
Quantifying the Effectiveness of Testing via Efficient
Residual Path Profiling

Trishul M. Chilimbi
Microsoft Research Redmond
trishulc@microsoft.com

Aditya V. Nori
Microsoft Research India

adityan@microsoft.com

Kapil Vaswani
Indian Institute of Science,

Bangalore
kapil@csa.iisc.ernet.in

ABSTRACT
Software testing is extensively used for uncovering bugs in
large, complex software. Testing relies on well designed re-
gression test suites that anticipate all reasonable software
usage scenarios. Unfortunately, testers today have no way of
knowing how much of real-world software usage was untested
by their regression suite. Recent advances in low-overhead
path profiling provide the opportunity to rectify this defi-
ciency and perform residual path profiling on deployed soft-
ware. Residual path profiling identifies all paths executed by
deployed software that were untested during software devel-
opment. We extend prior research to perform low-overhead
interprocedural path profiling. We demonstrate experimen-
tally that low-overhead path profiling, both intraprocedural
and interprocedural, provides valuable quantitative informa-
tion on testing effectiveness. We also show that residual edge
profiling is inadequate as a significant number of untested
paths include no new untested edges.

Categories and Subject Descriptors: D.2.5 [Testing
and Debugging]: Tracing

General Terms: measurement, reliability

Keywords: path profiling, testing, residual, inter-procedural

1. INTRODUCTION
Proving programs correct is hard. Static analysis tools

attempt to address this problem by checking that a pro-
gram satisfies a set of specifications on all possible execu-
tion paths. However, these tools have several limitations
that preclude exclusive reliance on such techniques for large,
complex software. Consequently, static program checking is
invariably complemented with testing, which runs a program
on a suite of test cases and checks for errors. Unlike static
checking, testing can only detect errors along the set of paths
that were executed. Since exhaustively testing large soft-
ware is infeasible, well designed regression test suites aim to
anticipate all reasonable software usage scenarios and gen-
erate test cases/inputs that exercise those behaviors. How-
ever, anticipating software usage is extremely hard especially
when the same piece of software can run in a variety of envi-
ronments. Ideally, one would like to profile actual software
usage, perhaps during beta testing, to detect untested be-
haviors.

Unfortunately, collecting path profiles using the standard

Copyright is held by the author/owner(s).
ESEC/FSE’07,September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
ACM 978-1-59593-812-1/07/0009.

Ball-Larus path profiling technique [1] is expensive. Re-
cently, researchers have proposed a technique called pref-
erential path profiling (PPP) that reduces the overhead of
path profiling even when the number of paths is large [9]. In
contrast to the Ball-Larus profiling scheme, which assigns
weights to edges of a control flow graph (CFG) such that
all paths are allocated unique identifiers [1], PPP assigns
weights to the edges such that the sum of the weights along
the edges of the a given subset of paths is unique. Fur-
thermore, PPP attempts to achieve a minimal and compact
encoding of the interesting paths; such an encoding signifi-
cantly reduces the overheads of path profiling by eliminating
expensive hash operations during profiling.

We show that preferential path profiling can be used to
perform low-overhead residual path profiling, which identi-
fies all paths executed by deployed software that were untested
during software development [7]. Since preferential path
profiling captures intraprocedural program paths, it is well
suited for unit testing, which validates that individual mod-
ules are working properly by writing test cases for each func-
tion. However, it cannot be used for performing residual
profiling of integration testing [2], which combines individual
modules and tests them as a group, as this requires profiling
interprocedural paths. To address this limitation, we have
extended preferential path profiling to perform low-overhead
interprocedural path profiling.

We have evaluated our residual path profiling scheme on
several SPEC 2000 benchmarks, using the train inputs to
model a test suite and the ref inputs to model field inputs.
The results indicate that residual interprocedural path pro-
filing incurs low overhead and detects a large number of
untested paths. In addition, we show that residual edge
profiling is inadequate as a significant number of untested
paths include no new untested edges.

2. INTERPROCEDURAL PREFERENTIAL
PATH PROFILING (IPPP)

Modern software development has embraced modular pro-
gramming, which increases the number of procedures in a
program. As a result, many interesting program behaviors
span across procedure boundaries and intraprocedural test-
ing and profiling techniques may not suffice. Unfortunately,
although interprocedural analysis, profiling and testing tech-
niques are desirable, they have traditionally been associated
with high runtime overhead. For instance, interprocedu-
ral path profiling is extremely expensive [6, 8]. These high
overheads have limited the use of interprocedural techniques
even in laboratory testing environments where cost is usu-

545

Figure 1: IPPP example. (a) Interesting interpro-
cedural path originating infoo(), passes through the
function bar(), before returning to foo(). (b) After
function inlining, this path becomes an intraproce-
dural path in the supergraph foo s().

ally not a prime concern. We propose to perform a simplified
version of interprocedural path profiling that has low over-
head and is well suited to residual profiling.

2.1 Preliminary Definitions
We define a few terms to facilitate the exposition of our

technique.

Subpath: A subpath is an acyclic, intraprocedural path that
terminates at procedure calls, in addition to loop back
edges and function returns.

Whole Program Path (WPP): The whole program path is the
entire sequence of subpaths generated during a given
execution of a program. The WPP precisely character-
izes the entire control flow behavior of the program [4].

Interprocedural Path Segment (IPS): An interprocedural path
segment is a sequence of subpaths that can be gener-
ated using the following grammar

P → (P | (P) | PP | 〈f, p〉

where ‘(’ denotes a function call, ‘) represents a return,
and 〈f, p〉 represents the execution of a subpath p in
the function f . We also define a depth-k IPS is an IPS
that spans at most k procedure calls. The profiling
scheme we propose extends PPP to work with depth-k
IPS (for a programmer-specified k) rather than intra-
procedural paths.

2.2 Profiling Interesting IPSs
This section describes our algorithm for profiling interest-

ing interprocedural path segments (IPSs). We first provide
an overview of IPPP with an example shown in Figure 1.
Consider two functions foo() and bar() as shown in Fig-
ure 1(a). Assume we are interested in profiling a single IPS
that originates in function foo() and passes through bar().
In this simple scenario, the function bar() is inlined into
foo() as shown in Figure 1(b). The inlining transformation
leads to the creation of a supergraph foo s(), in which the
IPS has an intraprocedural equivalent. Standard intraproce-
dural path profiling techniques can now be applied to such
supergraphs to profile these paths.

However, the supergraphs created using function inlining
are likely to contain a significantly larger number of intrapro-
cedural paths, forcing a traditional path profiler to use hash
tables. We address this problem by using PPP to compactly

number interesting paths in the supergraph. Since the num-
ber of interesting IPSs is likely to be a small subset of all
possible IPSs (in this example, only one IPS is interesting),
PPP will almost always be able to use an array instead of
a hash table for tracking paths, reducing runtime overheads
significantly.

The algorithm for profiling interesting interprocedural path
segments proceeds as follows.

1. Input: A set of CFGs and a set S of interesting depth
k-limited IPSs.

2. Identify inlining sites: Based on the paths in set S,
identify the set of call sites for inlining. For each IPS
〈f1, p1〉(〈f2, p2〉, . . . , consider all the subpaths that ter-
minate at a procedure call. All such procedure call
sites are identified and marked.

3. Mark all edges traversed by IPSs: Assign a globally
unique identifier to all IPSs. Traverse all edges along
each IPS and mark the edges with the corresponding
IPS identifier. Edges that participate in multiple IPSs
will have multiple IPS identifiers associated with them.
This labelling serves two purposes. First, it helps cre-
ate a mapping between an IPS in the original collection
of CFGs and its corresponding intraprocedural equiva-
lent in the transformed supergraph (see step 6). Sec-
ond, it marks these edges as non-candidates for trun-
cation [1], if truncation is necessary (see step 5).

4. Supergraph construction: Create supergraphs as shown
in Figure 1(b) by combining the CFGs of individual
procedures as determined in step 2.

5. Ball-Larus numbering: Assign Ball-Larus numbers to
all paths in each supergraph. Ensure that edges tra-
versed by IPSs as marked in step 3 are not truncated.
After this step, each path in a supergraph is assigned
a unique identifier.

6. Identify interesting IPSs: From the Ball-Larus number-
ing and the IPS edge information computed in step 3,
obtain the Ball-Larus identifiers of interesting IPSs.

7. Drive PPP: Use the Ball-Larus identifier of interesting
IPSs computed in Step 6 as input to the PPP algo-
rithm.

3. RESIDUAL PATH PROFILING
Residual path profiling identifies the set of paths exe-

cuted by deployed software that were not tested during soft-
ware development [7]. This section describes how we per-
form residual profiling for intraprocedural and interprocedu-
ral paths.

RPP for intraprocedural paths is fairly straightforward.
The set of paths exercised by inputs in a test suite are
recorded using a Ball-Larus profiler and fed as input to PPP,
which generated a new instrumented binary. This version of
the program is deployed to gather real usage profiles, per-
haps as part of beta testing. When an untested path is
executed, PPP simply logs the path identifer of the untested
path.

We can use the interprocedural preferential path profil-
ing (IPPP) technique described in Section 2.2 to perform
residual profiling of interprocedural paths. First, we need

546

Benchmark
#untested

paths
%untested

paths

%freq of
untested
paths

#funcs with
untested
paths

#untested
edges

#funcs with
untested
edges

#untested paths
in funcs
with no

untested edges

%untested paths
in funcs
with no

untested edges

164.gzip 80 7.2 0.0 6 3 2 77 96.3
175.vpr 274 20.9 0.0 29 147 22 13 4.7
179.art 132 50.0 47.2 12 130 10 6 4.5
181.mcf 3 1.2 0.0 3 8 1 2 66.7

183.equake 1 0.5 0.0 1 0 0 1 100
188.ammp 117 22.5 0.0 4 2 1 114 97.4
197.parser 612 13.0 0.0 61 211 29 273 44.6
256.bzip2 398 45.1 0.0 13 81 10 26 6.5
300.twolf 295 11.3 0.0 36 43 18 117 39.7
PCgame-1 970 19.8 1.5 139 248 81 502 51.8
PCgame-2 3531 16.5 0.6 248 384 143 898 25.4

Average 583 18.9 4.5 50.2 114.3 28.8 184.5 48.9

Table 1: Untested intra-procedural path information obtained from residual path profiling.

to specify the set of interesting IPSs that should be profiled
to the IPPP algorithm. This is done by performing whole
program path (WPP) [4] profiling on the test suite inputs.
For a given value of k (programmer specified), the set of
IPSs exercised in a given run of the program can be easily
extracted from the WPP. We also propose an alternate ap-
proach for extracting exercised IPS that does not require the
WPP; details of this approach can be found in [3].

4. EXPERIMENTS
We have implemented our techniques (intra and interpro-

cedural PPP) using the Scale compiler infrastructure [5]. In
addition, we have implemented intraprocedural PPP using
Microsoft’s Phoenix compiler and are currently working on
a Phoenix implementation of interprocedural PPP. We use
benchmarks from the SPEC CPU2000 suite for evaluation
as well as a couple of large (1-2 million LOC), resource-
intensive PC games. We report overhead numbers for the
games using frames per second as the performance metric.

4.1 Intraprocedural Residual Path Profiling
We used the train and ref inputs provided with the SPEC

benchmarks to approximate a residual profiling scenario.
For the PC games, we played the games for different lengths
of time (5 minutes and 10 minutes). The results are shown in
Table 1. While performing residual profiling intra-procedurally,
we find that the ref inputs exercise many more paths than
the train inputs. The frequency distribution of paths shows
that untested paths are rarely executed. Furthermore, a
significant number of untested paths occurred in functions
which reported no new untested edges. These paths would
go undetected with residual edge profiling and demonstrate
the advantage of RPP. We also find that the overhead num-
bers (average 13%) are in line with those reported in [9]
(average 20%). The numbers for the PC games (average 7-
9% overhead) are especially impressive as these are cutting-
edge, resource intensive programs and indicate that RPP can
be used in deployed software, at least during beta testing.

4.2 Interprocedural Residual Path Profiling
We performed a similar experiment to that described in

Section 4.1, except that we labelled all depth-1 interproce-
dural path segments exercised by the SPEC train inputs as
interesting IPSs and then ran the IPPP generated binary on

Figure 2: Runtime overheads of interprocedural
path profiling.

the benchmarks ref input. Since we perform selective in-
lining to convert IPSs into intraprocedural paths, we can
also profile these paths with the Ball-Larus technique. Fig-
ure 2 shows the overhead of this technique for some of the
SPEC benchmarks (the Scale compiler does not successfully
compile all SPEC benchmarks, even without our path pro-
filing). The Ball-Larus scheme incurs high overheads that
range from 70% to 180% with an average of 125%. With the
exception of 256.bzip2, which incurs an overhead of 52%,
IPPP achieves reasonably low overhead with an average of
26% because it is able to compactly number interesting IPSs
and avoid using a hash table for recording path informa-
tion. This overhead may be low enough to permit residual
profiling of IPSs during beta software testing. Table 2 char-
acterizes the residual paths detected by IPPP. The results
show that IPPP exposes a much larger number of untested
paths as compared to PPP.

4.3 Residual Path Profiling Simulation
We performed an experiment much like the one described

in Section 4.1 for residual path profiling of intraprocedural
path except that we use a larger number of train and ref

547

Benchmark
#untested

paths
%untested

paths

%freq of
untested
paths

175.vpr 300 21.1 0.0
179.art 199 77.4 57.5
181.mcf 3 1.1 0.0

183.crafty 3262 63.5 0.0
188.ammp 123 21.5 1.4
256.bzip2 949 58.3 0.1

Average 314.8 35.9 11.8

Table 2: Untested IPS information obtained from interpro-
cedural residual path profiling.

Benchmark
#untested

paths
%untested

paths

%freq of
untested
paths

176.gcc-200 2670 4.6 0.3
176.gcc-scilab 2635 4.5 0.3
176.gcc-expr 723 1.2 0.0
179.gcc-166 2034 3.5 0.0

179.gcc-integrate 238 0.4 0.0
256.bzip2-graphic 249 6.1 0.0
256.bzip2-source 520 12.8 0.0

256.bzip2-program 49 1.2 0.0
175.vpr-place 175 1.6 0.0
175.vpr-route 30 0.3 0.0

Average 932 3.6 0.1

Table 3: Untested intra-procedural path information ob-
tained using a more robust test suite.

inputs to simulate a residual profiling scenario. We use the
MinneSPEC input suite along with the SPEC test and train
inputs as representative of the test suite. The results are
shown in Table 3. It is interesting to note that even though
a large number of paths are exercised by the train inputs for
these programs, we are able to detect a significant number
of new paths on the ref inputs which essentially characterize
the “deployed” behaviours of these programs.

4.4 Code Size Increase
Apart from the runtime overheads of tracking paths, path

profiling schemes (Ball-Larus and PPP) also increase the size
of the program binary. The reasons for the code bloat are
two-fold: (a) instrumentation placed along edges of func-
tions and at the end of every path, (b) space allocated
to path counter tables and auxillary structures. Our ex-
periments for set of benchmarks programs from the SPEC
CPU2000 suite show that on average, the Ball-Larus pro-
filing scheme increase the code size by a factor of 3.21 on
average. The increase in code size due to PPP is slightly
lower at 3.03, primarily because a more compact number-
ing reduces the amount of space that must be allocated for
the path counter tables. We also measured the increase in
code size caused by the interprocedural versions of the path
profiling schemes. One might have anticipated a significant
increase in code size compared to intraprocedural profiling
because of inlining. This turns out to be true for Ball-Larus
interprocedural profiling scheme, which increases code size
by a factor of 5.33 on average. However, the code bloat due
to IPPP is significantly lower (average 4.35) because inlin-
ing is restricted to call-sites along a small set of interesting
paths. These results show that the increase in code size due

to IPPP is much lower than expected and does not limit the
applicability of interprocedural path profiling any more than
the intraprocedural profiling schemes.

5. RELATED WORK
Melski and Reps extended Ball-Larus profiling to capture

interprocedural paths [6]. They create a single supergraph
that connects all procedures, and then apply the Ball-Larus
numbering to label paths in this graph. Tallam et al. pro-
posed a technique to profile overlapping path fragments from
which interprocedural and cyclic paths can be estimated
[14]. Both these techniques have considerably higher over-
head than the Ball-Larus technique for profiling intraproce-
dural, acyclic paths as well as our technique. Prior work
on residual testing has focused on node coverage [7]. Node
coverage information is much cheaper to collect, but con-
tains less information than edge profiles, which we show are
inferior to path profiles.

6. CONCLUSIONS
We have shown how recent advances in profiling program

paths with low-overhead has provided the opportunity to
perform residual path profiling on deployed software. This
information can be used to improve regression test suites
used for unit testing, where individual software modules are
tested in isolation. We have extended our low-overhead path
profiling technique to capture interprocedural paths. Resid-
ual interprocedural path profiles are useful for improving
integration testing, where groups of modules are tested to-
gether. Our experimental results show that low-overhead
path profiling, both intraprocedural and interprocedural, pro-
vides valuable quantitative information on testing effective-
ness. We show that residual edge profiling is inadequate
as a significant number of untested paths include no new
untested edges.

7. REFERENCES
[1] T. Ball and J. R. Larus. Efficient path profiling. In

International Symposium on Microarchitecture (MICRO),
pages 46–57, 1996.

[2] B. Beiser. Software testing techniques. Van Nostram
Reinhold Inc., N. Y., 1990.

[3] T. Chilimbi, A. V. Nori, and K. Vaswani. Quantifying the
effectiveness of testing via efficient residual path profiling.
Technical Report TR-2007-62, Microsoft Research, 2007.

[4] J. R. Larus. Whole program paths. In ACM SIGPLAN
Symposium on Programming Language Design and
Implementation (PLDI), pages 259–269, 1999.

[5] K. S. McKinley, J. Burrill, M. D. Bond, D. Burger,
B. Cahoon, J. Gibson, J. E. B. Moss, A. Smith, Z.Wang, and
C. Weems. The Scale compiler.
http://ali-www.cs.umass.edu/Scale, 2005.

[6] D. Melski and T. W. Reps. Interprocedural path profiling. In
Proceedings of the 8th International Conference on
Compiler Construction (CC), pages 47–62, 1999.

[7] C. Pavlopoulou and M. Young. Residual test coverage
monitoring. In Proceedings of the International conference
on Software engineering (ICSE), pages 277–284, 1999.

[8] S. Tallam, X. Zhang, and R. Gupta. Extending path
profiling across loop backedges and procedure boundaries. In
International Symposium on Code Generation and
Optimization (CGO), pages 251–264, 2004.

[9] K. Vaswani, A. V. Nori, and T. M. Chilimbi. Preferential
path profiling: Compactly numbering interesting paths. In
ACM SIGPLAN Conference on Principles of Programming
Languages (POPL), pages 351–362, 2007.

548

