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Abstract

We consider four problems on distance estimation and object location which share the common flavor
of capturing global information via informative node labels: low-stretch routing schemes [47], distance
labeling [24], searchable small worlds [30], and triangulation-based distance estimation [33]. Focusing
on metrics of low doubling dimension, we approach these problems with a common technique called
rings of neighbors, which refers to a sparse distributed data structure that underlies all our construc-
tions. Apart from improving the previously known bounds for these problems, our contributions include
extending Kleinberg’s small world model to doubling metrics, and a short proof of the main result in
Chan et al. [14]. Doubling dimension is a notion of dimensionality for general metrics that has recently
become a useful algorithmic concept in the theoretical computer science literature.

1 Introduction

In node labelingproblems one needs to assign short labels to nodes of a graph so that they capture some
(problem-specific) global information about distances and routes in the graph. We consider four problems
of this type: low-stretch routing schemes [47], distance labeling [24], searchable small worlds [30], and
triangulation-based distance estimation [33].

We approach these problems with a common technique calledrings of neighbors, which refers to a sparse
distributed data structure that underlies all our constructions. The idea is that every nodeu stores pointers to
(i.e. addresses of) some nodes called ’neighbors’; these pointers are partitioned into several ’rings’, so that
for some increasing sequence of balls{Bi} aroundu, the neighbors in thei-th ring lie insideBi; the radii of
these balls and the selection of neighbors depend on the specific application. For a simple example, consider
the structure where each ballBi has radius2i, and the neighbors in thei-th ring are selected independently
and uniformly at random inBi. In effect, rings of neighbors form an overlay network with a certain structure
imposed by the balls{Bi}.1

For the problems that we consider, the input is a finite metric space or, more generally, an undirected
weighted graph that induces a shortest-paths metric. We focus on metrics of lowdoubling dimension, a
notion of low dimensionality for general metrics that has recently become a useful algorithmic concept in
the theoretical computer science literature [25, 36, 35, 50, 33, 49, 14] in many different contexts, including
metric embeddings, traveling salesman and compact data structures; in particular, in [33, 49] it was used

∗Preliminary version of this paper has appeared in24th Annual ACM SIGACT-SIGOPS Symp. on Principles Of Distributed
Computing (PODC), 2005. This is the full version. The journal version (which excludes Appendix B) will be published in the
special issue ofDistributed Computing.

†Department of Computer Science, Brown University, Providence RI, 02906.slivkins at cs.brown.edu. This work was done
when A. Slivkins was a graduate student at Cornell University and was supported by the Packard Fellowship of Jon Kleinberg.

1Note that the term ’neighbor’ here refers to the adjacency in this overlay network, not to the proximity in the input graph.
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to model the structural properties of the Internet distance matrix in the context of distributed algorithms for
metric embedding and distance estimation.

Any point set in ak-dimensional̀ p metric has the following property [10]: forα = k+O(1), every set
of diameterd can be covered by2α sets of diameterd/2. (The diameter of a set is the supremum of distances
between any two points in this set.) This motivates the following definition:doubling dimensionof a metric
space is the infimum of allα such that the above property holds. Clearly, doubling dimension of anyn-
node metric is at mostlogn. Doubling metricsare defined as metrics such that the doubling dimension is
upper-bounded by a constant.

By definition, doubling metrics generalize constant-dimensional`p metrics. Doubling metrics is a much
wider class of metrics: in particular, there exist doubling metrics onn nodes that need distortionΩ(

√
logn)

to embed into anỳp, p ≥ 2 [25]. Moreover, doubling metrics subsume metrics of boundedgrid dimension2,
which have been considered in the long line of work on Distributed Hash Tables started by Plaxton et al. [48]
(see the intro of [27] for a short survey). Again, doubling metrics is a much wider class of metrics: as an
example of a doubling metric with high (super-constant) grid dimension, consider the set{1, 2, 4, . . . , 2n}
equipped with the standard distance functiond(x, y) = |x − y|. Furthermore, unlike grid dimension, the
doubling dimension is robust, in the sense that the dimension of a subset is no larger than the dimension of
the entire metric.

Now let us discuss each of the four problems in more detail.

Low-stretch routing schemes. A routing schemeon a network is a distributed algorithm that provides
routing of packets from any node to any other node. The underlying connectivity of the network is expressed
by a weighted graph, where weights represent delays on edges. Every nodeu is assigned arouting labeland
a routing table. All routing decisions are local in the sense that they are based on the routing table and the
packet header, which includes the label of a target node.

Formally, a routing scheme on a familyG of graphs consists of the following components:

(a) for eachG ∈ G, an assignment of routing labels and routing tables to the nodes ofG;

(b) an algorithm that inputs a routing table of the current node, and a packet header, and outputs the next
hop for this packet; the next hop must be an edge inG, adjacent to the current node.

(c) an algorithm that inputs the routing table of nodeu and the routing label of some other nodev, and
outputs the packet header such that the packet reachesv starting fromu.

The algorithms in (b) and (c) must be polynomial-time computable (with respect to the input length). By a
slight abuse of notation, we can talk about a routing scheme on a particular graphG ∈ G once the underlying
family G of graphs is clear. Such routing scheme consists of routing labels, routing tables, and the algorithms
in (b) and (c).3

Let duv be the length of the shortestuv-path inG. Say auv-path hasstretchβ if its d-length is at most
βduv . A routing scheme onG has stretchβ if for any source-target pair the packet follows aβ-stretch path.
For a given stretch we try to minimize two parameters: storage (the maximal size of a routing table), and
communication (the maximal size of a packet header).

In a trivial stretch-1 routing scheme, each node stores full routing table of the all-pairs shortest paths
algorithm. However, this routing table takes upΩ(n logn) bits, which does not scale well withn. Compact
low-stretch routing schemes have been introduced in Peleg and Upfal [47], and explored in a number of

2Thegrid dimensionof a metric is the smallestα such that for any ballB the cardinality ofB is at most2α times the cardinality
of a ball with the same center and half the radius. Note that ak-dimensional grid has this property forα = k + O(1).

3A technicality: these algorithms must be the same for all graphs inG, so that one could not encode all ofG inside the algorithm.
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routing table size, bits packet header size, bits
Talwar [50] O( 1

αδ )α(log2+α ∆) O(α log∆)
Chan et al. [14] (α

δ )O(α)(log∆)(logDout) O(α log 1
δ )(log∆)

Theorem 2.1 (1
δ )O(α)(log∆)(logDout) same as above

Theorem 4.1 (1
δ )O(α)(log∆)(logn)(log log∆) 2O(α)(logn) log(1

δ log∆)
Follow-up work [3] (1

δ )O(α)(log∆)(logn) dlogne
(1

δ )O(α)(log4 n) 2O(α)(log3 n)
doubling dimensionα, aspect ratio∆, out-degreeDout

Table 1:(1 + δ)-stretch routing schemes for doubling graphs.

subsequent papers (see [23, 46] for a survey). In particular, for any integerk ≥ 2 there exists a(4k − 5)-
stretch routing scheme on weighted graphs witho(k log2 n)-bit packet headers and̃O(n1/k)-bit routing
tables [52, 51]; this trade-off between the stretch and the size of routing tables is essentially optimal [47].
Moreover, there is no routing scheme on weighted graphs with stretch less than 3 ando(n)-bit routing
tables [21].

OUR CONTRIBUTIONS: We focus on routing schemes for weighted undirected graphs that induce dou-
bling metrics (for simplicity, let’s call themdoubling graphs). In this setting Talwar [50] has achieved
compact(1 + δ)-stretch routing schemes, for any givenδ > 0; the routing table size in his result has been
improved by Chan et al. [14]. Using rings of neighbors, we re-derive the result in [14] via the construction
and proof of correctness that are significantly shorter and simpler than the ones in [14]; our guarantees (The-
orem 2.1) are slightly improved, too. Moreover, we can give areally simple derivation (Theorem 4.1) if we
use our result on distance labeling and allow an extra(logn) factor in the routing table size. The quanti-
tative results are summarized in Table 1. All these results extend to a related model ofrouting schemes on
metrics,4 with poly-logarithmic out-degrees; see Section 4.1 for more details.

We note that the above guarantees are unsatisfactory if the aspect ratio∆ (the largest distance divided
by the smallest distance) is very large, e.g.∆ = 2n. We wish to alleviate the dependency on∆; we do it by
replacing the(log∆) factor with (logn)(log log∆). The first step in this direction is Theorem 4.1, where
the improvement is for packet headers only. Furthermore, in Section 4 we improve both packet headers
and routing tables for routing schemes on metrics, and also (Theorem 4.2) for routing schemes on weighted
graphs that contain near-shortest paths with small hop-counts; the latter property is, intuitively, a natural
property of a ”good” network topology.

FOLLOW-UP WORK. Following the publication of the conference version of this paper, and building
on our techniques, Abraham et al. [3] further alleviate the dependency on the aspect ratio∆ for routing
schemes on graphs (see Table 1). In particular, one of their results essentially improves the packet header
size in Theorem 4.1 todlogne. They also provide an extension where they get rid of the dependence on∆
altogether, at the cost of extra poly-log(n) factors in both routing table size and packet header size. This
result elaborates on our Theorem 4.2, eliminating the requirement of near-shortest paths with small hop-
counts. Abraham et al. [3] also refine our results on doubling metrics, see Section 4 for further details.

Related work on routing schemes. An important version of routing schemes isname-independent rout-
ing [11, 13], where the routing destination is specified only in terms of its uniquedlogne-bit identifier that

4A routing scheme on a metric(V, d) is a routing scheme on a directed graph onG = (V, E) such that for any edgeuv ∈ E,
the weight of this edge isduv. The crucial point here is that we are free to choose the edge setE (which is, essentially, an overlay
network). The out-degree ofE becomes another parameter to be optimized.
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is given as an input and cannot be changed by our construction. Currently the best known results for ar-
bitrary weighted graphs are: stretchO(k) with Õ(n1/k log∆)-bit tables [4], and stretch 3 with̃O(

√
n)-bit

tables [6]; both routing schemes use poly-log packet headers.
For weighted graphs that induce doubling metrics, the extra restriction of name-independence results in

more demanding storage requirements:(1+δ)-stretch routing witho(n)-bit routing tables is no longer possi-
ble for anyδ < 2 [3]. However, thereis a routing scheme withO(1)-stretch and polylog storage/headers [3].
Moreover, for anyδ > 0 there exists a(1 + δ)-stretch routing scheme on low-dimensionalEuclideanmet-
rics [7], also with polylog storage and headers, which is ’almost’ name-independent (node labels include
Euclidean coordinates).

A number of results on name-independent routing has focused on the case of bounded grid dimension
(see the intro to [27] for a short survey). The best current results [9, 8] achieve(1 + δ)-stretch with poly-log
storage/headers for routing on metrics and on graphs, respectively.

Searchable small-world networks. The small-world networks have been an active topic in many branches
of social and natural sciences. The ’small-world phenomenon’, also known as the ’six degrees of separa-
tion’, has been discovered in a seminal work of Milgram [44] and recently confirmed by Dodds et al. [15].
Motivated by Watts and Strogatz [54], Kleinberg [30, 29] has articulated another striking aspect of ’small
worlds’: that a greedy routing algorithm can find short paths to most targets using only local information.
Kleinberg went on to suggest several mathematical models where this happens [30, 31]. In particular, he
considered a constant-dimensional grid and proved that if every node chooses a constant number of long-
range contacts from a fairly natural probability distribution, then in expectation a greedy routing algorithm
findsO(log2 n)-hop paths for every query. The follow-up work (e.g. [37, 41, 40, 18, 42]) has focused
on small worlds on hierarchies and grid-like graphs, with versions of the basic greedy routing from [30].
This line of work has also found applications in the design of peer-to-peer systems (e.g. [39]). For more
background on small-world networks, refer to a very recent survey by Kleinberg [32].

The following design space emerges. We are given a notion of distance such that every node can locally
compute its distance to any given node (e.g. we may assume that node names include informative labels that
enable such computation). For this distance function, we need to provide an overlay network of long-range
contacts, and specify a routing algorithm which finds short paths to every target using only local information
about the contacts. The long-range contacts are usually given as a probability distribution which has the
following informal property: if from the point of view of a given nodeu two nodesv andw are similar,
then these two nodes should have a similar probability of being chosen as contacts ofu. We would like to
minimize the number of long-range contacts (i.e. the out-degree), and the path length.

Most of the previous work has considered the distance induced by a given (possibly directed) unweighted
graph of short-range contacts; note that one could start from this notion of distance and recover the short-
range contacts as all nodes within distance 1. Abstracting away the useful small-world properties of grids
and hierarchies, Kleinberg [31] introduced searchable small worlds on distance functions induced by certain
families of node sets. Here we take a somewhat different (and perhaps more basic) approach: we consider
distance functions that are metrics, and we wish to extend Kleinberg’s small worlds beyond those induced
by hierarchies and grid-like graphs. Namely, we extend them to doubling metrics.

We use routing algorithms such that the next hop is chosen by only looking at the current node’s contacts,
which is a desirable property since (intuitively) this is the minimal amount of information a routing algorithm
can be allowed to use. More formally, the next hop is chosen among the current node’s contacts, by looking
only at distances to these contacts and distances from these contacts to the target. Let us call such routing
algorithmsstrongly local. Thegreedyalgorithm used in [30] is a strongly local routing algorithm that just
chooses the contact that is closest to the target.

OUR CONTRIBUTIONS: We extend Kleinberg’s model to doubling metrics. While it is relatively straight-
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forward to achieve out-degreeO(logn)(log∆) andO(log∆)-hop paths, where∆ is the aspect ratio, it is
quite non-trivial to handle the case of super-polynomial∆. To remedy this, we obtainO(logn)-hop paths
even if∆ is exponential inn. In our first result the out-degree is (still) proportional tolog(∆), suggesting
that it is a natural lower bound since we need some long-range contacts for each one of the(log∆) dis-
tance scales. However, our second (and much more complicated) result breaks this barrier, achieving the
out-degreeO(log2 n)

√
log ∆. This result uses a routing algorithm that jumps ’sideways’ whenever it cannot

make good progress towards the target. To the best of our knowledge this is the first small-world model with
a non-greedystrongly local routing algorithm.

We note in passing that our results trivially extend to a setting where we are given a graph of local
contacts, and we add exactly one long-range contact per node; see Section 5.3 for further discussion.

Related work on small-world networks. In the literature on searchable small-world networks several
non-greedy routing algorithms have been suggested. In Manku at al. [40] the algorithm looks at all contacts
of contacts of the current node, and (greedily) forwards the message to one that is closest to the target. In
Martel and Nguyen [41] and Fraigniaud et al. [18] the algorithm looks at several nodes that are closest to
the current nodeu, looks at their contacts, among these contacts chooses one (let us call itv) that is closest
to the target, and tries to deliver the message tov by forwarding it to one of the contacts ofu. Finally, in
Lebhar and Schabanel [37] the algorithm has access to contacts of the previously visited nodes. Note that
all these non-greedy algorithms arenot strongly local.

Following the publication of the conference version of this paper, we became aware that concurrently
with our work, two other papers have independently considered extending searchable small worlds to
broader classes of graphs. Specifically, Duchon et al. [16] consider graphs of low grid dimension, and
Fraigniaud [17] work on graphs of bounded treewidth. An even more recent paper [2] considers weighted
minor-excluding graphs. Furthermore, Fraigniaud et al. [19] have recently provided a complementary im-
possibility result for searchable small-worlds on an infinite family of graphs of large doubling dimension.5

Distance labeling. In a distance labeling scheme (DLS), each node is assigned a short label so that the
distance between any two nodes can be efficiently approximated just by looking at their labels. Formally, a
k-approximateDLS for a classM of metrics consists of a polynomial-time computable real-valued function
f(x, y) and, for each metricM ∈ M, an assignment of labelsLu to nodesu of M such that for each node
pair uv, f(Lu, Lv) is within factor ofk of the trueuv-distance. By a slight abuse of notation, we can talk
about aDLS on a particular metricM ∈ M once the underlying familyM of metrics is clear. Givenk, we
would like to minimize the maximal bit-length of node labels.

In a trivial DLS, the label of nodeu would encode the distances to all other nodes, taking upO(n log∆)
bits. ExactDLS are known for two families of unweighted graphs: for bounded-genus graphs and for
graphs with constant-size separators, withÕ(

√
n)- andO(log2 n)-bit labels, respectively [24]. For weighted

graphs, approximateDLS with sublinear label length have been introduced by Peleg [45], see [23, 46] for
a survey. In particular, for any integerk there exists a(2k − 1)-approximateDLS on weighted graphs with
Õ(n1/k log∆)-bit labels [52]; a complementary lower bound ofΩ̃(n1/k) is given in [52, 22].

Major improvements are possible for doubling metrics. For anyδ ∈ (0, 1
2) Gupta et al. [25] provided

an embedding intò∞ which translates into a(1+ δ)-approximateDLS with (1
δ )O(α)(logn)(log∆) bits per

label, whereα is the doubling dimension and∆ is the aspect ratio. Using a different technique, Talwar [50]
improved this by a factor of(logn), and gave a lower bound of(1

δ )Ω(α). Slivkins [49] observed that since
the aspect ratio∆ can be arbitrarily large with respect ton, it is desirable to alleviate the dependency on∆;

5The cited result is for the ’one long-range contact per node’ setting; note that it trivially extends to our setting, too.
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Thm 5.1a: out-deg O(log ∆)

Thm 5.1b: out-deg O(log ∆)1/2

basic idea: rings of neighbors

Thm 2.1: basic routing scheme

Thm 4.1: simple
routing scheme

Thm 4.2: extension to large ∆

Thm 3.4: distance labeling

Thm 3.2: triangulation simple: O(log ∆)-hop paths

black box

routing schemes small-world networks

Figure 1: Relations between our results: arrows indicate the flow of ideas.

he gave a construction with(1
δ )O(α)(log2 n)(logn + log log∆) bits per label.6 This has been improved by

a factor of(logn) in Mendel and Har-Peled [43]; using a construction from [24], for anyδ ≤ .9 and any
∆ ≥ nlog n they derived a lower bound ofΩ(logn)(log log∆) bits per label.7

OUR CONTRIBUTIONS: We obtain the result in [43] as a simple corollary of our result on triangulation.
We improve it to(1

δ )O(α)(logn)(log log ∆) bits per label using the ideas from our first result on routing
schemes. For any∆ ≥ nlog n and boundedα, δ this is optimal up to constant factors.

Triangulation. Motivated by systems for estimating Internet latencies via the triangle inequality [28, 26,
34, 20], Kleinberg et al. [33] introduced the notion oftriangulation on a metric. Triangulation [33, 49] of
orderk is defined as a labeling of the nodes such that a label of a given nodeu consists of distances fromu
to each node in abeacon setSu of at mostk other nodes. Then given the labels of two nodesu andv, one
can use the triangle inequality to upper-bound theuv-distance byD+

uv = min(dub + dvb), and lower-bound
it byD−

uv = max |dub−dvb|, where themax andmin are taken over allb ∈ Su∩Sv . An (ε, δ)-triangulation
is a triangulation such thatD+

uv/D
−
uv ≤ 1 + δ for all but anε-fraction of node pairsuv. In particular, this

inequality holds whenever there exists some nodeb ∈ Su ∩ Sv that lies within distanceδduv/3 from u or
v. Note that if it holds then either bound can be seen as a(1 + δ)-approximate estimate on theuv-distance,
and, moreover, these bounds provide a ”quality certificate” for the estimate.

Distributed algorithms for constructing low-order(ε, δ)-triangulations on doubling metrics have been
developed in [33, 49]; in these triangulations all nodes have the same beacon set. An obvious flaw in these
results is that they provide no guarantees for a significant fraction of node pairs. Accordingly, Slivkins [49]
considered(0, δ)-triangulations and gave a construction (with distinct beacon sets) that achieves order
(1

δ )O(α)(log2 n), whereα is the doubling dimension.
OUR CONTRIBUTION: We construct a(0, δ)-triangulation of order(1

δ )O(α)(logn). Using the upper
boundD+ as a distance estimate, we recover the result in [43] on distance labeling.

6The conference version of [49] erroneously claimed( 1
δ )O(α)(log2 n)(log log ∆)-bit labels.

7This is what they actually prove, although they only claim their result for any∆ ≥ 4n.
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The unifying technique. In this paper we present results on four related, yet different problems. These
results are unified by a common technique: rings of neighbors. Moreover, these results are intertwined, in
the sense that one result elaborates ideas pioneered in another. This flow of ideas is represented in Figure 1.
Note that both Theorem 4.1 and Theorem 4.2 build on Theorem 3.4; however, Theorem 4.1 just uses it
as a black box, whereas Theorem 4.2 imports its techniques and elaborates on them. In fact, the proof of
Theorem 4.2 is the culmination of our techniques for routing schemes, triangulation and distance labeling.

Recall that inrings of neighbors, the i-ring neighbors of a given nodeu lie in a ballBi aroundu,
for some increasing sequence of balls{Bi}; the radii of these balls and the distribution of neighbors in a
given ring depend on the specific application. One trick that has been particularly useful in our proofs is to
combine the following two collections of rings of neighbors. In the first collection, the cardinalities of the
ballsBi grow exponentially, and thei-ring neighbors are distributed uniformly on the node set ofBi. In
the second collection, theradii of theBi’s grow exponentially, and (if one draws on the analogy between
doubling metrics and low-dimensional Euclidean metrics) thei-ring neighbors are distributed uniformly in
the space regionthat corresponds toBi. For some applications, e.g. in Section 2, the second collection
alone suffices.

In a more abstract view, a collection of rings of neighbors is a tractable representation for the fine
structure of the underlying graph. The idea of using a tractable structure-preserving representation as a
unifying technique for various problems on graphs is not new; several representations have been suggested
in the literature, e.g. [12, 11] for general graphs and [50, 43] for doubling graphs. Our representation seems
to be particularly suitable to the problems that we consider in this paper.

Roadmap of the paper. We start with a simple proof of the main result in Chan et al. [14] on routing
schemes. In Section 3 we present our results on triangulation and distance labeling. We return to routing
schemes in Section 4; in particular, we consider routing schemes on metrics in Section 4.1. In Section 5
we discuss our results on searchable small-world networks. We conclude and discuss open questions in
Section 6.

1.1 Preliminaries

Recall that the defining property of a doubling metric is that any set of diameterd can be covered by a
constant number of sets of diameter at mostd/2. We will use this property via a more concrete corollary
where we cover with a constant number ofballs:

Lemma 1.1. In a metric of doubling dimensionα, any set of diameterd can be covered by2αk balls of
radiusd/2k, for any integerk ≥ 1. The desired cover can be efficiently constructed.

Proof. Let α be the doubling dimension. Consider a setS of diameterd and apply the definition of the
doubling dimension recursivelyk times. It follows thatS can be covered by2αk sets of diameter at most
d/2k. Pick any one point from each of these sets. ThenS can be covered with2αk balls of radiusd/2k

centered in the selected points. Moreover, it follows that the desired cover can be efficiently constructed by
a simple greedy algorithm: select any nodeu ∈ S, add the ball aroundu to the cover, delete fromS all
nodes within distanced/2k from u, repeat untilS is empty.

Throughout the paper, we denote the underlying metric byd, so thatduv is the distance between nodes
u andv. LetBu(r) be the closed ball of radiusr aroundu. Let ru(ε) be the radius of the smallest closed
ball aroundu that contains at leastεn nodes. Fork ∈ N define[k] as the set{0, 1 . . .k − 1}. Define an
enumerationof a finite setS as a bijectionS → [k], wherek = |S|.

Throughout the paper,n denotes the number of nodes,α denotes the doubling dimension, and∆ denotes
theaspect ratio, which is the largest distance divided by the smallest distance. Note that∆ can be arbitrarily

7



large with respect ton andα. For instance, consider a 3-node metric space{1, 2,∆}, equipped with the
natural distance functiond(x, y) = |x− y|. However, it is easy to bound the aspect ratio from below:

Lemma 1.2. 1 + log∆ ≥ 1
α logn, for any metric with aspect ratio∆ and doubling dimensionα.

Proof. For simplicity let us divide all distances by the smallest distance. Then the smallest distance is 1,
and the diameter is∆. Recursively applying the definition of the doubling dimensionk times, it follows that
we can cover the metric with2αk sets of diameter at most∆/2k. Takingk = 1 + blog ∆c, we can cover the
metric with2αk sets of diameter less than 1. Each of these balls contains at most one node, so2αk ≥ n.

Say a measure iss-doubling if for any ball Bu(r) its measure is at mosts times larger than that of
Bu(r/2). Intuitively, a doubling measureµ is an assignment of weights to nodes that makes a metric look
growth-constrained; in particular, for then-nodeexponential line, a one-dimensional set{2i : i ∈ [n]},
we haveµ(2i) = 2i−n. For any finite doubling metric, a doubling measure exists and can be constructed
efficiently [53, 56, 43].8 Quantitatively, the following theorem holds:

Theorem 1.3 ([53, 56, 38, 43]).For any complete metric of doubling dimensionα there exists a2α-doubling
measure. If the metric is finite, such measure can be constructed efficiently, in timeO(2O(α)n logn).

For r > 0 anr-neton a metric is a setS such that any point of the metric is at distance at mostr from
S, and any two points inS are at distance at leastr. It is easy to see that for a finite metric such set exists
and can be constructed greedily, starting from any (possibly empty) set of points that are at distance at least
r from each other. It is often useful to considerr-nets in conjunction with doubling metrics, because of the
following simple and well-known fact (e.g. see [25]):

Lemma 1.4. Anyr-net has at most(4r′/r)α elements in any ball of radiusr′ ≥ r.

Proof. Let S be anr-net, and letB be a ball of radiusr′ ≥ r. Recursively applying the definition of
doubling dimension2 + blog r′/rc times, we coverB with at most(4r′/r)α sets of diameter at mostr/2.
Each of these sets contains at most one node ofS.

2 A low-stretch routing scheme for doubling metrics

In this section we’ll use rings of neighbors to derive a significantly shorter and simpler standalone proof of
the main result in Chan et al. [14]; the ideas from this proof will be used in the subsequent results.

Theorem 2.1. Consider a weighted graphG with out-degreeDout. Suppose its shortest-path metric has
doubling dimensionα and aspect ratio∆. Then for anyδ ∈ (0, 1

4) there is a(1 + δ)-stretch routing
scheme onG with O(α log 1

δ )(log∆)-bit packet headers and routing tables of(1
δ )O(α)(log∆)(logDout)

bits. Moreover, such routing scheme can be efficiently computed.

Proof. Let d be the shortest-path metric ofG. For eachj ∈ [log∆] let Gj be some∆/2j-net ond; let
rj = 4∆/δ2j and define thej-th ring of neighborsof nodeu as the setYuj = Bu(rj) ∩ Gj . Note that
by Lemma 1.4 each node has at mostK = (16/δ)α j-ring neighbors. The nodes in∪jYuj are called the
neighborsof u. Intuitively, we think thatu has a virtual link to each of its neighbors; note that these virtual
links arenot the physical links in the underlying connectivity graphG.

To connect the virtual links withG, for each neighborv the routing table ofu will contain thefirst-hop
pointer from u to v, which is, informally, the first edge of some shortestuv-path inG. We will define the
first-hop pointers formally later in the proof.

8Bibliographic note: the original existence result (for compact metrics) is due to [53]. The proof has been simplified by [56]
and extended to complete metrics in [38]. The algorithmic result builds on the construction from [56] and is due to [43].

8



Fix some nodet; let us think oft as a potential target node. For any givenj, by definition ofYtj there
exists aj-ring neighbor oft that lies within distance∆/2j from t; let us fix one such neighbor, call itftj .
Consider the sequence{ftj : j ∈ [log∆]}. The nodes in this sequence ”zoom” in ont asj increases. Let
us call this sequence thezooming sequenceof t.

A routing label oft will contain (a description of) its zooming sequence, which will be used to guide
the routing as follows. Suppose nodeu wants to send a packet to nodet. For somej nodeu has a neighbor
v = ftj ∈ Yuj that lies within distanceδdut from t. Essentially, nodeu wants to forward the packet tov;
herev becomes an intermediate target. In general,u does not have a direct link tov. Instead, the packet is
sent via the edgeuw which is the first-hop pointer tov. It will turn out thatv is also a neighbor ofw, so we
can again use the first-hop pointer tov, and so on. This way the packet gets delivered tov via a shortest path
using the first-hop pointers. Once the packet reachesv, a new intermediate target is selected. Eventually the
next intermediate target that we choose will be the actual targett.

We want a routing table of each nodeu to list all its neighbors. Similarly, we want a routing label
of each nodet to list its zooming sequence. The simplest way to achieve this is to assign each node a
global dlogne-bit identifier, and just list the corresponding identifiers. However, this leads to unwanted
extra(logn) factors in the storage requirements. Later in the proof we will show how to reduce storage
using shorter local identifiers. No matter what routing tables and routing labels we use, all we need from
them is summarized in the following claim (which is trivial if we use global identifiers).

For any two nodes(u, t), let us definejut be the maximumj such thatfti ∈ Yui for eachi ≤ j. Note
thatjut ≥ 0 sincef(t,0) ∈ G0 = Y(t,0). Let gutj be the first-hop pointer fromu to ftj , or null if u = ftj .

Claim 2.2. Given the routing table ofu and the routing label oft we can findjut andgutj for eachj ≤ jut.

Now using this claim we will define the routing algorithm and prove its correctness. Then we provide a
more space-efficient way to define routing tables and routing labels which will satisfy Claim 2.2 and lead to
the desired storage complexity.

We start with a very useful fact about the zooming sequences:ftj ∈ Yuj for a sufficiently smallj.

Claim 2.3. For any two nodes(u, t) and anyj ≤ dlog(∆/δdut)e we haveftj ∈ Yuj . In particular, for any
nodet and anyj ∈ [log∆] lettingf = f(t, j−1) we haveftj ∈ Yfj .
Proof: By definitionftj ∈ Gj . It is easy to check thatftj lies within distancerj from u, softj ∈ Yuj . The
claim applies tof = f(t, j−1) sincedft ≤ ∆/δ2j .

ROUTING ALGORITHM. For a packet with targett, the header consists of the routing label oft and the
numberj ∈ [log∆] such thatftj is the currentintermediate target; recall that the routing label oft contains
the description of its zooming sequence such that Claim 2.2 holds. Suppose nodeu wants to send a packet
to targett. Then using Claim 2.2 nodeu computesj = jut andgutj , choosesftj to be the intermediate
target, and sends the packet alonggutj , the first edge on some shortest path fromu to ftj .

Now suppose nodeu receives a packet with targett and intermediate targetftj . We will prove that in
this case we havejut ≥ j (see Claim 2.4b). First nodeu checks whether it is the target.9 If not, then via
Claim 2.2 it computesjut andgutj and, in particular, checks whether the intermediate target isu itself. If it
is not, i.e. ifgutj is not null, thenu just forwards the packet along the hopgutj .

If u is indeed the current intermediate target, then it needs to select a new one. Specifically, it resets
j = jut and selectsftj as the new intermediate target. Then it recomputesgutj and forwards the packet
along the corresponding hop. This completes the routing algorithm.

Claim 2.4. Here are some key properties of the routing algorithm:
(a) each intermediate target is at least1

δ times closer to the target than the previous one.

9Without loss of generality, the routing table and the routing label of every node contain its global identifier.
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Figure 2: Translation between host enumerations ofu andf = ftj .

(b) if nodev receives a packet with primary targett and intermediate targetftj thenjvt ≥ j.
(c) each packet follows a shortest path to each intermediate target.

Proof: (a) The next intermediate target is chosen when the current intermediate targetu is reached; it is
defined asftj such thatj = jut. By Claim 2.3j ≥ dlog(∆/δdut)e, softj lies within distanceδdut from t.

(b) Let P be this packet. We will use induction on the path traversed byP . This path starts when some
nodeu0 choosesw = ftj as an intermediate target; then the current level is set toj(u0, t). For the induction
step, assume nodev receivesP from some nodeu such thatjut ≥ j; we need to show thatjvt ≥ j, too.

Indeed, note thatw ∈ Yuj := Bu(rj) ∩ Gj . Since the packet is forwarded along a shortestuw-path, we
havedvw < duw ≤ rj . It follows thatw ∈ Yvj . It remains to show thatfti ∈ Yui for everyi < j. Indeed,
by the triangle inequalitydvt ≤ dvw + dwt < rj + ∆/2j. Consequently,dvt + ∆/2i ≤ ri. Therefore,
fti ∈ Bt(∆/2i) ⊂ Bv(ri).

(c) More precisely, we need to show that if nodeu sends a packetP with intermediate targetw = ftj

thenP reachesw and traverses path of total lengthduw . This is because each nodex on the route ofP
forwards it alonggxtj , the first hop of some shortestxw-path.

Now it is straightforward to prove correctness of the routing algorithm:

Claim 2.5. Every packet reaches its target and follows a path of stretch1 + O(δ).

Proof. Consider a packet sent by nodeu to targett. By Claim 2.4b the algorithm is well-defined. By
Claim 2.4c the packet reaches each intermediate target, and by Claim 2.4a it reachest. The distance from
the i-th intermediate target tot is at mostδidut by Claim 2.4a, so by Claim 2.4c the total path length is at
most

∑
i=0 δ

idut(1 + δ) ≤ dut(1 +O(δ)).

It remains to provide space-efficient routing tables and routing labels which satisfy Claim 2.2. Recall
that our goal is to replacedlogne-bits global node identifiers with shorter ’local’ identifiers.

For each nodeu, let us fix some enumerationϕuj(·) of each ringYuj ; let us call it thej-th host enumer-
ation of u. Recall that an enumeration of a setS is a bijectionS → [k], wherek = |S|. Since the ringsYu0

coincide for all nodesu, we can guarantee that so do the corresponding enumerationsϕu0.
Consider nodesf = ftj andw = f(t,j+1), for some targett and integerj. Note that by Claim 2.3 we

havew ∈ Y(f,j+1). Consider some nodeu such thatf ∈ Yuj andw ∈ Y(u,j+1). For such triangles(u, f, w)
(see Figure 2) we will provide a ’translation’ between host enumerations ofu andf , in the following sense:
knowingϕuj(f) andϕ(f,j+1)(w) we will be able to findϕ(u,j+1)(w).

Specifically, for eachj ∈ [log∆] the routing table of each nodeu will include the translation function
ζuj : [K] × [K] → [K] such that

ζuj

(
ϕuj(f), ϕ(f, j+1)(w)

)
= ϕ(u, j+1)(w) wheneverf ∈ Yuj andw ∈ Y(u, j+1) ∩ Y(f, j+1),

andnull otherwise. Clearly, each such function can be stored usingK2dlogKe bits. Recall thatK =
(16/δ)α is the maximal cardinality of each setYuj .
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Let us formally define the first-hop pointers. For each nodeu we fix some enumerationφu(·) of all
outgoing links in the underlying connectivity graphG. For two nodesuv, we define thefirst-hop pointer
fromu to v asφu(w) such thatuw is the first edge of some shortestuv-path; each such pointer can be stored
using onlydlogDoute bits.

For every nodet, let us encode its zooming sequence via host enumerations of its elements as follows:
let us definent0 = ϕt0(ft0), and for eachj ≥ 1 letntj = ϕfj(ftj), wheref = f(t,j−1). This is well-defined
because by Claim 2.3ftj is a j-ring neighbor of nodef . It is easy to see that the sequence{ntj} can be
stored usingO(logK)(log∆) bits.

DATA STRUCTURES: The routing tableof a given nodeu consists of the translation functionsζuj and
the first-hop pointers to all its neighbors. Therouting labelof a given nodet is the sequence{ntj}.

Having defined routing tables and routing labels, it remains to prove Claim 2.2. Here the difficulty is
that nodeu needs to ”decode” the zooming sequence oft, which is given indirectly: each element is given as
an index in the host enumeration of the previous element. The proof follows in a straightforward way from
our discussion of the translation functions. Indeed, letmj = ϕuj(ftj); this is well-defined for allj ≤ jut.
We will use induction onj to computemj for all j ≤ jut. Host enumerationsϕu0 coincide for all nodesu,
som0 = nu0. Suppose for somej < jut we knowmj and we’d like to computemj+1. Let f = ftj and
w = f(t,j+1). Since we knowmj = ϕuj(f) andntj = ϕfj(w), we can findmj+1 = ϕ(u,j+1)(w) using the
translation functionζuj . We iterate the above procedure while we can, i.e., whilew ∈ Y(u,j+1). We stop
exactly atj = jut. This completes the proof of Claim 2.2 and Theorem 2.1.

3 Triangulation and distance labeling schemes

We start with the result on triangulation, then we elaborate it using the ideas from the previous section and
achieve an optimal(1 + δ)-approximate distance labeling scheme. We use the following lemma which is
implicit (but never articulated) in Slivkins [49] (see Appendix A for a self-contained proof).

Lemma 3.1. Consider a finite metric of doubling dimensionα, equipped with a probability measureµ. Let
ru(ε) be the radius of the smallest ball aroundu that has measureε. Then for anyε > 0 there exists an
(ε, µ)-packing: a familyF of disjoint balls, of measure at leastε/2O(α) each, such that for any nodeu the
ball Bu[6ru(ε)] contains some ball fromF . Moreover, suchF can be efficiently computed.

It is easy to see that ifµ is a doubling measure then for every nodeu this (ε, µ)-packingF has the two
useful local properties of anr-net,r = 6ru(ε): firstly, the ballBu(r) contains at least one element ofF ,
and secondly, for anyk the ballBu(kr) contains at mostkO(α) elements ofF . The notion of(ε, µ)-packing
allows us to state these properties in terms of the underlying doubling measure, and, moreover, to generalize
them to arbitrary probability measures. In fact, we will use(ε, µ)-packings such thatµ is the normalized
counting measureµ(S) = |S|/n.

Theorem 3.2. For any δ ∈ (0, 1
2) any metric has a(0, δ)-triangulation of order(1

δ )O(α) logn, whereα is
the doubling dimension. Moreover, such triangulation can be efficiently computed.

Proof. The label of every nodeuwill consist of distances to a subset of nodes which we call theneighborsof
u. These neighbors will be partitioned into two types of rings: there will beXi-neighborsandYi-neighbors,
i ∈ [logn]. All Xi-neighbors and allYi-neighbors ofu will be contained in the open ballsB(u,i−1) and
Bu(12rui/δ), respectively, whererui = ru(2−i) andBui = Bu(rui). This is the construction:

• For eachi ∈ [logn] let Fi be a(2−i, µ)-packing guaranteed by Lemma 3.1, whereµ is the counting
probability measure. Fix one pointhB ∈ B for every ballB ∈ Fi. Define theXi-neighbors ofu as
all nodeshB such thatB ⊂ B(u,i−1).
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• Let us greedily construct a sequence of nestedr-netsGdlog∆e ⊂ . . . ⊂ G1 ⊂ G0, whereGj is a2j-net
for eachj ∈ [log∆]. Then for eachi ∈ [logn] let us define theYi-neighbors ofu as all nodes in
Bu(12rui/δ) that lie inGj such thatj = max(0, blog( δ

4 rui)c).

The above construction is efficiently computable since so are(2−i, µ)-packings and the nested2j-nets.
Let’s bound the number of neighbors. Fix nodeu. Since each ballB(u,i−1) contains at most2O(α)

ballsB ∈ Fi, there are at most2O(α) Xi-neighbors for eachi. By Lemma 1.4 there are at most(1/δ)O(α)

Yi-neighbors. It remains to prove that our construction is indeed a(0, δ)-triangulation. First we need a basic
fact about the radiirui:

Claim 3.3. For each node pairuv and anyi ∈ [logn] we have|rui − rvi| ≤ duv.
Proof: SinceBv(rvi) ⊂ Bu(duv + rvi), the latter ball contains at leastn/2i nodes, so it follows that
rui ≤ duv + rvi. Similarly, sinceBui ⊂ Bv(duv + rui) it follows thatrvi ≤ duv + rui.

Fix a node pairuv and letd = duv . We need to show that a ball of radiusδd around eitheru or v
contains a common neighbor of bothu andv. Suppose there is no such node. Letr = (1 + δ)d and choose
i such thatrui ≤ r+ d ≤ r(u,i−1). We choosei with respect tou, but by Claim 3.3 this yields some bounds
on rvj ’s as well; specifically,r(v,i−1) ≥ r andrvi ≤ r+ 2d.

First we make use of theXi-neighbors. The ballBv(6rvi) contains someB ∈ Fi, so in particular it
contains some nodew = hB . If 6rvi ≤ δd thenBv(6rvi) is contained in bothB(u,i−1) andB(v,i−1), hence
nodew is anXi-neighbor ofu andv, contradiction. Similarly,Bu(6rui) contains some ballB ∈ Fi, so if
6rui < δd then the nodew = hB is anXi-neighbor ofu andv, contradiction. Therefore lettingx = δd/6
we havex ≤ rui ≤ r + d andx < rvi ≤ r + 2d. We will use (all of) these four conditions to show that the
Yi-neighbors give us the desired common neighbor.

Indeed, consider the ballB = Bv(δd) and letj = blog(δd)c. Then there exists a nodew ∈ Gj ∩ B.
Now sincerui ≥ x it follows thatB ⊂ Bu(12rui/δ) andj ≤ log(6rui); moreover,j ≥ blog(δrui/4)c
sincerui ≤ r + d. Therefore by definitionw is aYi-neighbor ofu. Similarly, w is aYi-neighbor ofv,
contradiction.10 Theorem proved.

Our (0, δ)-triangulation can be extended to a(1 + δ)-approximate distance labeling scheme where
each label consists of[O(1

δ )]O(α)(logn)(logn + log log∆) bits, matching the result of Mendel and Har-
Peled [43]. Indeed, we assign each nodeu a uniquedlogne-bit identifier ID(u) and store each neighboru
of v as a pair (ID(u), duv). We use the upper boundD+ for the distance estimate, so it suffices to store
duv as aO(log 1

δ )-bit mantissa andO(log log∆)-bit exponent. This is because if two numbersx′, y′ are
(1 + δ)-approximations of the true valuesx, y, then the sumx′ + y′ is (1 + δ)-approximation ofx+ y.11

Extending a result from [24], Mendel and Har-Peled [43] constructed a family of doubling metrics for
which any 1.9-approximate distance labeling scheme needs

Ω(logn)(log log ∆− log logn) (1)

bits per label. This isΩ(logn)(log log ∆) as long as∆ ≥ nlogc n for any constantc > 0. Their construc-
tion works for infinitely manyn and for (essentially) a full range of possible values of the aspect ratio∆.
Specifically, it works for some∆ in every interval[(n/2)M ; nM ] such thatM ≥ 2 is an integer.

Our next result shows that we can elaborate our distance labeling scheme, getting rid of thedlogne-
bit node identifiers and achievingOα,δ(logn)(log log ∆)-bit labels. This is an improvement whenever
log log ∆ = o(logn). Moreover, for any∆ ≥ nlog n and fixedα, δ we match the lower bound (1) up
to constant factors.

10Note that similarly we can also prove thatu andv have a commonYi-neighbor in the ballBu(δd).
11Note that the differencex′ − y′ is not necessarily a good approximation forx − y, so we cannot use the lower boundD−.
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Theorem 3.4. For any δ ∈ (0, 1
2) any metric has a(1 + δ)-approximate distance labeling scheme where

each label consists of[O(1
δ )]O(α)(logn)(log log∆) bits, whereα is the doubling dimension and∆ is the

aspect ratio. Moreover, such scheme can be efficiently computed.

Proof Sketch.We will elaborate the construction in the proof Theorem 3.2 using the ideas from the proof of
Theorem 2.1. Specifically, we will use the zooming sequences and the host enumeration technique.

Keep the notation from the proof of Theorem 3.2. Recall that for eachj ∈ [log∆] we fix some2j-net
Gj . For each nodeu and eachi ∈ [logn] fix a nodefui ∈ Gl, l = blog(rui/4)c, that lies within distance
rui/4 from u. Such node is aYi-neighbor ofu by definition of theYi-neighbors; it is possible thatfui = u.
Call the sequence{fui : i ∈ [logn]} a zooming sequenceof u, and denote itfu. Moreover, for each nodeu
fix some enumerationϕu(·) of all its neighbors; we call it thehost enumerationof u.

From the proof of Theorem 3.2 we know that for any given node pairuv there exists a nodew0 within
distanceδduv from u or v such thatw0 is a common neighbor ofu andv; recall that distances fromw0 to u
andv give us a desired estimate. However, we know suchw0 exists, it is non-trivial to identify it since we
do not have global node identifiers. In our context, toidentifya common neighborw of u andv means to
findϕu(w) andϕv(w).

Supposew0 is within distanceδduv from v; then, essentially, we identify it by zeroing in onv via the
sequencefv. We will be able to identify, sequentially, allfvi from i = 0 to somei0 such thatf = f(v, i0)

lies ”reasonably close” tov; eachfvi will help us identifyf(v,i+1). Thenf will help us identifyw0.
The problem is that usingdlogne bits to identify the elements of a zooming sequence ofv is again too

expensive. Moreover,f(v,i+1) might not be a neighbor offvi, andw0 might not be a neighbor off , so
we cannot quite use the host enumeration technique the way it is used to prove Theorem 2.1. Instead, for
every node we will define another set of nodes calledvirtual neighborsin such a way that eachf(v,i+1)

is a virtual neighbor offvi, andw0 is a virtual neighbor off . These virtual neighbors are used only to
define ”pointers” between consecutive elements in a zooming sequence: for eachi, f(v,i+1) is given only a
pointer fromfvi, namely as an index in some fixed enumeration of virtual neighbors offvi (which we call a
virtual enumerationof fvi). If every node has at mostN virtual neighbors, then each such pointer uses only
dlogNe bits. The crux of the proof is to define a sufficiently small set of virtual neighbors with the desired
properties. We will actually haveN = Oα,δ(logn) log(∆). 12 To translate virtual enumerations into host
enumerations, we define a translation function similar to the one in the proof of Theorem 2.1.

In the remainder of this section we give the full proof of Theorem 3.4. Keep the notation from the
proof of Theorem 3.2. LetXui andYui denote the sets ofXi- andYi-neighbors ofu, respectively; let
Xu = ∪iXui andYu = ∪iYui. Recall that for eachj ∈ [log∆] we fix some2j-netGj . For each nodeu and
eachi ∈ [logn] fix a nodefui ∈ Gl, l = blog(rui/4)c, that lies within distancerui/4 from u. Such node
lies inYui by definition of theYi-neighbors; it is possible thatfui = u. Call the sequence{fui : i ∈ [logn]}
a zooming sequence, and denote itfu.

For each nodeu we define the sets

Zuj = Bu(2j) ∩ Gl, wherel = max(0, blog(2jδ/64)c).
Tu = Xu ∪ Zu ∪ [∪v∈XuZv ], whereZv = ∪log ∆

j=1 Zvj .

The elements ofTu will be called thevirtual neighborsof u. Note that the definition ofZuj is similar to that
of Yuj since both are defined in terms ofBu(r) andGl for some related values ofr andl; essentially,r and
2l determine the corresponding distance scale. The principal difference is that for theY -type neighbors this
distance scale isΘ(ruj), whereas for theZ-type neighbors it isΘ(2j).

12Note thatlog N = (log log n)+ (log log ∆)+Oα,δ(1). To avoid the(log log n) factor in the theorem statement, we note that
due to Lemma 1.2 it is subsumed by(log log ∆).

13



We will need the following crucial facts about virtual neighbors:

Claim 3.5. Fix nodeu andi ∈ [logn]; let f = f(u,i−1). Then
(a) if rui ≤ r(u, i−1)/12 then the nearestXi-neighbor ofu is anXi-neighbor off .

(b) if x ∈ [ δ
4rui; 6rui], x ≤ r(u, i−1)/2 then any nodew ∈ Gblogxc ∩ Bu(x) is a virtual neighbor off .

(c) in particular, nodefui is a virtual neighbor off .
Proof: Let r = r(u, i−1) andz = r(f, i−1).

For part (a), note that by Lemma 3.1 the nearestXi-neighbor ofu is some nodehB ∈ B ∈ Fi such that
the ballB is a subset ofBu(6rui). Then by Claim 3.3z− duf ≥ r− 2duf ≥ r/2 ≥ 6rui, and consequently
Bu(6rui) ⊂ Bu(z − duf ) ⊂ Bf (z). Part (a) follows by definition of theXi-neighbors.

For part (b), it is easy to check that ifrui > r/12 thenw ∈ Zfj for j = dlog(x+ duf )e. Now suppose
rui ≤ r/12 and letv be the nearestXi-neighbor ofu. Then by part (a)v is anXi-neighbor off . Moreover,
sinceduv ≤ 6rui it is easy to see thatw ∈ Zvj for j = dlog(duv + x)e. Sincew ∈ Zvj andv ∈ Xf , it
follows thatw ∈ Tu.

Finally, part (c) follows from (b) withx = rui/4.

Let us define the labels of nodes. For each nodeu, let us fix some enumerationϕu(·) of Xu ∪ Yu; call
it a host enumerationof u. Since any ballBu0 contains all nodes, the setsXu0 coincide for allu, and so
do the setsYu0. Therefore we can guarantee that all host enumerations coincide onXu0 ∪ Yu0. Fix some
enumerationψu(·) of each setTu; call it a virtual enumerationof u.

Fix nodeu and letN(i) = Xui ∪ Yui. Wheneverv ∈ N(i), the label ofu will include the translation
between the host enumeration ofu and the virtual enumeration ofv. Specifically, for eachi ∈ [logn] we
define the translation functionζui on pairs of integers, so that

ζui (ϕu(v), ψv(w)) = ϕu(w) wheneverv ∈ N(i) andw ∈ N(i+ 1)∩ Tv,

andnull otherwise.
The label ofuwill contain distances to all its neighbors (but not to its virtual neighbors). These distances

are stored as an array such that for eachj ∈ [|Xu ∪ Yu|], thej-th entry of this array is the distance fromu to
ϕu(j), thej-th element ofXu ∪ Yu. This distance is encoded as aO(log 1

δ )-bit mantissa andO(log log∆)-
bit exponent. Moreover, the label ofu will contain the mapsζui, for eachi ∈ [logn]; eachζui is represented
by an ordered set of triples(x, y, z) such thatζui(x, y) = z 6= null. Finally, the label ofu will contain the
zooming sequence ofu. Specifically, we storeϕu(fu0), and eachf(u,i+1) is represented by its number in
the virtual enumeration offui; recall that by Claim 3.5(c)f(u,i+1) is indeed a virtual neighbor offui. This
completes the definition of the node labels.

By the proof of Theorem 3.2, the cardinality of eachXui, Yui andZuj is upper-bounded by someK =
(1/δ)O(α). Therefore each node has at mostK logn neighbors, and each mapζui is represented by at most
K2 triples, each triple taking at most2 logK + log |Tu| bits to store. Since|Tu| < O(K2) log(n) log(∆),
the label size is within the claimed bounds.

Let’s show how to estimate distances from the labels. As in the proof of Theorem 3.2, fix a node pair
uv, denoted = duv, let r = (1 + δ)d and choosei such thatrui < r + d ≤ r(u,i−1). It follows that
r(v,i−1) ≥ r andrvi ≤ r+2d. We know that there exists a nodew0 within distanceδd from u or v such that
w0 is a common neighbor ofu andv; recall that distances fromw0 to u andv give us a desired estimate.
However, we know suchw0 exists, but we do not know how to identify it: this is non-trivial since we do not
have global node ids. In our context, toidentifya common neighborw of u andv means to findϕu(w) and
ϕv(w).

Essentially, ifw0 is close tov then we identify it by zeroing in via the sequence offvj ’s, and similarly
if it is close tou. First we need a basic claim aboutfvj ’s:
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Claim 3.6. For anyj ≤ i− 1 we havefuj ∈ Yvj andfvj ∈ Yuj .
Proof: Letw = fvj and note thatw ∈ Gl for l = blog(rvj/4)c. Sinceruj ≥ r + d, by Claim 3.3 it follows
thatruj/2 < rvj < 2ruj andduw ≤ d+rvj/4 ≤ 1.5ruj. Thereforew ∈ Yuj by definition ofYuj . Similarly,
we can show thatfuj ∈ Yvj .

In particular, for anyj ≤ i − 1 nodesfuj andfvj are common neighbors ofu andv. Moreover, we
canidentify them sequentially using the translation mapsζuj andζvj . For instance, it is easy to identifyfu0

since it is numbered the same in any host enumeration. Then, inductively, suppose that we have identified
somefuj , j ≤ i − 2 and we need to identifyf = f(u,j+1). Then by Claim 3.5(c)f is a virtual neighbor
of fuj ; note that at this point the only description off available to our algorithm is its index in the virtual
enumeration offuj . Given this index, we can findϕu(f) via the translation mapζuj and (by Claim 3.6) we
can findϕv(f) via the translation mapζvj .

Now, assumingw0 is closer tov than tou, we will identify it usingf = f(v,i−1). (If w0 is closer tou, we
can identify it similarly usingf(u,i−1).) Suppose thatw0 is a virtual neighbor off . Then we can just check
all virtual neighbors off that are common neighbors ofu andv. More precisely, we look at the translation
mapsζ(u, i−1) andζ(v, i−1) and check all entries of the form(f, ·); both maps have an entry(f, x) if and only
if nodeψf(x) is both a virtual neighbor off , and a common neighbor ofu andv.

It remains to show thatw0 is a virtual neighbor off . According to the proof of Theorem 3.2, we can
assume that either

(a) rvi ≤ δd/6 andw0 is the nearestXi-neighbor ofv, or
(b) rvi > δd/6 andw0 ∈ Gl such thatl = blog δdc.

In case (a)w0 ∈ Tf by Claim 3.5a sincer(v,i−1) > d ≥ 2δd; in case (b)w0 ∈ Tf by Claim 3.5(b) since
x = δd matches the conditions in the claim. This completes the proof of Theorem 3.4.

4 Low-stretch routing schemes, revisited

First we’ll use our result on distance labeling to obtain areally simple(1 + δ)-stretch routing scheme for
doubling graphs, then we merge the techniques from the previous two sections to obtain routing schemes
for doubling graphs with super-polynomial aspect ratio. We also discuss extensions torouting on metrics.

Theorem 4.1. In the setting of Theorem 2.1, for anyδ ∈ (0, 1) there exists a(1 + δ)-stretch routing
scheme with2O(α)(φ logn)-bit packet headers and routing tables of(1

δ )O(α)(φ logn)(log∆) bits, where
φ = log(1

δ log ∆). Such routing scheme can be efficiently computed.

Proof. For every nodeu, let ID(u) be its uniquedlogne-bit ID. Fix a 3/2-approximate distance labeling
scheme with2O(α)(logn)(log log∆)-bit labels, which is guaranteed by Theorem 3.4; for each nodeu let
Lu be the label ofu in this scheme, and letD(·, ·) be the non-contracting distance function on labels.
Without loss of generality assume thatLu containsID(u). Each packet header consists ofLt and ID(t′)
wheret is the target andt′ is theintermediate target. The routing table of nodeu contains labelsLv of some
nodesv which we callneighborsof u; we’ll specify them later. For each suchv we also store the first node
gu(v) on some shortest path tov.

The routing algorithm is simple. To send a packet to nodet, nodeu initiates the intermediate target to
u. Suppose nodeu creates or receives a packet with targett and intermediate targett′. If t′ = u then nodeu
selects a neighborv such thatD(Lv, Lt) is minimal, makesv the new intermediate target, and forwards the
packet togu(v). Else, as we’ll see,t′ is a neighbor ofu, so nodeu just forwards the packet togu(t′).

Let’s define the neighbors: for eachj ∈ [log∆] let Fj be some2j-net; letrj = 2j+2/δ andFj(u) =
Bu(rj) ∩ Fj . Elements ofFj(u) are calledj-level neighborsof u; by Lemma 1.4 each node has at most
[O(1

δ )]O(α) j-level neighbors for eachj.
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Now we can proceed with the proof of correctness. We claim that for any pairut of nodes, letting
d = dut, nodeu has a neighborv ∈ B = Bt(δd). Indeed, pickj such that2j ≤ δd < 2j+1. Then on
one handB contains some nodev ∈ Fj , and on the other handrj > 2d, soB ⊂ Bu(rj), sov is aj-level
neighbor ofu, claim proved. From the claim and the labeling scheme it follows thatD(Lt, Lv) ≤ 3

2 δd. So
when nodeu selects a new intermediate target for a packet with final targett, it selects a neighborv within
distance3

2 δd from t.
Suppose an intermediate targett′ for packetP has been set by the nodeu. Thent′ ∈ Fj(u) for some

j. We claim thatt′ ∈ Fj(v) for every nodev visited byP afteru and before reachingt′. Indeed, let’s use
induction: if t′ ∈ Fj(v) thenP goes fromv to w = gv(t′), sodwt′ < dvt′ ≤ rj , so t′ ∈ Fj(w), claim
proved.

Now Claim 2.4(c) holds: each packet follows a shortest path to each intermediate target. To reach the
i-th intermediate target,i ≥ 1, the packet traverses a path of length at mostdut(1 + 3

2 δ)δ
i−1. Therefore the

total path length is at mostdut[1 +O(δ)].

We note that the bounds in Theorem 2.1 are unsatisfactory for metrics with large aspect ratio, and an
extension that alleviates the dependency on∆ for weighted graphs that contain near-shortest paths with small
hop-counts; this property is, intuitively, a natural property of a ”good” network topology. For concreteness
we’ll state this result for an illustrative special case; so as not to disrupt the flow, the general case and the
full proof are deferred to Appendix B.

Theorem 4.2. Suppose the aspect ratio is at most2n and for someδ ∈ (0, 1) any two nodes in the input
graphG are connected by a(1 + δ)-stretch path with at mostk logn hops, wherek = (1

δ )O(α) andα is the
doubling dimension. Then there exists a(1 + δ)-stretch routing scheme onG withO(k log3 n)-bit routing
tables andO(k log2 n)-bit packet headers. Such routing scheme can be efficiently computed.

Proof Sketch.We will combine the ideas of Theorem 3.4 and Theorem 2.1, and add some new tricks. In
particular, we’ll use (i) the basic rings of neighbors, (ii) zooming sequences and intermediate targets, (iii) the
first-hop pointers, and (iv) host/virtual enumerations. We will use the rings, the zooming sequences, and the
enumerations as defined in Theorem 3.4. In fact, we’ll just use all definitions from the proof Theorem 3.4,
for the same value ofδ, including the sets ofXi- andYi-neighbors. We also need a uniquedlogne-bit
identifierID(u) for every nodeu.

The routing will havetwo modes. One is an elaboration of the routing in Theorem 2.1: we use interme-
diate targets that zoom in towards the true target. If at the current nodeu the intermediate target is not set,
we select a new intermediate targetw among the neighbors ofu, using the zooming sequenceft and other
data in the routing label oft. To save space in the packet header, thisw will be represented not by a global
id, but by its number in a virtual enumeration of somefti. Now suppose an intermediate targetw is set, and
the packet is at nodev. If w is a neighbor ofv and, moreover,v canidentify thisw (i.e. findϕv(w)), thenv
forwards the packet using the first-hop pointer tow.

Note that this routing algorithm might fail since it might not be possible to find a ’good’ new intermediate
target, or identify it at some intermediate nodev. However, the algorithm is set up so that this can happen
only if there is a large gap betweendvt and the largestrvi that lies below4

3dvt. Verifying this claim is the
crux of the proof of the theorem.

If the first routing mode fails, we enter thesecond routing mode, and we stay in this mode till we are
done. By Lemma 3.1 there exists a ballB ∈ Fi of cardinality at leastn/2i+O(α) such thatB ⊂ Bu(6rui).
Let w = hB be the node selected fromB in Theorem 3.2; without loss of generality say it is a center of
B. It is easy to see that the ballB′ = B(w, i−1) contains targett. The nodes inB will collectively store
the routes to all nodes inB′; specifically, each node inB will store full routes to2O(α) nodes inB′ so that
exactly one node inB is responsible for each node inB′. Moreover, the nodes inB will maintain a labeled
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out-degree routing table size, bits packet header size, bits
Chan et al. [14] (α

δ )O(α)(log∆) (α
δ )O(α)(φ log∆) O(α log 1

δ )(log∆)
Theorem 2.1 (1

δ )O(α)(log∆) (1
δ )O(α)(φ log∆) same as above

Theorem 4.1 same as above (1
δ )O(α)(φ log∆)(logn) 2O(α)(φ logn)

Theorem 4.2 (1
δ )O(α)(logn) (1

δ )O(α)(φ logn)(log logn) O(αφ logn)
Follow-up work [3] (1

δ )O(α)(logn) (1
δ )O(α)(log2 n) dlogne

doubling dimensionα, aspect ratio∆, andφ = log(1
δ log∆)

Table 2:(1 + δ)-stretch routing schemes for doubling metrics.

shortest-path treeTB rooted atw, such that givenID(t) it is possible to route fromw to the nodevt that
stores a path tot. Here it is crucial that we are free to choose the labels forTB and the mappingvt fromB′

toB any way we like. We will choose so that for a given link in the shortest-path tree it suffices to specify a
singlerangeof target ids for which a packet should take that link.

This is how the packet will reacht. First the nodew (which is a neighbor ofu) is designated as the
intermediate target, and the packet is routed tow via the first-hop pointers. Fromw the packet is routed to
vt via the shortest-path treeTB. Then nodevt writes the full route tot into the packet header and sends
the packet tot. More precisely,vt will store a(1 + δ)-approximate shortest path tot with k logn hops (the
existence of such a path is guaranteed by the theorem statement). Each hop in this path can be encoded
by dlogDoute ≤ dlogne bits, whereDout is the out-degree, so the entire path can be stored using at most
k log2 n bits.

This was the second routing mode; it is easy to see that it causes a detour of length at mostO(δdut).
Moreover, we’ll show that thetotal path length from source to target is within the claimed stretch1 + O(δ)
even if we switch to the second mode in the middle of a path to some intermediate target.

4.1 Routing schemes on metrics

Finally, we note that all our results on routing schemes on doubling graphs extend torouting on metrics. Here
we are given a metric(V, d), and we need to construct a routing scheme on some weighted directed graph
G = (V,E). The crucial point is that we are free to choose the (unweighted) set of edgesE; essentially,
it can be seen as an overlay network onV . The edge-weights are determined by the metric: for any edge
uv ∈ E, the weight of this edge isduv. In addition to the maximal size of a routing table and the maximum
size of a routing label, the out-degree ofE becomes another parameter to be optimized.

Extension to routing on metrics is almost trivial. In fact, in all our proofs we first construct a routing
scheme on a low-degree overlay network (which is, by definition, a routing scheme on a metric), and then
with some additional work adapt it to the underlying connectivity graph. The quantitative results are sum-
marized in Table 2; we omit the appropriate modifications (simplifications) of the proofs. Note that in this
setting Theorem 4.2 does not need any assumptions about low-stretch, low hop-count paths.13

FOLLOW-UP WORK: Following the publication of the conference version of this paper, Abraham et
al. [3] provided a fine-tuned version of Theorem 4.2, where they completely eliminate the dependence on
aspect ratio∆; see Table 2 for quantitative results.

13Recall that in the proof sketch of Theorem 4.2 nodevt stores a low-stretch, low hop-count path fromvt to targett. For routing
schemes on metrics, we no longer need such a path; instead, we can create a direct link fromvt to t.
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5 Searchable small-world networks

In this section we consider searchable small-world networks onmetrics. To the best of our knowledge, the
most general previous result in this direction is for metrics such that the growth rate of balls (defined as the
ratio |Bu(2r)|/|Bu(r)|) is both upper- and lower-bounded by constants that are stictly greater than 1; let us
call such metricsUL-constrained. This result can be easily achieved from Kleinberg’s original construction
for two-dimensional grids [30]. Here we extend small worlds to doubling metrics.

We will consider routing algorithms where the next hop is chosen among the current node’s contacts,
by looking only at distances to these contacts and distances from these contacts to the target. Recall from
Section 1 that we call such routing algorithmsstrongly local. A very natural routing algorithm is thegreedy
algorithm: select the contact that is closest to the target.

As searchable small-worlds onmetricshave not been previously studied explicitely, we need to give a
formal definition. For simplicity let us focus on the case when the routing algorithm is strongly local.

Definition 5.1. A small-world model on a metric(V, d) consists of the following two items:

• a distribution over directed graphs onV (from which the graph of contacts is sampled) such that the
out-links (contacts) of a given nodeu are chosen independently for different nodesu;

• a strongly local routing algorithm that, given the target, selects the next hop among the current node’s
contacts.

For a given graph of contacts, the routing algorithm recursively handles thequeriesof the form(u, t) where
u is the initial node andt is the target.

Let us define theout-degreeof a small-world model as the maximal possible out-degree of its graph of
contacts. For a given metric, we would like to balance two conflicting objectives: the out-degree and the
length of paths found by the routing algorithm.

We would like the distribution of contacts to have the following informal property: if from the point of
view of a given nodeu two nodesv andw are similar, then these two nodes should have a similar probability
of being chosen as contacts ofu. Indeed, in our constructions the probability that nodev is chosen as a long-
range contact of a nodeu depends only on the rank ofduv among distances fromu to all other nodes, and
the ratiosµ(v)/µ(Buj), whereµ is a doubling measure and{Buj : 0 ≤ j ≤ dlog∆e} are balls aroundu
with exponentially increasing radii. Here the doubling measure ofv quantifies how dense is the metric in
the vicinity of v; intuitively, we need to oversample nodes that lie in very sparse neighborhoods.

Now we can describe our results. Let∆ be the aspect ratio of the metric. While it is relatively straight-
forward to achieve out-degreeO(logn)(log∆) andO(log∆)-hop paths, it is quite non-trivial to handle the
case of super-polynomial aspect ratio. We obtainO(logn)-hop paths even if∆ is exponential inn. In our
first result the out-degree is (still) proportional tolog(∆), suggesting that it is a natural lower bound since
we need some long-range contacts for each one of the(log∆) distance scales. However, our second result
breaks this barrier. Moreover, in Section 5.2 we argue that for UL-constrained metrics our small worlds
essentially coincide with those induced by Kleinberg’sgroup structuresfrom [31].14

To break the above-mentionedO(log∆) barrier we need to use a non-greedy routing algorithm. Yet,
we can still make this algorithm strongly local, so that on each routing step we do not need to use any
extra information beyond the current node’s list of neighbors. To the best of our knowledge it is the first
non-greedy strongly local routing algorithm in the literature.

Let us state the main result of this section. Note that we upper-bound the actual (as opposed to expected)
hop counts, so that with high probability our upper bound is valid for all possible queries.

14The guarantees in [31] apply to UL-constrained metrics that are subsets of some`p space,p ≥ 1. However, the construction
itself is well-defined for any metric.
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Theorem 5.2. Letα be the doubling dimension, and let∆ be the aspect ratio.

(a) For any metric there is a small-world model with out-degree2O(α)(logn)(log∆) and a greedy routing
algorithm such that with high probability all queries complete inO(logn) hops.

(b) For any metric there is a small-world model with out-degree2O(α)(logn)2 (log∆)1/2 (log log∆) and
a strongly local routing algorithm such that w.h.p. all queries complete inO(logn) hops.

Proof Sketch.To be consistent with the earlier parts of the paper, let us use words ’contact’ and ’neighbor’
interchangeably. A relatively straightforward solution is to use(log∆) rings of neighbors so that the radii
of the rings grow exponentially, and the neighbors are distributed with respect to the doubling measure; let
us call these neighbors theY-type neighbors. It is easy to make sure that the greedy algorithm reduces the
distance by at least a factor of two at each step, so any query will take(log∆) steps to complete. However,
reducing the distance by a constant factor at each step does not suffice to guaranteeO(logn)-hop query
paths when the aspect ratio∆ is large.

Let us denoteBui = Bu(rui), whererui = ru(2−i). In other words,Bui is the smallest ball around
nodeu that contains at leastn/2i nodes, andrui is the radius of this ball. Lett be the target node, and let us
consider the annuliB(t, i−1) \Bti, indexed byi ∈ [logn]. Instead of trying to reduce the distance to targett

by a constant factor at each step, we will now focus on how quickly the routing algorithm gets us from one
such annulus to the next one. Specifically, to guaranteeO(logn)-hop query paths, we will need small-world
models with the following property:

(*) if the current nodeu in the routing path lies inside ballB(t, i−1) but outside ballBti, then we get inside
ballBti in at most a constant number of hops.

This property is non-trivial when the radiusrti is much smaller than the distance betweenu and the target.
To prove part (a) we keep the Y-type neighbors. It turns out that we satisfy property (*) w.h.p. if we

throw in another collection of rings of neighbors where the neighbors are distributed with respect to the
counting measure; let us call these neighbors theX-type neighbors. Specifically, we get fromu into the ball
Bti using onlytwohops; the one intermediate hop leads fromu to some node within distancedut/4 from t.

To prove part (b), however, using allY -neighbors is not an option since there are too many of them.
Instead, we will need toprune them. From part (a) it will follow that after we get within distancedut/4
from t, the next hop gets us insideBti. However,u might not have a neighbor that is sufficiently close tot.
To handle this case, we will need to use a non-greedy routing choice, specifically:

(**) if the current nodeu has no contacts within distancedut/4 from the target nodet, then we choose the
contactv that is farthest fromu subject to the constraintduv ≤ dut.

Intuitively, if we cannot make a sufficiently good progress towards the target, this is because the current
nodeu happens to be in a particularly ’bad’ neighborhood. We want the next hop to take us away from this
’bad’ neighborhood, and place us into a ’good’ neighborhood. This is why we want the next hop to take us
to some nodev which is far away from nodeu. Furthermore, we want toprovethat we necessarily land in a
’good’ neighborhood. To prove this we must use the ’badness’ ofu (since otherwise nodev is no better than
nodeu as far as we are concerned). Therefore we do not want to gettoo far from nodeu, which is expressed
by the constraintduv ≤ dut.

To make (**) work, we introduce yet another family of neighbors, which we call theZ-type neighbors.
Our argument proceeds as follows. If nodev is a contact of the current nodeu, let us say thatv is good if
the ratioduv/dut is large enough, yet smaller than 1. We will show that if the current nodeu is in a ’bad’
neighborhood, then any good contactv is in a ’good’ one. Moreover, (**) will necessarily find a ’good’
contact ifu has one. So our job is to make sure that nodeu has at least one ’good’ contact. And indeed with
high probability nodeu will have at least one ’good’ contact among the Z-type neighbors
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5.1 Full proof of Theorem 5.2

Let us fill in the details. For simplicity let us assume that in the input metric all distances are distinct. Recall
thatBui = Bu(rui), whererui = ru(2−i) is the radius of the smallest ball aroundu that contains at least
n/2i nodes. Fix an absolute constantc to be specified later. Recall thatα is the doubling dimension; let
µ be the2O(α)-doubling measure (recall that such measure exists by Theorem 1.3). For eachi ∈ [logn]
select a node independently and uniformly at random from the ballBui. Repeat thisc logn times, where
c is a sufficiently large constant to make the Chernoff Bounds work out (see Footnote 15 below), and let
Xui be the set of selected nodes. LetXu = ∪Xui; these are theX-type neighborsof u. Note that w.h.p.
|Xu| ≤ O(log2 n).

Proof of part (a): Let us select theY -type neighbors of a given nodeu as follows. For eachj ∈ [log∆]
select a node independently from the ballB = Bu(2j) according to the probability distributionµ(·)/µ(B);
repeat this(2cα logn) times, and letYuj be the set of selected nodes. LetYu = ∪Yuj ; these are theY-type
neighborsof u. Define the set of neighbors ofu asXu ∪ Yu. Note that the out-degree ofu is within the
claimed bound; in particular, we upper-bound|Xu| using Lemma 1.2.

We need to prove that property (*) holds. Supposet is the target andu is the current node. Let us choose
i such that nodeu lies in the annulusB(t,i−1) \ Bti. Let us denoted = dut andj = dlog(1.25 d)e. Note
that the setYuj contains a nodew that is within distanced/4 from targett.15 Therefore the greedy routing
algorithm will choose such node for the next hop.

If rti ≥ d/4 then we are done. Now supposerti < d/4. By our choice ofi we haver(t, i−1) > d. By
Claim 3.3 It follows thatr(w, i−1) >

3
4d, soBti ⊂ Bt(d/4) ⊂ B(w, i−1). Since ballBti contains at least a

half of the nodes of the ballB(w, i−1), it follows that with high probability the setX(w, i−1) contains a node
in Bti, and we are done.

Proof of part (b). In the remainder of this subsection we will prove part (b) of the theorem. As we
discussed in the proof sketch, we will introduce a new family of contacts (calledZ-type neighbors), and
define the pruned version of the Y-type neighbors.

For a given nodeu, let us select the contacts as follows. Let us denotex =
√

log∆ andρj = 2(1+1/x)j
.

Let us consider the annuliBu(ρj) \ Bu(ρj−1), indexed byj. For eachj such thatρj ≤ ∆ let us pick a
nodezuj uniformly at random from thej-th such annulus, provided that it is non-empty; else letzuj be the
closest node tou that lies outsideBu(ρj), ties broken arbitrarily. LetZu = ∪j {zuj}; these are theZ-type
neighborsof u.

For eachi ∈ [logn] and each (signed) integerj such that

|j| ≤ (3x+ 3)(log log∆) andr(u,i+1) < rui · 2j < r(u,i−1),

let us select a node independently from the ballB = Bu(rui · 2j) according to the distributionµ(·)/µ(B).
Repeat this(2cα logn) times and letY(u,i,j) be the set of selected nodes. LetYu = ∪ijY(u,i,j); these are the
Y-typeneighbors ofu. Define the set of neighbors ofu asXu ∪ Yu ∪ Zu.

Let us check that the out-degree is small enough. Indeed, there are at mostO(log2 n) X-type neighbors.
Each setY(u,i,j) contains at most2O(α)(logn) nodes. Since for these sets there are at most(logn) valid
indicesi and at mostO(x log log ∆) valid indicesj, the number of Y-type neighbors is below the claimed
upper bound. Finally, for the Z-type neighbors it suffices to note thatρj ≤ ∆ impliesj ≤ O(x)(log log∆).

15More precisely, by Chernoff Bounds for large enough constantc with high probability this happens for all(u, t) pairs simulta-
neously. In the rest of the proof we will omit these straightforward applications of Chernoff Bounds.
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The routing algorithm is simple. Supposeu is the current node andt is the target. Ifu has a contact
within distancedut/4 from t then we greedily choose the contact that is closest tot. Else we do the non-
greedy step (**).

This completes the specification of our small-world model; now we need to prove that our routing
algorithm satisfies property (*). Supposet is the target andu is the current node. Let us choosei such that
nodeu lies in the annulusB(t,i−1) \Bti. We will show that we get inside the ballBti in at most three hops.

Indeed, letd = dut and note that as proved in part (a), if we get within distanced/4 from targett then in
at most one more hop we are done. Let us consider the hard case: suppose nodeu does not have a contact
in Bt(d/4). Let us choose an integerl such thatrul ≤ d ≤ r(u, l−1). It is easy to see that

rul · 8x+1 < 1.25 d < r(u, l−1)/8
x+1. (2)

Indeed, if the first inequality fails then forj = blog(d/rul)c some node fromY(u,l,j) lies in Bt(d/4),
contradicting the assumption that nodeu does not have contacts inBt(d/4). If the second inequality fails,
then similar contradiction arises with the setY(u, l−1, ·).

Now let us choosej such thatρj ≤ d < ρj+1 and considerz = zuj . It follows thatρj−1 ≤ duz ≤ d and

d/duz ≤ ρj+1/ρj−1 = (ρj−1)3/x ≤ ∆3/x = 8x.

Therefore the non-greedy step (**) will choose some contactw of u such that

d/8x ≤ duw ≤ d. (3)

In particular, by (2) and (3) it follows that

4rul < duw < r(u, l−1)/4. (4)

Now that we are atw we will be able to make progress towardst. To ensure property (*), the next hop
should get us fromw to within distancedwt/4 from t. Sincedwt > d/4 by our assumption, it suffices to
get inside the ballBt(d/16). (Note that if the routing algorithm is allowed to remember the previous move,
then getting insideBu(d/4) is sufficient, too.) We will achieve the desired progress using some neighbor in
Y(w,l,j) for the appropriately chosenj.

Claim 5.3. duw − rul ≤ rwl ≤ duw + rul.

Proof. The second inequality follows since the ballBw(duw + rul) contains the ballBul and therefore
has cardinality at leastn/2l. Suppose the first inequality fails. Then the ballsBwl andBul are disjoint;
since both balls lie insideBu(duw + rwl), the latter ball has cardinality at leastn/2l−1. It follows that
r(u, l−1) ≤ duw + rwl. However, using (4) we haveduw + rwl ≤ 2duw + rul < r(u, l−1), contradiction.

Combining Claim 5.3 and (4), it follows thatrwl/duw < (3
4 ,

5
4). Let us denoter = dwt + d/16. Then

r ≤ 1.07 d+ duw ≤ duw (1.07 · 8x + 1) < 23x+1 rwl (5)

In (5) the first inequality follows simply becausedwt ≤ d+ duw , and the second inequality holds by (3).
Let us choosej such that2j−1 < r/rwl ≤ 2j . Then by (5) we havej ≤ 3x + 2, and by definition ofr

we haveBt(d/16) ⊂ Bw(rwl · 2j). The radii of these two balls are within a constant factor because
{
r = Θ(rwl · 2j) by definition ofj
r = Θ(d) by definition ofr, sincedwt ≤ d+ duw ≤ 2d.

Therefore the setY(w,l,j) is well-defined, and it follows that with high probability the ballBt(d/16) contains
a node fromY(w,l,j). This completes the proof of part (b) of the theorem.

21



5.2 Comparison with Kleinberg’s small worlds

Let us argue that our small-world models generalize one of the Kleinberg’s small worlds. Specifically,
we consider thegroup structuresfrom [31] applied to balls in a metric (it was one of the two original
applications described in [31]). This small-world model, call itSTRUCTURES, can be defined as follows.
For any two nodes(u, v), let xuv be the smallest cardinality of a ball containing bothu andv. For each
nodeu, define a probability distributionπu onV (the set of all nodes) byπu(v) = c1/xuv , wherec1 is the
suitable normalization factor. Each nodeu hasΘ(log2 n) neighbors chosen independently from distribution
πu. The routing algorithm is greedy.

On UL-constrained metrics our two small-world models essentially coincide withSTRUCTURES:

Theorem 5.4. For UL-constrained metrics, both small-world models in Theorem 5.2 share the following
properties withSTRUCTURES:

(a) with high probability, any target is found inO(logn) steps from any starting node.
(b) the routing algorithm is greedy.
(c) each node hask = Θ(log2 n) neighbors.
(d) Pr[v is a neighbor ofu] = Θ(logn)/xuv, for any nodes(u, v).16

Proof. Part (a) is trivial because any UL-constrained metric has a polynomially bounded aspect ratio. For
part (b) note that the routing algorithm in Theorem 5.2a is greedy by definition, and in Theorem 5.2b the
non-greedy step is takenonly if there is no neighbor that would reduce the distance to the target by the factor
of 4. It is easy to show that if the underlying metric is UL-constrained then the setXu∪Yu will contain such
a neighbor, so in Theorem 5.2b the routing algorithm is greedy as well and, moreover, the Z-type neighbors
are never used.

Part (c) and (d) follow from the following observations:

(i) On a UL-constrained metric, the aspect ratio is poly-log inn, and the counting measure is doubling.
(ii) For any two nodes(u, v) in a UL-constrained metric,|Bu(duv)| is within a constant factor ofxuv .
(iii) In a UL-constrained metric, for any nodeu and anyi ∈ log[n] there can be at most a constant
number of ballsBu(2j), j ∈ [log∆] that are sandwiched betweenBui andB(u,i+1), whereBui is the
smallest ball aroundu that contains at leastn/2i nodes.

By (iii), in Theorem 5.2b for every nodeu and eachi ∈ [logn] there is at most a constant number of
non-empty setsYuij (and obviously, there is at least one such set). Part (c) follows immediately.

In both parts of Theorem 5.2, for each nodeu we sampleΘ(logn) neighbors (namely, the X-type
neighbors) uniformly at random from each of the balls{Bui, i ∈ [logn]}. Here a given nodev is selected
with probabilityΘ(logn)/|Bu(duv)|, which by (ii) isΘ(logn)/xuv .

Apart from that, we sampleΘ(logn) neighbors (namely, the Y-type neighbors) from each of the balls
{Bu(2j), j ∈ [log∆]}. By (ii) we sample them uniformly at random; by (iii) this boosts the probability of
selecting a given node by at most a constant factor. So again, a givenv is selected as aY -type neighbor of
u with probabilityΘ(logn)/xuv.

5.3 Comparison with the single-link-per-node model

Let us briefly comment on an alternative setting where we are given a graph of local contacts, and we
add exactly one long-range contact per node. This has been the original Kleinberg’s model [30] (for two-
dimensional grids). Recently, following the publication of the conference version of this paper, such setting
has been considered for graphs that induce metrics of low grid dimension [16, 19], graphs of bounded
treewidth [17], and graphs that exclude a fixed minor [2].

16For Theorem 5.2b we ignore Z-type neighbors since it turns out that on UL-constrained metrics they never get used.
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We note in passing that our more straightforward result on small worlds (the one that only uses the
Y-type neighbors) trivially extends to this setting:

Theorem 5.5. Consider a graphG such that its shortest paths metricdG has doubling dimensionα. There
is a randomized algorithm that assigns to every node exactly one long-range contact so that in the resulting
small-world model ondG the greedy algorithm completes each query in2O(α)(log2 ∆) hops with high
probability and in expectation.

Proof. We will use, implicitly,(log∆) rings of neighbors so that the radii of the rings grow exponentially,
and the neighbors are distributed with respect to the doubling measure. Specifically, for each nodeu we
choose u.a.r. an integerj ∈ [log∆], and then we select the one long-range contact ofu from the ball
B = Bu(2j) according to the probability distributionµ(·)/µ(B), whereµ is a doubling measure ondG.

Supposeu is the current node andt is the target. Then with probabilityp =
(
2O(α) log ∆

)−1
nodeu

has a long-range contact within distancedut/2 from t. At every step the greedy algorithm is guaranteed
some progress via the local contacts. Eventually it will find a suitable long-range contact and halve the
distance to target. This will take(1/p) steps in expectation, and, by Chernoff Bounds,O(1/p) steps with
high probability. Therefore the query will complete in(p−1 log ∆) steps in expectation, and inO(p−1 log∆)
steps with high probability.

Recall that Theorem 5.2 explored the interesting trade-off between the out-degree and the hop-count.
Here, in Theorem 5.5, in order to make progress, a success event at any one node suffices; so if we allow
larger out-degree, then the product of hop-count and out-degree stays constant. This seems a good way to
capture the above-mentioned tradeoff. Unfortunately, it does not seem to work in general. For instance, if
we adapt Theorem 5.2(a) or Theorem 5.2(b) to the current setting then in order to make progress we need
success events at two (resp. three)consecutivenodes. This results in poor probability of making progress
at a given node, and, accordingly, in an unreasonably poor expected hop-count, as compared to a much less
sophisticated Theorem 5.5. These considerations suggest that the setting with one long-range contact per
node might not quite capture the richer setting of polylog out-degree.

6 Conclusions and open questions

We consider four related node-labeling problems: low-stretch routing schemes, distance labeling, searchable
small worlds, and triangulation-based distance estimation. Our results on these problems are unified by
a common technique called ’rings of neighbors’; they are further intertwined as shown in Figure 1 (see
Section 1). For each of the four problems, we focus on doubling graphs and improve over the existing
constructions. In particular, we obtain approximate distance labeling schemes that are optimal up to constant
factors for doubling metrics with super-polynomial aspect ratio.17 We also extend Kleinberg’s small world
model to doubling metrics, and obtain simpler proofs for the main result in Chan et al. [14] (on routing
schemes) and for a result in Mendel and Har-Peled [43] on distance labeling.

Let us suggest several directions in which our results can be extended.
First, for routing schemes on graphs and for searchable small-world networks it is desirable to further

alleviate the dependency on the aspect ratio∆, e.g. by replacing the(log∆) factor by(logn)(log log∆)
like we did for distance labeling schemes and routing schemes on metrics. A more ambitious task is to
obtain poly-log(n) upper bounds that do not depend∆ altogether. After the conference version of this paper
has appeared, such results for routing schemes have been obtained by Abraham et al. [3].

17An optimal construction for polynomially-bounded aspect ratio has appeared in Talwar [50].
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Second, recall that our result on(0, δ)-triangulation achieves orderOα,δ(logn). However, the lower
bound (1) on distance labeling (see Section 3), which is the only lower bound for triangulation that we have,
does not preclude triangulations of orderOα,δ(1) for polynomially bounded aspect ratio, and triangulations
of orderOα,δ(log logn) otherwise. Can we provide doubling metrics with a triangulation-specific lower
bound ofΩ(logn), or, alternatively, construct triangulations of sub-logarithmic order? Intuitively, the latter
would be very surprising. Indeed, consider balls around a given nodeu. Then there areΩ(logn) exponen-
tially increasing size scales, and at least as many exponentially increasing distance scales. If the size scales
are roughly aligned with the distance scales, then, intuitively, a label ofu in any reasonable triangulation
should include distances to at least one node in each of these scales.

Third, we would like extend our results on all four problems todecomposable metrics[35], a wide class
of metrics that includes doubling metrics as well as the shortest-path metrics of graphs excluding a fixed
minor, e.g. shortest-path metrics of planar graphs. This direction seems promising since similar extensions
(from doubling metrics to decomposable metrics) have been obtained in [35, 1] in the context of metric
embeddings. Also, recent results of Abraham et al. [5, 2] construct low-stretch routing schemes, distance
labeling schemes, and small-world networks for graphs excluding a fixed minor.

Finally, rings of neighbors can be used in a distributed system as a layer that supports various appli-
cations. In particular, this is the framework used theoretically in Slivkins [49] for distributed approaches
to metric embeddings and distance estimation, and practically inMeridian (Wong et al. [55]), a system for
nearest-neighbor and multi-range queries in a peer-to-peer network. While this framework has already lead
to significant results, rings of neighbors that we can define theoretically provide a much better coverage than
the ones that we know how to construct and maintain in a distributed fashion. Bridging this gap is an inter-
esting open question. Finally, rings of neighbors can be used in a distributed system as a layer that supports
various applications. In particular, this is the framework used theoretically in Slivkins [49] for distributed
approaches to metric embeddings and distance estimation, and practically inMeridian (Wong et al. [55]), a
system for nearest-neighbor and multi-range queries in a peer-to-peer network. While this framework has
already lead to significant results, rings of neighbors that we can define theoretically provide a much better
coverage than the ones that we know how to construct and maintain in a distributed fashion. Bridging this
gap is an interesting open question.
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Appendix A: Existence of(ε, µ)-packings

We prove Lemma 3.1 on the existence of(ε, µ)-packings which is implicit (but never articulated) in
Section 5 of [49]. We state it in a slightly stronger form that will be used in the proof of Theorem 4.2.

Lemma A.1. Consider a finite metric of doubling dimensionα, equipped with a probability measureµ. Let
ru(ε) be the radius of the smallest ball aroundu that has measureε. Then for anyε > 0 there exists an
(ε, µ)-packing: a familyF of disjoint balls of measure at leastε/2O(α) each, such that for any nodeu there
exists a ballBv(r) ∈ F such thatduv + r ≤ 6ru(ε). Moreover, suchF can be efficiently computed.

Proof. Let ru = ru(ε). For a given nodeu, say a ballBv(r) is u-zoomingif it is a subset ofBu(3ru), has
measure at leastε/16α, andBv(4r) has measure at mostε. We claim that for every nodeu either there exists
au-zooming ball, or there exists a nodebu ∈ Bu(2ru) of measure at leastε.

Suppose neither of the two exists. Letr = ru. By the doubling property of the metric (see Lemma 1.1),
Bu(r) can be covered by16α balls of radiusr/8. At least one of these balls, sayBv(r/8), has measure at
leastε/16α; since without loss of generalityBv(r/8) overlaps withBu(r), it follows thatduv ≤ 9

8r and
Bv(r/2) ⊂ Bu(2r). Since there is nou-zooming ball, in particular the ballBv(r/8) is notu-zooming, so
Bv(r/2) has measure at leastε.

The argument applied toBu(r) can now be applied toBv(r/2) and so forth. Iterating this argumenti
times, we come up with a nodev such thatduv ≤ 9

8r(2 − 2−i) andBv(r/2i) has cardinality at leastε. For
large enoughi, namely fori such thatr/2i < 1, this ball consists of only one node, which therefore has
measure at leastε. Contradiction; claim proved.

In accordance with the above claim, for every given nodeu we defineBu to be au-zooming ball if such
ball exists, or else we defineBu = {bu} wherebu is a node inBu(2ru) that has measure at leastε. Note that
a suitableBu can be efficiently computed by simply checking each ball whether it isu-zooming, and then
checking each node inBu(2ru).

Let F be a maximal collection of disjoint ballsBu. Note that suchF can be efficiently computed by
consecutively going through all ballsBu, and including a givenBu in F if it is disjoint with other balls that
are already inF . We will show thatF is the desired(ε, µ)-packing. It suffices to prove the following claim:
for each nodev some ballBu ∈ F lies withinBv(6rv).

Suppose that for a givenv the claim is false. Since by definition of av-zooming ballBv ⊂ Bv(3rv),
it follows thatBv 6∈ F . SinceF is maximal,Bv overlaps with some ballBu ∈ F . If Bu = {bu} then it
trivially lies in Bv(3rv), contradiction. SoBu is au-zooming ball; sayw is its center, andr is its radius. By
definition of au-zooming ball,Bw(4r) has measure at mostε. If 4r ≥ dvw + rv, then ballBw(4r) contains
ball Bv(rv); as the latter ball has measure at leastε, the two balls coincide, and thusBu lies inBv(rv),
contradiction. Therefore4r < dvw + rv.

Recall that ballBu overlaps with ballBv ; let x be a node that lies in both balls. SinceBv ⊂ Bv(3rv),
applying triangle inequality to the triple(v, x, w) we getdvw ≤ 3rv + r. Plugging this into the previous
inequality, we obtain3r < 4rv. It follows thatr + dvw < 6rv. Consequently, ballBu = Bw(r) lies in the
ballBv(6rv), contradiction. Claim proved.

The above proof actually extends to complete infinite metrics, but we do not need it here.
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Appendix B: Proof of Theorem 4.2 on routing schemes

We will prove Theorem 4.2 in the following more general form:

Theorem B.1. Suppose for someδ ∈ (0, 1) any two nodes in the input graphG are connected by a(1+ δ)-
stretch path with at mostNδ hops. Letα be the doubling dimension, let∆ be the aspect ratio, and letDout

be the out-degree ofG. Then there exists a(1 + δ)-stretch routing scheme onG with
- O(αφ logn) +Nδ(logDout)-bit packet headers and
- (1

δ )O(α)(φ+Nδ)(logn)(logDout)-bit routing tables,
whereφ = log(1

δ log∆). Such routing scheme can be efficiently computed.

We will combine the ideas of Theorem 3.4 and Theorem 2.1 with some new tricks. We will use (i) the
basic rings of neighbors, (ii) zooming sequences and intermediate targets, (iii) the first-hop pointers, and (iv)
host/virtual enumerations. Our basic setup is from the proof of Theorem 3.4. For simplicity let’s assume
δ ≤ 1/8 and letδ′ = δ/(1− δ).

NOTATION. We borrow a lot of definitions from the previous proofs:
• From Theorem 3.2, we borrow, firstly, radiirui and ballsBui; secondly,(2−i, µ)-packingsFi and sets
Xui of Xi-neighbors; and thirdly,2j-netsGj and setsYui of Yi-neighbors.

• From Theorem 3.4, we borrow the zooming sequencesfu = {fui : i ∈ [logn]}, the setsTu of virtual
neighbors; host enumerationsϕu(·), virtual enumerationsψu(·), and translation functionsζui. For
convenience, we setψu(v) = null wheneverv is not a virtual neighbor ofu.

• From Theorem 2.1 we borrow the first-hop pointers.
We use(2−i, µ)-packingsFi in a somewhat stronger form provided by Lemma A.1; for eachB ∈ Fi, let
h = hB be a node andr = rB be a radius such thatB = Bh(r) and6ru(2−i) ≥ duh + r. We need to fix
h becauseB can have multiple centers, i.e. nodesv such thatB = Bv(r) for somer, whereas Lemma A.1
guarantees this inequality only for one of them. We redefine the setXui of Xi-neighbors ofu as follows as
the set of all nodesh = hB such thatB ∈ Fi andr(u,i−1) ≥ duh + rB.

We introduce some new notation. For each nodet, eachi ∈ [logn] and eachj ∈ [log∆], we define:
- ID(t) as a unique globaldlogne-bit identifier for t;
- xti as the nearestXi-neighbor oft;
- ytj as the nearestYj-neighbor oft;
- Jti as the set of all integers betweenblog( δ

4rti)c anddlog(6rti)e;
- Sti as the set of allytj such thatj ∈ Jti.

All nodesxui and all nodes in all setsSui are calledfriendsof u.

DATA STRUCTURES. Routing labels and routing tables will contain distances between some pairs of nodes.
All these distances as stored as aO(log 1

δ )-bit mantissa andlog log∆-bit exponent. It will be easy to see that
this many bits suffice for our purposes; we omit the details and treat the stored distances as exact distances.

The routing labelof targett containsID(t) and the information about the zooming sequence and the
friends oft, specifically:

- setsJti, for all i.
- the host enumeration oft for ft0, xt0 and all nodes inSt0.
- for eachi ≥ 1, the virtual enumeration off(t,i−1) for fti, xti and all nodes inSti.
- the distances fromt to all fti, all xti and all nodes inSti.

In the routing label, the info about all nodesfti andxti is stored as an array indexed byi; similarly, the info
about all nodesytj ∈ Sti is stored as an array indexed byj. The global IDs are not used.
Therouting tableof each nodeu includes:

- its label, radiirui for all i, and distances to all its neighbors (but not to its virtual neighbors),
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- translation mapsζui, for all i ∈ [logn].
- the first-hop pointer fromu to each neighbor ofu, which we can store using onlydlogDoute bits.

Nodeu does not know the global IDs of its neighbors; they are indexed according toϕu.

USING THE DATA STRUCTURES. Supposet is the target andu is the current node. Say nodew is a(u, i, j)-
landmarkif the following three conditions hold:
(c1) w is a neighbor ofu and a virtual neighbor off(t,i−1).
(c2) if j = ∞ thenw = xti ∈ Xui; elsej ∈ Jui andw = ytj ∈ Yui.
(c3) for all l ≤ i− 1 nodeftl is a neighbor ofu;

Say nodew is (u, i, j)-goodif conditions (c1)-(c3) hold and, moreover,
(c4) dwt ≤ δ′duw and6rui ≤ δ′duw andj ≥ blog δ

1+δ duwc.
(c5) rui < 2βduw ≤ r(u, i−1) for someβ such that1 − δ′ ≤ β < 1/(1− δ).

Say a node isu-good if it is (u, i, j)-good for some pair(i, j). Note that by condition (c2) a(u, i, j)-
landmark is unique if it exists, whereas there could be multipleu-good nodes.

Here is the meaning behind these definitions. A current nodeu in the routing can select someu-good
nodew as an intermediate target; the definition is tailored so that, on one hand, au-good node is a good
intermediate target, and on the other hand, we could show that such nodes exist. Then the packet will be
routed along some initial segment of a shortestuw-path. In particular, each nodev in this segment will
know where to forward the packet; essentially, it will be due to the fact thatw is a(v, i, j)-landmark.

First we show that(u, i, j)-landmarks andu-good nodes exist, then we show how to identify them. The
following claim is an elaboration of the arguments in the proof of Theorem 3.4.

Claim B.2. Fix any nodesu andt, and letd = dut.
(a) If rul ≥ 4

3dut for somel thenftl is aYl-neighbor ofu.
(b) if δd/6 ≤ rui < 2d ≤ r(u,i−1) for somei, then there exists au-good node.

Proof: (a) Letd = dut. Note thatw = ftl ∈ Gj , j = blog(rtl/4)c, and by Claim 3.3 we have|rul−rtl| ≤ d.
By definition ofYl-neighbors, we need to check two things: thatduw ≤ 12rul/12 and thatl ∈ Jul. Firstly,

dwt ≤ rtl/4 ≤ (rul + d)/4 < rul/2, soduw ≤ d+ dwt < 1.5rul.

Secondly,j ∈ Jul follows becausertl ≥ rul − d ≥ rul(1 − 3
4) ≥ δrul.

(b) We will produce a(u, i, j)-landmarkw such thatdwt ≤ δd. For suchw by triangle inequality we
have

d(1− δ) ≤ d− dwt ≤ duw ≤ d+ dwt ≤ d(1 + δ),

so it is easy to see that conditions (c4) and (c5) hold andw is u-good.
If rti ≤ δd/6 then letw = xti; else letw = ytj , j = blog δdc. In either case,dwt ≤ δd. We claim that

w is a(u, i, j)-landmark. Since condition (c3) holds by part (a), we just need to check (c1) and (c2).
Let x = δd andf = f(t, i−1). There are two cases. Firstly, supposerti ≤ x/6 andw = xti. By

definition ofXi-neighbors for some radiusr we haveBw(r) ∈ Fi anddwt + r ≤ 6rti ≤ x. Therefore

duw + r ≤ d+ dwt + r ≤ d+ x < 2d ≤ r(u, i−1),

sow ∈ Xui. Sincer(t, i−1) ≥ r(u, i−1) − d ≥ d > 12rti, by Claim 3.5aw is a virtual neighbor off .
Now supposerti > x/6. Note thatrti ≤ rui + d < 3d, sox ∈ [ δ

4 ; rti6rti]. Thenw = ytj ∈ Gj ∩Bt(z)
satisfies all conditions in Claim 3.5b, hence is a virtual neighbor off . Finally,u is aYi-neighbor ofu since
12rti/δ > 2d > d+ dwt ≥ duw andj = blog xc ≥ blog δrti/4c.

Claim B.3. Given the routing table ofu and the routing label oft, one can efficiently:
(a) check whether au-good nodew exists; if so, findϕu(w) and(i, j) such thatw is (u, i, j)-good.
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(b) check whether the(u, i, j)-landmarkw exists, for given(i, j), and findϕu(w) if it does.
Proof: Consider the following algorithm. First, readϕu(ft0) from the routing table ofu. Then consecu-
tively for eachi from 1 to dlogne, let f = f(t, i−1), do the following:

1. Note that by construction condition (c3) holds and we knowϕu(f).
2. forw = xui and then consecutively for eachw = yuj , j ∈ Jul in the order of decreasingj:

a. checkζui (ϕu(f), ψf(w)). If it is not null then it is equal toϕu(w), and condition (c1) holds.
b. check condition (c2). If it holds, then nodew is (u, i, j)-identifiable.
c. if (c1) and (c2) hold, we can check (c4) and (c5). If they hold, too, then nodew is u-good.

3. Checkζui (ϕu(f), ψf(fti)). If it is null then exit. If it is notnull then it is equal toϕu(fti).
For part (a) we exit if in step 2b we find a(u, i, j)-identifiable node; for part (b) we exit if in step 2c we find
au-good node. it is easy to see that if a(u, i, j)-identifiable (resp.u-good) node exists, then our algorithm
finds and identifies it.

FIRST ROUTING MODE. The routing will have twomodes, M1 andM2. Routing starts inM1, then may
switch toM2; if it does, it does not go back toM1. In what follows, the target node is denoted byt.

The first routing mode is an elaboration of the routing algorithm in the proof of Theorem 2.1. In this
mode the packet is routed to anintermediate targetw, until it reachesw or t, or switches toM2, or a new
intermediate target is chosen. If the current intermediate targetw has been chosen at nodeu, then the packet
header contains the routing label oft, the distanceDest = duw, and theintermediate target id, which is a
pair (i, j) such thatw is (u, i, j)-good.

Suppose nodeu receives a packet. Firstu checks whether it is the target: ifID(t) = ID(u) then we are
done. Ifu is not the target, there are two cases, depending on whether the intermediate target id isnull.

• If the intermediate target id isnull, u checks whether au-good nodew exists; if so,u findsϕu(w) and
a pair(i, j) such thatw is (u, i, j)-good (see Claim B.3a). Ifu-good nodes do not exist, the routing
switches toM2. Else,u choosesw as the next intermediate target, setsDest = duw, and sets the
intermediate target id to(i, j).

• If the intermediate target id is(i, j), thenu checks whether the(u, i, j)-landmark nodew exists (see
Claim B.3b), findsϕu(w) it if it does, or switches toM2 if it doesn’t.

Suppose the first-hop pointer fromu tow denotes edgeuv, for some nodev. If duw −duv ≤ 2δ′Dest, or if v
isw itself, thenu sets the intermediate target id tonull. Finally,u forwards the packet tov. This completes
the description of the first routing mode. For convenience assume that initially the sender receives the packet
(from itself) such the intermediate target id isnull.

We claim that the routing inM1 is sufficiently nice, namely that the intermediate targets zoom in
towardst, and the packet follows shortest paths from one intermediate target to another. We will need a
simple application of triangle inequality: for any nodesu, w andt such thatdwt ≤ δ′d we have

(1 − δ′) duw ≤ duw − dwt ≤ dut ≤ duw + dwt ≤ (1 + δ′) duw.

Claim B.4. Letu0, u1, . . . , uk−1 be the nodes where the new intermediate target id has been set; letuk be
the last node that the packet has reached inM1. Then for a fixedi < k we have:

(a) the indermediate targetw chosen atui is at least34
1
δ times closer tot thenui.

(b) ui is at least14
1
δ times closer tot thenui−1.

(c) the packet trajectory fromui to ui+1 is a segment of a shortest(ui, wi)-path .
Proof: (a) Let u = ui. Thenw is u-good, sodwt ≤ δ′duw and

dut ≥ (1− δ′)dwt ≥ (1 − δ′)dwt/δ
′ = (1− 2δ)dwt/δ ≥ 3dwt/4δ.
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(b) Let v = ui+1 and supposev 6= w. Let x be the node visited by the packet right beforev. Then by
definition ofM1 nodev lies on a shortestxw-path, and at nodex we haddvw = dxw − dxv ≤ 2δ′Dest,
whereDest = duw. Therefore,

dvt ≤ dvw + dwt ≤ 3δ′duw ≤ 3δ′dut/(1− δ′) = 3δdut/(1− 2δ) ≤ 4δdut.

(c)The proof is similar to that of Claim 2.4, but somewhat more complicated sinceui+1 is not necessarily
equal tow. Let u = ui andv = uu+1. Let ρ(x) be the path traversed by the packet from nodex to v; let
ρL(x) be the metric length of this path. We need to show thatρL(u) = duv = duw − dvw.

We claim that for every nodex ∈ ρ(u) we haveρL(x) = dxv = dxw − dvw. We will use induction on
ρ(x). Consider an edgexy ∈ ρ(u) and assumeρL(y) = dyv = dyw − dvw. By definition ofM1 nodey lies
on a shortestxw-path, sodxy + dyw = dxw. It follows that

dxv + dvw ≥ dxw = dxy + dyw = dxy + dyv + dvw ≥ dxv + dvw,

soρL(x) = dxy + ρL(y) = dxy + dyv = dxv = dxw − dvw.

SWITCHING BETWEEN THE MODES. It is crucial that the routing switches fromM1 to M2 only if for the
current node a certain condition (Lemma B.5) holds. We will see later that under this conditionM2 work
efficiently. The forthcoming Lemma B.5 is really the crux of the proof of Theorem 4.2.

Lemma B.5. Suppose the routing switches toM2 at nodev. Then6rvi/δ <
4
3dvt ≤ r(v,i−1) for somei.

Proof: Suppose suchi does not exist. Letu be the last node that receives the packet inM1 with null
intermediate target id. Ifu = v then fori such thatrui <

3
2dut ≤ r(u,i−1) we must have6rui ≥ 4

3δdut, so
by Claim B.2b there exists au-good node, contradiction. Thereforeu 6= v. It follows that:

• the routing did not switch toM2 atu, sou has set the intermediate target id to a pair(i, j) such that
there exists a(u, i, j)-good nodew.

• nodev received the packet with a non-null intermediate target id (equal to(i, j)), so it must be the
case thatdxw − dxv > 2δ′duw, wherex is the node visited by the packet immediately beforev.

Since the routing switched toM2 at v, by the specification ofM1 there is no(v, i, j)-landmark node.
For the sake of contradiction, We will show that nodew is a(v, i, j)-landmark; this will complete the proof
of the Lemma.

We need to check conditions (c1-c3) in the definition of a(v, i, j)-landmark. For condition (c3), we
claim that for eachl ≤ i−1 we haveftl ∈ Yvj . Indeed, sincew is (u, i, j)-good, it follows thatdwt ≤ δ′duw

andrul ≥ 2duw(1− δ′). By Claim B.4c nodev lies on a shortestuw-path, soduv + dvw = duw. Moreover,
rvl ≥ rul − duv by Claim 3.3. Putting this all together and lettingβ = 4

3 , we have:

rul ≥ 2duw(1 − δ′) ≥ βduw(1 + δ′) ≥ β(duw + dwt) = β(duv + dvw + dwt)
rvl ≥ rul − duv ≥ rul − βduv ≥ β(dvw + dwt) ≥ βdvt,

so the claim follows by Claim B.2a.
Sincew is (u, i, j)-good, it is a virtual neighbor off(t, i−1). Therefore it remains to check condition

(c2). To this end, we claim thatw ∈ Xvi if j = ∞, andw ∈ Yvi otherwise.
If j = ∞ then by definition of(u, i, j)-landmarksw = xti ∈ Xui, so by definition ofXi-neighbors for

somer we haveBw(r) ∈ Fi andr(u, i−1) ≥ duw + r. It follows that

r(v, i−1) ≥ r(u, i−1) − duv ≥ duw + r − duv = dvw + r,
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sow is aXi-neighbor ofv, too.
If j < ∞ then by definition of(u, i, j)-landmarks it must be the case thatw = yuj ∈ Gj . We need to

show thatw ∈ Yvi, i.e. that (a)dvw ≤ 12rvi/δ and (b)j ≥ bδrvi/4c.
Recall thatδ ≤ 1/8. Since4

3dvt ≤ r(v,i−1) and we assumed that thei in the statement of the Lemma
does not exist, it must be the case that6rvi ≥ 4

3δdvt. Therefore:

dvt ≥ dvw − dwt > 2δ′duw − δ′duw = δ′duw ≥ dwt,

dvw ≤ dvt + dwt ≤ 2dvt ≤ 2(3/4)(6/δ)rvi = 9rvi/δ.

This proves part (a). For part (b) recall thatj ≥ blog δ
1+δ duwc andrui ≤ 2duw/(1 − δ) sincew is (u, i, j)-

good. In particular, it suffices to show that4duw ≥ (1 + δ)rvi. Indeed,

rvi ≤ duv + rui ≤ duw + 2duw/(1− δ) ≤ 4duw/(1 + δ),

claim proved. This completes the proof of the Lemma.

SECOND ROUTING MODE. Suppose routing switches toM2 at nodeu; let d = dut. By Lemma B.5 for
somei it is the case that6rui/δ <

4
3d ≤ r(u,i−1). By Lemma 3.1 there exists a ballB ∈ Fi of cardinality

at leastn/2i+O(α) such thatB ⊂ Bu(6rui). Let w = hB be the node selected fromB in Theorem 3.2;
recall that it is a center ofB. It is easy to see that the ballB′ = B(w, i−1) contains targett. Indeed,
duw ≤ 6rui ≤ 4

3δd ≤ d/6 sinceδ ≤ 1
8 , and by Claim 3.3

r(w,i−1) ≥ r(u,i−1) − duw ≥ 4d/3− d/6 ≥ d+ duw ≥ dwt.

The nodes inB will collectively store the routes to all nodes inB′; specifically, each node inB will
store full routes to2O(α) nodes inB′. Moreover, the nodes inB will maintain a shortest-path treeTB rooted
ath. We label the edges ofTB so that givenID(t), t ∈ B′ it is possible to route fromh to the nodevt ∈ B

that stores a path to thist ∈ B′. Specifically, we label each nodev with a rangeRv such that if a packet is
atu, and edgeuv ∈ TB, andID(t) is within this range, then the packet is forwarded tov.

It is crucial that we are free to choose the rangesRv to edges ofTB and the mappingvt fromB′ toB
any way we want. We do it using a top-to-bottom construction on the treeTB. For technical convenience,
extendTB as follows: for every nodeu ∈ B add a distinct nodelu and edge(u, lu), so that each node has a
corresponding leaf. We start from the root which is assigned the full range[logn]. For a nodeu ∈ B with a
given range, partition this range into subrangesRv, uv ∈ TB such that|Rv| is proportional to the cardinality
of the subtree ofTB rooted atv. For each leafl = lu, we assign tou all nodest such thatID(t) ∈ Rl.

This is how the packet will reach targett. First the nodeh (which is a neighbor ofu) is designated as
the intermediate target, and the packet is routed toh via the first-hop pointers. Fromh the packet is routed
to vt via the shortest-path tree. Thenvt puts the full route tot into the packet header and send the packet to
t. More precisely,vt will store a(1 + δ)-approximate shortest path tot with the smallest hop count, which
is at mostNδ by definition ofNδ. Each hop in this path can be encoded bydlogDoute bits, whereDout

is the maximal degree of the underlying connectivity graph, so the entire path can be stored using at most
NδdlogDoute bits. Since a given node can lie in only one ballB ∈ Fi, it has to store at most2O(α) paths for
eachi, for a total of at most2O(α) logn paths. This completes the second routing mode.

Claim B.6. If the routing switches toM2 at nodeu, then fromu to t it has stretch1 +O(δ).

PROOF OF CORRECTNESS. The space requirements of both routing modes are summarized in Table 3. We
need to show that our routing scheme has stretch1+O(δ). If the packet reaches the target without switching
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routing table size, bits packet header size, bits
modeM1 (1

δ )O(α)(φ logn)(logDout) O(αφ logn)
modeM2 2O(α)(Nδ logn)(logDout) NδdlogDoute
total (1

δ )O(α)(φ+Nδ)(logn)(logDout) O(αφ logn) +NδdlogDoute

Table 3: Space requirements; letφ = log(1
δ log ∆).

to M2, this follows from Claim B.4. Now suppose it switches toM2 at nodew in the middle of a path to
some intermediate targetv. Let u be the node that setv as the intermediate target and letd = dut. Let ρxy

be the distance traversed by the packet on its path from nodex to nodey.
By Claim B.6ρwt/dwt ≤ 1+O(δ). By Claim B.4abv ∈ Bt(6δd). By Claim B.4c, nodew lies on some

shortest path fromu to v, and the packet followed this path fromu tow. Putting this together, we get

ρwt ≤ (1 +O(δ))dwt ≤ (1 + O(δ)) (dwv + dvt) ≤ dwv + O(δd)
ρut ≤ ρuw + ρwt = duw + dwv + O(δd) = duv + O(δd) = d+O(δd).

Suppose the packet originated at nodes. If s = u then we are done. Ifs 6= u then by Claim B.4ρsu ≤
(1 +O(δ))dst and by Claim B.4abd ≤ δdst. Therefore,

ρst = ρsu + ρut ≤ (1 +O(δ)) (dst + d) ≤ (1 +O(δ))dst,

as claimed. This completes the proof of Theorem B.1.
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