
Probase: A Probabilistic Knowledgebase

Version 0.10

Contents

1 Knowledgebase and Our Mental World 1

1.1 Introduction . 1

1.2 The Probase Taxonomy . 2

1.3 Building Probase . 4

1.4 Probase for Conceptualization . 6

1.5 Challenges . 8

1.6 Homepage of the Probase Project . 8

2 Probase Package 9

2.1 System Requirements . 9

2.2 Storage Structure . 9

2.3 What are included in the package . 9

2.4 Quick Setup . 10

2.5 Recommended Basic Access APIs . 11

2.5.1 ProbaseAPI.GetClassByInstance Method 11

2.5.2 ProbaseAPI.GetOneClassSetByInstance Method 13

2.5.3 ProbaseAPI.GetInstanceByClass Method 15

2.5.4 ProbaseAPI.GetClassByAttribute Method 18

2.5.5 ProbaseAPI.GetAttributeByClass Method 20

2.6 Recommended Conceptualization APIs 22

2.6.1 ConceptualizationAPI.GetClassByMultipleInput Method . . . 22

2.6.2 ConceptualizationAPI.GetClassByMultipleInputCaseInsensitive
Method . 24

3 WCF Service 27

3.1 Quick Setup . 27

3.2 How to call the APIs . 27

3.3 Recommended Basic Access APIs . 28

II CONTENTS

3.3.1 GetClassByInstance Method . 28

3.3.2 GetInstanceByClass Method . 30

3.3.3 GetClassByAttribute Method 34

3.3.4 GetAttributeByClass Method 36

3.4 Recommended Conceptualization APIs 38

3.4.1 GetClassByMultipleInput Method 38

3.4.2 GetClassByMultipleInputCaseInsensitive Method 39

4 Web Interface 43

4.1 How to use . 43

4.2 Recommended Basic Access APIs . 43

4.2.1 GetInstanceByClass . 43

4.2.2 GetClassByInstance . 43

4.2.3 GetAttributeByClass . 46

4.2.4 GetClassByAttribute . 47

4.3 Recommended Conceptualization APIs 47

4.3.1 Conceptualization From Instances 47

4.3.2 Conceptualization From Attributes 47

Chapter 1

Knowledgebase and Our Mental
World

1.1 Introduction

Our goal is to open the mental world of human beings to machines. To this end, we
create a knowledgebase, called Probase. We hope that by injecting certain “general
knowledge” into computing machines can gain a better understanding of human
communication.

An important question is, what does the word “understand” mean here? Con-
sider the following example. For human beings, when we see “25 Oct 1881”, we
recognize it as a date, although most of us do not know what it is about. However,
if we are given a little more context, say the date is embedded in the following
piece of short text “Pablo Picasso, 25 Oct 1881, Spain”, most of us would have
guessed (correctly) that the date represents Pablo Picasso’s birthday. We are able
to do this because we possess certain knowledge, and in this case, “one of the most
important dates associated with a person is his birthday.”

As another example, consider a problem in natural language processing. Hu-
mans do not find sentences such as “animals other than dogs such as cats” am-
biguous, but machine parsing can lead to two possible understandings: “cats are
animals” or “cats are dogs.” Common sense tells us that cats cannot be dogs, which
renders the second parsing improbable.

It turns out what we need in order to act like a human in the above two exam-
ples is nothing more than knowledge about concepts (e.g., persons and animals)
and the ability to conceptualize (e.g., cats are animals). This is not a coincidence.
Psychologist Gregory Murphy began his highly acclaimed book with the statement
“Concepts are the glue that holds our mental world together” [8]. Nature magazine
book review pointed out “Without concepts, there would be no mental world in the first
place” [2]. Doubtless to say, having concepts and the ability to conceptualize is one
of the defining characteristics of humanity. The question is then: How do we pass
human concepts to machines, and how do we enable machines to conceptualize?

2 Knowledgebase and Our Mental World

Figure 1.1: Distribution of the millions of concepts in Probase

1.2 The Probase Taxonomy

We build Probase [14, 10], a knowledgebase harnessed from billions of web pages.

Figure 1.2 is a snippet of Probase, which consists of concepts (e.g. emerging
markets), instances (e.g., China), attributes and values (e.g., China’s population
is 1.3 billion), and relationships (e.g., emerging markets, as a concept, is closely
related to newly industrialized countries), all of which are automatically derived
in an unsupervised manner.

Probase is unique because it has a huge number of concepts and also a prob-
abilistic nature. Our mental world contains many concepts about worldly facts,
and Probase tries to duplicate them. The core taxonomy of Probase alone con-
tains above 2.7 million concepts. Figure 1.1 shows their distribution. The Y axis
is the number of instances each concept contains (logarithmic scale), and on the
X axis are the 2.7 million concepts ordered by their size. In contrast, existing
knowledgebases have far fewer concepts (Freebase [3] contains no more than 2,000
concepts, and Cyc [7] has about 120,000 concepts), which fall short of modeling
our mental world. As we can see in Figure 1.1, besides popular concepts such

1.2 The Probase Taxonomy 3

Developing countries

area = 3,287,263 sq km

population = 1.1 billion
gdp = $3.57 trillion

Markets

Emerging MarketsEuropean Markets

sim = 0.84

Newly Industrialized Countries

China

India

population = 1.3 billion
area = 9,596,961 sq km

gdp = $8.7 trillion

Figure 1.2: A Snippet of Probase’s core taxonomy

as “cities” and “musicians”, which are included by almost every general purpose
taxonomy, Probase has millions of long tail concepts such as “anti-parkinson treat-
ments”, “celebrity wedding dress designers” and “basic watercolor techniques”,
which cannot be found in Freebase or Cyc. Besides concepts, Probase also has a
large data space (each concept contains a set of instances or sub-concepts), a large
attribute space (each concept is described by a set of attributes), and a large rela-
tionship space (e.g.,“locatedIn”, “friendOf”, “mayorOf”, as well as relationships
that are not easily named, such as the relationship between apple and Newton.)

We make a bold claim that Probase is a knowledgebase about concepts in our
mental world because the concepts in Probase are harnessed from billions of web
pages authored by millions of people (see Section 3). With such a rich concept
space, Probase has much better chance to understand text in natural language
(see Section 4). Indeed, we studied 2 years’ worth of Microsoft’s Bing search log,
and found that 85% of the searches contain concepts and/or instances that exist in
Probase. It means Probase can be a powerful tool to interpret user intention behind
search [13, 11].

Another feature of Probase is that it is probabilistic, which means every claim
in Probase is associated with some probabilities that model the claim’s correctness,
typicality, ambiguity, and other characteristics. The probabilities are derived from
evidences found in web data, search log data, and other existing taxonomies. For
example, for typicality (between concepts and instances), Probase contains the fol-
lowing probabilities:

• P (C = company|I = apple): How likely people will think of the concept
“company” when they see the word “apple”.

• P (I = steve jobs|C = ceo): How likely “steve jobs” comes into mind when
people think about the concept “ceo”.

Probase also has typicality scores for concepts and attributes. Another impor-

4 Knowledgebase and Our Mental World

tant score in Probase is the similarity between any two concepts y1 and y2 (e.g.,
celebrity and famous politicians), which is defined as:

sim(y1, y2) = λ · S
e
(y1, y2) + (1− λ) · S

a
(y1, y2)

where λ ∈ [0, 1], S
e
(y1, y2) measures the similarity between the instances of y1 and

y2, and S
a
(y1, y2) measures the similarity between the properties (attributes) of y1

and y2. Thus Probase can tell that natural disasters and politicians are very different
concepts, endangered species and tropical rainforest plants have certain relationships,
while countries and nations are almost the same concepts.

As we will see in Section 4, these probabilities serve as priors and likelihoods
for Bayesian reasoning on top of Probase. In addition, the probabilistic nature of
Probase also enables it to incorporate data of varied quality from heterogeneous
sources. Probase regards external data as evidences, which are used to update
Probase’s existing beliefs. This is accomplished by the probabilistic reasoning and
integration layer.

1.3 Building Probase

The Probase taxonomy is constructed in the following steps.

• We use an iterative learning approach to construct the core taxonomy [14],
which consists of the isA relationship, from a web corpus of 1.68 billion web
pages. The core taxonomy has 2.7 million concepts and 16 million instances.

• We find properties (attributes) for concepts [11] from the web. For every
triple (subject, attribute, value), we also find, automatically, what questions
the triple can be used to answer. For example, (China, population, 1.3 bil-
lion) can be used to answer the question “How many people live in China?”,
although the word “population” does not appear in the question.

• We use an unsupervised bootstrapping algorithm [12] to extract a massive
amount of relationships among millions of instances simultaneously by re-
peatedly scanning the web corpus.

• We use a probabilistic data integration mechanism [6] to incorporate existing
structured data, such as Freebase, IMDB, Amazon, etc. into Probase.

We briefly describe the work of constructing the core taxonomy, which con-
sists of the 2.7 million concepts and the isA relationships among them. The isA
relationships are harvested by using the so called Hearst linguistic patterns [5].
For example, a sentence that contains “... artists such as Pablo Picasso ...” can be
considered as an evidence for the claim that artist is a hypernym of Pablo Picasso.
Much work [4, 9] has used Hearst patterns to obtain isA patterns, but most focus

1.3 Building Probase 5

on a much limited concept space. For example, they do not differentiate the con-
cept of basic watercolor techniques and the concept of techniques, which means on the
one hand, a lot of concrete and useful information is lost, and on the other hand,
some big concepts (such as techniques) are too vague to be useful.

Because of the irregularities and idiosyncrasies in natural languages, finding
hyponyms and hypernyms are not always straight-forward. The example we have
given before, ... animals other than dogs such as cats ... can lead to two possible in-
terpretations: (cats isA dogs) and (cats isA animals). Syntactically, both interpreta-
tions are correct. Unfortunately, many sentences lead to confusion, for example, in
... representatives in North America, Europe, the Middle East, Australia, Mexico, Brazil,
Japan, and other countries..., although Australia and Middle East appear side-by-side,
one is a country but the other is not. These indicate that it is sometimes impossible
to correctly identify hypernym-hyponym relationships if the parser does not have
certain knowledge or common sense to begin with.

In our approach, we combine knowledge acquisition and knowledge serving:
as we accumulate knowledge in the extraction process, we also use the knowledge
we already extracted to improve the quality of extraction.

Specifically, we use a bootstrapping process to find hypernym-hyponym pairs.
Let Γ be the set of hypernym-hyponym pairs that we have discovered. For each
(y isA x) ∈ Γ, we also keep a count n(y isA x), which indicates how many times
we have seen (y isA x) in the text. Initially, Γ is empty. Then, we enlarge Γ by
adding newly discovered pairs for which we are sure about their correctness. As
we search for hypernym-hyponym pairs, we use Γ to help identify valid ones.
Since Γ is being expanded in the process, our power to identify more valid pairs
also increases, and more pairs will be added into Γ. The process terminates when
Γ cannot be further enlarged.

It is important to understand that having a pair (y isA x) in Γ does not mean it
is true that x and y have a hypernym-hyponym relationship. All it means is that
we have certain evidences for such a claim, although the evidence itself might be
wrong or we might have interpreted the evidence incorrectly. For example, for
sentence ... animals other than dogs such as cats ..., we first identify two possible hy-
pernyms {animals, dogs} in syntactic extraction. Next, we use Γ to help us decide
which one is correct. There are at least four cases:

1. Γ does not yet contain any information about animals, dogs, cats, etc;

2. We have (cats isA animals) ∈ Γ;

3. We have (cats isA dogs) ∈ Γ;

4. both 2) and 3) are true.

One question is, how can 3) be true? The answer is that the data is noisy. There
may exist a well-formed sentence Dogs such as cats ... that poses no ambiguity,
which adds the claim (cats isA dogs) into Γ.

6 Knowledgebase and Our Mental World

Clearly, for the sentence at hand, we cannot reject the claim (cats isA dogs) im-
mediately, even if the other possible interpretation (cats isA animals) is already in
Γ. If we do so, there is a possibility that we would have rejected the more probable
interpretation of (dogs isA animals) if we have but once encountered an erroneous
statement Dogs such as cats before. As we mentioned, the fact that a pair (y isA x) is
in Γ, does not necessarily mean it is true that x and y have the hypernym-hyponym
relationship. It only means we have encountered certain evidence for that claim,
and the strength of the evidence is represented by n(y isA x). We use these infor-
mation to devise a Bayesian learning approach for hypernym detection [14].

1.4 Probase for Conceptualization

In this section, we describe applications that use Probase to understand text in
natural languages.

Short Text Conceptualization

Understandign short text (e.g., web search, tweets, anchor texts) is important to
many applications. Much work has been devoted to topic discovery from text.
Statistical approaches such as topic models [1] treat text as a bag of words in vector
space, and discover “latent topics” from the text. But finding latent topics is not
tantamount to understanding. A latent topic is represented by a set of words,
consisting of no explicit concepts. Furthermore, for short texts that do not contain
much statistics or signals, bag-of-words approaches typically do not work.

Probase enables machines to conceptualize from a set of words by performing
Bayesian analysis based on the typicality and other probabilities described in Sec-
tion 2. For example, given the word “India,” the machine will form concepts such
as country or region. Given two words, “India” and “China,” the top concepts may
shift to Asian country or developing country, etc. Given yet another word, “Brazil,”
the top concepts may change to BRIC or emerging market, etc. Using the same mech-
anism, the top concept formed by the machine when given the word “office” is
buildings. When given one more word, say, “Xbox”, the top concept becomes Mi-
crosoft products. Besides generalizing from instances to concepts, machine can also
form concepts from descriptions. For example, given words “body,” “smell” and
“color,” the concept of wine comes into the system. Certainly, instances and de-
scriptions may mix, for example, we conceptualize {“apple,” “headquarter”} to
company, but {“apple,” “smell,” “color”} to fruit.

We cluster twitter messages based on conceptual signals provided by Probase [10].
The results outperform all existing approaches.

1.4 Probase for Conceptualization 7

Understanding Web Tables

There are billions of tables on the Web, and they contain much valuable informa-
tion. Tables are also relatively well structured, which means they are easier to
understand than text in natural languages. With the help of Probase, we are able
to unlock the information in such tables, and the information, once understood, is
used to enrich Probase [11].

Figure 1.3: How Probase Understands a Table

Given a table, such as the one shows in Figure 1.3 which contains 4 rows, and
the top row contains columns with names {website, president, city, motto, state, type,
director}, how does Probase understand what it is about?

The way Probase understands a table is similar to how humans understand it.
When given the name of the first column, website, the machine forms about 500
concepts. However, as it sees more and more concepts, the number of valid con-
cepts falls sharply. After seeing all the names, Probase is pretty sure that the table
is about universities, institutes or schools. In fact, the first column of the table, which
is hidden in Figure 1.3, contains names such as Stanford, ULCA, Berkeley, which can
also be conceptualize into universities. Thus, the process of understanding a table
is a two dimensional short text conceptualization one. If the two resulting sets of
concepts converge, then the machine can be pretty sure that it gets it right.

Web Search

As we have mentioned, 85% of Web searches contain concepts and/or instances
that can be found in Probase. This gives Probase a good advantage to interpret the
intention of the user. consider the following search queries:

1. ACM fellows working on semantic web

2. database conferences in asian cities

3. highest mountain in US

8 Knowledgebase and Our Mental World

4. winter vacation destinations except florida

The user intention of each of the above queries is clear. However, current search
engines cannot deliver good results as they find exact, word-for-word matches for
phrases such as “database conferences”, “asian cities”, “ACM fellows”, “moun-
tains in US”. Furthermore, they do not know that in order to find the “highest
mountain”, all we need to do is to apply the max aggregate on the elevation or al-
titute attribute of the mountain concept, and that “except florida” means the other
49 states in the US.

Probase, on the other hand, not only interprets the query correctly, but is able to
rewrite the query and answer the query. Take the query “ACM fellows working on
semantic web” for example. In Probase, “ACM fellows” is a class, and it contains
a list of people who are ACM fellows. Combining with other keywords “working
on semantic web”, Probase can rewrite the query into multiple queries and then
merge their results. This, however, introduces a new challenge: there are hundreds
of ACM fellows. The problem is even more severe for query “database conferences
in asian cities” because there are two concepts “database conferences” and “asian
cities”, which means it may produce hundreds or even thousands of combinations.
To tackle these problems, we build a word association index, which provides the
frequency of co-occurrence for every pair of keywords/instances. For example, we
know VLDB and Hong Kong has much higher co-occurrence frequency than VLDB
and Shanghai, which avoids sending VLDB Shanghai to the search engine.

1.5 Challenges

Many challenges remain. For example, the concepts in Probase consists of noun
phrases only. Given a sentence “Japan invaded China”, Probase conceptualizes it
into Asian countries, as the verb invaded is ignored. Currently, we are introducing
actions as concepts into Probase, such that the above sentence can be conceptual-
ized into war or WW II, and an action such as “go to school” can be conceptualized
into education. Instead of relying on semantic role labeling techniques, the actions
are mined from billions of documents as well, based on the current knowledge
in Probase. Furthermore, it will be interesting to see how Probase can be used to
support general purpose Q/A and machine reading. Also, the uncertain data and
the probabilistic platform can become a testbed for various probabilistic reasoning
mechanisms, including the Bayesian logic network and the Markov logic network,
etc.

1.6 Homepage of the Probase Project

Probase Homepage: http://research.microsoft.com/probase/

Chapter 2

Probase Package

2.1 System Requirements

To run our package smoothly, your environment must meet the following require-
ments:

Minimum Requirements Recommended

Operating System: x64-based platform Windows Server 2008 R2
Processor: x64 processor Multi-core CPU
Memory: 24GB ≥32GB

.Net Framework: .net framework 4.0 full .net framework 4.0 full

2.2 Storage Structure

Figure 2.1 shows the storage structure of Probase package. This will help you more
easily understand the APIs and return results.

2.3 What are included in the package

There are several parts in the package.

• lib

– ProbasePackage.dll

– SingularPluralConverter.dll

– Trinity.dll

• TrinityAndIndex

10 Probase Package

class

...
Attributes

class node

instance node

hyperedge

synonym node

attribute node

...

Instance

Synonyms

..
.

In
sta

n
ce

S
y

n
o

n
y

m
s

...

In
st

a
n

ce

S
y

n
o

n
y

m
s

Figure 2.1: Storage Structure

The “lib” folder contains three libraries which you need to add as references to
your own project: ProbasePackage.dll, Trinity.dll and SingularPluralConverter.dll.

The “TrinityAndIndex” folder contains trinity storage files and necessary in-
dexes. DON’T CHANGE ANYTHING IN THIS FOLDER.

Besides, “Readme.txt” tells you how to quickly set up the package in your
project, “sample.cs” is a sample to show how to easily consume our APIs, and
‘Probase-Manual.pdf‘ contains more details.

2.4 Quick Setup

Before you could call the APIs, some basic operations are needed to initialize the
package.

First of all, add ProbasePackage.dll, Trinity.dll and SingularPluralConverter.dll
to the References of your solution.

Second, make sure that the platform of your solution is based on .net frame-
work 4.0 full and x64(You may need to change it in Project → Properties → Build
→ Platform target).

Finally, be sure to set ProbasePackage.Configuration.TrinityRoot and run
ProbasePackage.ProbaseAPI.Initialize() before referring to the APIs. The Trinity-
Root should be set to the path of the folder named ”TrinityAndIndex”.

Please note that:

• The initialization only needs to be run once at the beginning of the pro-

2.5 Recommended Basic Access APIs 11

gram.

• The initialization may take about 2 ∼ 3 minutes and occupy 21 GB memory.

2.5 Recommended Basic Access APIs

2.5.1 ProbaseAPI.GetClassByInstance Method

Syntax

Dictionary< string, List<NameScorePair>> GetClassByInstance(
string instance, int topN, Boolean exactMatch)

Function

Return the class name and corresponding probability for a given instance, ranking
by the probability of the class-instance pair.

Parameters

instance

Type: string

The name of the given instance.
topN

Type: int

It indicates that the API will return topN of the final results. If you set -1, all
results will be returned.
exactMatch

Type: Boolean

Whether the instance is exactly what the user want to find. If exactMatch is
set to false, the API will also consider other forms of the instance name, such as
singular, plural, case-insensitive, etc.

Return values

Return a dictionary which stores the possible instance names(the different forms
of the given instance) and the corresponding topN classes together with their pos-
sibilities. If you set exactMatch as true, the return dictionary should contain only
one key.

12 Probase Package

Examples

using System;
using System.Collections.Generic;
using ProbasePackage;

class Program
{

static void Main()
{

ProbasePackage.Configuration.TrinityRoot =
@"D:\ProbasePackage\Ver0.05\TrinityAndIndex" ;

ProbasePackage.ProbaseAPI.Initialize();
Dictionary< string, List<ProbasePackage.NameScorePair>>

returnDic =
ProbasePackage.ProbaseAPI.GetClassByInstance ("china"

, 5, false);
if (returnDic.Count == 0)

Console.WriteLine("No items found!\n");
else
{

foreach (string instanceName in returnDic.Keys)
{

Console.WriteLine("PossibleInstanceName: " +
instanceName);

List< ProbasePackage.NameScorePair > returnList =
returnDic[instanceName];

for (int i = 0; i < returnList.Count; i++)
Console.WriteLine(returnList[i]. name + '\t' +

returnList[i].score.ToString("F6"));
Console.WriteLine("Total Count: " + returnList.

Count + '\n');
}

}
}

}
/ * This example produces output similar to the following:

* PossibleInstanceName: China

* country 0.374875

* developing country 0.053206

* emerging market 0.043337

* nation 0.038474

* emerging economy 0.028939

* Total Count: 5

*
* PossibleInstanceName: china

* item 0.205567

2.5 Recommended Basic Access APIs 13

* fragile item 0.047109

* service 0.032120

* material 0.025696

* artifact 0.019272

* Total Count: 5

* /

2.5.2 ProbaseAPI.GetOneClassSetByInstance Method

Syntax

List<NameScorePair> GetOneClassSetByInstance(
string synonym, int topN, Boolean exactMatch)

Function

Return the class name and corresponding probability for a given instance, merging
the results of all the possible forms of the input instance names.

Parameters

synonym

Type: string

The name of the given instance.
topN

Type: int

It indicates that the API will return topN of the final results. If you set -1, all
results will be returned.
exactMatch

Type: Boolean

Whether the instance is exactly what the user want to find. If exactMatch is
set to false, the API will also consider other forms of the instance name, such as
singular, plural, case-insensitive, etc.

Return values

Return a list which stores the topN class names and the corresponding probabili-
ties.

14 Probase Package

Examples

using System;
using System.Collections.Generic;
using ProbasePackage;

class Program
{

static void Main()
{

ProbasePackage.Configuration.TrinityRoot =
@"D:\ProbasePackage\Ver0.05\TrinityAndIndex" ;

ProbasePackage.ProbaseAPI.Initialize();

List<ProbasePackage.NameScorePair> returnList1 =
ProbasePackage.ProbaseAPI.

GetOneClassSetByInstance("china" , 25,
false);

if (returnList1.Count == 0)
Console.WriteLine("No items found!\n");

else
{

for (int i = 0; i < returnList1.Count; i
++)

Console.WriteLine(returnList1[i]. name + '\t' +
returnList1[i].score);

Console.WriteLine("Total Count: " + returnList1.
Count + '\n');

}
}

}
/ * country 0.577058259665566

* nation 0.0717328789008414

* market 0.0670465438278837

* economy 0.0481946959207583

* asian country 0.0369581425071893

* developing country 0.0238577058259666

* place 0.0231654063265523

* emerging market 0.0214080306741932

* emerging economy 0.0165619341782937

* area 0.0126211524123975

* state 0.0111832996059218

* Others 0.0103312386835659

* developing nation 0.00958568537650442

* large country 0.00862711683885398

* region 0.00804132495473426

* power 0.00766854830120354

2.5 Recommended Basic Access APIs 15

* government 0.00655021834061135

* culture 0.00495260411119395

* jurisdictions 0.00426030461177974

* emerging country 0.0042070508041325

* society 0.0042070508041325

* communist country 0.00404728938119076

* case 0.00399403557354351

* east asian country 0.00388752795824901

* location 0.00372776653530727

* Total Count: 25

* /

2.5.3 ProbaseAPI.GetInstanceByClass Method

Syntax

Dictionary< string, List<EntityInfo>> GetInstanceByClass(
string className, int topN, Boolean exactMatch)

Function

Return all the instances and their information under a given class, ranking by the
probability of the class-instance pair.

Parameters

className

Type: string

The name of the given class.
topN

Type: int

It indicates that the API will return topN of the final results.If you set -1, all
results will be returned.
exactMatch

Type: Boolean

Whether the className is exactly what the user want to find. If exactMatch
is set to false, the API will also consider other forms of the class name, such as
singular, plural, case-insensitive, etc.

16 Probase Package

Return values

Return a dictionary which stores the possible class names and the corresponding
topN instances together with their information. Information includes name, total
frequency, probability, synonym under the instance, relevant score of the instance-
synonym pair and the frequency of the synonym. If you set exactMatch as true, the
return dictionary should contain only one key.

The structures of EntityInfo and EntityFrequencyScore are shown as below.

public class EntityInfo
{

public String name;
public int totalFrequency;
public double probability;
public List<EntityFrequencyScore> SynonymInfo;

}
public class EntityFrequencyScore
{

private string entityName;
private string score;
private int frequency;

}

Examples

using System;
using System.Collections.Generic;
using ProbasePackage;

class Program
{

static void Main()
{

ProbasePackage.Configuration.TrinityRoot =
@"D:\ProbasePackage\Ver0.05\TrinityAndIndex" ;

ProbasePackage.ProbaseAPI.Initialize();

Dictionary< string, List< ProbasePackage.EntityInfo>>
returnDic2 =

ProbasePackage.ProbaseAPI.GetInstanceByClass("Company" , 3
, false);

if (returnDic2.Count == 0)
Console.WriteLine("No items found!\n");

else
{

foreach (string className in returnDic2.Keys)

2.5 Recommended Basic Access APIs 17

{
Console.WriteLine("PossibleClassName: " +

className);
List< ProbasePackage.EntityInfo> returnList2 =

returnDic2[className];
for (int i = 0; i < returnList2.Count; i++)
{

Console.WriteLine("EntityName: " +
returnList2[i]. name

+ "\tProb: " + returnList2[i].probability
.ToString("F6")

+ '\n' + "Synonym: ");
foreach(ProbasePackage.EntityFrequencyScore

efs in returnList2[i].SynonymInfo)
{

Console.WriteLine('\t' + efs.
GetEntityName());

}
}
Console.WriteLine("Total Count: " + returnList2.

Count + '\n');
}

}
}

}
/ * This example produces output similar to the following:

* PossibleClassName: company

* EntityName: microsoft Prob: 0.017736

* Synonym:

* Microsoft

* Micro Soft

* Microsoft Corp.

* MSFT

* Microsoft Australia

* Microsoft Network

* computer giant

* computer giant NCR

* Microsoft Corp

* e Microsoft Corp.

* software giant Microsoft

* Microsoft Hardware

* Microsoft battle

* Microsoft Canada

* Microsoft Services

* Microsoft Microsoft

* 47 Microsoft

* EntityName: ibm Prob: 0.016365

18 Probase Package

* Synonym:

* Barrister Global Services Network

* IBM

* IBM Corp.

* IBM IBM

* International Business Machines Corp.

* International Business Machines

* I.B.M.

* International Business Machines Inc.

* IBM unit

* IBM Corporation

* International Business Machines Corp

* IBM Canada Ltd

* International Business Machines Corporation

* N.Y.-based IBM Corp.

* IBM Daksh

* IBM Korea

* RedHatand IBM

* NCR IBM

* EntityName: google Prob: 0.009924

* Synonym:

* Google

* Google Inc.

* Google Inc

* Google TV

* Google Checkout

* GoogleEarth

* Microsoftand Google

* Total Count: 3

* /

2.5.4 ProbaseAPI.GetClassByAttribute Method

Syntax

Dictionary< string, List<NameScorePair>> GetClassByAttribute(
string attribute, int topN, Boolean exactMatch)

Function

Return the class name and corresponding probability for a given attribute, ranking
by the probability of the class-attribute pair.

2.5 Recommended Basic Access APIs 19

Parameters

attribute

Type: string

The name of the given attribute.
topN

Type: int

It indicates that the API will return topN of the final results. If you set -1, all
results will be returned.
exactMatch

Type: Boolean

Whether the attribute is exactly what the user want to find. If exactMatch is
set to false, the API will also consider other forms of the attribute name, such as
singular, plural, case-insensitive, etc.

Return values

Return a dictionary which stores the possible attribute names and the correspond-
ing topN classes together with their possibilities. If you set exactMatch as true, the
return dictionary should contain only one key.

Examples

using System;
using System.Collections.Generic;
using ProbasePackage;

class Program
{

static void Main()
{

ProbasePackage.Configuration.TrinityRoot =
@"D:\ProbasePackage\Ver0.05\TrinityAndIndex" ;

ProbasePackage.ProbaseAPI.Initialize();
Dictionary< string, List< ProbasePackage.NameScorePair>>

returnDic3 =
ProbasePackage.ProbaseAPI.GetClassByAttribute ("

capitals" , 10, false);
if (returnDic3.Count == 0)

Console.WriteLine("No items found!\n");
else
{

foreach (string attributeName in returnDic3.Keys)
{

20 Probase Package

Console.WriteLine("PossibleAttributeName: " +
attributeName);

List<ProbasePackage.NameScorePair> returnList3 =
returnDic3[attributeName];

for (int i = 0; i < returnList3.Count; i++)
Console.WriteLine(returnList3[i]. name + '\t'

+
returnList3[i].score.ToString("F6"));

Console.WriteLine("Total Count: " + returnList3.
Count + '\n');

}
}

}
}
/ * This example produces output similar to the following:

* PossibleAttributeName: capital

* country 0.370836

* state 0.199370

* city 0.031611

* province 0.028995

* nation 0.025538

* region 0.023659

* jurisdictions 0.016739

* island 0.015646

* municipality 0.011606

* european country 0.011013

* Total Count: 10

* /

2.5.5 ProbaseAPI.GetAttributeByClass Method

Syntax

Dictionary< string, List<NameScorePair>> GetAttributeByClass(
string className, int topN, Boolean exactMatch)

Function

Return the attribute name and corresponding probability for a given class, ranking
by the probability of the class-attribute pair.

Parameters

className

2.5 Recommended Basic Access APIs 21

Type: string

The name of the given class.
topN

Type: int

It indicates that the API will return topN of the final results. If you set -1, all
results will be returned.
exactMatch

Type: Boolean

Whether the instance is exactly what the user want to find. If exactMatch is set
to false, the API will also consider other forms of the class name, such as singular,
plural, case-insensitive, etc.

Return values

Return a dictionary which stores the possible class names and the corresponding
topN attributes together with their possibilities. If you set exactMatch as true, the
return dictionary should contain only one key.

Examples

using System;
using System.Collections.Generic;
using ProbasePackage;

class Program
{

static void Main()
{

ProbasePackage.Configuration.TrinityRoot =
@"D:\ProbasePackage\Ver0.05\TrinityAndIndex" ;

ProbasePackage.ProbaseAPI.Initialize();
Dictionary< string, List< ProbasePackage.NameScorePair>>

returnDic4 =
ProbasePackage.ProbaseAPI.GetAttributeByClass ("

superstar" , 5, true);
if (returnDic4.Count == 0)

Console.WriteLine("No items found!\n");
else
{

foreach (string className in returnDic4.Keys)
{

Console.WriteLine("PossibleClassName: " +
className);

List< ProbasePackage.NameScorePair> returnList4 =

22 Probase Package

returnDic4[className];
for (int i = 0; i < returnList4.Count; i++)

Console.WriteLine(returnList4[i]. name + '\t'
+

returnList4[i].score.ToString("F6"));
Console.WriteLine("Total Count: " + returnList4.

Count + '\n');
}

}
}

}
/ * This example produces output similar to the following:

* PossibleClassName: superstar

* name 0.262051

* birth date 0.067213

* birth place 0.067213

* weight 0.063113

* trainer 0.054592

* Total Count: 5

* /

2.6 Recommended Conceptualization APIs

2.6.1 ConceptualizationAPI.GetClassByMultipleInput Method

Syntax

List<NameScorePair> GetClassByMultipleInput(
List< string> inputList, string inputType, int topN)

Function

Return the possible class name and corresponding probability for multiple given
inputs, which may be instances or attributes. The final result are ranked by the
probability of the class.

Parameters

inputList

Type: List of string

The list which stores the given inputs.
inputType

2.6 Recommended Conceptualization APIs 23

Type: string

The type of the inputs, it can be either Configuration.InputType Synonym or
Configuration.InputType Attribute.
topN

Type: int

It indicates that the API will return topN of the final results.

Return values

Return a List which stores the topN possible class names and the possibilities.

Examples

using System;
using System.Collections.Generic;
using ProbasePackage;

class Program
{

static void Main()
{

ProbasePackage.Configuration.TrinityRoot =
@"D:\ProbasePackage\Ver0.05\TrinityAndIndex" ;

ProbasePackage.ProbaseAPI.Initialize();
List< string> inputList1 = new List< string>();
inputList1.Add("position");
inputList1.Add("name");
inputList1.Add("club");
List<ProbasePackage.NameScorePair> returnList1 =

ProbasePackage.ConceptualizationAPI.
GetClassByMultipleInput(inputList1,

ProbasePackage.Configuration.InputType_Attribute, 15)
;

if (returnList1.Count == 0)
Console.WriteLine("No items found!\n");

else
{

for (int i = 0; i < returnList1.Count; i++)
Console.WriteLine(returnList1[i]. name + '\t' +

returnList1[i].score);
Console.WriteLine("Total Count: " + returnList1.Count

+ '\n');
}

}
}

24 Probase Package

/ * This example produces output similar to the following:

* star player 0.672179929480976

* athlete 0.317130799533957

* well-known veteran 0.00359861631611971

* fulham's key player 0.0018203108476972

* league manager 0.000998627612134618

* modern-day player 0.000618290093948136

* united's younger player 0.000432108371542334

* mobile wallpaper theme 0.000378627951057557

* head coach 0.000377953208955085

* lower-tier name 0.000374530056866337

* hall-of-fame talent 0.000318185068759354

* produced major leaguers 0.000248980483570343

* streetball legend 0.000165232766553

* high profile player 0.000130992589320023

* second-round draft pick 0.000127981662440261

* Total Count: 15

* /

2.6.2 ConceptualizationAPI.GetClassByMultipleInputCaseInsensitive

Method

Syntax

List<NameScorePair> GetClassByMultipleInputCaseInsen sitive(
List< string> inputList, string inputType, int topN)

Function

Return the possible class name and corresponding probability for multiple given
inputs, which may be instances or attributes. The final result are ranked by the
probability of the class. This function will consider all the possible lower and up-
per forms of the inputs and merge the results to give one list.

Parameters

inputList

Type: List of string

The list which stores the given inputs.
inputType

Type: string

2.6 Recommended Conceptualization APIs 25

The type of the inputs, it can be either Configuration.InputType Synonym or
Configuration.InputType Attribute.
topN

Type: int

It indicates that the API will return topN of the final results.

Return values

Return a List which stores the topN possible class names and the possibilities.

Examples

using System;
using System.Collections.Generic;
using ProbasePackage;

class Program
{

static void Main()
{

ProbasePackage.Configuration.TrinityRoot =
@"D:\ProbasePackage\Ver0.05\TrinityAndIndex" ;

ProbasePackage.ProbaseAPI.Initialize();
List< string> inputList2 = new List< string>();
inputList2.Add("google");
inputList2.Add("Apple");
inputList2.Add("microsoft");
inputList2.Add("INTEL");
List<ProbasePackage.NameScorePair> returnList2 =

ProbasePackage.ConceptualizationAPI.
GetClassByMultipleInputCaseInsensitive(

inputList2, ProbasePackage.Configuration.
InputType_Synonym, 10);

if (returnList2.Count == 0)
Console.WriteLine("No items found!\n");

else
{

for (int i = 0; i < returnList2.Count; i++)
Console.WriteLine(returnList2[i]. name + '\t' +

returnList2[i].score);
Console.WriteLine("Total Count: " + returnList2.Count

+ '\n');
}

}
}

26 Probase Package

/ * This example produces output similar to the following:

* disruptive firm 0.158174975323777

* forum few big one 0.158174975323777

* technology giant 0.133904947694563

* technology company 0.109847283031224

* tech company 0.0607165358168951

* tech giant 0.0592425104562462

* tech bellwether 0.0540850403978788

* large technology company 0.0528877232306868

* technology behemoth 0.0304228352238069

* tech firm 0.021747665366258

* Total Count: 10

* /

Chapter 3

WCF Service

3.1 Quick Setup

In this section, we first introduce the basic usage of ProbasePackage Wcf Service.

• New a project or open an existing project in Visual Studio.

• Right-click References in the Solution Explorer and select “Add Service Ref-
erence”.

• Type in http://msradb029/probase/ProbaseService.svc in Address, click Go
and rename the reference to “ProbaseService”, see Figure 3.1.

• Add the following service namespace to your program.

using YourNameSpace.ProbaseService;

3.2 How to call the APIs

The following codes are the typical examples to use the APIs in the service.

ProbaseServiceClient probaseService = new
ProbaseServiceClient();

//call differnt APIs provided by the service
probaseService.GetAttributeByClass("country" , 20, false);
probaseService.Close();

28 WCF Service

Figure 3.1: Add Probase’s WCF Service

3.3 Recommended Basic Access APIs

3.3.1 GetClassByInstance Method

Syntax

Dictionary< string, NameScorePair[]> GetClassByInstance(
string instanceName, int topN, Boolean exactMatch)

Function

Return the class name and corresponding probability for a given instance, ranking
by the probability of the class-instance pair.

Parameters

instanceName

Type: string

3.3 Recommended Basic Access APIs 29

The name of the given instance.
topN

Type: int

It indicates that the API will return topN of the final results. If you set -1, all
results will be returned.
exactMatch

Type: Boolean

Whether the instance is exactly what the user want to find. If exactMatch is
set to false, the API will also consider other forms of the instance name, such as
singular, plural, case-insensitive, etc.

Return values

Return a dictionary which stores the possible instance names and the correspond-
ing topN classes together with their possibilities. If you set exactMatch as true, the
return dictionary should contain only one key.

Examples

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using ProbasePackageTest.ProbaseService;

class Program
{

static void Main()
{

ProbaseServiceClient probaseService = new
ProbaseServiceClient();

Dictionary< string, NameScorePair[]> returnDic =
probaseService.GetClassByInstance("china" , 5,
false);

if (returnDic.Count == 0)
Console.WriteLine("No items found!\n");

else
{

foreach (string instanceName in returnDic.Keys)
{

Console.WriteLine("PossibleInstanceName: " +
instanceName);

NameScorePair[] returnList = returnDic[
instanceName];

30 WCF Service

for (int i = 0; i < returnList.Count(); i++)
Console.WriteLine(returnList[i]. name + '\

t' +
returnList[i].score.ToString("F6"));

Console.WriteLine("Total Count: " +
returnList.Count() + '\n');

}
}
probaseService.Close();

}
}
/ * This example produces output similar to the following:

* PossibleInstanceName: China

* country 0.374875

* developing country 0.053206

* emerging market 0.043337

* nation 0.038474

* emerging economy 0.028939

* Total Count: 5

*
* PossibleInstanceName: china

* item 0.205567

* fragile item 0.047109

* service 0.032120

* material 0.025696

* artifact 0.019272

* Total Count: 5

* /

3.3.2 GetInstanceByClass Method

Syntax

Dictionary< string, EntityInfo[]> GetInstanceByClass(
string className, int topN, Boolean exactMatch)

Function

Return all the instances and their information under a given class, ranking by the
probability of the class-instance pair.

3.3 Recommended Basic Access APIs 31

Parameters

className

Type: string

The name of the given class.
topN

Type: int

It indicates that the API will return topN of the final results. If you set -1, all
results will be returned.
exactMatch

Type: Boolean

Whether the className is exactly what the user want to find. If exactMatch
is set to false, the API will also consider other forms of the class name, such as
singular, plural, case-insensitive, etc.

Return values

Return a dictionary which stores the possible class names and the corresponding
topN instances together with their information. Information includes name, total
frequency, probability, synonym under the instance, relevant score of the instance-
synonym pair and the frequency of the synonym. If you set exactMatch as true, the
return dictionary should contain only one key.

The structures of EntityInfo and EntityFrequencyScore are shown as below.

public class EntityInfo
{

public String name;
public int totalFrequency;
public double probability;

public List<EntityFrequencyScore> SynonymInfo;
}
public class EntityFrequencyScore
{

private string entityName;
private string score;
private int frequency;

}

Examples

using System;
using System.Collections.Generic;
using System.Linq;

32 WCF Service

using System.Text;
using ProbasePackageTest.ProbaseService;

class Program
{

static void Main()
{

ProbaseServiceClient probaseService = new
ProbaseServiceClient();

Dictionary< string, EntityInfo[]> returnDic2 =
probaseService.GetInstanceByClass("Company" , 3,
false);

if (returnDic2.Count == 0)
Console.WriteLine("No items found!\n");

else
{

foreach (string className in returnDic2.Keys)
{

Console.WriteLine("PossibleClassName: " +
className);

EntityInfo[] returnList2 = returnDic2[
className];

for (int i = 0; i < returnList2.Count(); i++)
{

Console.WriteLine("EntityName: " +
returnList2[i]. name

+ "\tProb: " + returnList2[i].
probability.ToString("F6")

+ '\n' + "Synonym: ");
foreach (EntityFrequencyScore efs in

returnList2[i].SynonymInfo)
{

Console.WriteLine('\t' + efs.
entityName);

}
}
Console.WriteLine("Total Count: " +

returnList2.Count() + '\n');
}

}

probaseService.Close();
}

}
/ * This example produces output similar to the following:

* PossibleClassName: company

* EntityName: microsoft Prob: 0.017736

3.3 Recommended Basic Access APIs 33

* Synonym:

* Microsoft

* Micro Soft

* Microsoft Corp.

* MSFT

* Microsoft Australia

* Microsoft Network

* computer giant

* computer giant NCR

* Microsoft Corp

* e Microsoft Corp.

* software giant Microsoft

* Microsoft Hardware

* Microsoft battle

* Microsoft Canada

* Microsoft Services

* Microsoft Microsoft

* 47 Microsoft

* EntityName: ibm Prob: 0.016365

* Synonym:

* Barrister Global Services Network

* IBM

* IBM Corp.

* IBM IBM

* International Business Machines Corp.

* International Business Machines

* I.B.M.

* International Business Machines Inc.

* IBM unit

* IBM Corporation

* International Business Machines Corp

* IBM Canada Ltd

* International Business Machines Corporation

* N.Y.-based IBM Corp.

* IBM Daksh

* IBM Korea

* RedHatand IBM

* NCR IBM

* EntityName: google Prob: 0.009924

* Synonym:

* Google

* Google Inc.

* Google Inc

* Google TV

* Google Checkout

* GoogleEarth

* Microsoftand Google

34 WCF Service

* Total Count: 3

* /

3.3.3 GetClassByAttribute Method

Syntax

Dictionary< string, NameScorePair[]> GetClassByAttribute(
string attributeName, int topN, Boolean exactMatch)

Function

Return the class name and corresponding probability for a given attribute, ranking
by the probability of the class-attribute pair.

Parameters

attributeName

Type: string

The name of the given attribute.
topN

Type: int

It indicates that the API will return topN of the final results. If you set -1, all
results will be returned.
exactMatch

Type: Boolean

Whether the attribute is exactly what the user want to find. If exactMatch is
set to false, the API will also consider other forms of the attribute name, such as
singular, plural, case-insensitive, etc.

Return values

Return a dictionary which stores the possible attribute names and the correspond-
ing topN classes together with their possibilities. If you set exactMatch as true, the
return dictionary should contain only one key.

Examples

3.3 Recommended Basic Access APIs 35

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using ProbasePackageTest.ProbaseService;

class Program
{

static void Main()
{

ProbaseServiceClient probaseService = new
ProbaseServiceClient();

Dictionary< string, NameScorePair[]> returnDic3 =
probaseService.GetClassByAttribute("capitals" , 10,
false);

if (returnDic3.Count == 0)
Console.WriteLine("No items found!\n");

else
{

foreach (string attributeName in returnDic3.Keys)
{

Console.WriteLine("PossibleAttributeName: " +
attributeName);

NameScorePair[] returnList3 = returnDic3[
attributeName];

for (int i = 0; i < returnList3.Count(); i++)
Console.WriteLine(returnList3[i]. name +

'\t' +
returnList3[i].score.ToString("F6"));

Console.WriteLine("Total Count: " +
returnList3.Count() + '\n');

}
}

probaseService.Close();
}

}
/ * This example produces output similar to the following:

* PossibleAttributeName: capital

* country 0.370836

* state 0.199370

* city 0.031611

* province 0.028995

* nation 0.025538

* region 0.023659

* jurisdictions 0.016739

* island 0.015646

36 WCF Service

* municipality 0.011606

* european country 0.011013

* Total Count: 10

* /

3.3.4 GetAttributeByClass Method

Syntax

Dictionary< string, NameScorePair[]> GetAttributeByClass(
string className, int topN, Boolean exactMatch)

Function

Return the attribute name and corresponding probability for a given class, ranking
by the probability of the class-attribute pair.

Parameters

className

Type: string

The name of the given class.
topN

Type: int

It indicates that the API will return topN of the final results. If you set -1, all
results will be returned.
exactMatch

Type: Boolean

Whether the instance is exactly what the user want to find. If exactMatch is set
to false, the API will also consider other forms of the class name, such as singular,
plural, case-insensitive, etc.

Return values

Return a dictionary which stores the possible class names and the corresponding
topN attributes together with their possibilities. If you set exactMatch as true, the
return dictionary should contain only one key.

Examples

3.3 Recommended Basic Access APIs 37

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using ProbasePackageTest.ProbaseService;

class Program
{

static void Main()
{

ProbaseServiceClient probaseService = new
ProbaseServiceClient();

Dictionary< string, NameScorePair[]> returnDic4 =
probaseService.GetAttributeByClass("superstar" , 5,
true);

if (returnDic4.Count == 0)
Console.WriteLine("No items found!\n");

else
{

foreach (string className in returnDic4.Keys)
{

Console.WriteLine("PossibleClassName: " +
className);

NameScorePair[] returnList4 = returnDic4[
className];

for (int i = 0; i < returnList4.Count(); i++)
Console.WriteLine(returnList4[i]. name +

'\t' +
returnList4[i].score.ToString("F6"));

Console.WriteLine("Total Count: " +
returnList4.Count() + '\n');

}
}
probaseService.Close();

}
}
/ * This example produces output similar to the following:

* PossibleClassName: superstar

* name 0.262051

* birth date 0.067213

* birth place 0.067213

* weight 0.063113

* trainer 0.054592

* Total Count: 5

* /

38 WCF Service

3.4 Recommended Conceptualization APIs

3.4.1 GetClassByMultipleInput Method

Syntax

NameScorePair[] GetClassByMultipleInput(
string[] inputList, string inputType, int topN)

Function

Return the possible class name and corresponding probability for multiple given
inputs, which may be instances or attributes. The final result are ranked by the
probability of the class.

Parameters

inputList

Type: string[]

The list which stores the given inputs.
inputType

Type: string

The type of the inputs, it can be either ”Synonym” or ”Attribute”.
topN

Type: int

It indicates that the API will return topN of the final results.

Return values

Return a List which stores the topN possible class names and the possibilities.

Examples

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using ProbasePackageTest.ProbaseService;

class Program
{

3.4 Recommended Conceptualization APIs 39

static void Main()
{

ProbaseServiceClient probaseService = new
ProbaseServiceClient();

string[] inputList1 = { "position" , "name" , "club" } ;
NameScorePair[] returnList1 = probaseService.

GetClassByMultipleInput(inputList1, "Attribute" ,
15);

if (returnList1.Count() == 0)
Console.WriteLine("No items found!\n");

else
{

for (int i = 0; i < returnList1.Count(); i++)
Console.WriteLine(returnList1[i]. name + '\t'

+
returnList1[i].score);

Console.WriteLine("Total Count: " + returnList1.
Count() + '\n');

}

probaseService.Close();
}

}
/ * This example produces output similar to the following:

* star player 0.672179929480976

* athlete 0.317130799533957

* well-known veteran 0.00359861631611971

* fulham's key player 0.0018203108476972

* league manager 0.000998627612134618

* modern-day player 0.000618290093948136

* united's younger player 0.000432108371542334

* mobile wallpaper theme 0.000378627951057557

* head coach 0.000377953208955085

* lower-tier name 0.000374530056866337

* hall-of-fame talent 0.000318185068759354

* produced major leaguers 0.000248980483570343

* streetball legend 0.000165232766553

* high profile player 0.000130992589320023

* second-round draft pick 0.000127981662440261

* Total Count: 15

* /

3.4.2 GetClassByMultipleInputCaseInsensitive Method

Syntax

40 WCF Service

NameScorePair[] GetClassByMultipleInputCaseInsensiti ve(
string[] inputList, string inputType, int topN)

Function

Return the possible class name and corresponding probability for multiple given
inputs, which may be instances or attributes. The final result are ranked by the
probability of the class. This function will consider all the possible lower and up-
per forms of the inputs and merge the results to give one list.

Parameters

inputList

Type: string[]

The list which stores the given inputs.
inputType

Type: string

The type of the inputs, it can be either ”Synonym” or ”Attribute”.
topN

Type: int

It indicates that the API will return topN of the final results.

Return values

Return a List which stores the topN possible class names and the possibilities.

Examples

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using ProbasePackageTest.ProbaseService;

class Program
{

static void Main()
{

ProbaseServiceClient probaseService = new
ProbaseServiceClient();

3.4 Recommended Conceptualization APIs 41

string[] inputList1 = { "Google" , "apple" , "microsoft"
, "Intel" } ;

NameScorePair[] returnList1 = probaseService.
GetClassByMultipleInputCaseInsensitive(inputList1,

"Synonym" , 10);
if (returnList1.Count() == 0)

Console.WriteLine("No items found!\n");
else
{

for (int i = 0; i < returnList1.Count(); i++)
Console.WriteLine(returnList1[i]. name + '\t'

+
returnList1[i].score);

Console.WriteLine("Total Count: " + returnList1.
Count() + '\n');

}

probaseService.Close();
}

}
/ * This example produces output similar to the following:

* disruptive firm 0.158174975323777

* forum few big one 0.158174975323777

* technology giant 0.133904947694563

* technology company 0.109847283031224

* tech company 0.0607165358168951

* tech giant 0.0592425104562462

* tech bellwether 0.0540850403978788

* large technology company 0.0528877232306868

* technology behemoth 0.0304228352238069

* tech firm 0.021747665366258

* Total Count: 10

* /

Chapter 4

Web Interface

4.1 How to use

Please go to http://msradb029/probaseweb

You can see two columns at the top of the window.

Basic Access is used to show basic data of ProbasePackage, see Figure 4.1.

Conceptualization shows the conceptualization result of multiple instances or
attributes, see Figure 4.2.

4.2 Recommended Basic Access APIs

4.2.1 GetInstanceByClass

Function

Given a class, return all the instances and their information, including probability,
synonyms and relevant score, ranking by the probability of the class-instance pair.

OutputFormat

See Figure 4.3.

4.2.2 GetClassByInstance

Function

Return the class name and corresponding probability for a given instance, ranking
by the probability of the class-instance pair.

44 Web Interface

Figure 4.1: Probase Basic Access Interface

Figure 4.2: Conceptualization Interface

4.2 Recommended Basic Access APIs 45

Figure 4.3: Results of GetInstanceByClass

46 Web Interface

Figure 4.4: Results of GetClassByInstance

OutputFormat

See Figure 4.4.

4.2.3 GetAttributeByClass

Function

Return the attribute name and corresponding probability for a given class, ranking
by the probability of the class-attribute pair.

OutputFormat

The format is similar to Figure 4.4.

4.3 Recommended Conceptualization APIs 47

4.2.4 GetClassByAttribute

Function

Return the class name and corresponding probability for a given attribute, ranking
by the probability of the class-attribute pair.

OutputFormat

The format is similar to Figure 4.4.

4.3 Recommended Conceptualization APIs

4.3.1 Conceptualization From Instances

Function

Return the possible class name and corresponding probability for multiple given
instances. The final results are ranked by the probability of the class.

Input Tips

Input ’;’ as the separator of multiple instances.

OutputFormat

See Figure 4.5.

4.3.2 Conceptualization From Attributes

Function

Return the possible class name and corresponding probability for multiple given
attributes. The final results are ranked by the probability of the class.

Input Tips

Input ’;’ as the separator of multiple instances.

OutputFormat

See Figure 4.6.

48 Web Interface

Figure 4.5: Results of Conceptualization From Instances

4.3 Recommended Conceptualization APIs 49

Figure 4.6: Results of Conceptualization From Attributes

Bibliography

[1] D. Blei and J. Lafferty. Topic Models, chapter: Topic Models. Taylor and Francis,
2009. (in Press).

[2] P. Bloom. Glue for the mental world. Nature, (421):212–213, Jan 2003.

[3] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In
SIGMOD, 2008.

[4] S. A. Caraballo. Automatic construction of a hypernym-labeled noun hierar-
chy from text. In ACL, 1999.

[5] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In
COLING, pages 539–545, 1992.

[6] T. Lee, Z. Wang, H. Wang, and S. won Hwang. Web scale taxonomy cleansing.
Technical Report MSR-TR-2011-30, Microsoft Research, 2011.

[7] D. B. Lenat and R. V. Guha. Building Large Knowledge-Based Systems: Represen-
tation and Inference in the Cyc Project. Addison-Wesley, 1989.

[8] G. L. Murphy. The big book of concepts. The MIT Press, 2004.

[9] M. Pasca. Turning web text and search queries into factual knowledge: Hier-
archical class attribute extraction. In AAAI, pages 1225–1230, 2008.

[10] Y. Song, H. Wang, Z. Wang, and H. Li. Short text conceptualization using a
probabilistic knowledgebase. In IJCAI, 2011.

[11] J. Wang, B. Shao, H. Wang, and K. Q. Zhu. Understanding tables on the web.
Technical Report MSR-TR-2011-29, Microsoft Research, 2010.

[12] P. Wang, H. Li, H. Wang, and K. Q. Zhu. Taxonomy assisted massive relation-
ship extraction from the web. 2010.

[13] Y. Wang, H. Li, H. Wang, and K. Q. Zhu. Toward topic search on the web.
Technical Report MSR-TR-2011-28, Microsoft Research, 2010.

[14] W. Wu, H. Li, H. Wang, and K. Zhu. Towards a probabilistic taxonomy of
many concepts. Technical Report MSR-TR-2011-25, Microsoft Research, 2011.

