Johnsson, 1985; Peyton Jones and
Lester, 1991; Hughes, 1984), and leads to an environment-less machine.

f x = let y = (let! z = 1/x in z ) in y
⇒

f x = let y x = (let! z = 1/x in z ) in y x

• Lift all local functions and non-atomic right-hand sides of let bindings to
top-level.

f x = let y x = (let! z = 1/x in z ) in y x
⇒

fy x = let! z = 1/x in z
f x = fy x
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6.5 Compilation scheme

The compilation scheme translates λlvm into lvm instructions. In order to make
the translation as clear as possible, the compilation scheme uses a few pseudo in-
structions to delay offset computations. This allows us to move the complexity of
computing stack offsets of local variables to a separate resolve phase. The pseudo
instructions are:

• Param(x ) declares a local variable x that resides on the stack as an argument.
This instruction allows the resolve phase to calculate the correct stack offset
for x .

• Var(x ) declares a local variable x that is bound to the current top of the stack.

• Eval(is). After executing instructions is, execution is continued at the next
instruction. It is translated during code generation into (PushCont(ofs); is).
Eval is introduced to delay the computation of the code offset ofs which is
only known at code generation time.

• Atom(is). This instruction is used for translating expressions that result in a
single value on the stack. During resolve it is translated into the instructions
(is; Slide(1,m)) where m intermediate values are slided out of the stack. Atom
is used to delay the computation of the correct value for m which is only known
during the resolve phase.

• Init(is). This instruction is used for translating the initialization of letrec
bindings. The instructions is don’t compute any value on the stack. During
resolve it is translated into the instructions (is; Slide(0,m)) where m interme-
diate values are slided out of the stack.

6.5.1 Program

A lvm program is translated with the P scheme.

P[[ f1 args1 = e1; ...; fn argsn = en; ]] ⇒
let index (fi) = i
let arity(fi) = |argsi |
let code(fi) = T [[ argsi = ei ]]

The P scheme translates a program into three functions, code gives the code for a
function, arity returns the number of parameters and index returns the index used
in binary lvm files.

Each top level value is translated with the T scheme. The T scheme emits the
pseudo instruction Param for each argument in order to resolve the stack offsets of
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each argument during the resolve phase. As signified by the Atom instruction, a
single value is computed on top of the stack that is subsequently entered by the
Enter instruction.

T [[ x1 ... xn = e ]] ⇒
ArgChk(n); Atom(Param(xn); ...; Param(x1); E [[ e ]]); Enter

Each top level value first checks the number of arguments with an argument check
instruction. Quite often however, the compiler can determine if there are sufficient
arguments when the function is called. The rewrite rules that are given later in
this chapter will emit an EnterCode instruction if a function call is saturated. This
instruction enters a function just beyond the ArgChk instruction since we know that
the check will succeed. For this reason, every supercombinator always has to start
with the ArgChk instruction or otherwise the EnterCode instruction will enter the
function at the wrong location!

6.5.2 Expressions

Expressions are translated with the E scheme.

E [[ let in e ]] ⇒
L[[ let ]]; E [[ e ]]

E [[ let! x = e in e ′ ]] ⇒
Eval(Atom(E [[ e ]]); Enter); Var(x ); E [[ e ′ ]]

E [[ match x with { alts } ]]
PushVar(x ); M[[ alts ]]

E [[ primn a1 ... an ]] ⇒
A[[ an ]]; ...; A[[ a1 ]]; Call(prim,n)

E [[ a ]] ⇒
A[[ a ]]

Let bindings are translated with the L scheme. A strict binding first evaluates its
right hand side, leaving the result on the stack and continues with the evaluation
of the body. A match statement pushes the value to be matched and uses the
M scheme to translate the alternatives. A primitive call is handled by the Call
instruction. Atomic expressions are translated with the A scheme.

6.5.3 Atomic expressions

The A scheme wraps the instructions in an Atom pseudo instruction to slide out
any intermediate local variables arising from nested let expressions.
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A[[ a ]] ⇒
Atom(A′[[ a ]])

The A′ scheme translates atomic expressions without entering them, effectively
delaying their computation.

A′[[ let in a ]] ⇒
L[[ let ]];A′[[ a ]];

A′[[ x a1 ... an ]] ⇒
A[[ an ]]; . . . ; A[[ a1 ]]; PushVar(x ); NewAp(n + 1);

A′[[ f a1 ... an ]] ⇒
A[[ an ]]; . . . ; A[[ a1 ]]; PushCode(f ); NewAp(n + 1);

A′[[ conn
t a1 ... an ]] ⇒

A[[ an ]]; . . . ; A[[ a1 ]]; NewCon(t ,n);
A′[[ i ]] ⇒

PushInt(i);

Note that this simple translation scheme is quite inefficient – it allocates an appli-
cation node for every function call. Take for example the following expression:

swap f x y = f y x

Using the simple translation scheme, swap is translated into:

ArgChk(3);Atom(
Param(y); Param(x ); Param(f );
Atom(PushVar(x ); NewAp(1));
Atom(PushVar(y); NewAp(1));
Atom(PushVar(f ); NewAp(1));
NewAp(3))

Enter

After resolve, this instruction stream becomes:

ArgChk(3);
PushVar(1); NewAp(1);Slide(1, 0);
PushVar(3); NewAp(1);Slide(1, 0);
PushVar(2); NewAp(1);Slide(1, 0);
NewAp(3);Slide(1, 3);
Enter

Instead of just pushing the arguments on the stack and entering the function f ,
the code first builds an application node with application nodes for each variable,
which is subsequently entered, unpacked and, only than, the function f is entered!
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Fortunately, we can use some simple rewrite rules on the instruction stream to
remove these inefficiencies. Using the rewrite rules from section 6.5.8, the instruction
stream becomes much more efficient:

ArgChk(3);PushVar(1); PushVar(3); PushVar(2);Slide(3, 3); Enter

We made the compilation scheme as simple and straightforward as possible and let
the compiler do its optimizations on the lvm language and the instruction streams.
It is quite easy to prove that transformations on the lvm language and instruction
stream are correct. For example, the above transformation is simply a matter of ap-
plying the operational semantics described in section 6.3. In contrast, proving that
the compilation scheme is correct is much harder – we have to show a correspon-
dence between the operational semantics of the lvm language and the translated
instructions. By making the compilation scheme naive, we hope that it becomes at
least ‘obviously’ correct.

6.5.4 Let expressions

L[[ let x = a ]] ⇒
A[[ a ]]; Var(x )

L[[ letrec { x1 = a1; ...; xn = an ; } ]] ⇒
Atom(U [[ a1 ]]); Var(x1); ...; Atom(U [[ an ]]); Var(xn);
Init(I[[ x1 = a1 ]]); ...; Init(I[[ xn = an ]])

The rule for letrec first allocates uninitialized values for its bindings using the
U scheme and binds the stack slots to its local variables using the Var pseudo
instruction. Later, the values are initialized using the I scheme. The rule for let
is not concerned with recursive bindings and immediately allocates a value.

The U scheme allocates an uninitialized application- or constructor node that later
initialized. This allows the different bindings in a letrec expression to refer to each
other.

U [[ let in a ]] ⇒
U [[ a ]]

U [[ id a1 ... an ]] ⇒
AllocAp(n + 1);

U [[ conn
t a1 ... an ]] ⇒

AllocCon(t ,n);

Later, the I scheme is used to initialize each node with the proper values.

I[[ x = let in a ]] ⇒
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L[[ let ]]; I[[ x = a ]]
I[[ x = x ′ a1 ... an ]] ⇒

A[[ an ]]; . . . ; A[[ a1 ]]; PushVar(x ′); PackAp(x ,n + 1);
I[[ x = f a1 ... an ]] ⇒

A[[ an ]]; . . . ; A[[ a1 ]]; PushCode(f ); PackAp(x ,n + 1);
I[[ x = conn

t a1 ... an ]] ⇒
A[[ an ]]; . . . ; A[[ a1 ]]; PackCon(x ,n);

6.5.5 Matching

A match is translated with the M scheme.

M[[ pat1 -> e1; ...; patn -> en ]] | ∃ i . pati is a constructor pattern ⇒
MatchCon(P[[ pat1 -> e1 ]], ..., P[[ patn -> en ]])

M[[ pat1 -> e1; ...; patn -> en ]] | ∃ i . pati is an integer pattern ⇒
MatchInt(P[[ pat1 -> e1 ]], ..., P[[ patn -> en ]])

The patterns result in a list of tuples, the first element containing the value to be
matched and the second the instructions to be executed. The code generation phase
will arrange the code correctly.

Each pattern is compiled with the P scheme.

P[[ conn
t x1 ... xn -> e ]] ⇒
〈t , Atom(Param(xn); ...; Param(x1); E [[ e ]])〉

P[[ i -> e ]] ⇒
〈i , Atom(E [[ e ]])〉

P[[ x -> e ]] ⇒
〈x , Atom(Param(x ); E [[ e ]])〉

Note that the Param instruction is used to bind the values of a matched constructor.
As we saw in section 6.3.7, it is quite important that a match automatically unpacks
the constructor as it allows us to return the constructor on the stack sometimes
without allocation (the return in registers convention).

6.5.6 Optimized schemes

Although we tried to make the compilation scheme as straightforward as possible,
some transformations are hard to apply during a different phase. For example,
the following rule discards a stack push of a value that has just been evaluated to
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be matched. However, it can only do so if the bound variable is not used in the
alternatives. This is a good example of where we need both high level information
(is x used in the alternatives?) and low-level information (we can skip a PushVar
instruction).

E [[ let! x = e in match x with alts ]] | x /∈ fv(alts) ⇒
Eval(Atom(E [[ e ]]);Enter); M[[ alts ]]

Another important optimization removes superfluous continuation frames. This is
especially important for efficient arithmetic. For example:

discriminant a b c = let! ac = a ∗ c in
let! ac4 = 4 ∗ ac in
let! b2 = b ∗ b in b2 + ac4

If we suppose that a, b and c are already in weak head normal form and that ∗
and + expand to the primitive MulInt and AddInt instructions, we would get the
following instruction sequence (after some rewriting):

ArgChk(3)
Eval(PushVar(c); PushVar(a); MulInt; Slide(1, 0); Enter)
Var(ac);
Eval(PushVar(ac); PushInt(4);MulInt; Slide(1, 0); Enter)
...

However, the result of MulInt is already in weak head normal form and entering the
value will only return immediately to the continuation frame pushed by Eval. A
much better instruction sequence is possible:

ArgChk(3)
PushVar(c); PushVar(a); MulInt;
Var(ac);
PushVar(ac); PushInt(4);MulInt;
...

In general, when an expression is evaluated that is already in weak head normal
form, we don’t need to evaluate it again.

E [[ let! x = e in e ′ ]] | whnf (e) ⇒
Atom(E [[ e ]]);Var(x ); E [[ e ′ ]]

The whnf predicate determines whether the expression e puts a value in weak head
normal form on the stack. We assume that every primitive operation prim has an
associated type t which is annotated with a (!) when the result is always in weak
head normal form. The function whnf can be conservatively defined as:
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whnf (let in e) = whnf (e)
whnf (let! x = e in e ′) = whnf (e ′)
whnf (match x with alts) = whnfAlts alts
whnf (x a1 ... an) = False
whnf (conn

t a1 ... an) = True
whnf (i) = True
whnf (primn a1 ... an) | prim :: t1 → ... → tn → t! = True

| otherwise = False

whnfAlts ({ alt1; ...; altn }) = whnfAlt(alt1) & ... & whnfAlt(altn)
whnfAlt (pat -> e) = whnf (e)

6.5.7 Resolve stack offsets

The resolve phase resolves all offsets of local variables and removes the Param,
Var, Init and Atom pseudo instructions. Guided by these pseudo instructions, the
algorithm simulates the stack and calculates the correct offsets for each variable.

The resolve monad

We use a monadic formulation of the algorithm. The monad type is defined as:

newtype M a = M (〈Env , Depth〉 → 〈a, Depth〉)

The monad uses an enviroment, Env that maintains the mapping from local vari-
ables to their stack location. The monad also has a state Depth that contains the
current depth of the (simulated) stack.

The monadic functions are defined as usual (Hutton and Meijer, 1996):

return x =
M (\〈env , depth〉 → 〈x , depth〉)

(M m) >>= f =
M (\〈env , depth〉 →

let 〈x , depth ′〉 = m 〈env , depth〉
(M fm) = f x

in fm 〈env , depth ′〉

The push and pop non-proper morphisms simulate stack movements.

pop n =
M (\〈env , depth〉 → 〈(), depth − n〉)

push n =
M (\〈env , depth〉 → 〈(), depth + n〉)
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The depth function returns the current stack depth.

depth =
M (\〈env , depth〉 → 〈depth, depth〉 )

Variables are bound using bind and the function offset returns their current offset
relative to the top of the stack.

offset x =
M (\〈env , depth〉 → 〈depth − env [x ], depth〉)

bind x (M m) =
M (\〈env , depth〉 →m 〈env ⊕ { x 7→ depth}, depth〉)

Addressing variables relative to the top of the stack removes the need for a separate
base pointer , which is still used in some C compilers to aid debuggers.

The algorithm

An instruction stream is resolved by the resolves function.

resolves (Param(x ) : instrs) =
do{ push 1; bind x (resolves instrs) }

resolves (Var(x ) : instrs) =
bind x (do{ resolves instrs })

resolves (instr : instrs) =
do{ is ← resolve instr

iss ← resolves instrs
return (is ++ iss) }

Individual instructions are resolved by the resolve function. Note that we allow
ourselves some freedom by reusing the PushVar instruction such that it can contain
either an argument name or resolved stack offset.

resolve PushVar(x ) =
do{ ofs ← offset x ;

push 1;
return [PushVar(ofs)] }

resolve PackAp(x ,n) =
do{ ofs ← offset x ;

pop n;
return [PackAp(ofs,n)] }

resolve PackCon(x ,n) =
do{ ofs ← offset x ;

pop n;
return [PackCon(ofs,n)] }
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resolve Eval(is) =
do{ push 3;

is ′← resolves is;
pop 3;
return [Eval(is ′)] }

resolve Atom(is) =
do{ resolveSlide 1 is }

resolve Init(is) =
do{ resolveSlide 0 is }

resolve (MatchCon(alts)) =
do{ pop 1;

alts ′← sequence (map resolveAlt alts);
return [MatchCon(alts ′)] }

resolve instr =
do{ effect instr ; return [instr ] }

The resolveSlide n is function slides out any dead values on the stack, only pre-
serving the top n stack values.

resolveSlide n is =
do{ d0← depth;

is ′← resolves is;
d1← depth;
let m = d1− d0− n
pop m;
return (is ′ ++ [Slide(n,m)]) }

Alternatives are resolved with resolveAlt . Note that every alternative should return
with the same stack depth.

resolveAlt 〈t , is〉 =
do{ is ′← resolves is; return 〈t , is〉 }

Most instructions are not transformed but they do have an effect on the stack. The
effect function simulates this effect in the resolve monad.

effect PushCode(f ) = push 1
effect AllocAp(n) = push 1

effect AllocCon(t ,n) = push 1

effect NewAp(n) = do{ pop n; push 1 }
effect NewCon(t ,n) = do{ pop n; push 1 }
effect AddInt = do{ pop 2; push 1 }
...

effect instr = return ()

Using pseudo instructions together with this simple algorithm, we have cleanly
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separated stack offset resolving from the translation scheme from the lvm language
to instructions.

6.5.8 Rewrite rules

The rewrite rules transform a sequence of instructions into a more efficient sequence
of instructions with the same semantic effect. As described in section 6.5.3, the
rewrite rules describe important optimizations since the compilation scheme is quite
näıve.

There are two essential rewrite rules that push instructions following a match into
the branches of the match. This is needed since the branches are not able to jump
to those instructions. The transformation is safe, since every alternative leaves the
stack at the same depth.

MatchCon(alt1, ..., altn); instrs ⇒
MatchCon(alt1; instrs , ..., altn ; instrs)

MatchInt(alt1, ..., altn); instrs ⇒
MatchInt(alt1; instrs , ..., altn ; instrs)

This transformation duplicates code, but fortunately, the instrs are always a Slide
followed by an Enter, as we can see from the translation schemes. Moreover, sub-
sequent transformations are more effective when these instructions are directly in
scope.

The first optimizing rules transform partial and saturated applications. The first
rule emits NewNap instructions for a known partial application – this instruction will
not push an expensive update frame. The second rule uses EnterCode for saturated
applications to a known top level function. This instruction behaves just like Enter
except that an implementation can safely skip the expensive argument check for the
entered function (a direct entry point).

PushCode(f ); NewAp(n) | arity(f ) > (n − 1) ⇒
PushCode(f ); NewNap(n)

PushCode(f ); Slide(n,m); Enter | arity(f ) = (n − 1) & arity(f ) 6= 0 ⇒
Slide(n − 1,m); EnterCode(f )

If an application node is entered immediately after building it, we can safely enter
the application directly without building the application node at all!

NewAp(n); Slide(1,m); Enter ⇒
Slide(n,m); Enter

NewNap(n); Slide(1,m); Enter ⇒
Slide(n,m); Enter
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These two simple rewrite rules remove the need for the usual translation schemes:
one for expressions that will be entered and one for let-bound expressions (Pey-
ton Jones, 1986).

The following rule moves the Slide instruction up in order to prevent space leaks
while calling external functions.

Call(prim,n); Slide(1,m); Enter ⇒
Slide(n,m); Call(prim,n); Enter

Expressions of the form (let! x = e in x) lead to code that pushes variable x and
subsequently discard the original binding. We can instead discard the push and
leave the original binding in place.

PushVar(0); Slide(1,m) | m ≥ 1 ⇒
Slide(1,m − 1)

The previous rule naturally generalizes to a sequence of n pushes:

PushVar1(n − 1); ...; PushVarn(n − 1); Slide(n,m) | m ≥ n ⇒
Slide(n,m − n)

If a value is entered that is already in weak head normal form, we can directly
use the Return instruction. We assume that all primitive functions have a type that
ends with a (!) when they return a strict result. This is the case for many primitive
operations and instructions.

Call(prim,n); Enter | prim :: t1 → ... → tn → t! ⇒
Call(prim,n); Return

Commonly, a constructor or literal is returned. The lvm has the special Return-
Con and ReturnInt instructions that can potentially execute without extra heap
allocation resulting from building a new constructor. Instead of building a new
constructor that is immediately entered, the constructor is kept on the stack (see
section 6.3.7). This is the ‘return in registers’ convention as described in the STG
machine paper (Peyton Jones, 1992).

NewCon(t ,n); Slide(1,m); Enter ⇒
Slide(n,m); ReturnCon(t ,n)

PushInt(i); Slide(1,m); Enter ⇒
Slide(0,m); ReturnInt(i)

An lvm interpreter can cheaply test a variable to see if it is already in a weak head
normal form. The EvalVar instruction can use this in order to avoid creating a
continuation frame that is immediately popped.

Eval(PushVar(ofs); Slide(1, 0); Enter) ⇒
EvalVar(ofs − 3)
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Quite often, we can merge slides, arising from instructions pushed into an alterna-
tive.

Slide(n0,m0); Slide(n1,m1) | n1 ≤ n0 ⇒
Slide(n1,m0 + m1− (n0− n1))

The last rules deal with instructions that have no effect and primitive instructions.
By treating instructions like AddInt as a primitive call, the compiler can be simplified
since it doesn’t need special code to deal with built-in operations. In a sense, these
instructions are just like external calls except that they have a very efficient calling
convention and encoding.

Call(prim,n) | prim = instr instr :: t1 → ... → tn → t ⇒
instr

NewAp(n) | n ≤ 1 ⇒
−

Slide(n, 0) ⇒
−

Together, the above rules have proven to be quite effective in optimizing the instruc-
tions generated by the naive translation scheme. Careful study of the generated code
shows that hardly any improvements on this level are attainable. The simple trans-
lation scheme in combination with these rewrite rules also make the compiler much
simpler. Furthermore, the rewrite rules even seem to perform better than optimized
translation schemes as the rewrite rules sometimes find optimization opportunities
between instructions that are unrelated at the language level.

6.5.9 Code generation

The code generation phase resolves the code offsets relative to program counter.

codegens is =
concat (map codegen is)

codegen Eval(is) =
let is ′ = codegens is
in [PushCont(size is ′)] ++ is ′

codegen PushCode(f ) =
[PushCode(index (f ))]

codegen EnterCode(f ) =
[EnterCode(index (f ))]

codegen MatchCon(alts) =
let iss = map (codegen . snd) alts

tags = map fst alts
ofss = scanl (+) 0 (map size iss)

in [MatchCon(length alts, 0, zip tags ofss)] ++ concat iss
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codegen instr =
[instr ]

For simplicity, the rule for MatchCon(alts) assumes that there are no (default)
variable patterns inside alts. The actual rule used in the compiler is inconvenient to
formulate but still straightforward. After the code resolve phase, we are done and
the compiler can write a binary LVM file that can be loaded by the interpreter.

6.5.10 More optimization: superfluous stack movements

An important optimization is to reduce the number of superfluous stack movements.
Due to the close relation of λlvm with the lvm instruction set, it is possible to
perform this optimization at the language level instead of at the instruction level.

As an example of unnecessary stack pushes we look at a definition of the S combi-
nator.

combS f g x = let z = g x in f x z

After translating, resolving, and rewriting this program, it is compiled into:

ArgChk(3);
PushVar(2 (x ));PushVar(2 (g));NewAp(2);
PushVar(0 (z ));PushVar(4 (x ));PushVar(3 (f ));
Slide(3, 4); Enter

However, the variable z is pushed on the stack immediately after building it and
later discarded with the Slide instruction. Better code can be obtained by inlining
the definition of z .

combS f g x = f x (g x )

This program uses the application node immediately and discards the superfluous
PushVar instruction.

ArgChk(3);
PushVar(2 (x ));PushVar(2 (g));NewAp(2);
PushVar(3 (x ));PushVar(2 (f ));
Slide(3, 3); Enter

Et voilá, we can optimize stack movements (and remove dead variables) by using a
standard inliner. The inliner for the lvm language can be much simpler than a full
fledged inliner (Peyton Jones and Marlow, 1999) since we will not instantiate across
lambda expressions but only perform local substitutions. This property makes it
also easier to analyse whether work or code is ever duplicated.
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It is always beneficial to inline trivial expressions since they duplicate neither work,
nor code. Trivial expressions consist of:

• literals (literal),

• variables (x ),

• constructors with no arguments (con0
t ).

For other expressions, we need to determine how often the binder occurs. The oc-
currence analysis can be as simple as counting the number of syntactic occurrences.
If code duplication is not perceived as a problem, we can refine the analysis by
taking the maximum of the occurrences inside alternatives instead of the sum. If a
binder occurs only once, we can safely inline it (since lambda expressions are not
part of the lvm language). When a binder has no occurrences, the binding can be
removed entirely.

Inlining strict bindings

We look again at the example program discriminant from section 6.5.6:

discriminant a b c = let! ac = a ∗ c in
let! ac4 = 4 ∗ ac in
let! b2 = b ∗ b in b2 + ac4

The optimized instruction sequence was:

ArgChk(3)
PushVar(c); PushVar(a); MulInt;
Var(ac);
PushVar(ac); PushInt(4);MulInt;
...

This example can be optimized a little bit more since it still pushes variable ac
allthough it already resides on the stack. An optimal instruction sequence would
be:

ArgChk(3)
PushVar(c); PushVar(a); MulInt;
Var(ac);
PushInt(4);MulInt;
...

Unfortunately, our simple inliner will not inline the binding for ac since let! bind-
ings can not be inlined in general. However, we can define some side conditions
under which the inlining of let! bindings is possible.
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First, we extend the grammar and allow let! expressions as atomic expressions –
of course, this is in general unsafe and should only be used ‘internally’. Together
with the grammar extension, the translation scheme for atomic expressions is also
extended:

A′[[ let! x = e in e ′ ]] | whnf (e) ⇒
Atom(E [[ e ]]);Var(x );A′[[ e ′ ]];

A′[[ let! x = e in e ′ ]] ⇒
Eval(Atom(E [[ e ]]);Enter); Var(x );A′[[ e ′ ]];

When an evaluated expression is both pure and total , we can transform let! bind-
ings into let bindings. The standard inliner can now inline let! expressions via
those let bindings.

let! x = e in e ′ | pure(e) & total(e) ⇒ let x = (let! x = e in x ) in e ′

The pure(e) predicate ensures that the expression has no side effect and the total(e)
predicate ensures that the expression can not fail or loop. These conditions can
probably only be approximated in practice but they can be determined exactly for
many common primitive expressions like comparison and bitwise operations. How-
ever it fails for operations that can raise exceptions – like addition, multiplication
and division. Note that the let! binding inside the let is still needed in order to
emit an Eval instruction during compilation.

The above approach works for expressions that are both pure and total but many
times we don’t know enough about the expression to ensure those predicates. Other
strict expressions can be inlined only if the following conditions hold:

1. the inliner never duplicates code (to avoid duplication of an impure expres-
sion).

2. the binding is used once.

3. the binding is used before any other primitive function, let!, or match con-
struct.

The first two conditions are intrisic properties of the inliner. The last condition, is
formalized with the firstuse predicate.

let! x = e in e ′ | once x e ′ & firstuse x e ′ ⇒ let x = (let! x = e in x ) in e ′

Note that the firstuse predicate is extremely dependent on the exact translation
scheme that is used – after a strict binding is inlined as a let, we must be sure that
no other strict binding gets inlined beyond the previous one.
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The firstuse predicate is defined in terms of the first function that has as its second
argument a possible continuation that starts out as False. As soon as a primitive
operation, let!, or match is encountered, the continuation is set to False again to
avoid inlining a binding beyond that construct.

firstuse x e = first x False e

first x c x = True
first x c (y a1 ... an) = firsts x c [y , a1, ..., an ]
first x c (conn

t a1 ... an) = firsts x c [a1, ..., an ]
first x c (primn a1 ... an) = firsts x False [a1, ..., an ]
first x c (match y with alts) = False
first x c (let! y = e in e ′) = first x False e
first x c (let y = e in e ′) = firsts x c [e, e ′]
first x c (letrec { y1 = e1 ; ... ; yn = en } in e ′) = firsts x c [e1, ..., en , e ′]
first x c other = c

firsts x c es = foldl (first x ) c es

In combination with the rewrite rules, the described optimizations remove all su-
perfluous stack movements – there is no need for complex reorderings of bindings.
Note that we could achieve this by distinguishing between normal expressions and
atomic expressions, and allowing atomic expressions as arguments. This constrasts
with the STG language for example, that only allows variables as arguments. In
our case, λlvm directly reflects the capabilities of the abstract machine.
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6.6 Assessment

We have implemented a lvm interpreter on top of the O’Caml runtime system
(Leroy, 1995), which is well known for its portability and the efficient bytecode
interpreter. By taking advantage of this excellent system, we were able to build an
lvm interpreter in a relatively short time frame.

There is also a core compiler that translates λcore programs into lvm files using
the compilation rules described in section 6.5. The compiler is still very naive and
doesn’t perform any ‘essential’ optimizations like simplification, inlining or strictness
analysis. Even though we tried to keep the lvm instruction set and compilation
scheme as simple as possible, the total line count of the core compiler is still about
7000 lines of Haskell which is a bit disappointing. On the other hand, the core
compiler has a very modular structure and it is easy to use as the backend for a
real compiler or as a platform to experiment with new transformation algorithms.
It is currently used as a backend to the Helium compiler and the experimental HX
system (Shields and Peyton Jones, 2001).

To assess the performance of the interpreted lvm instruction set, we ran some
preliminary benchmarks. Since each benchmark is rather small the results should
be interpreted with care. However, we believe that the benchmarks will at least
give an indication whether the performance of the an lvm interpreter is acceptable
in practice. The following three programs were tested.

nfib 27 Calculates the 27th nfib number.

nfib :: Int -> Int

nfib 0 = 1

nfib 1 = 1

nfib n = 1 + nfib (n-1) + nfib (n-2)

queens 9 Finds the number of ways to put 9 queens on a 9×9 checkboard where
no queen threatens another.

queens n = length (qqueens n n)

qqueens k 0 = [[]]

qqueens k n = [ (x:xs) | xs <- qqueens k (n-1)

, x <- [1..k], safe x 1 xs ]

safe x d [] = True

safe x d (y:ys) = x /= y && x+d /= y

&& x-d /= y && safe x (d+1) ys

sieve 1000 Calculates the 1000th prime number using the sieve of Erasthones.
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Figure 6.3: Benchmarks

sieve n = last (take n (ssieve [3,5..]))

where

ssieve (x:xs) = x:ssieve (filter (noDiv x) xs)

noDiv x y = (mod x y /= 0)

Each program was translated with the Hugs interpreter (May 1999), the GHC
compiler (5.02) and the LVM core compiler. GHC was run without the -O flag but
it still does simplification and inlining. Since the core compiler can not parse full
Haskell, each program was manually desugared into enriched lambda expressions
before compilation. All programs were run on a 266Mhz PentiumII PC with 128Mb
RAM.

Figure 6.6 shows the running times of each program. Note that the running times
of the programs run with Hugs are outside the scale of the y-axis. Perhaps not
surprisingly, the lvm performs about 15 to 30 times better on these programs than
Hugs. What is more surprising is that the interpreted, non-inlined, unsimplified
lvm programs run just 3 times as slow as GHC compiled programs. The queens
benchmark is even just 25% faster when compiled with GHC. Of course, the pro-
grams are too small to be used as realistic benchmarks but the results still give us
confidence that the interpreter approach can be successful in practice.

We also measured how the lvm performs if the core compiler would have a simple
strictness analyser and inliner. We naively hand-optimized the programs for the
lvm, trying to emulate a simple strictness analyser and inliner. Here is for example
the optimized source for nfib:
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nfib :: Int -> Int

nfib n = match n with

0 -> 1

1 -> 1

n -> let! n2 = primSubInt n 2 in

let! nf2 = nfib n2 in

let! n1 = primSubInt n 1 in

let! nf1 = nfib n1 in

let! m = primAddInt nf1 nf2 in

primAddInt 1 m

Figure 6.6 shows the benchmarks with the optimized compilers. The ghc-opt pro-
grams are compiled with GHC with the -O flag while the lvm-opt programs are the
hand-optimized sources compiled for the lvm. Optimized GHC is much faster on
the nfib and sieve benchmarks but, surprisingly, the queens benchmark runs faster
with the optimized lvm. We don’t know for sure why the queens program performs
so well, it might be a cache effect or it might be linked to the ‘return in registers’
convention that can avoid heap allocation – maybe the lvm avoids an expensive
allocation in a critical part of the algorithm.
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Samenvatting

In het invloedrijke artikel “Why functional programming matters” beargumenteert
John Hughes dat de kracht van declaratieve, niet stricte, hogere orde talen ligt
in hun vermogen om verschillende aspecten van een programma orthogonaal te
specificeren. Hierbij word vooral gekeken naar de compositie op het laagste niveau,
namelijk functies. In dit proefschrift bestuderen we hoe deze talen gebruikt kunnen
worden bij de compositie van externe imperatieve functionaliteit en componenten.

Het eerste hoofdstuk van dit proefschrift beschrijft het ontwerp van een zogeheten
“foreign function interface” (FFI) voor de pure, hogere orde taal, Haskell. Een
FFI zorgt ervoor dat een programma geschreven in een bepaalde programmeertaal,
andere programma’s in andere talen kan aanroepen en omgekeerd. Verschillende
programmeertalen gebruiken verschillende aanroepconventies en representeren hun
gegevens op andere wijze – De FFI zorgt automatisch voor de juiste aanroepcon-
ventie en transformeert gegevens naar het juiste formaat. Vooral het transformeren
van de gegevens is een complexe zaak.

Omdat een FFI met een grote variëteit aan talen moet omgaan, worden de meeste
FFI’s groot, complex, incompleet, en gespecificeerd zonder formele semantiek. Ons
ontwerp daarentegen is formeel beschreven en gebaseerd op een standaard protocol
taal (IDL). Het is bovendien zorgvuldig gescheiden in twee aparte lagen: een mini-
maal en primitief mechanisme dat ondersteund dient te worden door de compiler,
en een apart programma, H/Direct, dat het primitieve mechanisme gebruikt om
automatisch uitgebreide gegevens transformaties te genereren.

Voortbouwend op de FFI beschrijft het tweede hoofdstuk de integratie van Haskell
met Microsoft’s Component Object Model (COM). Component modellen beschrij-
ven een systeem protocol voor interactie tussen verschillende software componenten.
Hierbij worden programma’s geconstrueerd door verschillende software componen-
ten samen te voegen. Omdat deze protocollen programmeertaal onafhankelijk zijn,
is dit ideaal voor exotische talen als Haskell. Als een Haskell programma kan wor-
den verpakt als software component, dan kan deze worden gebruikt zonder kennis
van Haskell. Andersom geeft zo’n integratie de Haskell gebruiker toegang tot een
grote verzameling “off the shelf” software componenten.
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COM is een groot en complex protocol en het vergt normaal veel code om een
COM component te bouwen, vaak ondersteund door ‘wizards’. Wij laten zien
dat hogere orde functies kunnen worden gebruikt om componenten gemakkelijk
te kunnen maken zonder ondersteuning van wizards of duplicatie van code. Verder
blijkt dat single inheritance interface subtypering kan worden gemodelleerd door
parametrisch polymorphisme en zogeheten ‘phantom’ types. Deze modellering blijkt
essentieel om de object geörienteerde natuur van de meeste software componenten
te kunnen ondersteunen binnen een functionele taal als Haskell. Zelfs op het meest
fundamentele niveau blijken we in staat om vele eigenschappen statisch te kunnen
verifiëren met behulp van het rijke type systeem van Haskell: bijvoorbeeld de as-
sociatie tussen het type van component instanties en hun klasse, en de associatie
tussen virtuele methode tabellen en corresponderende instantie gegevens.

Na het lezen van de voorgaande hoofdstukken over de integratie van Haskell met
de imperatieve wereld, kan de lezer zichzelf afvragen of de voordelen wel opwegen
tegen de complexiteit. Een potentieel probleem is dat een typische component is
ontworpen voor een imperatief model en daardoor zorgt voor een imperatieve stijl
van programmeren binnen het declaratieve model van Haskell. In de volgende twee
hoofdstukken gaan we hier verder op in. We laten zien dat het mogelijk is om biblio-
theken van herbruikbare hogere orde functies te definiëren boven op de imperatieve
laag. Deze functies gedragen zich als een domein specifieke taal om een bepaalde
verzameling componenten aan te spreken. De stelling van deze hoofdstukken is dat
getypeerde hogere orde talen, zoals Haskell, een nieuwe manier van programmeren
mogelijk maken waarmee componenten kunnen worden aangestuurd. Een generieke
strategie om zulke domein specifieke component talen op te zetten word gegeven
aan de hand van een uitgebreid voorbeeld in de context van database servers.

Het werk in de voorgaande hoofdstukken gaf aanleiding to experimentatie met taal
uitbreidingen aan Haskell. Helaas vergt Haskell een uitgebreide ondersteuning tij-
dens executie en compilatie, wat het moeilijk maakt om hiermee te experimenteren.
Dit gaf aanleiding tot de ontwikkeling van de ‘lazy virtual machine’ (LVM). Deze
virtuele machine is speciaal opgezet voor executie van niet-stricte hogere orde talen,
zoals Haskell. Het doel van de LVM is om een systeem te hebben dat zeer geschikt
is om mee te experimenteren door zijn modulaire en uitbreidbare opzet.

We kijken in het bijzonder naar het algehele ontwerp van de LVM instructies, de
operationele semantiek, en de vertalings schema’s. In plaats van gebruikelijke geop-
timaliseerde vertalings schema’s, gebruiken we een näıef en simpel schema met een
kleine verzameling herschrijfregels op de instructies, die uiteindelijk hetzelde effect
bereiken. De korrektheid van de herschrijfregels is relatief gemakkelijk te bewijzen
met behulp van de operationele semantiek van de instructies. Een (geoptimaliseerd)
vertalingsschema bewijzen is veel moeilijker omdat men de overeenkomst moet aan-
tonen tussen de operationele semantiek van de doeltaal met de gegenereerde instruc-
ties. De abstracte machine is sterk gerelateerd aan de mogelijkheden van de huidige
hardware. We kunnen daardoor redeneren over implementatietechnieken die nor-
maal alleen informeel beschreven worden, zoals foutafhandeling, het teruggeven van
constructoren in registers en de ‘black holing’ techniek.
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G. Fábián. A Language and Simulator for
Hybrid Systems. Faculty of Mechanical Engi-
neering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Concepts

and Proof Rules. Faculty of Mathematics and
Computing Science, TUE. 1999-12

R.S. Venema. Aspects of an Integrated Neu-
ral Prediction System. Faculty of Mathematics
and Natural Sciences, RUG. 1999-13

J. Saraiva. A Purely Functional Implementa-
tion of Attribute Grammars. Faculty of Math-
ematics and Computer Science, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Progam Construction. Faculty of
Mathematics and Computing Science, TUE.
1999-15

K.M.M. de Leeuw. Cryptology and State-
craft in the Dutch Republic. Faculty of Math-
ematics and Computer Science, UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A stratified
approach to the verification of distributed algo-
rithms. Faculty of Mathematics and Computer
Science, UU. 2000-02

W. Mallon. Theories and Tools for the De-
sign of Delay-Insensitive Communicating Pro-
cesses. Faculty of Mathematics and Natural
Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty of Sci-
ence, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor . Faculty of Mathematics and
Computing Science, TUE. 2000-05

J. Fey. Design of a Fruit Juice Blending and
Packaging Plant . Faculty of Mechanical Engi-
neering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriv-
ing Correct Programs. Faculty of Mathematics
and Computing Science, TUE. 2000-07

P.A. Olivier. A Framework for Debugging
Heterogeneous Applications. Faculty of Natu-
ral Sciences, Mathematics and Computer Sci-
ence, UvA. 2000-08

E. Saaman. Another Formal Specification
Language. Faculty of Mathematics and Nat-
ural Sciences, RUG. 2000-10



M. Jelasity. The Shape of Evolutionary
Search Discovering and Representing Search
Space Structure. Faculty of Mathematics and
Natural Sciences, UL. 2001-01

R. Ahn. Agents, Objects and Events a com-
putational approach to knowledge, observation
and communication. Faculty of Mathematics
and Computing Science, TU/e. 2001-02

M. Huisman. Reasoning about Java pro-
grams in higher order logic using PVS and Is-
abelle. Faculty of Science, KUN. 2001-03

I.M.M.J. Reymen. Improving Design Pro-
cesses through Structured Reflection. Faculty
of Mathematics and Computing Science, TU/e.
2001-04

S.C.C. Blom. Term Graph Rewriting: syntax
and semantics. Faculty of Sciences, Division
of Mathematics and Computer Science, VUA.
2001-05

R. van Liere. Studies in Interactive Visual-
ization. Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA. 2001-06

A.G. Engels. Languages for Analysis and
Testing of Event Sequences. Faculty of Mathe-
matics and Computing Science, TU/e. 2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Natural
Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for Analy-
sis of Data in Environmental Epidemiology: A
Case-study into Acute Effects of Air Pollution
Episodes. Faculty of Mathematics and Natural
Sciences, UL. 2001-09

T.C. Ruys. Towards Effective Model Check-
ing. Faculty of Computer Science, UT. 2001-10

D. Chkliaev. Mechanical verification of con-
currency control and recovery protocols. Fac-
ulty of Mathematics and Computing Science,
TU/e. 2001-11

M.D. Oostdijk. Generation and presentation
of formal mathematical documents. Faculty of
Mathematics and Computing Science, TU/e.
2001-12

A.T. Hofkamp. Reactive machine control: A
simulation approach using χ. Faculty of Me-
chanical Engineering, TU/e. 2001-13
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