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Abstract. The proliferation of sensors in devices of frequent use, such
as mobile phones, offers unprecedented opportunities for forming self-
selected communities around shared sensory data pools that enable com-
munity specific applications of mutual interest. Such applications have
recently been termed participatory sensing . An important category of
participatory sensing applications is one that construct maps of different
phenomena (e.g., traffic speed, pollution) using vehicular participatory
sensing. An example is sharing data from GPS-enabled cell-phones to
map traffic or noise patterns. Concerns with data privacy are a key im-
pediment to the proliferation of such applications. This paper presents
theoretical foundations, a system implementation, and an experimental
evaluation of a perturbation-based mechanism for ensuring privacy of
location-tagged participatory sensing data while allowing correct recon-
struction of community statistics of interest (computed from shared per-
turbed data). The system is applied to construct accurate traffic speed
maps in a small campus town from shared GPS data of participating
vehicles, where the individual vehicles are allowed to “lie” about their
actual location and speed at all times. An extensive evaluation demon-
strates the efficacy of the approach in concealing multi-dimensional, cor-
related, time-series data while allowing for accurate reconstruction of
spatial statistics.

1 Introduction

An emerging category of applications focus on collecting and sharing sensor data
for the purpose of characterizing aggregate real-world properties, such as com-
puting community-wide statistics or mapping physical phenomena of common
interest. These applications are termed participatory sensing applications [1]. Ex-
amples of these applications include vehicular sensor networks for collecting and
sharing traffic data [2], bicycle networks to collect and share bikers’ paths [3],
and cell phone based buddy networks to collect and share location and activ-
ity information [4]. An important category of participatory sensing applications



is one where users share location-tagged data to construct maps of different
phenomena (e.g., traffic speed, pothole, pollution).

One main problem in participatory sensing applications that share location-
tagged data is privacy. For example, a community of environmentalists might
want to collectively measure pollution on city streets and share that information
to construct city-scale pollution maps. Since such data are location-tagged, a
key question is to enable correct geographic mapping without revealing private
location information of individuals collecting the location-sensitive data. The
problem becomes non-trivial in the absence of a shared trusted entity that can
be used to sanitize the data. Moreover, since the data itself, such as GPS traces,
may reveal user identity, anonymity is not the answer to the privacy problem.

To address the above challenge, in this paper, we solve the privacy problem
via data perturbation. Perturbing data on the client-side prior to sharing em-
powers clients by giving them the freedom to “lie” about both their data and
the context (such as location) where it was collected. Clients share their per-
turbed data with an entity we call the aggregation server . It is responsible for
computing the aggregate statistics of interest. Clients trust the server with com-
puting the statistics but do not want to reveal their private data to it for privacy
reasons. When receiving perturbed data, in addition to computing the commu-
nity statistics, the server may try to guess the original individual user data,
which we call a privacy attack . This paper designs perturbation algorithms that
protect against privacy attacks, while ensuring accurate reconstruction of com-
munity statistics. The contribution lies in solving the above problem for the case
of multidimensional correlated time-series data (such as correlated sensor data
streams).

From an algorithmic perspective, the fundamental limitation of previous ap-
proaches is that they do not consider privacy-preserving perturbation and re-
construction when each user shares multiple correlated private data streams. For
example, when collecting speed at different locations to build a city speed map,
both speed and location are private since a client might not want to admit, say,
to speeding, and might not want their location to be tracked.

We provide a solution to the general problem of ensuring privacy for multi-
stream data of individuals while allowing community statistics to be recon-
structed accurately. We develop a correlated noise model that can be utilized
for perturbing location-tagged data in a way that protects both data and lo-
cation privacy. We evaluate the approach using a traffic monitoring application
implemented using an existing architecture called PoolView [5]. The applica-
tion follows a client-server model. The client-side software collects data from
the client’s GPS device, perturbs the data and shares those with an aggrega-
tion server. The aggregation server then estimates useful community statistics
from perturbed data and makes those statistics available for community access.
Empirical measurements show that the approach results in accurate reconstruc-
tion of speed maps from perturbed data while preventing the reconstruction of
individual client data and location information.



The rest of this paper is organized as follows. We first develop the recon-
struction algorithm of the joint probability distribution in Section 2. Privacy
properties are discussed in Section 3. Section 4 and Section 5 describe simulation-
based evaluation and deployment-based evaluation, respectively. Finally, Section
6 concludes the paper.

2 Joint Probability Density Function Reconstruction

The main contribution of this paper lies in the algorithm to accurately recon-
struct the community joint density given the perturbed multidimensional stream
data and the noise density information. Any statistical question about the com-
munity can be answered using the reconstructed joint density. There have been
many efforts on the community distribution reconstruction. Agrawal et al. [6]
proposed a Bayesian-based reconstruction of the probability distribution. In [7],
the authors use the Expectation Maximization (EM) algorithm to estimate one-
dimensional distribution from data perturbed with Gaussian noise. In our pre-
vious work [5], we employed the Tikhonov-Miller deconvolution technique to
estimate the community distribution. However, all of these algorithms are de-
veloped to reconstruct a one-dimensional distribution. Hence, they do not scale
to the problem of multidimensional distribution reconstruction. In this section,
we present an iterative algorithm to estimate the discretized joint distribution
of multidimensional data streams.

Let the number of data streams that each user wants to share be M . The
shared data from each user are assumed to be drawn from a multivariate random
variable X = (X1,X2, . . . ,XM ), thus each data point is a length M vector.
The reconstruction algorithm does not distinguish which data points are from
which user. Therefore, we can define the set of all data points from all users
as X̄ = {x1, x2, . . . , xn} where xi is a length M data point, and n is the total
number of data points from all users.

Each data point is perturbed by adding an M -dimensional noise data point
generated from a known joint distribution fN (N1, N2, . . . , NM ) which is known
to all participating users (or rather to their client-side software). An aggregation
server receives the set of n perturbed data points from all users denoted as
Ȳ = {y1, y2, . . . , yn}. We want to estimate the joint distribution of X which is
fX(X1,X2, . . . ,XM ) given the shared data Ȳ and the knowledge of the noise
distribution fN .

Let us denote the sample space of Xi as Ωi. Thus, the sample space of X
is Ω = Ω1 × Ω2 × . . . × ΩM . In order to reconstruct the density of X, we first
discretize the the sample space Ω. The sample space of Xi is partitioned into
Ki bins (may not be uniform) denoted as {Ω1

i , Ω2
i , . . . , ΩKi

i }. Thus Ω containes
K = K1 ×K2 × . . .×KM M -dimensional bins in which the value of the density
function is constant. The more the number of bins, the better the discrete density
approximates the continuous density. To simplify the notation, the following
symbols are introduced:

– ωI : the Ith bin of Ω, thus Ω = ∪ωI
ωI .



– Θ = {θ1, θ2, . . . , θK} : where θi = fX(X) with X ∈ ωI , is the set of all
density parameters to be estimated.

– mωI
: the volume of ωI , a proper discrete density parameters Θ should satisfy

∑

ωI

θImωI
= 1 (1)

To estimate Θ, our approach is to employ the maximum likelihood frame-
work. We need to find the density function parameters which maximize the log
likelihood of the data X̄ given the observations Ȳ

Θ̂ = argmax
Θ

log fX;Θ(X̄|Ȳ ) (2)

The notation fX;Θ means that the likelihood of X is computed using the
discrete distribution Θ. Unfortunately, the likelihood can not be computed di-
rectly at the aggregation server because only Ȳ is known while X̄ is missing. A
common procedure to solve the maximum likelihood estimation with incomplete
information is the EM algorithm [8]. To use the EM algorithm, the following
auxiliary function Q(Θ|Θ̂k) is defined:

Q(Θ|Θ̂k) = EX|Y

[

log fX;Θ(X̄)|Ȳ , Θ̂k
]

(3)

The auxiliary function Q is actually the expectation of the likelihood in (2)
with respect to X using the density of X computed from the previous step which
is Θ̂k. The EM algorithm consists of two steps:

– E-step : Given the density computed from the kth step, compute the value
of Q(Θ|Θ̂k)

– M-step : Compute Θ̂k+1 = argmaxΘ Q(Θ, Θ̂k)

Next, we will derive a closed form expression for Q, the optimal solution
which maximizes the likelihood function and analyze the convergence of the
algorithm.

Theorem 1. (E-step) The value of Q(Θ|Θ̂k) is given by:

Q(Θ|Θ̂k) =
∑

ωI

θ̂k
ωI

log(θωI
)φk

ωI
(4)

Where

φk
ωI

=
1

N

N
∑

j=1

fN (yj − ωI)

fk

Y ;Θ̂k
(yj)

(5)

f
Y ;Θ̂k(yj) =

∑

ωI

fN (yj − ωI)θ̂
k
ωI

(6)

fN (yj − ωI) =

∫

ωI

fN (yj − γ)dγ (7)



Proof. See Appendix 7.1.

Theorem 2. (M-step) The value of Θ̂k+1 maximizing the auxiliary function
Q(Θ|Θ̂k) is given by

θ̂k+1
ωI

=
φk

ωI

mωI

θ̂k
ωI

(8)

Proof. See Appendix 7.2.

In the next theorem, we show that the EM algorithm for this problem is
guaranteed to converge to the maximum likelihood solution which is the so-
lution for (2). Therefore the likelihood value increases slowly as it approaches
the optimal solution. Thus a stopping condition for the algorithm is when the
likelihood difference between two consecutive steps is sufficiently small.

Theorem 3. The estimated density function given by the algorithm converges
to the maximum likelihood solution Θ̂ defined in the Equation (2).

Proof. We will first prove that Q(Θ|Θ̂k) is concave in θωI
. In Theorem 1, we prove

that the value of the auxiliary function Q(Θ|Θ̂k) =
∑

ωI
θ̂k

ωI
log(θωI

)φk
ωI

which
is the non-negative linear combination of log(θωI

). Since log(x) is a concave in
x, the non-negative linear combination of log(x) functions is also concave. Thus
Q is concave in θωI

.
Wu et al. [9] showed that the value of the likelihood increases after each

iteration. Because Q is concave, the iterative algorithm will finally converge to
Θ̂ which maximizes the likelihood function defined in (2).

3 Perturbation of Location and Data

Having presented a general algorithm for reconstruction of community statistics,
it remains to decide on the perturbation function. This question is equivalent
to choosing the noise probability density function, from which noise samples are
chosen. Perturbation is application specific, since it depends on what is being
perturbed. We consider the class of applications where we perturb location-
tagged data collected by vehicles.

In our application, individuals collect GPS longitude, GPS latitude, speed
and (coarsely discretized) time, using their own GPS devices. Once the aggre-
gation server receives perturbed data from participants, the community joint
density (i.e., the joint density of longitude, latitude and speed) is reconstructed
using the above reconstruction algorithm. Speed-related statistics are then com-
puted as a function of location on the map from the reconstructed joint density.
In this paper, we present useful community statistics that can be computed from
the estimated multidimensional density such as community average speed, speed
distribution, car density, and percentage of speeding vehicles on different streets.

The application was deployed on top of our existing architecture for partic-
ipatory sensing called PoolView [5]. PoolView is a generic client-server based



architecture that enables individuals to collect, archive, and share sensor data
with a community On the client side, PoolView provides software that collects
sensor data from specific devices (e.g., Garmin GPS). We modified the PoolView
client to use our new multidimensional data perturbation scheme. On the server
side, we implemented the multidimensional density reconstruction algorithm and
the algorithms used to estimate the aforementioned statistics.

3.1 The Perturbation Model

In this section, we propose an algorithm that generates fake (but realistic-
looking) vehicle traces that perturb true user location and speed in a way that
protects them from being estimated. The vehicle traces are recorded as dis-
placements from an origin (of a coordinate framework) that lies at some agreed
upon point in the city in question. These displacements, which we henceforth
call perturbation traces, will then be added to real routes to generate perturbed
routes. There has been many research efforts on generating vehicle traces in prior
work [10–13]. We can utilize one of those models to generate perturbation traces
for our application. However, the vehicle traces used for perturbation do not
need that level of accuracy. Thus, we develop a simplified model that generates
perturbation traces using a minimal number of simple parameters.

It is key that the perturbation traces generated resemble real traces for the
city in question. For example, in a city with a lot of curvy roads, generated
perturbation traces containing only straight segments will not help conceal the
identifying characteristics of the roads actually traveled. A robust perturbation
trace generation algorithm must therefore incorporate as many features of the
actual map as possible.

Our perturbation trace generation algorithm generates traffic routes made of
sequences of straight line segments, each of a length drawn from the distribution
of the lengths of city blocks. These segments are at angles generated from the
distribution of city street intersection angles. This distribution heavily favors
0 degree angles (continuing forward past an intersection) and 90 degree turns.
Other angles are generated with lower probability. We ignore U-turns because
they occur with a very small probability. For speed, we use a sine curve for each
road segment that peaks in the middle of the segment and slows down towards
the beginning and end. The peak is drawn from the distribution of city street
speed limits. The slowest point is a uniformly-distributed random fraction of the
peak. These traces represent displacement to actual routes. This displacement
can be scaled to control the noise variance.

Finally, for the purpose of reconstructing the community joint distribution,
we need the joint distribution of the generated perturbation trace (the noise).
Since it is hard to come up with an analytic solution for the joint distribution of
the noise, we generate this distribution numerically. First, we generate a pool of
noise data points from the model then a non-parametric density estimation with
smoothing [14] is employed to estimate the joint distribution. In this application,
5000 vehicle traces, each of which contains 40 data points, are generated and



used as input to the density estimation algorithm, which generates the joint
distribution.

3.2 Achieved Privacy

In this section, we analyze the extent of privacy offered to individual user data
using our perturbation scheme. The information available to the aggregation
server includes the perturbed data, the noise density function (known by the
server) and the map on which the user traveled. First, note that the reconstruc-
tion algorithm proposed in this paper can not be used to reconstruct individual’s
real data from those information. Our proposed algorithm can only reconstruct
community distribution from shared data of a reasonable number of participants.
Using the available information, the malicious server can employ filtering tech-
niques to remove additive noise from the perturbed data. We call this kind of
attack filtering attack.

In this paper, we analyze a filtering attack which applies a Wiener filter to re-
move additive noise from perturbed data. The Wiener filter uses the noise density
information to filter the noise from perturbed data. One important assumption
that the Wiener filter makes is the noise samples are independent. However, this
assumption fails because the noise samples generated by our algorithm are cor-
related which makes the estimated data traces follow the perturbed path instead
of real path. For demonstration, we perturb a real user location trace with both
correlated noise generated by our algorithm and independent Gaussian white
noise and then perform the Wiener filter on both perturbed data set.

The result of the Wiener attack in the case of Gaussian white noise is shown
in Figure 1(a). The reconstructed path is very close to the real path and the
reconstruction error is less than one block which means that the attacker can
easily figure out the place where the user have been. Figure 1(b) shows the real
path, perturbed path and the reconstructed path for the perturbation technique
we developed in this paper. We see that the reconstructed path follows the
perturbed path. Therefore, the Wiener filter attack does not work as desired for
the attacker. Users might want to increase the variance of the generated noise to
get more privacy, but the reconstruction error might increase as well. Therefore,
it is important to balance the trade off between privacy and accuracy.

The second type of attack considered in this paper is the range attack. It is
possible to conduct the range attack in applications where the ranges of both
the real data and the generated noise are finite. In this case, real data values can
be inferred if boundary values of the perturbed data are observed. For example,
suppose the real speed of a vehicle is in the range [0 to 50] and the generated
noise is also in the range [0 to 50]. If the perturbed speed is 100, the attacker
knows with certainty that the true speed is 50. In general, if the perturbed values
are close to the boundary, privacy can be violated. In applications involving
GPS location as a private variable, however, this attack is not effective. GPS
location refers to a point of the globe. Perturbing that location by a few miles
is sufficient for privacy, yet the perturbed location still refers to a point on
the globe. In other words, the perturbed coordinates always refer to a valid data
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Fig. 1. Reconstruction of user location perturbed with different noise model.

point. An exception is when map information is used to infer noise. For example,
at coastal areas, one may safely assume that vehicles do not move on water, which
generates a boundary on valid locations. The map-based attack will be discussed
shortly. In general, the effect of range-based attacks can be mitigated if the noise
distribution has a long tail such that arbitrarily large values are allowed with an
arbitrarily low probability. (Many distributions, including Gaussian, have this
property.) In this case, the range is infinite. There is no maximum value for the
perturbed signal that can be used to breach privacy.

Another popular type of attack against additive-noise perturbation tech-
niques is the leak attack [15]. In this type of attack, the attacker may be able to
estimate the seed of the pseudo random number generator which generates the
noise curve if he can guess a few true data values. Then this seed can be used to
generate the noise curve used by the user since the noise distribution is known.
However, with our perturbation scheme, this attack is not possible because we
only use the random number generator to generate the model parameters (e.g.,
number of turns, speed of each segment). The additive noise is then generated
using those parameters and the model developed earlier in this section.

A vulnerability of our perturbation scheme is that it is possible to combine
the real map with a clever estimation technique to estimate the most likely
traveled path. We call this attack scheme a map-based attack. At this moment, it
is still unknown if there exists a good map-based attack against our perturbation
scheme. In this paper, we argue that finding an efficient map-based attack is hard.
One possible way to conduct the map-based attack is to look at the sequence
of the turning angles in the GPS trajectory data. Since the probability that
the noise angle and the real angle cancel out is pretty small, the turning angles
from the perturbed data contain some information about the real turning angles.
Combining with the map, it is possible to find the most probable traveled path.
It is not easy, however, to find the likelihood of the real turning angle given the
perturbed path. Because the perturbed path is created by adding the coordinates
of the real path and the noise path, the angle in the perturbed path is not only
depend on the angle of both real path and noise path but also depend on the



magnitudes of those. In the upcoming sections, we only evaluate the immunity
of our perturbation scheme against filtering attacks.

4 Simulation Results

In this section, we evaluate the performance of the traffic mapping application
with simulated data. The advantage of using simulated data is to give total
control over traffic parameters, (e.g., average community speed, speed map),
which is hard to accurately measure in a real application. In addition, vehicular
traces can be generated for a large numbers of “virtual” users makes it possible
to evaluate the accuracy of the reconstruction algorithms. We also evaluate the
accuracy computation of the community average speed using the reconstructed
density in this section.

We use the ONE (Opportunistic Network Environment) [16] simulator to
generate artificial traces of vehicle movements in a small city setup. The map
used in this simulation is a part of Helsinki city and is distributed with the
ONE simulator. The simulator supports Map Based Movement models that can
import map data and constrain vehicle movement to the streets and roads of the
imported map.

Our goal is to make the data get out from the simulator as realistic as possible.
The input map for the simulator is extracted from a real map and is shown in
Figure 2 with the X and Y coordinates ranging from 0 to 4000 meters and
0 to 3600 meters respectively. Vehicle speeds are chosen to be Gaussian with
mean 30mph and standard deviation of 10mph. Trip data, including X and Y
coordinates and vehicle speed, are sampled at a frequency of 1 Hz, and are
stored in an external file for later use. The simulated data are then perturbed
with perturbation traces generated by the algorithm discussed in Section 3.1.
The perturbed data are then submitted to the aggregation server.

Fig. 2. The map used in simulation

We collect data from 120 users, each of which contains 80 data points, from
the simulation. In order to reconstruct the community joint distribution, we
first have to specify the range of each dimension and the number of bins in each
dimension. Those parameters are summarized in Table 1. In this simulation,



we discretize the location in 100mx100m bins which is small enough to capture
the street information. For more accurate reconstruction of the joint density,
more bins in each dimension might be needed but it would require more user
data points and computational time. In this specific traffic application, we are
only interested in the density values corresponding to the street locations. Our
proposed algorithm allows us to do the reconstruction on those bins only thus
siginificantly reduce the time complexity of the algorithm.

Table 1. Parameters for the reconstruction

Parameter range of X range of Y range of V

Value 0 - 4000 (m) 0 - 3600 (m) 0 - 60 (mph)

Parameter X bins Y bins V bins

Value 40 36 60

Table 2. Noise variance in each data set

Parameter stddev of X (m) stddev of Y (m) stddev of V (mph)

Dataset 1 100 100 4

Dataset 2 500 500 36

Dataset 3 900 900 60

Dataset 4 1500 1500 76

Dataset 5 3000 3000 100

In the first experiment, we study the accuracy of the density reconstruction
algorithm under various noise variance. The application must achieve high recon-
struction accuracy at a reasonably high noise variance level in order to provide
sufficient privacy to users. To achieve this goal, we perturbed the simulation
data using five different noise variances shown in Table 2.

We define the accuracy of the density reconstruction as a function of the
average accuracy of all the bins:

r =
1

K

K
∑

i=1

(

1 −
|θi − θ̂i|

θi

)

(9)

In Equation (9), r is the computed accuracy, θi is the true discrete density

parameter, θ̂i is the estimated density parameter. θ̂i is obtained by feeding the
real density using real user data points to the density estimation algorithm.

The accuracies of the reconstructions as the function of the number of data
points and noise variance are shown in Figure 3. The figure shows five different
curves corresponding to the five dataset described above. The X axis is the
number of data points which varies from 120 points to 1200 points with 120-point
increments. In the results, Dataset 1 achieves highest accuracy while Dataset 5
achieves lowest accuracy.

Next, we evaluate the achieved privacy for each dataset presented in Table
2. We assume that the attacker uses Wiener filter to estimate vehicle trace of
individuals from perturbed data and the noise distribution. Beside correlated
noise, trip data are also perturbed with Gaussian noises with the same standard
deviation for comparision purpose. We perform the estimation on the perturbed
vehicle trace of all users and compute the average reconstruction error which is
presented in Table 3 below.

From the Table 3, the reconstruction error for the vehicle traces perturbed
with correlated noise is very high as opposed to the Gaussian case in which the
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Table 3. Reconstruction Error of Individual Data

Dataset Correlated Noise (m) Gaussian Noise (m)

Dataset 1 334.5 145.0

Dataset 2 1329.5 153.4

Dataset 3 1942.4 189.8

Dataset 4 3573.6 218.1

Dataset 5 4901.1 223.5

error is small. With Dataset 1 (the noise covariance is small) the reconstruction
of individual data is still high (about 3 blocks) which means good privacy is
achieved. Also, with Dataset 5, although the reconstruction error of individual
data is huge (about 40 blocks), the community distribution can still be accurately
reconstructed (above 96%).

In the last experiment, we demonstrate the estimation of the community
average speed using the joint distribution estimated in the first experiment. In
addition, we also want to study the effect of the number of iterations on the
accuracy of reconstruction. To compute the community average speed from the
community joint distribution f(X,Y, V ), we first compute the speed density f(v)

f(v) =
40
∑

x=1

36
∑

y=1

f(x, y, v)∆XY (10)

Equation (10) is the marginalization of the discrete joint density over X
and Y dimensions. where ∆XY = (4000/40) ∗ (3600/36) is the area of a two

dimensional bin XY . Then the average speed v̄ is computed as v̄ =
∑60

v=1 vf(v).

The result of the experiment is shown in Figure 4. Although Dataset 5 pro-
vides users with highest acceptable privacy, the reconstructed average speed is
still close to the true value. Another important observation from the graph is
that the density reconstruction algorithm requires a very small number of iter-
ations to converge. Results from 5 datasets show that 10 to 15 iterations are
sufficient. The accuracy of the algorithm almost does not change after 20 itera-
tions. In the next section, we evaluate the performance of the application using
deployment data.



5 Deployment Data

In this section, we evaluate the traffic monitoring application with real deploy-
ment data. The data are collected by driving on all the streets within an area
shown in Figure 5. There are a total of 15 users, each user drives the streets at
will for 10 minutes. During the drive, we use a Garmin Legend [17] GPS device
to record location and speed information. The sampling frequency of the device
is 15Hz which is enough to record changes in the location and speed since the
speed limit in the area is 25 mph.

Fig. 5. Map used to collect data

At the aggregation server side, to do the reconstruction, we need to specify the
reconstructed region and the number of bins in each region. The reconstruction
parameters are summarized in Table 4. For location, we divide each axis into 30
bins, the width of each bin is 0.01 mile, which is about the width of a street.
This is important because, we want to estimate the speed down to the resolution
of a street. This can be done by looking at the specific bins corresponding to the
target street.

Table 4. Parameters for the reconstruction

Parameter range of X) range of Y range of V

(1/100 mile) (1/100 mile) (mph)

Value 0 - 300 0 - 300 0 - 25

Parameter X bins Y bins V bins

Value 30 30 30

Table 5. Noise standard deviation

Parameter stddev of X stddev of Y stddev of V

(1/100 mile) (1/100 mile) (mph)

Dataset 1 45 35 5

Dataset 2 75 75 10

Dataset 3 100 100 15

Dataset 4 150 150 20

Dataset 5 300 300 30

In the first experiment, we study the density reconstruction accuracy as a
function of the number of data points used for reconstruction. We want to answer
the question of how many data points we need to achieve a desired accuracy.
Similar to the case of simulation data, we do the perturbation of the data with
five different noise data sets each of which has different variance. The details



of the noise datasets are presented in Table 5. The standard deviation of the
noise specified in the table is comparable to multiples of the block length (about
75/100 mile), We run the density reconstruction algorithm multiple times, each
time with a different number of data points. The data points are randomly picked
from the total pool of data points contributed by all users. The number of data
points taken for reconstruction is varied from 100 to 800.

The results of the experiment are shown in Figure 6. From the result, the
highest accuracy achieved is about 90% at about 800 datapoints while the low-
est accuracy is about 83% at about 160 datapoints. The number of data points
needed for a good estimate is thus surprisingly low. This can be explained by
the observation that since the data points are uniformly picked from the pool,
there is a high chance that they scatter all over the map, thus capturing the
speed information of the whole area. This makes the application practical in
most city areas. In the next experiment, we demonstrate the estimation of the
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community speed distribution. This community speed distribution can be use-
ful in determining the average speed in the area or compute the percentage of
speeding vehicles in that area. To compute the community speed distribution
f(v), we marginalize the estimated discrete joint distribution f(x, y, v) as follow

f(v) =

30
∑

x=1

30
∑

y=1

f(x, y, v)∆XY (11)

where ∆XY = (300/30)∗(300/30) is the area of a two dimensional bin in XY
dimension. Figure 7(a) and 7(b) shows the real community speed distribution
and the estimated community speed distribution, respectively. We see that the
two speed distributions are similar except for the first bin corresponding to zero
speed. This can be explained because the density estimation algorithm tends to
produce a smooth distribution. Thus, the speed value of the bin is smoothed out.
The percentage of speeding vehicles in the community can be computed as the
sum of bins with larger than 25 miles/hr speed. In this case the real community
percentage of speeding is about 7% while the estimated percentage of speeding
is 10% which is a good estimate.
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Fig. 7. Real and reconstructed speed distribution.

6 Conclusion

In this paper, we present theoretical foundations for perturbation based mech-
anisms for ensuring privacy while allowing correct reconstruction of community
statistics of interest. Previous data perturbation techniques fail to ensure either
privacy or correct reconstruction of community statistics in the case of correlated
multidimensional time-series data. The algorithms proposed in this work allow
participants to add noise to multiple correlated data streams prior to sharing in
a privacy-preserved way while making sure that relevant community statistics
are still reconstructible. A participatory sensing application for traffic monitor-
ing is developed which allows participants to “lie” about their actual location
and speed, while letting the community estimate useful traffic statistics (e.g.,
speed map, percentage of speeding vehicle, etc) with high accuracy.
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7 Appendix

7.1 Proof of Theorem 1

We begin with the expansion the auxiliary function Q by noting that the data points
are i.i.d.

Q(Θ|Θ̂k) = EX|Y

h

log fX;Θ(X̄)|Ȳ , Θ̂
k

i

= EX|Y

"

log
N

Y

j=1

fX;Θ(xj)|yj , Θ̂
k

#

=
N

X

j=1

Z

Ω

log fX;Θ(γ)fX|Y ;Θ̂k(γ|yj)dγ

In the last step, the expectation is taken over all possible values of X given the
observation yi. We further expand the auxiliary function Q using Bayes’ formula and
the fact that fY |X(Y |X) = fN (Y − X) because N = Y − X.

Q(Θ|Θ̂k) =

N
X

j=1

Z

Ω

log fX;Θ(γ)
fXY ;Θ̂k(γ, yj)

fY ;Θ̂k(yj)
dγ

=
N

X

j=1

1

fY ;Θ̂k(yj)

Z

Ω

log fX;Θ(γ)fX;Θ̂k(γ)fN (yj − γ)dγ

=

N
X

j=1

1

fY ;Θ̂k(yj)

X

ωI

Z

ωI

log(θωI
)θ̂k

ωI
fN (yj − γ)dγ



In the last equation, the integral over the Ω is discretized and is computed as the
sum of the integral over all subspaces ωI in which the value of the discrete density
function is constant. Also the value of fY ;Θ̂k(yj) is computed as follow:

fY ;Θ̂k(yj) =

Z

Ω

fY (yj |x)fX;Θ̂k (x)dx

=
X

ωI

fN (yj − ωI)θ̂
k
ωI

Q(Θ|Θ̂k) =
N

X

j=1

1

fY ;Θ̂k(yj)

X

ωI

θ̂
k
ωI

log(θωI
)

Z

ωI

fN (yj − γ)dγ

=
X

ωI

θ̂
k
ωI

log(θωI
)

N
X

j=1

fN (yj − ωI)

fY ;Θ̂k(yj)

=
X

ωI

θ̂
k
ωI

log(θωI
)φk

ωI
⊓⊔

7.2 Proof of Theorem 2

This is an optimization problem with a constraint which ensures that Θ is a proper
density function.

Θ̂
k+1 = argmax

Θ

Q(Θ|Θ̂k)

X

ωI

θωI
mωI

− 1 = 0

The Lagrangian of the optimization is given by

L(θωI
, λ) = Q(Θ|Θ̂k) + λ(

X

ωI

θωI
mωI

− 1)

=
X

ωI

θ̂
k
ωI

log(θωI
)φk

ωI
+ λ(

X

ωI

θωI
mωI

− 1)

The optimized values θ̂k+1
ωI

satisfied ∂L
∂θωI

(θ̂k+1
ωI

) = 0 and ∂L
∂λ

(θ̂k+1
ωI

) = 0. After some

algebraic transformation we get

λ = −
1

N

N
X

j=1

1

fY ;Θ̂k(yj)

X

ωI

θ̂
k
ωI

fN (yj − ωI) (12)

Since Y = X + N thus the density of Y is the convolution of the density of X and
N . It is straight forward to show that

fY ;Θ̂k(yj) =
X

ωI

θ̂
k
ωI

fN (yj − ωI) (13)

Substitute (13) into (12) yield λ = −1. Therefore

θ̂
k+1
ωI

=
φk

ωI

mωI

θ̂
k
ωI

⊓⊔


