
Pinocchio Coin: Building Zerocoin from a Succinct
Pairing-based Proof System

George Danezis
Microsoft Research

Cambridge, UK

Cédric Fournet
Microsoft Research

Cambridge, UK

Markulf Kohlweiss
Microsoft Research

Cambridge, UK

Bryan Parno
Microsoft Research

Redmond, USA

ABSTRACT
Bitcoin is the first widely adopted distributed e-cash system
and Zerocoin is a recent proposal to extend Bitcoin with
anonymous transactions.

The original Zerocoin protocol relies heavily on the Strong
RSA assumption and double-discrete logarithm proofs, long-
standing techniques with known performance restrictions.
We show a variant of the Zerocoin protocol using instead el-
liptic curves and bilinear pairings. The proof system makes
use of modern techniques based on quadratic arithmetic pro-
grams resulting in smaller proofs and quicker verification.
We remark on several extensions to Zerocoin that are en-
abled by the general-purpose nature of these techniques.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce-
Payment schemes, Security

Keywords
Zero-knowledge Proofs; anonymous electronic cash; bitcoin;
zerocoin.

1. INTRODUCTION
The central component of Bitcoin is a public log or ledger

of transactions. Each transaction entry in the log associates
a bitcoin amount with a public key. A new entry is either
created by contributing to the authenticity of the log by
checking and hashing previous transactions and performing
proofs of work; or by using the private key corresponding to
an existing entry to sign a new entry. The latter transfers
the bitcoin amount of the existing entry to the owner of the
public key of the new entry. As regards privacy, the log
publicly links coins to their successive owner’s keys.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Zerocoin [MGGR13] is an anonymous decentralized e-cash
system that uses Bitcoin both as an append-only bulletin
board and a backing currency. Zerocoin uses a fixed bitcoin
amount, i.e. all zerocoins have the same denomination. In-
stead of a public key, coins are identified by a commitment
C to a pair of fresh, random secrets: a serial number s and
an opening r, kept by the owner of the coin.

To guarantee anonymity, a zerocoin spend transaction in-
volves revealing s and proving knowledge of r for any C in
a large, public collection of previously-logged commitments
C0, . . . , Cn−1. The opening to the commitment of the coin
being spent is never revealed but is used to compute a proof
π for a signature of knowledge that replaces the conven-
tional signature of a bitcoin spend transaction. The signa-
ture of knowledge proves that the spending party can open
one of the commitments to the serial number, i.e. that (1)
she knows a C ∈ (C1, . . . , Cn) and (2) that C = gshr (the
commitment scheme is a Pedersen commitment). By hiding
which commitment can be opened in this way, Zerocoin pro-
vides anonymity. At the same time, the uniqueness of the
serial number prevents double spending.

[MGGR13] uses an Strong RSA based accumulator to
prove C ∈ (C1, . . . , Cn), thus all commitments Ci must be
prime numbers from an interval [A,A2), for some fixed in-
teger A, to guarantee that the product of two commitments
is outside this interval. These constraints can be met, but
Strong RSA based constructions like this can be quite brittle
and it would be desirable to have an alternative construction
based on prime-order groups. Another complication arises
from the proof that C = gshr being about a value C that is
already secret and an exponent for the group in which the
accumulator is defined. Thus it is what is usually referred
to as a double-discrete logarithm proof.

We address both of these issues by making use of Pinoc-
chio [PHGR13], a novel pairing-based proof system with a
very efficient implementation

Pinocchio can prove languages of the form L = {(ck)k∈[m′]

| E(ck)k∈[m′..m−1] : c0 = 1 ∧ (V · c) ◦ (W · c)− (Y · c) = 0},
where V, W, Y are d×m matrices over a field Fp for integers
d,m′,m, m′ ≤ m.1 P = (V,W,Y) is called a quadratic

1We write [n] for the set {0, . . . , n − 1}. We write X · y
for the multiplication of a matrix with a vector z =
(
∑
k∈[n]Xikyk)i∈[d] and x ◦y for the pointwise (Hadamard)

product z = (xiyi)i∈[d].

arithmetic program (QAP) over field F of degree d and size
m and the problem of deciding whether P can accept a sub-
vector (c0, . . . , cm′−1) with c0 = 1 was shown by [GGPR13]
to be NP complete.

In particular the language L allows us to encode arbitrary
input output relations for an arithmetic circuit with d multi-
plication gates. Intuitively, c encodes wire values, and each
row in V and W represents a linear combination of wires
that will be the left and the right input of a multiplication
gate respectively.

Our construction of Zerocoin uses two simple insights:
First, C ∈ (C0, . . . , Cn−1) can be represented by checking
that the arithmetic circuit

∏
i(C − Ci) = 0. Second, in-

stead of proving knowledge of r, we can prove knowledge
of h0, . . . , hν−1 for a security parameter ν of the commit-

ment scheme such that, for j ∈ [ν], (hj − 1)(hj − h(2j)) = 0
and C = S

∏
j hj , where S = gs can be publicly computed.

Instead of requiring C to be a prime in [A,A2), the commit-
ment can now be defined over any field in which the discrete
logarithm problem is hard.

We are left with one remaining difficulty. If we use the ef-
ficient pairing groups of Pinocchio, computing discrete log-
arithms in the exponent field Fp with p ≈ 256 is easy. We
could switch to non-standard and larger pairing groups, but
this seems undesirable as it would bring down the overall
performance of the proof system. Instead we propose to
compute C in an extension field Fpµ of size pµ > 2048.

We do not claim that our construction is always desirable
over the existing Strong RSA construction. One drawback of
our scheme is that the trusted setup instead of being a single
RSA modulus N is now the evaluation key of a Pinocchio
QAP—a more complex object. It is also unclear whether
ultimately a proof of arithmetic circuits in extension fields
will scale better than a double discrete logarithm proof. One
performance characteristic that is, however, drastically im-
proved is the size of the proof π which no longer depends
linearly on ν. Another more qualitative advantage is the
availability of an alternative construction based on a differ-
ent number theoretic problem.

2. CONSTRUCTION
In presenting our protocol we assume limited familiarity

with Zerocoin [MGGR13] and Pinocchio [PHGR13].

• Setup(1κ). On input a security parameter, select or
generate a pairing-friendly elliptic curve setup G for
curves of order p to be used by Pinocchio.

Select random generators g, h ∈ Fpµ such that 〈g〉 =
〈h〉 is a large multiplicative subgroup of Fpµ of order
q|pµ − 1 ≈ 2ν .

Run evaluation key generation EKP ← KeyGen(P,G)
for the publicly-verifiable zero-knowledge variant of Pin-
occhio for verifying NP relations expressed as arith-
metic constraints. P is a QAP over Fp of degree and
size O((n + κ)µ2) for the following witness relation,
where all operations and values are over Fpµ :(
(C0, . . . , Cn−1, S), (hj)

κ
j=1

)
∈ RL ⇔

∀j(hj − 1)(hj − h(2j)) = 0 ∧
∏
i(S
∏
j hj − Ci) = 0.

Output params = (G, p, q, g, h,EKP) as the Zerocoin
parameters.

• Mint(params). Select a serial number and opening
s, r ∈ Fq \ 1 and compute C = gshr in Fpµ . Set
skc = (s, r) and output (C, skc).

• Spend(params, C, skc, C0, . . . , Cn−1). If C /∈ (Ci)
n−1
i=0

output ⊥. Compute S = gs, and hj = h2jrj , for
j ∈ [κ], where the rj ∈ {0, 1} are such that r =∏

2jrj . Then run the Pinocchio prove algorithm π ←
Compute(EKP , (C0, . . . , Cn−1, S, (h

2j)ν−1
j=0), (hj)

κ
j=1) and

output (π, s).

• Verify(params, π, s, C0, . . . , Cn−1). Check that Verify(

EKP , (C0, . . . , Cn−1, g
s, (h2j)ν−1

j=0), π) = 1.

3. PERFORMANCE
Recall that Fpµ is the Galois field extension of Fp (that is,

[p]), defined as the quotient Fp[x]/P (x) of the polynomials
in x with coefficients in Fp divided by P (x) = xµ − ω, for
some fixed ω ∈ Fp such that P (x) is irreducible.

We represents elementsA ∈ Fpµ by the coefficients (ai)i∈[µ]
such that A(x) =

∑
i aix

i. Addition is just word-wise addi-
tion: (ai)i∈[µ] + (bi)i∈[µ] = (ai + bi)i∈[µ]. Multiplication is a

linear combination of µ2 word multiplications:

(ai)i∈[µ]∗(bj)j∈[µ] =
(∑
i+j=k

(ai∗bj)+
∑

i+j=k+µ

(ω∗ai∗bj)
)
k∈[µ].

We use Fpµ for Pedersen commitments, with exponents in
Fq. Fast exponentiation consists of ν − 1 extended multi-

plications, where hr =
∏
i∈[ν] h

(2iri) and r =
∑

2iri Hence,

computing hr and proving that each of the hi is either 1 or

h(2i) takes µ2(2ν − 1) word multiplications.
Where Pinocchio really shines in the size of its proof and

the cost of proof verification. Contrary to the almost pro-
hibitive proof size of Strong RSA zerocoins of 50kB, the
proof size of 344 bytes for Pinocchio zerocoins is compara-
ble with existing bitcoin transactions.

4. DISCUSSION
This is only a very preliminary case study and we do not

have a full implementation or security analysis yet. There
is also one feature of the Zerocoin protocol that is not cov-
ered by our construction. The original Zerocoin construc-
tion allows to sign a transaction string R by using the Fiat-
Shamir based proof system in signature of knowledge [CL06]
mode. On the upside, the analysis of our protocol does no
longer rely on Random Oracles. Moreover, we are aware
of three ways to extend our protocol: (i) compute s as the
hash of a public key and use the corresponding secret key
to sign R; (ii) construct a signature of knowledge by using
the techniques of [Har11] to turn make the proof simulation
extractable; (iii) perform part of the proof using a Fiat-
Shamir based proof system and fall back on the Random
Oracle model to obtain signatures of knowledge.

We are excited about the potential of using a general-
purpose verifiable computation protocol like Pinocchio for
custom protocol design. Pinocchio already allows to compile
arithmetic circuits from C-like programs.

For instance, this make it very easy to replace our commit-
ment scheme C = gshr, by another commitment scheme like
C = HMAC(r, s), e.g. based on SHA-256. One could also

imagine, more complex spend protocols that involve multi-
ple commitments or commitments with a balance controlled
by a scripting language akin to Bitcoin script.

5. REFERENCES
[CL06] Melissa Chase and Anna Lysyanskaya. On

signatures of knowledge. In CRYPTO, 2006.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno,
and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs.
In EUROCRYPT, 2013.

[Har11] Kristiyan Haralambiev. Efficient cryptographic
primitives for non-interactive zero-knowledge
proofs and applications. PhD thesis, 2011.

[MGGR13] Ian Miers, Christina Garman, Matthew Green,
and Aviel D. Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In IEEE
Symposium on Security and Privacy, 2013.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and
Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE Symposium on
Security and Privacy, 2013.

