
Differentially Private Billing with Rebates

George Danezis1, Markulf Kohlweiss1, and Alfredo Rial2

1 Microsoft Research, Cambridge, UK
{gdane,markulf}@microsoft.com

2 ESAT-COSIC / IBBT, KU Leuven, Belgium
alfredo.rial@esat.kuleuven.be

Abstract. A number of established and novel business models are based on
fine grained billing, including pay-per-view, mobile messaging, voice calls, pay-
as-you-drive insurance, smart metering for utility provision, private computing
clouds and hosted services. These models apply fine-grained tariffs dependent on
time-of-use or place of-use to readings to compute a bill.
We extend previously proposed billing protocols to strengthen their privacy in
two key ways. First, we study the monetary amount a customer should add to their
bill in order to provably hide their activities, within the differential privacy frame-
work. Second, we propose a cryptographic protocol for oblivious billing that en-
sures any additional expenditure, aimed at protecting privacy, can be tracked and
reclaimed in the future, thus minimising its cost. Our proposals can be used to-
gether or separately and are backed by provable guarantees of security.

1 Introduction

A number of business models are based on billing customers for fine grained use of
a system or resource: mobile network providers charge per call length and type, pay-
per-view TV providers charge for the actual requested content. Newer businesses rely
heavily on fine grained recordings of activity for billing. Pay-as-you-drive automotive
insurance bills drivers per mile depending on the type of road and time of travel. Elec-
tronic tolling and congestion charging schemes have been proposed on similar lines.
Smart-metering for electricity and gas is being rolled out in the EU and the US in the
next few years. Finally, private cloud provision as well as hosted on-line service provi-
sion might rely on fine-grained measurements of CPU time usage, memory allocation,
disk storage, peak bandwidth, or even the demand and network congestion at the time
of day.

The downside of fine-grained metering and billing is the potential threat to pri-
vacy [1, 2]. A common privacy-invasive architecture to support such billing consists
of providers collecting all usage information in order to apply the appropriate tariffs.
Privacy-friendly protocols have also been developed: it is possible to cryptographically
combine certified readings with a tariff policy to produce a certified bill that leaks no
additional information about the detailed readings [3–5]. Yet, even the final bill, which
is for instance aggregated over a period of usage, may leak information or be used to
leak specific readings.

This work makes two contributions to the field of privacy-friendly metering and
billing. First, we discuss how to eliminate incidental, accidental or deliberate leakages

of information resulting from disclosing the final bill. We show that by adding some,
in the long run small, amount of noise it is possible to offer strong privacy guarantees
on what an adversary can infer from the final bill. This problem is similar to covert
channel minimization [6], and we use techniques from differential privacy that could be
more widely applicable. Second, we attempt to minimise the cost of privacy through a
cryptographic oblivious billing mechanism. The true cost of service provision is tracked
across billing periods, but not revealed to the service provider, which can only verify the
deposited funds cover costs. This allows customers to determine the levels of privacy
they require and even get a rebate for the additional funds they used to protect their
privacy.

Throughout this work we motivate our protocols through the example of a leased
private computation cloud. A service provider installs a cloud of 10000 CPUs in the pre-
misses of a large government intelligence agency. In our example, billing is performed
on the basis of the compute hours actually used at a fixed rate of $0.12 per CPU instance
/ hour3. A more complex tariff scheme where each hour in the year is costed differently
is also supported. The government agency needs to settle the bill each month, but is
worried that the amount of computation on particular days is leaked to its adversaries.
We will show how our protocols can be used to reduce any leakage below a desired
level.

Discussion of the state-of-the-art. Deployed systems for fine grained billing usually
employ procedural access control mechanisms to protect privacy: usage data is gath-
ered, and often stored centrally for the purposes of billing. Access control allows only
designated parties and processes to access the data, and encryption technology might
be used to protect storage and communications. Despite those protections, the fact that
personal information is under the control of a service provider raises privacy concerns.
A pilot deployment of a pay-as-you-drive insurance scheme by Norwich Union failed,
stating privacy concerns as a leading reason for low uptake.4

Two types of privacy preserving metering and billing have been proposed in the lit-
erature. First, a meter can be entrusted with applying a fine grained tariff to the usage
data and only communicating to the service provider a final total fee. In this setting
the meter has to be trusted by the users and the service providers both for privacy and
correctness. This is usually achieved through trusted hardware and certification. In the
automotive setting, where meters record positions of cars for tolling, spot checks have
also been proposed to verify the correctness of the meter operation [3]. The second ar-
chitecture requires meters to cryptographically certify readings and securely hand them
over to a user device or service. Cryptographic operations can then be used to apply a
tariff scheme, and output a bill along with the necessary cryptographic proofs that cer-
tify its correctness. Meters are simpler, and any device can be used to compute bills [5].
Both architectures achieve the same goal: the bill and other necessary information are

3 The value of a standard compute instance / hour on Amazon EC2 and Microsoft Azure in
December 2010.

4 Insurer stops ‘pay as you drive’, BBC Radio 4’s Money Box http://news.bbc.co.uk/
2/hi/programmes/moneybox/7453546.stm

made available to the service provider, but further information on detailed readings is
hidden from it and only available to the consumer.

In this work we are concerned with the remaining information leakage from privacy-
preserving billing systems. The value revealed by the protocols, namely the value of the
bill, could leak information or be used as a covert channel.

To illustrate the threat, consider a resource consumed in a number of imax distinct
time periods i, for i ∈ [0, imax]. Some consumption takes place at each time period i
denoted by ci ∈ [0, cmax], that should be billed at a tariff of pi per unit. Thus the final
bill for all periods should be B =

∑imax

i=0 ci · pi. Without making any assumptions on
the consumption patterns, as they are out of the system designer’s control, it is difficult
to estimate what information may be leaking from the final value B. For example an
adversary may know, through some side information, that the user consumed only in a
single time period T . In such a case the exact value of cT can be inferred straightfor-
wardly by computing cT = B/pT . This example threat illustrates that a solution to this
problem should make no assumptions about the consumption pattern, assume that arbi-
trary side-information is available to the adversary, and work for arbitrary (but known)
tariff schemes.

We will use a trivial solution as a benchmark to evaluate our own proposals: the user
could always pay an amount equivalent to the maximum possible consumption. In the
example used so far, this would be: maxB = cmax ·

∑imax

i=0 pi. While this is an adequate
solution from a privacy perspective, it nullifies the benefits of fine-grained billing as
users end up paying a fixed premium irrespective of their consumption. Furthermore it
is very wasteful, if the objective is to hide usage of the private cluster at the granularity
of an hour or a day.

Outline. Our techniques provide guarantees of privacy depending on the level of pro-
tection required by the customers, as well as a cryptographic scheme to amortise the
cost of such privacy provision. In Section 2 we study how much noise one needs to add
to a bill to ensure specific consumption windows are protected. In Section 3 we propose
a cryptographic rebate protocol that keeps a hidden track of the actual amounts due
accross multiple billing periods, allowing users to reclaim some of the extra payments
made. The rebate protocols also support deposits, anonymous payments using e-cash,
and negative bill noise, and prevent abuse by ensuring the funds paid cover the costs of
consumption.

2 Differential Privacy for Billing

We start from the premise that customers can add some “noise” to their bill in order
to hide their exact usage at specific times. Of course this billing noise represents real
money, so they wish to minimise it for a given level of protection required. The first
problem we tackle is to determine how much more a customer should pay to hide their
pattern of activity for a particular time frame.

Differential privacy was developed as a framework for hiding personal records
within databases [7]. A statistic extracted from a database is differentially private if
it is nearly as likely as if it was extracted from a database with an arbitrary record re-
moved. This definition encapsulates the intuition that a single individual’s record does

not overwhelmingly affect the statistic in a way that information about the record might
leak.

We have to modify this definition as well as its precise mathematical counterpart
to make it applicable to the billing setting. We consider as our database the set of all
readings from a meter. In the case of billing private cloud usage each record represents
the number of CPUs used for each hour of the billing period. The customer then has to
specify its privacy goal: for example they may wish to hide their activity at any arbitrary
hour or any arbitrary day of computing. Then they should determine the quality of
the protection provided, in terms of how much information the bill reveals about any
particular period. Using those parameters we can calculate the additional amount to bill
in order to achieve the desired privacy goals.

2.1 Privacy definitions

For simplicity we consider fixed size databases corresponding to a fixed term billing pe-
riod. For our application this is sufficient, as we are primarily interested in the number of
CPU instances used during each hour of the pricing period. For this reason the domain
of all possible data sets is described as the Cartesian product: D = {0, . . . , cmax}imax .
For our private cloud scenario cmax is the number of instances in the private cloud, and
imax is the number of records per billing period. In our concrete example cmax = 10000
and imax is the number of hours in a month or a year.

First we define the “distance” between two sets of readings, and repeat some key
definitions and results from differential privacy [7], upon which we will be building.

Definition 1. The record distance RDist(D1, D2) between two data sets D1, D2 ∈ D
corresponds to the number of elements (records) in which D1 and D2 differ.

Definition 2. A randomized function K gives ε-differential privacy if for all data sets
D1, D2 ∈ D with RDist(D1, D2) ≤ 1, and all S ∈ ΣImage(K),5

Pr[K(D) ∈ S|D = D1] ≤ exp(ε)× Pr[K(D) ∈ S|D = D2] .

The probability is taken over the randomness of K.

Intuitively, mechanisms fulfilling this definition address concerns that an individual
might have about filling in one record truthfully, rather than arbitrarily. Differential
privacy guarantees that no output (and thus consequences of outputs) becomes signif-
icantly more or less likely. In our case the randomized function K will be the billing
amount increased by some random value.

A further observation about hiding multiple records k from a database will also
prove useful:

Definition 3. A randomized function K gives (k, ε)-differential privacy if for all data
sets D1, D2 ∈ D with RDist(D1, D2) ≤ k, and all S ∈ ΣImage(K),

Pr[K(D) ∈ S|D = D1] ≤ exp(ε · k)× Pr[K(D) ∈ S|D = D2] .

The probability is taken over the randomness of K.
5 A σ-algebra over a set X is a set ΣX ⊂ 2X such that ∅ ∈ ΣX ; S ∈ ΣX ⇒ (X \ S) ∈ ΣX ;

and for any (Si)i∈N, Si ∈ ΣX ,
⋂
Si ∈ ΣX .

Lemma 1. A ε-differentially private privacy mechanism K is also (k, ε)-differentially
private.

Lemma 1 follows from Definition 3, and shows that the same privacy mechanism K
can obstruct inferences on multiple records. In such cases it provides a lower amount of
privacy (i.e. ε′ = ε · k). Hence if a mechanism is to be used to protect multiple records
suitable security margins should be provided.

Differentially private mechanisms. The classical differential privacy mechanism by
Dwork [7] adds Laplacian noise to the outcome of a query, parametrised by the “sensi-
tivity” of the function f .

Definition 4. The sensitivity of a function f : D → Rn is the maximum distance be-
tween output values for which the domain differs in at most one record:

∆f = max
D1,D2∈D

RDist(D1,D2)≤1

‖f(D1)− f(D2)‖1

For n = 1 the sensitivity of f is the maximum difference |f(D1) − f(D2)| between
pairs of databases D1, D2 that differ in only one element. It is shown in [7] that if
f : D → R is a function with sensitivity ∆f , then K(D) = Lap(f(D), ∆f/ε) is
differentially private.

Our adaptations of the differential privacy definitions. Instead of bounding the ratio be-
tween output probabilities of actual vs. arbitrary information for a single hourly record,
we want to give customers the option of hiding an arbitrary period of time. For exam-
ple we may want to hide specifics of daily (chunks of 24 records) or weekly (chunks
of 168 records) consumption. We call the period length a user is concerned with the
privacy unit. Furthermore we need to achieve this for statistics in discrete domains (not
continuous function), that can only make the bills bigger, never smaller.

Definition 5. The u-distance Distu(D1, D2), e.g., u ∈ {hourly, dayly,weekly} be-
tween two data sets D1, D2 ∈ D corresponds to the number of u-units (collection
of records) in which D1 and D2 differ.

Our pricing scheme maps each D ∈ D, D = (c1, . . . , cimax
) to a discrete price:

price(D) =
∑imax

i=1 ci · pI , where imax is the number of records per billing period,
and pI is the price per hour per instance. Rather than having continuous positive and
negative noise as in the original Laplacian differential privacy mechanism, we want to
only add discrete positive noise.

If we consider only privacy mechanisms with discrete outputs, we can simplify the
differential privacy definition. For discrete distributions, ΣImage(K) = 2Image(K), and
Pr[K(D) ∈ S] =

∑
r∈S Pr[K(D) = r]. Definition 2 can thus be restated as the

following equation:
∑
r∈S Pr[K(D) = r|D = D1] ≤ exp(ε) ·

∑
r∈S Pr[K(D) =

r|D = D2]. From this we derive an alternative definition for differential privacy for
discrete distributions:

Definition 6. A randomized functionK gives ε-differential u-privacy if for all data sets
D1, D2 ∈ D with Distu(D1, D2) ≤ 1, and all r ∈ Image(K),

Pr[K(D) = r|D = D1] ≤ exp(ε)× Pr[K(D) = r|D = D2] .

The probability is taken over the randomness of K.

Lemma 2. Definition 2, Definition 3, and Lemma 1 apply to u-privacy:
1. For discrete privacy mechanisms Definition 2 and Definition 6 for u = hourly are

equivalent.
2. Let nu be the number of records in a u-unit. If K is (nu, ε)-differential hourly-

private, then K is also (nu · ε)-differential u-private.

Dwork [8] notes that, because of the multiplicative nature of the definition, an output
whose probability is zero on a given database must also have probability zero on any
neighboring database, and therefore, by repeated application of the definition, on any
other database.

Handling privacy mechanisms that result in distributions for which the support of
K(D1) and K(D2) may differ requires extra care. Such a situation arises, e.g., when
K adds only positive noise. If for instance price(D1) < price(D2) to which K adds
positive noise. Let νmin be the minimum amount of noise that is added, then the value
r = price(D1) + νmin is in the support of K(D1) but has 0 probability for K(D2). It
follows that such a mechanism can never be differentially private.

To overcome this problem, we define partial differential privacy. A statistic offers
partially differential u-privacy if it is differentially private for all outputs in the overlap-
ping support of any two databases D1 and D2 with Distu(D1, D2) ≤ 1. Furthermore
we require the probability that the output of the statistic is not in the overlapping do-
mains to be bound by a small probability δ. This means that the function is differentially
private most of the time (or with probability at least 1− δ).

Definition 7. A randomized function K gives δ-partially ε-differential u-privacy if the
following two properties hold:

1. For all D1, D2 ∈ D with Distu(D1, D2) ≤ 1, and all r ∈ Supp(K(D1)) ∩
Supp(K(D2)),

Pr[K(D1) = r] ≤ exp(ε)× Pr[K(D2) = r] .

2. For all data sets D1, D2 ∈ D with Distu(D1, D2) ≤ 1,

Pr[r ← K(D1) : r /∈ Supp(K(D2))] < δ .

For both properties, the probability is taken over the randomness of K.

As for the traditional differential privacy definitions, longer periods of privacy can be
guaranteed with lower security parameters:

Lemma 3. Let nu be the number of records in a u-unit. If K is δ-partially (nu, ε)-
differential hourly-private, thenK is also (nu ·δ)-partially (nu ·ε)-differential u-private

Proof. Consider the joint distribution of K for all D1 and D2 with RDist(D1, D2)
≤ nu. The probability of drawing a value r not in the domain of at least one of K(Di)
is δ′ ≤ 1 − (1 − δ)nu ≤ nu · δ. This proves Property 2 for partial differential privacy.
If r is in the domain, Property 1 is proved as in Lemma 2. ut

Given the above definition for privacy we propose a concrete mechanism to obscure
readings. We simply add to the bill f(D) for consumption D an amount of noise drawn
from a Geometric distribution with parameter p = ε/∆f,u.6 The sensitivity ∆f,u is the
maximum difference of a bill between two databases D1 and D2 differing in at most 1
u-unit (e.g. an hour, a day, or a week). Similarly, ε is a security parameter expressing
information leakage.

Theorem 1. Let f : D → R be a function with sensitivity ∆f,u, then K(D) = f(D)+
Geo(ε/∆f,u) is (2 · ε)-partially ε-differentially u-private. (See [10] for the proof.)

As also noted by [11], the application of a public function on the outputs of a differ-
entially private statistic does not leak any additional information. We can modify the
billing function to only charge up to the maximum possible consumption: K ′(D) =
min(f(D) + Geo(ε/∆f,u),maxD′ f(D′)). Intuitively we use geometric noise, as this
adds the maximal uncertainty for a given mean. The variant of the geometric distribu-
tion with support for negative and positive integers defined as Pr[k] = 1

2 (1 − p)
|k|p is

the discrete equivalent of the Laplace distribution, and would also provide differentially
private guarantees. We limit ourselves to the proposed noise distribution to ensure users
only add positive noise to their bills.

Interpretation of differential privacy in terms of inference. From the attackers perspec-
tive the goal of collecting statistics about the output of the privacy mechanism K is to
infer something about the underlying database. For instance, the attacker might want to
distinguish between two databases D1 and D2, in the sense of semantic security.

Differential privacy does not guarantee anything about the probability ratio (likeli-
hood ratio) between databases D1 and D2 with Distu(D1, D2) ≤ 1 given an observed
outcome of K; it merely says that this ratio will differ only by a small factor from the
ratio of the prior. Note that because D1 and D2 are interchangeable, the new ratio is
also bounded from below.

Lemma 4. Given an observed outcome of a differentially private K the probability
ratio (likelihood ratio) between databases D1 and D2 with Distu(D1, D2) ≤ 1 differs
by less than a factor exp(ε) from the ratio of the prior.

Pr[D = D1|K(D) = r]

Pr[D = D2|K(D) = r]
≤ exp (ε)× Pr[D = D1]

Pr[D = D2]
.

Proof. From Bayes theorem we can write:

Pr[D = Di|K(D) = r] =
Pr[K(D) = r|D = Di]× Pr[D = Di]

Pr[K(D) = r]

6 Two-sided Geometric noise was also proposed in [9] as a differential privacy mechanism.

Privacy units Security (ε) Pay Monthly Pay Yearly Fixed Rate
Hourly 0.1 β + $144, 000 β + $12, 000 $10, 512, 000
(units = 1) 0.01 β + $1, 440, 000 β + $120, 000 $10, 512, 000
Daily 0.1 β + $3, 456, 000 β + $288, 000 $10, 512, 000
(units = 24) 0.01 ($10, 512, 000) β + $2, 880, 000 $10, 512, 000
Weekly 0.1 ($10, 512, 000) β + $2, 016, 000 $10, 512, 000
(units = 168) 0.01 ($10, 512, 000) ($10, 512, 000) $10, 512, 000

Table 1. Yearly average bill after the application of the privacy mechanism K′ compared with
the fixed rate privacy mechanism. Different values of the security parameter (ε), different privacy
units (hourly, daily and weekly) as well as the options of paying monthly or yearly are presented.
Amounts in parenthesis indicate that the expected cost is higher than paying for the maximum
consumption.

whence, since K is differentially private, we can write:

Pr[D = D1|K(D) = r]

Pr[D = D2|K(D) = r]
=
Pr[K(D) = r|D = D1]

Pr[K(D) = r|D = D2]
× Pr[D = D1]

Pr[D = D2]

≤ exp (ε)× Pr[D = D1]

Pr[D = D2]
.

ut

The cost of privacy. Obscuring bills by adding noise may lead to paying extra for a
service. Customers have incentives to minimise their costs for a desired level of privacy
protection. We provide a few illustrative examples of the average extra cost involved
in settling a bill for different privacy units of an hour, a day or a week. In our usual
example we consider a private cloud of 10K CPUs, billed as $0.12 a CPU / hour. We
denote as β = f(D) the actual service cost associated with the use of the service for a
year.

It is clear from Table 1 that providing a differentially private bill for more than
a single hourly period is an expensive business. The proposed mechanism allows for
lower overheads for yearly bills when customers wish to protect arbitrary hours or days
in the year. When it comes to protecting arbitrary weeks this protection is only offered
with a low security parameter (ε = 0.1). Why is the cost so high? It is because the
privacy guarantee offered is very strong: no matter what side information the adversary
has, including the detailed readings for other periods, they should not be able to infer
information about an arbitrary privacy unit. For example if the adversary knows the
exact consumption for the other 364 days they should still not learn more than permitted
about the last day. This is a very strong guarantee and as a result it comes at a high cost,
when applied directly.

Table 1 also contains the cost of paying bills monthly, which incur a 12 fold over-
head for the same level of protection. It is clear that there are advantages in paying in
batches if in fact the desired property is to hide any fixed period of time within the
billing period (an hour, a day, a week). We will see in the next section how we can
do better than this: we can aggregate the true cost of service provision, and use cryp-

tographic methods to reclaim most of the additional cost of privacy in the long term
without sacrificing any security.

Longer guarantees. Degradation of privacy in our framework is graceful, since some
privacy guarantees are provided for periods longer than what is strictly defined by the
chosen u-units. For example a user may choose a partially ε-differential function Kε,24

providing u-privacy for a day (i.e. 1 u-unit = 24 hourly periods) with ε = 0.01. In our
standing example this means he should add an extra amount to his bill drawn from a
Geometric distribution with parameter $2, 880, 000. What does that guarantee? Let’s
assume the adversary knows the exact consumption about all days except for one. Fur-
thermore the adversary knows that the consumption on the target day could only have
taken one out of two values with equal probability: this means that the ratio of priors
Pr[D=D1]
Pr[D=D2]

= 1. Then after receiving information about the bill the adversary would at

best know that 0.99 ≈ 1/(1 + ε) ≈ 1/eε ≤ Pr[D=D1|K′(D)]
Pr[D=D2|K′(D)] ≤ eε ≈ 1 + ε = 1.01.

This is a small amount of information.
Now let’s consider an adversary that tries to infer something over a longer period,

e.g., a week. The adversary knows all user consumption outside this target week, and
furthermore knows that user consumption within the week could only have been one of
two possibilities D′1 or D′2 with equal probability as before. Due to Lemma 3 we know
that the K ′(D) scheme is also partially ε-differentially private for a longer u-unit of a
week (1 weakly-unit = 7×24 hourly-units), with a new security parameter ε′ = ε·7. This
means that the new posterior ratio of probabilities over the two only possible outcomes
is 0.93 ≈ 1/(1 + ε′) ≈ 1/eε

′ ≤ Pr[D=D1|K′(D)]
Pr[D=D2|K′(D)] ≤ eε

′ ≈ 1 + ε′ = 1.07. Despite the
lower degree of privacy, some quantifiable protection is still available against longer-
term profiling.

Limitations. Our variant of differential privacy relies on only introducing positive noise.
This is desirable as it guarantees that the bill at least covers the cost of service provision.
At the same time this provides a one sided security property: a final bill can always be
confused with a lower bill, but not always with a higher bill. For example there is a
positive probability that a sensitive day passes with no consumption and then no noise
is added to the bill. If an adversary knows all other consumptions in the year, they can
infer that indeed no consumption took place on the unknown day. Our mechanism thus
assumes that the baseline of no consumption is not as sensitive as high consumption.

While information leakage about low levels of consumption is possible, it is not
very likely for high levels of security as characterised by the security parameter δ.

Summary. We have shown that adding noise to the bill can provide high levels of secu-
rity parametrised by a parameter ε and a privacy unit. This security holds even against
adversaries with knowledge of many readings. At the same time this comes with a high
overhead. In the next section we show that the bulk of the cost of providing privacy can
be recuperated in the long run. We achieve this by keeping hidden accounts of what is
actually due for service provision, versus what has been paid. In the long run users can
only add the necessary noise to keep their accounts positive, including negative noise –
while ensuring that their funds cover their consumption.

3 Private Billing with Rebates

We have seen that one way of protecting privacy involves adding ‘noise’ to the bill to be
payed for a certain period. Yet, the amount of noise can become significant particularly
to achieve a high quality of privacy or privacy for longer periods within the billing time
frame. For this reason we develop a complementary oblivious billing protocol that can
be used to alleviate those concerns. Its key features include:

– The ability to maintain a hidden bill of actual consumption that can be used to
reclaim any excess used for protecting privacy at a later time.

– A mechanism for proving that the amount payed to the utility provider exceeds the
bill for actual consumption without revealing the actual bill.

– Support for an initial deposit to support later use of positive as well as negative
noise for the bills.

– Compatibility with anonymous e-cash schemes allowing bills to be settled anony-
mously, as well as advanced privacy friendly payment mechanisms that allow users
to hide the amounts actually payed to the utilities.

We discuss in detail and prove the correctness of the billing protocols, and the mech-
anisms to ensure payments exceed the amount consumed. The specifics of optional e-
cash protocols that allow hidden payments are beyond the scope of this work, and we
leave their detailed description to future work.

Our oblivious payment protocols can be used to reclaim in the long run an excess
payed as a result of a differentially private billing mechanism as presented in the previ-
ous sections. With the deposit facility, adding negative noise is possible, as long as the
overall balance of payments stays positive. The protocols can also be used to support
the naive mechanism where a bill for maximal consumption is payed, and allow parties
to later reclaim some of it back. Finally given anonymous e-cash they can be used to
provide full oblivious payments without the need to add any noise to the bills, as they
never need to be revealed (technically: noise = −fee). Which variant to use therefore
depends on the infrastructure available and the degree of complexity parties are ready
to accept.

3.1 The PSM protocol

We will be building upon PSM (Privacy-Preserving Smart Metering), a cryptographic
protocol for privacy-friendly billing [5]. PSM mediates interactions among three par-
ties: a meter M that outputs consumption data cons and related information other ; a
service provider P that establishes a pricing policy Υ and a user U that receives con-
sumption readings from meter M and at each billing period pays a fee to provider P.
The pricing policy Υ is a public function that takes consumption data cons together
with other information other (e.g., the time of consumption) and computes a price. The
overall price price(D) =

∑|D|
i=1 pricei is computed by adding the prices corresponding

to the individual consumptions in a billing period. For our running private cloud exam-
ple, Υ (cons, other) = cons · 0.12 and does not depend on other . As in the original
protocols we assume a tamper resistant meter is used to provide accurate and appropri-
ately cryptographically packaged readings. These can be processed by the user to prove

their bill in zero-knowledge to the provider. At this point users may also choose to add
some noise to ensure differential privacy.

The security of PSM is shown in the simulation-based security paradigm [12, 13].
In the real world, the protocol PSM(M,P,U) is run in an adversarial environment that
may corrupt some of the protocol parties, indicated by M̃, P̃, Ũ. Corrupted parties just
forward messages between the environment and honest protocol participants. In the
ideal world, dummy protocol partiesDM,DP,DU run an ideal protocol Ideal(FPSM, DM,
DP, DU) by just forwarding messages to an ideal functionality FPSM. UncorruptedDx,
x ∈ {M,P,U} interact with the environment while corrupted dummy parties D̃x inter-
act with a simulator Sim.

We consider w.l.o.g. a corrupted provider P̃ and say that a protocol is secure against
P̃, if there exists a simulator Sim such that no environment Env can tell whether it is
interacting with PSM(M, P̃,U) or with Sim‖Ideal(FPSM, DM, D̃P, DU). Conceptually
Sim translates influence that Env has through P̃ on the protocol into influence on FPSM

through D̃P, and leakage that D̃P receives from FPSM into leakage that Env could learn
from P̃. Similarly, PSM is proven secure against a corrupted user Ũ.

Listing 1 Functionality FPBR

FPBR is parameterized by deposit relation R and a policy set Y and interacts with dummy parties
DM , DP and DU . Initially T = ∅, d = 0, account = 0.

On (Policy, Υ) from DP where Υ ∈ Y
- store Υ ; send (Policy, Υ) to DU

On (Consume, cons, other) from DM

- increment counter d; add (d, cons, other) to T ; send (Consume, cons, other) to DU

On (Deposit, (inc, wit), instance) from DU where balance + inc ≥ 0
- if ((inc, wit), instance) ∈ R, let balance += inc, send (Deposit, instance) to DP

On (Payment, from, until , noise) from DU where
0 ≤ from ≤ until ≤ d and balance + noise ≥ 0

- for i = from to until , calculate pricei = Υ (consi, other i)
- let fee =

∑until
i=from pricei + noise and balance += noise

- send (Pay, from, until , fee) to DP

3.2 Rebate Ideal Functionality

We propose a new ideal functionalityFPBR (see Listing 1) that extends the functionality
FPSM. The functionality keeps track of the user’s consumptions in a set T containing
tuples (i, cons, other). During a payment, the policy Υ is applied to all (cons, other) in
the interval [from, until] to compute the price pricei = Υ (consi, other i) per consump-
tion. The overall fee that the user has to pay is computed as fee =

∑until
i=from pricei +

noise . The value noise is added to the fee to improve the user’s privacy. The ideal func-
tionality also maintains a balance that corresponds to the sum of all the noise added to
payments. Note that the user can get rebates by using negative noise, but that the balance
is never allowed to be negative.

The ideal functionality also allows to increase the balance through a deposit. The
user has to provide input ((inc, wit), instance) ∈ R. The parameterization by relation
R allows to support both standard deposit mechanisms that reveal the deposited amount

inc as well as advanced deposit mechanisms that hide this value from the provider. In
the simple mechanism the user reveals how much he wants to deposit: wit = ε and R
corresponds to simple equality, i.e. R = {(inc, ε), inc)|inc ∈ Z}.

To obtain a more advanced privacy-friendly deposit mechanism, the witness could
correspond to a one-show anonymous credential cred . The relation requires that cred
is a one-show credential with an increment value inc and serial number s issued un-
der public key pkB , i.e, R = {((inc, cred), (s, pkB))|Verify(pkB , cred , (inc, s)) =
accept}. The real protocol cryptographically enforces this using a zero-knowledge
proof of signature possession [14].7 To obtain such a one-show credential without re-
vealing the value of inc to the provider, additional infrastructure is needed. In particular
such a mechanism seems to require some form of anonymous payment, either physi-
cal cash or anonymous e-cash. Given such a payment mechanism, the provider’s bank,
after receiving an anonymous payment of value inc and depositing this amount on the
provider’s bank account, could blindly issue the signature Sign(pkB , (inc, s)) using a
partially-blind issuing protocol [14]. The issue protocol guarantees that the bank does
not learn s, and thus even if the provider and his bank collude they cannot link the
issuing of cred to its use.

Listing 2 Protocol PBR(M, P, U)

Parties M, P, U are parameterized byR and Y and interact over secure channels. All participants
have registered public keys generated by Mkeygen, Pkeygen, Ukeygen with a key registration
authority FREG and keep their private keys secret. P also registers commitment parameters parc .

On (Policy, Υ) from Env
- P runs Υs ← SignPolicy(skP, Υ) and sends Υs to U
- Upon receiving Υs, U extracts Υ ; if Υ /∈ Y , he aborts
- if VerifyPolicy(pkP, Υs) = 1, U stores Υs, and sends (Policy, Υ) to Env

On (Consume, cons, other) from Env
- M increments dM, runs SC ← SignConsumption(skM, parc , cons, other , dM) and

sends (SC) to U
- Upon receiving (SC), U runs b← VerifyConsumption(pkM, parc , SC, dU + 1)
- if b = 1, U increments dU, adds SC to TU, parses SC as (dM, cons, opencons , ccons ,
other , openother , cother , sc), and sends (Consume, cons, other) to Env

On (Deposit, (inc, wit), instance) from Env where
balance + inc ≥ 0 and ((inc, wit), instance) ∈ R

- U runs (aux ′, D)← Deposit(parc , (inc, wit), instance, aux , R)
- U sets balance += inc and aux = aux ′ and sends (D, instance) to P
- Upon receiving (D, instance), P runs (c′balance , b)← VerifyDeposit(parc , D, cbalance ,
instance, R)

- if b = 1, he sets cbalance = c′balance and sends (Deposit, instance) to Env
On (Payment, from, until ,noise) from Env where

0 ≤ from ≤ until ≤ dU and balance + noise ≥ 0
- U runs (aux ′,Q)← Pay(skU, parc , Υs, TU[from : until],noise, aux)

7 A zero-knowledge proof of knowledge is a two-party protocol between a prover and a verifier.
The prover convinces the verifier, who knows only a public proof instance , that he knows
a secret input (called witness) that allows him to prove that the public and the secret value
together fulfill some relational statement (witness, instance) ∈ R without disclosing the
secret input to the verifier.

- U sets aux = aux ′ and balance += noise; U sends (Q, from, until) to P
- Upon receiving (Q, from, until), P runs (fee, c′balance , b) ← VerifyPayment(pkM,
pkU, pkP, parc ,Q, cbalance , from, until)

- if b=1, he sets cbalance = c′balance and sends (Pay, from, until , fee) to Env

3.3 Rebate Protocol

We propose a new protocol for privacy-preserving billing with rebates (PBR) (see List-
ing 2) that extends PSM with a mechanism for adding noise, keeping a hidden balance,
and making deposits. Like PSM, our protocol operates in the FREG hybrid-model [12]
where parties register their public keys at a trusted registration entity. As in the original
scheme the user receives signed policies from the utility provider P and signed readings
from the meter M. The payment transaction only reveals the overall fee, which now can
be subject to additional noise.

We extend this protocol with a novel oblivious rebate system that allows the user to
get rebates (in the amount of his noise) in future payments. The rebate is implemented
using a homomorphic update cnoise to a balance commitment cbalance that commits the
user to his balance towards the provider but keeps the balance itself secret. Our protocol
supports an optional Deposit mechanism that allows the user to add or withdraw funds
from the rebate balance. Value aux contains the opening for a commitment cbalance to
balance. Through the use of zero-knowledge proofs the provider is guaranteed that the
value committed to in cbalance is updated correctly and never becomes negative.

The protocol parties P, U, and M interact with each other using algorithms Pkeygen,
Ukeygen, Mkeygen (for key generation); SignPolicy, SignConsumption, Deposit, and
Pay (for generation of input); and VerifyPolicy, VerifyConsumption, VerifyDeposit,
and VerifyPayment (for verification of input). The functionality of the meter as well
as SignPolicy, SignConsumption, VerifyPolicy, and VerifyConsumption are unchanged
from the original scheme.8 We describe the new Deposit and VerifyDeposit algorithms
and the changes to Pay and VerifyPayment:

Listing 3 Algorithms
- Deposit(parc , (inc, wit), instance, aux , R). Parse aux as (balance, openbalance , cbalance).

Compute commitment (cinc , open inc) = Commit(parc , inc) and a non-interactive proof
πinc :9

πinc ← NIPK{ (inc, open inc , wit, balance, openbalance) :

(cbalance , openbalance) = Commit(parc , balance) ∧
(cinc , open inc) = Commit(parc , inc) ∧
((inc,wit), instance) ∈ R ∧ balance + inc ≥ 0} .

Let D = (πinc , cinc) and aux ′ = (balance + inc, openbalance + open inc , cbalance ⊗ cinc).
Output (aux ′, D).

- VerifyDeposit(parc , D, cbalance , instance, R). Parse D as (πbalance , cinc). Verify πinc . If
verification succeeds, set b = 1 and c′balance = cbalance ⊗ cinc , otherwise set b = 0. Output
(c′balance , b).

8 For the sake of brevity we omit the Reveal mechanism of PSM. It would add little new and
could be implemented in a straight forward manner using trapdoor commitments.

9 If R corresponds to equality, the protocol can be simplified to avoid computing cinc .

- Pay(skU, parc , Υs, T,noise, aux). Parse aux as (balance, openbalance , cbalance). Compute
commitment (cnoise , opennoise) = Commit(parc ,noise) and a non-interactive proof πnoise :

πnoise ← NIPK{ (noise, opennoise , balance, openbalance) :

(cbalance , openbalance) = Commit(parc , balance) ∧
(cinc , open inc) = Commit(parc , inc) ∧ balance + noise ≥ 0} .

Let aux ′ = (balance + noise, openbalance + opennoise , cbalance ⊗ cnoise).
The rest of the algorithm follows [5]: For each (i, cons, opencons , ccons , other , openother ,
cother , sc) ∈ T where from ≤ i ≤ until , calculate pricei = Υ (cons, other), commitment
(cpricei , openpricei

) = Commit(parc , price), and a proof πi that pricei was computed
correctly according to the policy and the commitments ccons , cother . The proof πi depends
on the policy Υ and can use auxiliary values in Υs, see [5] on how to implement different
pricing policies.
Computing fee = noise+

∑until
i=from pricei and open fee = opennoise+

∑until
i=from openpricei

gives an opening to a commitment to fee . Let Q = (fee, open fee , cnoise , πbalance , {sci, i,
cconsi , cotheri , cpricei , πi}Ni=1). Output (aux ′,Q).10

- VerifyPayment(pkM, pkU, pkP, parc ,Q, cbalance , from, until). Parse Q as (fee, open fee ,

cnoise , πbalance , {sci, di, cconsi , cotheri , cpricei , πi}Ni=1). Verify πnoise . If verification fails,
set b = 0. Otherwise set c′balance = cbalance ⊗ cnoise and b = 1.

The rest of the algorithm follows [5]: For i = from to until , run Mverify(pkM, sci, 〈i, cconsi ,
cotheri〉) and verify πi. Set b = 0 if any of the signatures or the proofs is not correct. Add
the commitments to the prices c′fee = cnoise ⊗

(
⊗N

i=1cpricei
)

and execute Open(parc , c
′
fee ,

fee, open fee). If the output is reject set b = 0. Output (fee, c′balance , b).

Theorem 2. Given the security of its building blocks, PBR is secure against a cor-
rupted provider P̃ and a corrupted user Ũ. (See [10] for the proof.)

Using PBR for differential privacy. Even an ideal cryptographic billing mechanism as
described by the PSM or PBR ideal functionalities cannot protect the user’s privacy
against an adversary/environment that already knows enough about the user’s behav-
ior – possibly including all consumption or additional random noise – to infer privacy
sensitive information from the final fee alone. For our privacy analysis we assume that
the environment Env is divided into a part EnvU that is controlled by the user, and a
part EnvP̃ that is controlled by the adversary and that may have some influence on and
knowledge about the user’s behavior. In the original PSM protocol all the final fee is
only the result of the individual consumptions of EnvU for which the provider may
make inferences or gain side information. The PBR protocol gives EnvU the possibility
to obscure the fee with random noise, which is easier to conceal from EnvP̃.

4 Conclusions

Our PBR protocol allows the user to add random noise to the final bill, to hide usage
patterns that could otherwise be deduced from the fee. The rebate protocol supports
10 In [5], the user keys skU and pkU are used to create and verify a signature on the payment

message. This intuitively facilitates non-repudiation and non-exculpability properties, but is
not modeled by the ideal functionality. This carries over to our adaptations.

deposits, anonymous payments using e-cash, and negative bill noise, while ensuring
that the funds paid always cover the cost of consumption. The use of noise, however,
comes at a cost, as it is money that the user has to pay upfront as a deposit and cannot
invest elsewhere. Consequently, we adapt the differential privacy framework to study
how much noise is needed to protect specific consumption windows at different security
levels. The differential privacy framework protects users against worse case outcomes –
we leave as an open problem crafting more economical noise regimes to protect privacy
by making further assumption about the users’ typical behavior.

Acknowledgment. We would like to thank Claudia Diaz, Carmela Troncoso, Cedric
Fournet, and Jorn Lapon for discussions that were most helpful in the preparation of
this work. This work was supported in part by GOA TENSE (GOA/11/007), and by the
IAP Programme P6/26 BCRYPT (Belgian Science Policy). Alfredo Rial is a Research
Foundation - Flanders (FWO) doctoral researcher.

References
1. Anderson, R., Fuloria, S.: On the security economics of electricity metering. In: The Ninth

Workshop on the Economics of Information Security. (2010)
2. Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart

meter. In: 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in
Buildings (BuildSys 2010), Zurich, Switzerland (November 2010)

3. Balasch, J., Rial, A., Troncoso, C., Preneel, B., Verbauwhede, I., Geuens, C.: Pretp: Privacy-
preserving electronic toll pricing. In: USENIX Security Symposium, USENIX Association
(2010) 63–78

4. Bohli, J.M., Sorge, C., Ugus, O.: A privacy model for smart metering. In: Communications
Workshops (ICC), 2010 IEEE International Conference on. (may 2010) 1 –5

5. Rial, A., Danezis, G.: Privacy-preserving smart metering. Technical Report MSR-TR-2010-
150, Microsoft Research (November 2010)

6. Lipner, S.B.: A comment on the confinement problem. In: Proceedings of the fifth ACM
symposium on Operating systems principles. SOSP ’75, New York, NY, USA, ACM (1975)
192–196

7. Dwork, C.: Differential privacy. In Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., eds.:
ICALP (2). Volume 4052 of Lecture Notes in Computer Science., Springer (2006) 1–12

8. Dwork, C.: Differential privacy in new settings. In Charikar, M., ed.: SODA, SIAM (2010)
174–183

9. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy
mechanisms. In: Proceedings of the 41st annual ACM symposium on Theory of comput-
ing. STOC ’09, New York, NY, USA, ACM (2009) 351–360

10. Danezis, G., Kohlweiss, M., Rial, A.: Differentially private billing with rebates. Cryptology
ePrint Archive, Report 2011/134 (2011) http://eprint.iacr.org/.

11. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy,
and consistency too: a holistic solution to contingency table release. In Libkin, L., ed.: PODS,
ACM (2007) 273–282

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
In: FOCS. (2001) 136–145

13. Kusters, R.: Simulation-based security with inexhaustible interactive turing machines. In:
Computer Security Foundations Workshop, 2006. 19th IEEE, IEEE (2006) 12–320

14. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: In SCN
2002, volume 2576 of LNCS, Springer (2002) 268–289

