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ABSTRACT

Designing distributed algorithms that converge quickly to an equi-
librium is one of the foremost research goals in algorithmic game
theory, and convex programs have played a crucial role in the de-
sign of algorithms for Fisher markets. In this paper we shed new
light on both aspects for Fisher markets with linear and spending
constraint utilities. We show fast convergence of the Proportional
Response dynamics recently introduced by Wu and Zhang [WZ07].
The convergence is obtained from a new perspective: we show that
the Proportional Response dynamics is equivalent to a gradient de-
scent algorithm (with respect to a Bregman divergence instead of
euclidean distance) on a convex program that captures the equilib-
ria for linear utilities. We further show that the convex program
program easily extends to the case of spending constraint utilities,
thus resolving an open question raised by [Vaz10b]. This also gives
a way to extend the Proportional Response dynamics to spending
constraint utilties. We also prove a technical result that is interest-
ing in its own right: that the gradient descent algorithm based on a
Bregman divergence converges with rate O(1/t) under a condition
that is weaker than having Lipschitz continuous gradient (which is
the usual assumption in the optimization literature for obtaining the
same rate).
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1. INTRODUCTION

The computational complexity of equilibria has been the focus of
much research in Algorithmic Game Theory over the last decade,
not to mention considerable amount of work in the economics lit-
erature. Although most papers consider algorithms in the cen-
tralized model of computation, what are more relevant are dis-
tributed algorithms that converge to an equilibrium. Such algo-
rithms are especially important in the context of automated markets
that have emerged due to the Internet, such as the market for online
advertising. In such markets trading is often done by automated
agents. Distributed algorithms can be thought of as protocols that
these agents are programmed to follow. The design and analysis
of distributed algorithms converging to equilibria in the context of
games has also recieved considerable attention, most commonly
convergence of best response dynamics [AGM ™08, CS07, Ros73,
AAE'08].

For markets, essentially the only distributed algorithms that have
been studied are variants of the tatonnement process. Wu and Zhang
[WZ07] proposed a new distributed algorithm, called the Propor-
tional Response (PR) dynamics, as a protocol for trading bandwidth
on a peer-to-peer network.! The PR dynamics involves a sequence
of bids by the buyers and prices by the sellers that respond to each
other. The seller prices are simply set to be the sum of all the
bids they receive. The buyers set their bids proportional to the util-
ity they would obtain with the bids and the prices in the previous
round.

PR seems to converge really fast to equilibrium in practice, and
yet the reason for this remained a mystery. Zhang [Zha09] analyzed
PR dynamics for Fisher markets and showed the following: “if 7
is large enough, then there exists a ¢ < 7 such that the bids and
prices in round ¢ are close to the equilibrium.” This does not quite
show convergence of the dynamics to an equilibrium. Moreover the
proof uses a potential function that gives little insight into why this
happens.

In this paper we demystify the PR dynamics: we show that the
PR dynamics are equivalent to a generalized gradient descent algo-
rithm with Bregman divergences (instead of Euclidean distance) on
a convex program introduced by Shmyrev [Shm09] that captures
the equilibria of Fisher markets with linear utilities. This insight
gives an intuitive understanding of why such dynamics work. PR
dynamics fit so well with this perspective that we can confidently
say this is the “right” way of thinking about them. Moreover, we
get true convergence, of the form, “if ¢ is large enough, then the
bids and prices in round ¢ are close to an equilibrium.”

Further we show that the convex program and the PR dynam-

'Tt has since been shown to be an effective solution for BitTorrent
[LLSBOS8].



ics generalize to the spending constraint utilities, thus resolving an
open question of Vazirani [Vaz10b].

1.1 Fisher’s Market Model with Linear and
Spending Constraint Utilities

In the Fisher market model with linear utilities, there are n buy-
ers and m perfectly divisible goods. There is a unit® supply of each
good. Each buyer ¢ has a budget B;, and for each item j, a number
u;5, which represents the utility of that buyer for one unit of item
j. Given an allocation vector x € R*™, the utility of buyer 4 is
Z i Ui Tqj.

An allocation « € R}*™ and price vector p € RT are an equi-
librium if two conditions are satisfied. The first, buyer optimality,
is that given p, each player maximizes his utility subject to his bud-
get constraint. In other words, for all 4, the allocation x optimizes
the following program ( where p is a constant):

maximize ) ui;Tij
subjectto 3. p;xi; < Bi.
Tij > 07 Vj

The second equilibrium condition, market clearance, is that ZZ Tij =

1 for all j.

In the spending constraints model, the utility of a buyer also de-
pends on the prices, as follows. The utility is still additive across
goods, that is, the total utility for a bundle of goods is the sum
of utilities for each good separately. For a given good, the utility
function is divided into segments; each segment [ has a constant
rate of utility u! ;j»and a budget le-]-. The utility of the buyer for ;i
amount of good j under segment [ is uﬁjmﬁj, but is subject to the
constraint that p; z i < B! ;- Hence the utility maximizing program
for a given buyer is now as follows.

maximize )., ul; @k
:

subject to Ej,lpjxf;j < B;.
0 < }; and p;at; < Bl; Vj, L.
1.2 Proportional Response Dynamics

The Proportional Response (PR) Dynamics is a distributed algo-
rithm for computing market equilibrium and was introduced by Wu
and Zhang [WZ07] in the context of a bandwidth trading market
model for peer-to-peer networks and by Zhang [Zha09] in the cur-
rent context of the Fisher markets. The algorithm proceeds in dis-
crete time steps, and for each time ¢t = 0, 1, 2, .. ., buyer ¢ submits
a bid b;; (t) for each good j. Given the bids, a price vector p(t) is
computed by summing the bids for each item: p;(t) = >, bi;(¢).
Each buyer 7 is allocated an amount x;;(t) = b;;(t)/p;(t) of item
7. The buyers then update their bids for the next time step so that
their new bid for a good is proportional to the utility obtained from
this good in the current round, that is b;; (t) o< wi;x;;(t). In sum-
mary, the new bid vector is computed according to the following
recursion:

wijzi;(t)
> Ui Tigr (1)

The PR dynamics has many desirable properties that are also unique.

bij(t+1) = B; )

e The PR dynamics are simple, distributed and require no global
communication.® In every step, a buyer only has to know the

“This is without loss of generality, by the choice of unit, since the
goods are divisible.

SExcept for the fact that they need to be synchronized, in the sense
that the dynamics happen in rounds and in every round, every bid-
der updates his bids.

prices of the goods he is interested in, and a good only has to
know the bids placed on it.

e PR dynamics is also stateless: the bids at any time step de-
pend only on the bids of the previous step, and there is no
special starting point.

e Unlike all other dynamics, which depend on choosing the
right step size, PR dynamics does not need a step size to
choose and adapt.

In this paper, we analyze the PR dynamics from the perspective of
general convex optimization algorithms. Along the way, we give
a new convex program for the linear Fisher market and establish a
new convergence condition for generalized gradient descent meth-
ods based on Bregman divergences. With this general framework,
we are able to extend both the new convex program and the PR
dynamics to markets with spending constraint utilities.

2. MAIN RESULTS

2.1 The Convex Program

A well-known convex program called the Eisenberg-Gale [EG59]
convex program captures equilibrium allocations of a linear Fisher
market. Here we consider an alternate convex program discovered
recently by Shmyrev [Shm09] that also does the same. As we shall
see this convex program is closely related to the Proportional Re-
sponse (PR) dynamics. The convex program is as follows.

maximize 3, bijlogui; — 37, p;logp;

subjectto  V 7,>, bij = pj, @)
Vi, 5 by = B,
Vi,j, 0 < bij.

The variable p; corresponds to the price of good j. The variable
b;; represents the amount of money spent on good j by buyer 3.
Hence given a solution to the above program, the allocation z;; is
given by b;; /p;. Itis easy to see that for any feasible solution to the
program, the corresponding prices and allocations are such that the
market always clears, and the buyers always exhaust their budgets.
The only other condition required for equilibrium is that each buyer
be allocated his optimal bundle of goods.

THEOREM 1  ([SHMO09]). Let b* and p* be an optimum solu-
tion to Convex Program (2). Then p* and allocation x3; = bj; /pj
is an equilibrium for the Fisher market with linear utilities given by

the u;;’s and the B;’s.

This convex program can be generalized to markets with spending
constraint utilities. This resolves an important open problem raised
by Vazirani [Vaz10b].

maximize 3}, ., bl; logul; — > pjlogp;
subjectto V5, >, bl = pj,
. Y
Vi, >, bij = Bi,
Vi, jl, 0 < by < Bl

3

As before, the allocation is given by a:fj = bf;j /p;, and the only
condition that needs verifying is buyer optimality.

THEOREM 2. An optimum solution to Convex Program (3) cor-
responds to an equilibrium for the Fisher market with spending
constraint utilities given by the uéj s, ij ’s and the B;’s.



2.2 Generalized Gradient Descent with Breg-
man Divergence

Both of the convex programs (2) and (3) are special cases of the
constrained optimization problem

minimize f(z)

subjectto z € C “)

where C is a compact convex set, and f(x) is a differentiable con-
vex function with dom f O C (i.e., f is finite on C'). The conven-
tional projected gradient descent method (e.g., [Ber99]) for solv-
ing (4) is

2(t+1) = e (2(t) — eV f(z(t))) )

where y; is an appropriate stepsize, and w¢(+) denotes Euclidean
projection on the set C'. Let

Li(z;y) = fy) +(Vf(y),z—v)

be the linear approximation of f using the gradient at y. The
method (5) is equivalent to

. 1
olt+1) = angmiy { @5 (0) + g lo = 20} ©

where the proximal term (1/2)||z—2(t)]|3 is the squared Euclidean
distance between two points. In the generalized gradient descent
method the squared Euclidean distance in (6) is replaced by a gen-
eralized distance function d(z, z(t)), i.e.,

z(t+1) = arg ggg {ls(z;2(t)) + e d(z,x(t))}, @)

where the parameter v¢ > 0, and its reciprocal 1/~; play the role
of stepsize p in the Euclidean case. In particular, we let d(z, y) be
the Bregman divergence [Bre67] of a differentiable convex function
h(z) (assuming dom h 2O C), defined as

dn(z,y) = h(z) — la(z;y),

where rint C denotes the relative interior of C' [Roc70, Section 6].
As an example, dy, (z,y) = (1/2)||z — y||3 if h(z) = (1/2)]|z||3.
We often drop the subscript A whenever there is no confusion from
context. We say h is the kernel of d, and d is generated by h. We
assume that both f and h are differentiable and they satisfy

flx) < Lp(x;y) +vdu(z,y), VoeeC,yerintC, (8)

for some constant v > 0. We show convergence of the general-
ized gradient descent method under the assumption of (8), which
is weaker than the typical assumption of Lipshitz continuity of the
gradient of f.

Ve e C, y €rint C,

THEOREM 3. Suppose that the sequence x(t) is defined by Equa-
tion (7), f and h are convex and differentiable functions and that
they satisfy Condition (8). Then for all t,

. d(z*,x(0
Fla(t) - f(a) < 120D
In particular we show the following two lemmas from which the

above theorem follows immediately.

LEMMA 4. The total deviation of f from the optimum through-
out the run of the algorithm is bounded by a value that is indepen-
dent of how long the algorithm is run.

> (f@(®) = f(a) < rd(a”,2(0)).

t

LEMMA 5. Forallt, f(z(t+1)) < f(z(t)).

2.3 PR as Gradient Descent

One can easily see the similarities between the PR dynamics (1)
and Convex Program (2) in the way the prices and allocations are
defined. In particular, the market clears automatically in the PR
dynamics and the only condition we need to worry about is buyer
optimality. In fact as detailed below, we show that the PR dynamics
is exactly the gradient descent algorithm given by (7) on Convex
Program (2).

First of all, we can eliminate the p; variables from the program (2);
in fact, p; can be thought of as a function of the b;;’s, defined as
pj(b) = >, bij. We stick to the notation p; without the argu-
ment when there is no confusion* from the context. Let the ob-
jective function® of the convex program be denoted by ¢(b) =
— 24, biglogui; + 37, p;(b) log(p; (b)), and the feasible region
by

S = {bERnmeZbij:BiViybij ZOVZ}J'}‘

J

Without loss of generality assume that >, B; = 1. Also define
the Bregman divergence d with the kernel function being the un-
normalized negative entropy, h(b) = >, . (bi; logbi; — bi;) =
>4, bizlogbi; — 3=, Biforb € S. A straightforward calculation
shows that

Qaij
d(a,b) = aijlog = = D (al[b),
— ij
3J

where D (- || -) is the KL-divergence between two probability dis-
tributions.

THEOREM 6. The proportional response dynamics (1) is equiv-
alent to the gradient descent algorithm (7) with d(a,b) = D (a || b)
as above, f = o, C = Sand vy = 1.

In order to use our results about convergence of the above algorithm
(Theorem 3), we need to show that Condition (8) is satisfied, which
we do in the following lemma.

LEMMA 7. Forall a,b € S,
¢(b) < Ly(b;a) + D (b]|a).

Thus, PR dynamics satisfies the convergence properties as specified
in Theorem 3 with f = ¢ and v = 1. If the initial bids are b;;(0) =
B;/m for all ¢ and j, then D (b* || b(0)) < log(mn) (see Lemma
13). A more detailed analysis of the convergence is given in Section
5.

For markets with spending constraints, the algorithm (7) leads to
an iterative PR and capping algorithm, which has the same conver-
gence properties as the PR dynamics (see Section 4.1).

2.4 Related Work and Motivation

The algorithmic study of equilibrium concepts in general, and
of market equilibria in particular, are motivated by the question
of whether markets can feasibly operate at equilibrium. After al-
most a decade since this line of research started, the computational
complexity of equilibrium concepts is fairly well understood. The
hardness results [CT09, CDDT09, CD06, DGP06, CSVY06] point

*Similarly, we use p;(t) to denote p;(b(t)) and p} to denote
p;(b").

5To maintain consistency with our notation in the previous sub-
section, we rephrase the convex program as minimizing a convex
function instead of maximizing a concave function.



towards the unlikeliness that markets in general operate at equi-
libria, with recent results [CT09, CDDT09, VY 10] showing that
even for the simple class of separable piecewise linear functions, it
is PPAD-hard to compute an equilibrium. The algorithmic results
[DPS02, DPSVO0S, Jai07, DV04, CPV05, CMVO05, JV10, DKOS,
YeO08] provide hope for certain special classes of markets. A good
survey of algorithms for market equilibria can be found in [Vaz07]
and [CV07], with the summary being that we can find equilibria for
markets with weak gross substitutes property, for certain resource
allocation markets [JV10], and when there are a bounded number
of goods [DKO8].

Algorithmic results in a centralized model of computation do
not directly address the question of market dynamics: how might
agents interacting in a market arrive at an equilibrium? Here, the
quest is for simple and distributed algorithms that are guaranteed
to converge fast. Such distributed algorithms are especially appli-
cable when the agents involved are automated, and one has to pre-
scribe a particular protocol for them to follow. This is true in many
networking applications, and also in markets such as search adver-
tising where often the bids are updated automatically. There is also
a huge amount of work in the networking community on design-
ing such distributed algorithms that achieve proportional fairness
(e.g., [Kel97, KMT98]). It is known that proportional fairness is
equivalent to market equilibrium in many settings (including linear
utilities), via an Eisenberg-Gale type convex program [KV]. Our
results could potentially be useful for these applications as well,
and is a direction for future work.

Almost all dynamics considered in the literature are variants of
the tatonnement process first defined by Leon Walras [Wal74]. The
most general version of tatonnement just says that prices are in-
creased when demand exceeds supply and are decreased when sup-

ply exceeds demand. Many versions of this [ABH59, Uza60, CM V05,

FGK™08, GK06] have been analyzed over the years, but none of
these until recently gave simple, fast and distributed algorithms.
Some of the early work in economics [ABH59, Uza60] ignored the
convergence rate entirely. [CMVO05] showed polynomial time con-
vergence of a version of tatonnement for markets with weak gross
substitutes, but had to transform the market a priori which then
translates to passing around global information in every round. The
auction algorithm of Garg and Kapoor [GK06] requires that it be
started from a particular state. The algorithm of [FGK T 08] suffers
from disadvantages such as having to take the average of all the
prices and the average of all the allocations to get an equilibrium.
The exception is the algorithm given by [CF08] which is distributed
and asynchronous and converges fast for markets with weak gross
substitutes property. The convergence time however depends on
certain market parameters which tend to infinity for linear Fisher
markets. One reason for the difficulty in designing tatonnement
style processes for linear Fisher markets is that the demand of a
buyer is not always uniquely determined. Thus at equilibrium one
needs to specify the allocation in addition to the prices. The PR
dynamics elegantly takes care of the problem of non-uniqueness
of demand, since the bids uniquely determine the prices and the
allocations.

PR was first proposed as a protocol for trading bandwidth on
a peer-to-peer network by Wu and Zhang [WZ07] and has been
shown to be an effective solution for BitTorrent [LLSBO08]. Zhang
[Zha09] shows the following about PR dynamics in Fisher mar-
kets: “if 7 is large enough, then there exists a ¢ < 7 such that
b(t) is close to optimal.” We get true convergence, of the form,
“if ¢ is large enough, then b(t) is close to optimal.” In fact, we
rephrase Zhang’s proof and give a detailed comparison with ours
in Section 5.2. We extend the results to spending constraint util-

ities as well. Clearly the extension was only possible because of
our insights into the connection between PR dynamics and the con-
vex program. Moreover, Zhang [Zha(09] also considers Constant
Elasticity of Substitution (CES) utilities, U; = 3, (ui;z4;)”* with
0 < p; < 1. He gets a better bound on the convergence rate for
these utilities: PR converges to an e-approximate equilibrium in

o( L +log(1/e) )

1 — (max; p;)?

rounds, where L is the bit-complexity of the input. Our techniques
extend to CES utilities as well, and we strengthen Zhang’s results as
before, by obtaining the stronger form of convergence. The details
of this will be presented in the full version.

The convex program (2) was recently discovered by Shmyrev
[Shm09], and was actually rediscovered by us. The convex pro-
gram (2) is in fact related to the EG convex program as follows:
take the dual of the EG program, perform a change of variables,
and if you take the dual of this program again, you get the convex
program (2). See [Dev09] for details on this connection.

The spending constraint model is an interesting special class of
markets that is amenable to efficient algorithms. The spending con-
straint utilities for the Fisher was introduced by Vazirani [Vaz10b]
and extended to the more general Arrow-Debreu model by Deva-
nur and Vazirani [DV04]. Vazirani [Vaz10b] extended the primal-
dual algorithm for linear utilities of Devanur et. al. [DPSVO08] to
the spending constraint utilities. The primal-dual interpretation of
the algorithm of Devanur et. al. was based on the Eisenberg-Gale
convex program, but no such program is known for spending con-
straints. Based on this, Vazirani [Vaz10b] conjectured that there
must exist a convex program that captures the spending constraint
model as well. We finally resolve this conjecture positively in this
paper.

The generalized gradient descent method, also known as mirror-

descent has been well studied in the optimization community, see,
e.g., [NY83, BT03]. In the optimization literature however, the
kernel function h is usually assumed to be strongly convex. Then
with a diminishing stepsize 1/y; = O(1/+/t), the generalized
gradient method (7) converges with rate O(1/+/%), even if f is
non-differentiable (e.g, [BT03, Nem05]). If f is further differen-
tiable and V f is Lipschitz-continuous, then (7) converges with rate
O(1/t) using a constant + that is no smaller than the Lipschitz
constant. (e.g., [Ber99, Nes04]). In this case, more sophisticated
variations of (7) can achieve a convergence rate O(1/t%); see, e.g.,
[Nes83, Nes04, Nes0S, Tse08]. In this paper, we show that the
method (7) can have convergence rate O(1/t) with Condition (8).
Condition (8) is implied by the assumptions that V f is Lipschitz
continuous and h is strongly convex (e.g., [Nes04]) and is hence
a weaker assumption. Without these stronger assumptions, Condi-
tion (8) often requires a close connection between the functions f
and h, which is the case for our analysis of the PR dynamics in
Section 4.
Organization: In Section 3 we prove Theorem 3. Theorem 6 is
proved in Section 4. In Section 5, we define various measures of
distance to equilibrium and show convergence of PR dynamics with
respect to these measures. We also compare these in detail with
Zhang’s results in Section 5.2. We conclude with directions for
future research in Section 6.

3. GRADIENT DESCENT

In this section, we prove convergence properties of the general-
ized gradient method (7) based on the assumption (8) as stated in
Theorem 3. We start by noting some key properties of Bregman
divergences:



e d(z,y) > 0 forall z,y € domh. If h is strictly convex,
then d(z,y) = 0 if and only if z = y.

e In general d(z,y) # d(y, ), and it does not satisfy the tri-
angle inequality.
e The following three-point identity follows directly from def-
inition:
d(z, 2) = d(z,y)+d(y, 2) +(Vh(y) = Vh(2), z—y). )
If A is not strictly convex, then the solution to the minimization
problem in (7) may not be unique. However, a solution always
exists because we assume C' is compact.
Recall that in order to prove Theorem 3, it is sufficient to prove
Lemmas 5 and 4. We first prove Lemma 5.
PROOF OF LEMMA 5. We have

f(a(t+1)) < by (x(t+1);2(t) + yd(z(t+1), z(t))
< Ly (2(t); w(t)) + yd(2(t), z(t))
= f(x(t)).
The first inequality follows from (8). The second inequality is by

definition of (¢4 1). The last equality is also by definition, since
d(z,z)=0. O

The key step in the proof of Lemma 4 is the following lemma. Let

*

z* := arg mingec{f(z)} be an optimum solution to (4).

LEMMA 8. Forallt,

Fa(t+1)) - f@*) < yd(a*,2(t)) — vd(z*, 2(t+1).
Before we prove Lemma 8, we show how Lemma 4 follows from
it.

PROOF OF LEMMA 4. The lemma follows by simply summing
over all ¢ the conclusion of Lemma 8 and using the fact that d(x, y)
is always greater than 0. [

In order to prove Lemma 8, we need a result on optimization with
Bregman divergence. Consider the following optimization prob-

lem:
minimize g(z) + d(z,y) (10)
subjectto z € C

where g(z) is a convex function and C' is a compact convex set.
The following lemma can be found in, e.g., [CT93].

LEMMA 9. If ¥ is the optimal solution to the optimization
problem (10), then

g(@) +d(z,y) > g +d(zt,y) + d(z,zT). an
We apply Lemma 9 with g(z) = (1/v)¢s(x; z(t)) to obtain the
following corollary.
COROLLARY 10. Forall z € C,
Lp(z(t+1);2(t)) + vd(x(t+1),z(t))
< Lp(z2(t) +vd(z, 2(t)) — vd(z, z(t+1)).
Lemma 8 follows as a consequence of this corollary.
PROOF OF LEMMA 8. We have
fla(t+1)) < L (@(t+1); () + vd(z(t+1),2(t))
<Lz a(t) + yd(x”, (1))
— yd(a®, x(t+1)
< f(@") + vd(z*, z(t)) — vd(z", z(t+1)).

The first and third inequalities follow from (8), and the second in-
equality follows from Corollary 10. []

4. PR AS GRADIENT DESCENT

In this section, we show the equivalence of the PR dynamics and
the gradient descent algorithm on the new convex program, that is,
we prove Theorem 6 and Lemma 7.

Recall the function ¢(b) = — 3, . bi; log(ui;/p;) and feasi-
ble region S defined in the introduction. The components of the
gradient of ¢ are given as

(V‘P(b))ij =1-log (E) .
pj
It is clear that Vy is not Lipschitz continuous on S. Therefore we
need the weaker assumption (8) to show O(1/t) convergence.

The gradient descent algorithm (7) when applied to ¢, S, with d

being the KL-divergence and with v = 1 is

b(t+1) := argmeig{@(b(t);a) + D (a|lb(t)}. (12)
It is well known® that this update rule takes the following form:

but) = bl e ((Te0),,)

1 Wi
——by; (¢ o ) :
7" (5
where Z;(t) is chosen such that 377, b;;(¢) = Bi. This shows
Theorem 6.

We now prove Lemma 7. The proof mainly relies on the follow-
ing characterization of .

LEMMA 11. Forall a,b € S,

p(b) = Ly (b a) + D (p(b) [ p(a)) .

PROOF. We have
P(b) = Lo(bsa) = ¢(b) — p(a) — (Ve(a), b —a)
Wis Wi
=— bij log —2 + aijlog —~
; 72 pi(b) ; 7 pj(a)

- (1 —log ]%) (bij — aij)

=D (p(®)|lp(a)),

where in the third equality we used }°, s bi; =37, ;ai; =1. [0

PROOF OF LEMMA 7. The lemma follows from Lemma 11 and
the fact that D (p(b) || p(a)) < D (b|| a), which we can prove us-
ing the convexity of the function ¢(z,y) = = log(z/y):

DO 1) =1 3 (Falrs0).:(0) )

:an<%Zbij,%Zaij>
J 7 (3

< nz % ZQ(bz‘waz‘j) = D(b]|a).

This finishes the proof. []

®Theorem 12 shows a more general statement.



4.1 Extension to Spending Constraint Utilities

For Fisher markets with spending constraint utilities, let ¢ be the
negative objective function of the convex program (3):

==Y bijlog(ui;) + > pjlog(p;).
0,5,0 J

The components of its gradient is

(Vgp(b))Z ga= 1= 10g<?;J > .

We use the same gradient descent method (12), but with the con-
straint set

s={a

THEOREM 12. Each bidding vector b;(t + 1) can be computed
separately by using the following iterative PR and capping algo-
rithm.

: Y ai; < By, Vi, and 0 < aj; < By, vz‘,j,l}.

gl

Algorithm: Iterative PR and Capping
input: B; and BZ], u”, and bﬁ]- (t) for all j and I.
initialize: let A; be set of all pairs (j,1), and C; = 0.
repeat:

Z(j,z)eAi (Uij/Pj (t))béj (t).

2. Let

- Z(j,l)ec 1]’ and Qi =

(uiy /24 (£)) bi (t)
Bﬁj otherwise.

BZ‘ if (], l) S Ai,

3. LetCi = {(j,1) € Ai : bl;(t+1) > Bj;}.1f C; = 0, stop
and return b; (¢ + 1); otherwise continue.

PROOF. The minimization problem (12) can be solved sepa-
rately for each agent i,
bi(t+1) = arg min
> J 1 al J <By,
0<al; <Bl;, vl

{Za” Vap il

al4 .
+ Z aij log <l” .
0

To solve this problem, we introduce Lagrange multipliers A; and
uéj. The Lagrangian is

Li(a‘ia A’Lﬁ ,u”«)

= Z a'lij (V@(b(t)

ij’

Do+ JZZ al; log (bzl{t) )
Soal =B |+ ul (aij _ij)
- il

—Z%(

+Zaulog<bz i ) AiB; — Zuu

b(1))), ., + A+ 1l )

Taking derivatives with respect to a ; and setting them to be zero,
ie,let (VL; (al,)\l,ul))] =0, we ‘have

wmwmmﬁkﬁﬂ%“%<;%>+lo

The solution is
abs = 1 wibis (1)
1] . l . .
exp(2 + A+ lh‘j) pi(t)

Using the optimality conditions (KKT conditions),
M{ij (alj Bl ) :07 Vi,j,l,

we can find the optimal solution b; (¢ 4 1) using an iterative PR and
capping algorithm. [

S. CONVERGENCE PROPERTIES

The PR dynamics may never get to an exact equilibrium. There-
fore we consider approximate equilibria, based on a measure of
how close a given solution is to equilibrium. There are different
ways to measure the “distance” from equilibria. We show that all
of these can be related to p(b(t)) — ¢(b*), the difference in the ob-
jective function between the current point and the optimum. (The
additive difference is a reasonable measure since we normalized the
sum of all budgets to 1.) Thus, any convergence bound we show
with respect to the objective function can easily be translated to one
for the particular measure of approximation.

The PR dynamics is defined for any initial bid vector 4°, and
the convergence time is proportional to D (b* || 5(0)) (Theorem 3).
For the sake of concreteness, we state our bounds assuming that
b;;(0) = B'/m, that is each buyer initially divides his budget
equally between all the items. With this, we have the following
bound on D (b* || b(0)).

LEMMA 13. Ifb;;(0) =
log(mn).

PROOF. We have

D (b* || b(0) walo mel mb_*
=logm + Z bj; log by;

- Z b}, log B;
-~ -

=logm — ZB log B; +Zb” log b};

0]

< logm—ZBilogBi
i

< logm + logn.
|

‘We now have the following convergence results.

Pb(0) o0 < BTy
> _(p®) = e(")) < log(mn). (14)
PO(+1) < (b)), (s

In other words, if ¢ > w then p(b(t)) — o (b*) < e.

B;/m foralliand j, then D (b* || b(0)) <



5.1 Measures of Approximation

As mentioned before, we now show how to translate the con-
vergence results mentioned above to other ways of measuring the
distance from an equilibrium. Recall that we assumed without loss
of generality, that the input has been scaled so that there is ex-
actly one unit of each item and ), B; = 1. We may further as-
sume that >~ ui; = 1 for all 4. Let umin = ming j.u,; >0 ui; and
Bmin = mini B1

e The KL-divergence is a well known (asymmetric) measure
of dissimilarity between probability distributions, defined as
D(z||y) = >, xilog(x:/ys). Since we normalized the
total budget to be 1, the sum of the prices is also 1. In other
words, one can think of the price vectors as probability dis-
tributions and use KL-divergence to measure the distance
between them. Also it is well known that 1 [|lz — y||? <
D (z || y). We show that

D(p(t)[1p") < ¢ (b(t)) — ¢ (07) (16)

e Let 1) be the objective function of the Eisenberg-Gale con-
vex program for z;; = b;;/p;. We can measure 1)(b(t)) —
() = >, Bilog(u; /u(t):), where uy is the utility of
buyer ¢ at equilibrium. We show that

P(b(t) — (") < @(b(t)) — @(b7) . (17

e We can measure a relative notion of distance from the equi-

. . i (6)—p}
librium price vector: 7 := max; M . We show that

J

772§0< n )(s@(b(t))—so(b*)) . as

Umin

e We can measure the maximum sub-optimality of the alloca-
tions. Let wu;(t) be the utility of buyer ¢ given his current
allocation and 4! be the maximum utility buyer 4 could have
obtained if the prices were set to p(t). We show that there
exists a ¢ such that u; (t) > (1 — {)a;(t) for all 4, and

<o (L) (o) — (7)) . (19)

umianin

e We can also measure an aggregate notion of suboptimality.
To this end, let the vector § be such that u; (t) = (1—0;) s (¢)
for all ¢. Then we measure £ := >, §; B;. We show that

£2§O< n )(e@(b(t))—w(b*)) 0)

Umin

5.2 Comparison with Zhang’s results

We now rephrase the main result in [Zha09] for ease of com-
parison. They follow the same framework as outlined earlier, first
show convergence of a potential function and then relate that po-
tential function to other measures of approximation. Whereas we
show convergence of ¢(b(t)) — ¢(b*), Zhang does the same for
the quantity ¢ (b(t+1)) — ¥(b*) + D (p* || p(t)), where 1) (b) is
the value of the objective function of the Eisenberg-Gale convex
program with x;; = b;; /p;:

b0 =3 B 1og( —)
Zhang’s main result can be summarized by the following lemmas.
Let pr;,, = min; pj.

LEMMA 14 ([ZHAQ09]).
S (w(b(t+1) —v(0") + D" [1p(1)) ) < D (7 []5(0))
PROOF IN OUR FRAMEWORK. First by using Corollary 10, we
have
@(b(t+1)) < £, (b(t+1);6(t)) + D (b(t+1) [| b(t))
< £,(65b(1)) + D (5" || b)) — D (" [ b(t+1))..
Next using Lemma 11, i.e., o(b*) = £, (b*;b(t)) + D (p* || p(t)),
we get
@(b(t+1)) — (0) + D (p" || p(t))
< D" [b(t)) — D (0" [| b(t+1)).
Summing the above inequality over all ¢ and noticing D (b*||b(¢ +
1)) > Olead to
> ((0(t+1) — o67) + D (" [|p(1)) ) < D (0" [[b(0))

Further using Lemma 19 finishes the proof. [

*

Pj (t)fpj
x

P}

LEMMA 15 ([ZHAO09]). Let n := max; and as-

sume n < 1. Thenn® < 1620 1P7)

min

LEMMA 16 ([ZHAQ09]). Foralli, let u;(t) be buyer i’s utility
at time t, and let @;(t) be the maximum utility he can achieve given
the prices p(t). Then there exists a ¢ such that u;(t) > (1—¢)ai(¢)
for all i and

256
p;linBQ

min

¢<

(v ) = v+ DO 119) -

LEMMA 17 ([ZHA09]). Piin > UminBmin/m.

However, it is not known if ¢ (b(¢+1)) — (b*) + D (p* || p(t))
is monotonically decreasing. So you simply obtain that for all 7,
there exists at < 7 such that

p0(0) ~ () + D " 1p(e)) < 2O

instead of obtaining that for all ¢
D (0" [[6(0))

B(b(t)) = (07) + D (p™ |Ip(t)) < .

In fact, we can derive all of Zhang’s results in the stronger form by
bounding each of ¥ (b(t)) — ¥ (b*) and D (p(t) || p*) separately by
»(b(t)) — »(b*) (and the fact that ¢ is monotonically decreasing).

LEMMA 18. Forallt, D (p(t) || p*) < @(b(t)) — @(b*).
PROOF. By Lemma 11,
@(b(t)) = L, (b(t);b") + D (p(t) || p")
= @(b") + (Ve(b"), b(t) —b") + D (p(t) | p")
By optimality, (Vp(b*), b(t) — b*) > 0, so the lemma follows. [
LEMMA 19. Forallb € S, (b) — (b*) < (b) — p(b*).

PROOF. It suffices to show

¥(b) < o(b) — Z B;log B;

and

Y(*) = @(b*) — ZBi log B;.



For the inequality above, we use convexity of — log:
- (S
- _ZB log <Z iy ”) ZB log B;
< - ZB Z biy log “” —ZB log B;
- _Zb” log - Yij ZB log B;.

For the equality at b*, we use the optimality conditions:

ZB log <Z Ly ”) ZB log B;

= —ZBilog (max—) ZB log B;
=~ bjlog zf' ~ " Bilog B;.
i,j ij i

O

We also have the following bound on the total deviation of the sym-
metric KL-divergence between p* and p(t).

LEMMA 20.

S (PG lIpt) +D

t

»®11"))
((6(0)) = 2(b)).

PROOF. First using Corollary 10, we have
@(b(t+1)) < Lo(b(t+1);b(t)) + D (b(t+1) [ b(t))
< (0% b(1)) + D (6" || (1)) — D (5" || b(t+1)) .
Plugging in £, (b*; (1)) = @(b(t)) + (Vip(b(t)),b* — b(¢) gives
(Vo (b(t)), b(t) — b) < D (b" | b(t)) — D (b" || b(t+1))
+ @(b(t)) — @(b(t+1)).

The optimality of b* implies (V¢ (b*), b(t) —b*) > 0. Subtracting
(Ve(b%), b(t) — b*) from the left hand gives

(Vep(b(t)) — Veo(b7), b(t) — b7)
<D (6" [|b(t)) — D (b" || b(t+1)) + @(b(t)) —

Using Vp(b) = 1 — log(ui;/p;). we have
(Vep(b(t)) — Vep(b7), b(t) — b7)

B p; (1)
- Z lJ bzy) log P

_ij )
:D(p()llp) D (p" |

<D (0" [|5(0)) +

p(b(t+1)).

—-pj) log (
J
|

p(t)) .

Therefore,

D (p®)[Ip") + D (p" || p(#))
<D (" |[b(t)) = D (b" || b(t+1)) + @(b(t)) —

Summing over all ¢ gives the desired result. []

p(b(t+1)).

5.3 Improved bounds

The bounds mentioned in Section 5.1 (in particular, (18) and
(19)) are stronger than the corresponding ones in [Zha09]. These
are obtained by using Lemmas 15 and 16 with a better bound for
Diin» Which is as in the following lemma.

LEMMA 21. piin = Umin/n.

PROOF. Let b* be an equilibrium bid vector, and let 3; = max; u;/p}.
Suppose for contradiction that there exists an item j such that pjf. <
Umin /n. Then for all bidders 1,

ui; Umin

8 > -
J

>n
>

P;
By the buyer optimality condition, b;; > 0 implies wi;/p; = S;.

Combining this with the above yields the condition

Usj

b; >0 = p; <
‘We now obtain the contradiction

1= Z bj; < Z p;

0,7 ¢ bi*j>0 0,7 ¢ b;j>0
U 1
<> telyugan
i, : b;j>0 T,

Hence, we conclude that there can be no such item j, and therefore
pmm 2 Umin/n' D

Finally, we also give a bound on the aggregate notion of subopti-
mality of allocations (20) that is new.

LEMMA 22. Suppose p(b(t)) — ¢(b*) <
vector ¢ be such that

uZ i,/ (8n?). Let the

ul(t) = (1 - 51)1~h(t),

where wi(t) = 3_; uizbi;(t)/p;(t) is the utility of buyer i at time
t and u;(t) = B;max;(usj/p;(t)) = Bifi(t) is the maximum
utility that buyer i could obtain given the prices p(t). Then

(= Bis) =0 (1) (olt) — o0

PROOF. To ease notation, we drop the argument ¢. For all 4, j,
let i = log 8 = max; log(ui;/p;), €ij = i — log(uij/p;),
ande; =}, bijeij/Bi. Observe

u; = z bij l;:j = Z bij Bi exp(—eij)
> me — &i5)

= BifBi — fi Z bijeij
J

= Bifi — BiBie; = (1 — &)1,

and hence §; < g; for all 7. Therefore,
Z B;é; < ZBisi = Z bijei;
[3 7 1,7

and it suffices to bound E bijei;. In particular, we show that
> bijei; < O(n) +e. The proof then follows immediately



from (18). To do this, we start by rewriting the objective function e There is a natural asynchronous version of the PR dynam-
»(b) as ics: in each iteration, the bids of a single buyer and the
corresponding prices are updated, with some non-saturation
_ Z bij (log Wig _ i + ai) condition saying that every buyer updates his bids frequently
i pj enough. There are also randomized versions where a buyer
=2 by = D byas
¥ %)
= Zbijé‘ij — ZBLOzZ
i, i

wakes up with a Poisson clock and updates his bids and the
corresponding prices. We believe our techniques (perhaps
combined with some of the techniques from the book by
Bertsekas and Tsitsiklis [BT97]) could be extended to handle
these cases as well.
Let o = max; log(us;/pj). The optimality condition states that
o(b*) = =3, Bia}. Lete = o(b) — p(b*). Then 7. REFERENCES
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