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Abstract

In this paper we shed new light on convex programs
and distributed algorithms for Fisher markets with lin-
ear and spending constraint utilities.

• We give a new convex program for the linear util-
ities case of Fisher markets. This program easily
extends to the case of spending constraint utilities
as well, thus resolving an open question raised by
[Vaz10].

• We show that the gradient descent algorithm with
respect to a Bregman divergence converges with
rate O(1/t) under a condition that is weaker than
having Lipschitz continuous gradient (which is the
usual assumption in the optimization literature for
obtaining the same rate).

• We show that the Proportional Response dynam-
ics recently introduced by Zhang [Zha09] is equiva-
lent to a gradient descent algorithm for solving the
new convex program. This insight also gives us bet-
ter convergence rates, and helps us generalize it to
spending constraint utilities.

1 Introduction

Convex Programming based techniques have
played an important role in the algorithmic study
of market equilibria [DPSV08, Jai07, CPV05, Ye08]
and (more recently) of Nash bargaining [Vaz09].
In this paper, we introduce a new convex program
for Fisher markets with linear and spending con-
straint utilities. This is the first convex program
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known for spending constraint utilities, thus resolv-
ing an open problem of Vazirani [Vaz10]. We also
show that this convex program explains the Pro-
portional Response dynamics of Zhang [Zha09] as a
generalized gradient descent algorithm with Breg-
man divergences (instead of Euclidean distance).
Proportional Response is a simple distributed algo-
rithm to compute market equilibrium. Designing
such algorithms that converge quickly has been an
important open problem, especially in the context
where such algorithms are implemented by auto-
mated agents over a network such as the Internet.
Our insight gives an intuitive understanding of why
such dynamics work and also helps to improve pre-
vious results. Our work opens up many interesting
directions for future research as well.

1.1 Fisher’s Market Model with Linear

and Spending Constraint Utilities

In the Fisher market model with linear utilities,
there are n buyers and m perfectly divisible goods.
There is a unit1 supply of each good. Each buyer
i has a budget Bi, and for each item j, a number
uij , which represents the utility of that buyer for
one unit of item j. Given an allocation vector x ∈
R
n×m
+ , the utility of buyer i is

∑

j uijxij .

An allocation x ∈ R
n×m
+ and price vector p ∈ R

m
+

are an equilibrium if two conditions are satisfied.
The first, buyer optimality, is that given p, each
player maximizes his utility subject to his budget
constraint. In other words, for all i, the allocation
x optimizes the following program ( where p is a

1This is without loss of generality, by the choice of unit,
since the goods are divisible.
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constant):

maximize
∑

j uijxij
subject to

∑

j pjxij ≤ Bi.

xij ≥ 0, ∀j.

The second equilibrium condition, market clear-
ance, is that

∑

i xij = 1 for all j.

In the spending constraints model, the utility of
a buyer also depends on the prices, as follows. The
utility is still additive across goods, that is, the
total utility for a bundle of goods is the sum of
utilities for each good separately. For a given good,
the utility function is divided into segments; each
segment l has a constant rate of utility ulij , and a

budget Bl
ij . The utility of the buyer for xlij amount

of good j under segment l is ulijx
l
ij , but is subject to

the constraint that pjx
l
ij ≤ Bl

ij . Hence the utility
maximizing program for a given buyer is now as
follows.

maximize
∑

j,l u
l
ijx

l
ij

subject to
∑

j,l pjx
l
ij ≤ Bi.

0 ≤ xlij and pjx
l
ij ≤ Bl

ij ∀j, l.

1.2 A New Convex Program

A well-known convex program called the
Eisenberg-Gale [EG59] convex program cap-
tures equilibrium allocations of a linear Fisher
market (see Appendix A for a formal definition).
Here we introduce a new convex program that
also does the same. As we shall see this convex
program is closely related to the Proportional
Response (PR) dynamics. The convex program is
as follows.

maximize
∑

i,j bij log uij −
∑

j pj log pj
subject to ∀ j,∑i bij = pj ,

∀ i,∑j bij = Bi,

∀ i, j, 0 ≤ bij .

(1)

The variable pj corresponds to the price of good j.
The variable bij represents the amount of money
spent on good j by buyer i. Hence given a solution
to the above program, the allocation xij is given
by bij/pj . It is easy to see that for any feasible
solution to the program, the corresponding prices
and allocations are such that the market always

clears, and the buyers always exhaust their bud-
gets. The only other condition required for equi-
librium is that each buyer be allocated his optimal
bundle of goods. We show in the following lemma
that this indeed happens at equilibrium. The proof
of this is in Appendix B.

Theorem 1. Let b? and p? be an optimum solution
to Convex Program (1). Then p? and allocation
x?ij = b?ij/p

?
j is an equilibrium for the Fisher market

with linear utilities given by the uij’s and the Bi’s.

In fact, it is easy to generalize the above for mar-
kets with spending constraint utilities. This re-
solves an important open problem raised by Vazi-
rani [Vaz10].

maximize
∑

i,j,l b
l
ij log u

l
ij −

∑

j pj log pj
subject to ∀ j,∑i,l b

l
ij = pj ,

∀ i,∑j,l b
l
ij = Bi,

∀ i, j, l, 0 ≤ blij ≤ Bl
ij .

(2)

As before, the allocation is given by xlij = blij/pj ,
and the only condition that needs verifying is buyer
optimality.

Theorem 2. An optimum solution to Convex Pro-
gram (2) corresponds to an equilibrium for the
Fisher market with spending constraint utilities
given by the ulij’s, B

l
ij’s and the Bi’s.

1.3 Generalized Gradient Descent with

Bregman Divergence

Consider the constrained optimization problem

minimize f(x)
subject to x ∈ C

(3)

where C is a compact convex set, and f(x) is a dif-
ferentiable convex function with dom f ⊇ C (i.e., f
is finite on C). The conventional projected gradient
descent method (e.g., [Ber99]) for solving (3) is

x(t+1) = πC
(

x(t)− µt∇f(x(t))
)

(4)

where µt is an appropriate stepsize, and πC(·) de-
notes Euclidean projection on the set C. Let

`f (x; y) := f(y) + 〈∇f(y), x− y〉
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be the linear approximation of f using the gradient
at y. The method (4) is equivalent to

x(t+1) = argmin
x∈C

{

`f (x;x(t)) +
1

2µt
‖x− x(t)‖22

}

,

(5)
where the proximal term (1/2)‖x − x(t)‖22 is the
squared Euclidean distance between two points.
In the generalized gradient descent method the
squared Euclidean distance in (5) is replaced by
a generalized distance function d(x, x(t)), i.e.,

x(t+1) = argmin
x∈C

{`f (x;x(t)) + γt d(x, x(t))} , (6)

where the parameter γt > 0, and its reciprocal 1/γt
play the role of stepsize µt in the Euclidean case.
In particular, we let d(x, y) be the Bregman diver-
gence [Bre67] of a differentiable convex function
h(x) (assuming domh ⊇ C), defined as

dh(x, y) = h(x)− `h(x; y), ∀x ∈ C, y ∈ rintC,

where rintC denotes the relative interior of C
[Roc70, Section 6]. As an example, dh(x, y) =
(1/2)‖x − y‖22 if h(x) = (1/2)‖x‖22. We often drop
the subscript h whenever there is no confusion from
context. We say h is the kernel of d, and d is gen-
erated by h. We assume that both f and h are
differentiable and they satisfy

f(x) ≤ `f (x; y) + γdh(x, y), ∀x ∈ C, y ∈ rintC,
(7)

for some constant γ > 0.

Theorem 3. Suppose that the sequence x(t) is de-
fined by Equation (6), f and h are convex and dif-
ferentiable functions and that they satisfy Condi-
tion (7). Then for all t,

f(x(t))− f(x?) ≤ γd(x?, x(0))

t
.

In particular we show the following two lemmas
from which the above theorem follows immediately.

Lemma 4. The total deviation of f from the
optimum throughout the run of the algorithm is
bounded by a value that is independent of how long
the algorithm is run.

∑

t

(

f(x(t))− f(x?)
)

≤ γd(x?, x(0)).

Lemma 5. For all t, f(x(t+1)) ≤ f(x(t)).

1.4 Proportional Response Dynamics

The Proportional Response (PR) Dynamics is
a distributed algorithm for computing market
equilibrium and was introduced by Wu and
Zhang [WZ07] in the context of a bandwidth trad-
ing market model for peer-to-peer networks and by
Zhang [Zha09] in the current context of the Fisher
markets. The algorithm proceeds in discrete time
steps, and for each time t = 0, 1, 2, . . ., buyer i sub-
mits a bid bij(t) for each good j. Given the bids, a
price vector p(t) is computed by summing the bids
for each item: pj(t) =

∑

i bij(t). Each buyer i is
allocated an amount xij(t) = bij(t)/pj(t) of item
j. The buyers then update their bids for the next
time step so that their new bid for a good is propor-
tional to the utility obtained from this good in the
current round, that is bij(t) ∝ uijxij(t). In sum-
mary, the new bid vector is computed according to
the following recursion:

bij(t) = Bi
uijxij(t)

∑

j′ uij′xij′(t)
. (8)

One can immediately see the similarities between
this and Convex Program (1) in the way the prices
and allocations are defined. As before the mar-
ket clears automatically and the only condition we
need to worry about is buyer optimality. In fact
as detailed below, we show that the PR dynamics
is exactly the gradient descent algorithm given by
(6) on Convex Program (1).

First of all, we can eliminate the pj variables
from the program; in fact, pj can be thought of as a
function of the bij ’s, defined as pj(b) =

∑

i bij . We
stick to the notation pj without the argument when
there is no confusion2 from the context. Let the ob-
jective function3 of the convex program be denoted
by ϕ(b) = −∑i,j bij log uij +

∑

j pj(b) log(pj(b)),
and the feasible region by

S =

{

b ∈ R
n×m :

∑

j

bij = Bi ∀ i, bij ≥ 0 ∀ i, j
}

.

2Similarly, we use pj(t) to denote pj(b(t)) and p?j to de-
note pj(b

?).
3To maintain consistency with our notation in the pre-

vious subsection, we rephrase the convex program as min-
imizing a convex function instead of maximizing a concave
function.

3



Without loss of generality assume that
∑

iBi =
1. Also define the Bregman divergence d with
the kernel function being the unnormalized neg-
ative entropy, h(b) =

∑

i,j(bij log bij − bij) =
∑

i,j bij log bij −
∑

iBi for b ∈ S. A straightfor-
ward calculation shows that

d(a, b) =
∑

i,j

aij log
aij
bij

= D (a || b) ,

where D (· || ·) is the KL-divergence between two
probability distributions.

Theorem 6. The proportional response dynam-
ics (8) is equivalent to the gradient descent algo-
rithm (6) with d(a, b) = D (a || b) as above, f = ϕ,
C = S and γ = 1.

In order to use our results about convergence of
the above algorithm (Theorem 3), we need to show
that Condition (7) is satisfied, which we do in the
following lemma.

Lemma 7. For all a, b ∈ S,

ϕ(b) ≤ `ϕ(b; a) +D (b || a) .

Amore detailed analysis of the convergence is given
in Section 4.
For markets with spending constraints, the al-

gorithm (6) leads to an iterative PR and capping
algorithm, which has the same convergence prop-
erties as the PR dynamics (see Section 3.1).
Moreover, Zhang [Zha09] also considers Con-

stant Elasticity of Substitution (CES) utilities,
Ui =

∑

j(uijxij)
ρi with 0 < ρi ≤ 1. He gets a bet-

ter bound on the convergence rate for these utili-
ties: PR converges to an ε-approximate equilibrium
in

O

(

L+ log(1/ε)

1− (maxi ρi)2

)

rounds, where L is the bit-complexity of the input.
Our techniques extend to CES utilities as well, and
we strengthen Zhang’s results as before, by obtain-
ing the stronger form of convergence. The details
of this will be presented in the full version.

1.5 Related Work and Motivation

The algorithmic study of equilibrium concepts in
general, and of market equilibria in particular, are

motivated by the question of whether markets can
feasibly operate at equilibrium. After almost a
decade since this line of research started [DPS02],
the computational complexity of equilibrium con-
cepts is fairly well understood. The hardness re-
sults [CT09, CDDT09, CD06, DGP06, CSVY06]
point towards the unlikeliness that markets in
general operate at equilibria, with recent results
[CT09, CDDT09, VY09] showing that even for the
simple class of separable piecewise linear functions,
it is PPAD-hard to compute an equilibrium. The
algorithmic results [DPSV08, Jai07, DV04, CPV05,
CMV05, JV07, DK08, Ye08] provide hope for cer-
tain special classes of markets. A good survey of
algorithms for market equilibria can be found in
[Vaz07] and [CV07], with the summary being that
we can find equilibria for markets with weak gross
substitutes property, for certain resource allocation
markets [JV07], and when there are a bounded
number of goods [DK08].

An interesting special class of markets that is
amenable to efficient algorithms is that of spend-
ing constraint utilities. The spending constraint
utilities for the Fisher model was introduced by
Vazirani [Vaz10] and extended to the more gen-
eral Arrow-Debreu model by Devanur and Vazi-
rani [DV04]. Vazirani [Vaz10] extended the primal-
dual algorithm for linear utilities of Devanur et. al.
[DPSV08] to the spending constraint utilities. The
primal-dual interpretation of the algorithm of De-
vanur et. al. was based on the Eisenberg-Gale
convex program, but no such program is known
for spending constraints. Based on this, Vazirani
[Vaz10] conjectured that there must exist a con-
vex program that captures the spending constraint
model as well. To quote,

In our experience, non-trivial polynomial
time algorithms for problems are rare and
happen for a good reason - a deep mathe-
matical structure intimately connected to
the problem.

We finally resolve this conjecture positively in this
paper.

The generalized gradient descent method, also
known as mirror-descent has been well studied
in the optimization community, see, e.g., [NY83,
BT03]. In the optimization literature however,
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the kernel function h is usually assumed to be
strongly convex. Then with a diminishing step-
size 1/γt = O(1/

√
t), the generalized gradient

method (6) converges with rate O(1/
√
t), even

if f is non-differentiable (e.g, [BT03, Nem05]). If
f is further differentiable and ∇f is Lipschitz-
continuous, then (6) converges with rate O(1/t)
using a constant γ that is no smaller than the
Lipschitz constant. (e.g., [Ber99, Nes04]). In
this case, more sophisticated variations of (6)
can achieve a convergence rate O(1/t2); see, e.g.,
[Nes83, Nes04, Nes05, Tse08]. In this paper, we
show that the method (6) can have convergence
rate O(1/t) with Condition (7). Condition (7) is
implied by the assumptions that ∇f is Lipschitz
continuous and h is strongly convex (e.g., [Nes04])
and is hence a weaker assumption. Without these
stronger assumptions, Condition (7) often requires
a close connection between the functions f and h,
which is the case for our analysis of the PR dynam-
ics in Section 3.

Algorithmic results in a centralized model of
computation do not directly address the question of
market dynamics: how might agents interacting in
a market arrive at an equilibrium? Here, the quest
is for simple and distributed algorithms that are
guaranteed to converge fast. Such distributed al-
gorithms are especially applicable when the agents
involved are automated, and one has to prescribe a
particular protocol for them to follow. This is true
in many networking applications, and also in mar-
kets such as search advertising where often the bids
are updated automatically. There is also a huge
amount of work in the networking community on
designing such distributed algorithms that achieve
proportional fairness (e.g., [Kel97, KMT98]). It
is known that proportional fairness is equivalent
to market equilibrium in many settings (including
linear utilities), via an Eisenberg-Gale type con-
vex program [KV]. Our results could potentially
be useful for these applications as well, and is a
direction for future work.

Almost all dynamics considered in the literature
are variants of the tatonnement process first defined
by Leon Walras [Wal74]. The most general version
of tatonnement just says that prices are increased
when demand exceeds supply and are decreased
when supply exceeds demand. Many versions of

this [ABH59, Uza60, CMV05, FGK+08, GK06]
have been analyzed over the years, but none of
these until recently gave simple, fast and dis-
tributed algorithms. Some of the early work in eco-
nomics [ABH59, Uza60] ignored the convergence
rate entirely. [CMV05] showed polynomial time
convergence of a version of tatonnement for mar-
kets with weak gross substitutes, but had to trans-
form the market a priori which then translates to
passing around global information in every round.
The auction algorithm of Garg and Kapoor [GK06]
requires that it be started from a particular state.
The algorithm of [FGK+08] suffers from disadvan-
tages such as having to take the average of all
the prices and the average of all the allocations
to get an equilibrium. The exception is the al-
gorithm given by [CF08] which is distributed and
asynchronous and converges fast for markets with
weak gross substitutes property. The convergence
time however depends on certain market parame-
ters which tend to infinity for linear Fisher markets.
One reason for the difficulty in designing taton-
nement style processes for linear Fisher markets is
that the demand of a buyer is not always uniquely
determined. Thus at equilibrium one needs to spec-
ify the allocation in addition to the prices.

In contrast, the PR dynamics has many desirable
properties that are also unique.

• The PR dynamics are simple, distributed and
require no global communication.4 In every
step, a buyer only has to know the prices of
the goods he is interested in, and a good only
has to know the bids placed on it.

• PR dynamics is also stateless: the bids at any
time step depend only on the bids of the previ-
ous step, and there is no special starting point.

• Unlike all other dynamics, which depend on
choosing the right step size, PR dynamics does
not need a step size to choose and adapt.

• Finally, PR dynamics elegantly takes care of
the problem of non-uniqueness of demand,
since the bids uniquely determine the prices
and the allocations.

4Except for the fact that they need to be synchronized, in
the sense that the dynamics happen in rounds and in every
round, every bidder updates his bids.
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PR was first proposed as a protocol for trading
bandwidth on a peer-to-peer network by Wu and
Zhang [WZ07] and has been shown to be an effec-
tive solution for BitTorrent [LLSB08]. PR seems to
converge really fast to equilibrium in practice, and
yet the reason for this remained a mystery. In a re-
markable paper, Zhang [Zha09] shows convergence
of PR dynamics in Fisher markets. The proof uses
a potential function that gives little insight into
why this happens, a trait that it shares with other
distributed algorithms such as Cole and Fleischer’s
[CF08]. In this paper we demystify the PR dynam-
ics by showing the equivalence to the generalized
gradient descent algorithm for the new convex pro-
gram. PR dynamics fit so well with this perspec-
tive that we can confidently say this is the “right”
way of thinking about them.5 Moreover, we get
stronger convergence properties than obtained by
Zhang [Zha09]. For instance, the convergence ob-
tained by Zhang [Zha09] is of the form, “if τ is large
enough, then there exists a t < τ such that b(t) is
close to optimal.” We get the stronger form of con-
vergence, of the form, “if t is large enough, then b(t)
is close to optimal.” We give a detailed comparison
to Zhang’s results in Section 4.2. We are able to
extend the results to spending constraint utilities
as well. Clearly the extension was only possible be-
cause of our insights into the connection between
PR dynamics and the convex program.

The design and analysis of distributed algo-
rithms converging to equilibria in the context of
games is also much studied, most commonly con-
vergence of best response dynamics [AGM+08,
CS07, Ros73, AAE+08]. Recently, similar ques-
tions have also been considered for network bar-
gaining games [ABC+09].

Organization: In Section 2 we prove Theorem 3.
Theorem 6 is proved in Section 3. In Section 4, we
define various measures of distance to equilibrium
and show convergence of PR dynamics with respect
to these measures. We also compare these in detail
with Zhang’s results in Section 4.2. We conclude
with directions for future research in Section 5.

5It is natural to draw an analogy with the competitive
analysis of online algorithms, many of which originally used
a potential function. Later work [BN09] unified many of
these as primal-dual algorithms, a framework which led to
many new results.

2 Gradient Descent

In this section, we prove convergence properties of
the generalized gradient method (6) based on the
assumption (7) as stated in Theorem 3. We start
by noting some key properties of Bregman diver-
gences:

• d(x, y) ≥ 0 for all x, y ∈ domh. If h is strictly
convex, then d(x, y) = 0 if and only if x = y.

• In general d(x, y) 6= d(y, x), and it does not
satisfy the triangle inequality.

• The following three-point identity follows di-
rectly from definition:

d(x, z) = d(x, y)+d(y, z)+〈∇h(y)−∇h(z), x−y〉.
(9)

If h is not strictly convex, then the solution to the
minimization problem in (6) may not be unique.
However, a solution always exists because we as-
sume C is compact.

Recall that in order to prove Theorem 3, it is
sufficient to prove Lemmas 5 and 4. We first prove
Lemma 5.

Proof of Lemma 5. We have

f(x(t+1)) ≤ `f (x(t+1);x(t)) + γd(x(t+1), x(t))

≤ `f (x(t);x(t)) + γd(x(t), x(t))

= f(x(t)).

The first inequality follows from (7). The second
inequality is by definition of x(t+1). The last equal-
ity is also by definition, since d(x, x) = 0.

The key step in the proof of Lemma 4 is the fol-
lowing lemma. Let x? := argminx∈C{f(x)} be an
optimum solution to (3).

Lemma 8. For all t,

f(x(t+1))− f(x?) ≤ γd(x?, x(t))− γd(x?, x(t+1)).

Before we prove Lemma 8, we show how Lemma 4
follows from it.

Proof of Lemma 4. The lemma follows by simply
summing over all t the conclusion of Lemma 8 and
using the fact that d(x, y) is always greater than
0.
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In order to prove Lemma 8, we need a result on
optimization with Bregman divergence. Consider
the following optimization problem:

minimize g(x) + d(x, y)
subject to x ∈ C

(10)

where g(x) is a convex function and C is a compact
convex set. The following lemma can be found in,
e.g., [CT93]. We give the proof in the appendix for
completeness.

Lemma 9. If x+ is the optimal solution to the
optimization problem (10), then

g(x)+ d(x, y) ≥ g(x+)+ d(x+, y)+ d(x, x+). (11)

We apply Lemma 9 with g(x) = (1/γ)`f (x;x(t)) to
obtain the following corollary.

Corollary 10. For all z ∈ C,

`f (x(t+1);x(t)) + γd(x(t+1), x(t))

≤ `f (z;x(t)) + γd(z, x(t))− γd(z, x(t+1)).

Lemma 8 follows as a consequence of this corollary.

Proof of Lemma 8. We have

f(x(t+1)) ≤ `f (x(t+1);x(t)) + γd(x(t+1), x(t))

≤ `f (x
?;x(t)) + γd(x?, x(t))

− γd(x?, x(t+1))

≤ f(x?) + γd(x?, x(t))− γd(x?, x(t+1)).

The first and third inequalities follow from (7),
and the second inequality follows from Corol-
lary 10.

3 PR as Gradient Descent

In this section, we show the equivalence of the PR
dynamics and the gradient descent algorithm on
the new convex program, that is, we prove Theo-
rem 6 and Lemma 7.
Recall the function ϕ(b) = −∑i,j bij log(uij/pj)

and feasible region S defined in the introduction.
The components of the gradient of ϕ are given as

(∇ϕ(b))ij = 1− log

(

uij
pj

)

.

It is clear that∇ϕ is not Lipschitz continuous on S.
Therefore we need the weaker assumption (7) to
show O(1/t) convergence.

The gradient descent algorithm (6) when applied
to ϕ, S, with d being the KL-divergence and with
γ = 1 is

b(t+1) := argmin
a∈S

{

`ϕ(b(t); a)+D (a || b(t))
}

. (12)

It is well known (and proved in Appendix B) that
this update rule takes the following form:

bij(t) =
1

Z ′
i(t)

bij(t) exp
(

(

∇ϕ(b(t))
)

ij

)

=
1

Zi(t)
bij(t)

(

uij
pj(t)

)

,

where Zi(t) is chosen such that
∑n

j=1 bij(t) = Bi.
This shows Theorem 6.

We now prove Lemma 7. The proof mainly relies
on the following characterization of ϕ (whose proof
is in Appendix B).

Lemma 11. For all a, b ∈ S,

ϕ(b) = `ϕ(b; a) +D (p(b) || p(a)) .

Proof of Lemma 7. The lemma follows from
Lemma 11 and the fact that D (p(b) || p(a)) ≤
D (b || a), which we can prove using the convexity
of the function q(x, y) = x log(x/y):

D(p(b) || p(a)) = n
∑

j

(

1

n
q(pj(b), pj(a))

)

= n
∑

j

q

(

1

n

∑

i

bij ,
1

n

∑

i

aij

)

≤ n
∑

j

1

n

∑

i

q(bij , aij) = D(b || a).

This finishes the proof.

3.1 Extension to Spending Constraint

Utilities

For Fisher markets with spending constraint utili-
ties, let ϕ be the negative objective function of the
convex program (2):

ϕ(b) = −
∑

i,j,l

blij log
(

ulij
)

+
∑

j

pj log(pj).
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The components of its gradient is

(

∇ϕ(b)
)

i,j,l
= 1− log

(

ulij
pj

)

.

We use the same gradient descent method (12), but
with the constraint set

S =

{

a :
∑

j,l

alij ≤ Bi, ∀ i, and 0 ≤ alij ≤ Bl
ij , ∀ i, j, l

}

.

Theorem 12. Each bidding vector bi(t+1) can be
computed separately by using the following iterative
PR and capping algorithm.

Algorithm: Iterative PR and Capping
input: Bi and B

l
ij , u

l
ij , and b

l
ij(t) for all j and l.

initialize: let Ai be set of all pairs (j, l), and Ci = ∅.
repeat:

1. Let Ai = Ai \Ci, B̄i =
∑

(j,l)∈Ai
Bl

ij , and Qi =
∑

(j,l)∈Ai

(

ulij/pj(t)
)

blij(t).

2. Let

blij(t+1) =











(

ulij/pj(t)
)

blij(t)

Qi
B̄i if (j, l) ∈ Ai,

Bl
ij otherwise.

3. Let Ci =
{

(j, l) ∈ Ai : blij(t + 1) > Bl
ij

}

. If
Ci = ∅, stop and return bi(t + 1); otherwise
continue.

This theorem is proved in the appendix.

4 Convergence Properties

The PR dynamics may never get to an exact equi-
librium. Therefore we consider approximate equi-
libria, based on a measure of how close a given so-
lution is to equilibrium. There are different ways to
measure the “distance” from equilibria. We show
that all of these can be related to ϕ(b(t)) − ϕ(b?),
the difference in the objective function between the
current point and the optimum. (The additive dif-
ference is a reasonable measure since we normalized
the sum of all budgets to 1.) Thus, any conver-
gence bound we show with respect to the objective

function can easily be translated to one for the par-
ticular measure of approximation.

The PR dynamics is defined for any initial bid
vector b0, and the convergence time is propor-
tional to D (b? || b(0)) (Theorem 3). For the sake of
concreteness, we state our bounds assuming that
bij(0) = Bi/m, that is each buyer initially divides
his budget equally between all the items. With
this, we have the following bound on D (b? || b(0)),
which is proved in Appendix B.

Lemma 13. If bij(0) = Bi/m for all i and j, then
D (b? || b(0)) ≤ log(mn).

We now have the following convergence results.

ϕ(b(t))− ϕ(b?) ≤ log(mn)

t
. (13)

∑

t

(

ϕ(b(t))− ϕ(b?)
)

≤ log(mn). (14)

ϕ(b(t+1)) ≤ ϕ(b(t)). (15)

In other words, if t ≥ log(mn)
ε

then ϕ(b(t))−ϕ(b?) ≤
ε.

4.1 Measures of Approximation

As mentioned before, we now show how to translate
the convergence results mentioned above to other
ways of measuring the distance from an equilib-
rium. Recall that we assumed without loss of gen-
erality, that the input has been scaled so that there
is exactly one unit of each item and

∑

iBi = 1. We
may further assume that

∑

j uij = 1 for all i. Let
umin = mini,j:uij>0 uij and Bmin = miniBi.

• The KL-divergence is a well known (asym-
metric) measure of dissimilarity between prob-
ability distributions, defined as D (x || y) :=
∑

i xi log(xi/yi). Since we normalized the to-
tal budget to be 1, the sum of the prices is
also 1. In other words, one can think of the
price vectors as probability distributions and
use KL-divergence to measure the distance
between them. Also it is well known that
1
2 ‖x− y‖21 ≤ D (x || y). We show that

D (p(t) || p?) ≤ ϕ(b(t))− ϕ(b?) . (16)

• Let ψ be the objective function of the
Eisenberg-Gale convex program for xij =
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bij/pj . We can measure ψ(b(t)) − ψ(b?) =
∑

iBi log(u
?
i /u(t)i), where u

?
i is the utility of

buyer i at equilibrium. We show that

ψ(b(t))− ψ(b?) ≤ ϕ(b(t))− ϕ(b?) . (17)

• We can measure a relative notion of dis-
tance from the equilibrium price vector: η :=

maxj

∣

∣

∣

pj(t)−p?j
p?j

∣

∣

∣ . We show that

η2 ≤ O

(

n

umin

)

(ϕ(b(t))− ϕ(b?)) . (18)

• We can measure the maximum sub-optimality
of the allocations. Let ui(t) be the utility of
buyer i given his current allocation and ũti
be the maximum utility buyer i could have
obtained if the prices were set to p(t). We
show that there exists a ζ such that ui(t) ≥
(1− ζ)ũi(t) for all i, and

ζ2 ≤ O

(

n

uminB2
min

)

(ϕ(b(t))− ϕ(b?)) . (19)

• We can also measure an aggregate notion of
suboptimality. To this end, let the vector δ be
such that ui(t) = (1 − δi)ũi(t) for all i. Then
we measure ξ :=

∑

i δiBi. We show that

ξ2 ≤ O

(

n

umin

)

(ϕ(b(t))− ϕ(b?)). (20)

4.2 Comparison with Zhang’s results

We now rephrase the main result in [Zha09] for
ease of comparison. They follow the same frame-
work as outlined earlier, first show convergence of
a potential function and then relate that poten-
tial function to other measures of approximation.
Whereas we show convergence of ϕ(b(t)) − ϕ(b?),
Zhang does the same for the quantity ψ(b(t+1))−
ψ(b?) +D (p? || p(t)). His main result can be sum-
marized by the following lemmas. (Recall that
ψ(b) is the value of the objective function of the
Eisenberg-Gale convex program for xij = bij/pj .)
Let p?min = minj p

?
j .

Lemma 14 ([Zha09]).

∑

t

(

ψ(b(t+1))−ψ(b?)+D (p? || p(t))
)

≤ D (b? || b(0)) .

Lemma 15 ([Zha09]). Let η := maxj

∣

∣

∣

pj(t)−p?j
p?j

∣

∣

∣

and assume η ≤ 1. Then η2 ≤ 16D(p(t) || p?)
p?
min

.

Lemma 16 ([Zha09]). For all i, let ui(t) be buyer
i’s utility at time t, and let ũi(t) be the maximum
utility he can achieve given the prices p(t). Then
there exists a ζ such that ui(t) ≥ (1 − ζ)ũi(t) for
all i and

ζ2 ≤ 256

p?minB
2
min

(

ψ(b(t))− ψ(b?) +D (p(t) || p?)
)

.

Lemma 17 ([Zha09]). p?min ≥ uminBmin/m.

However, it is not known if ψ(b(t+1))− ψ(b?) +
D (p? || p(t)) is monotonically decreasing. So you
simply obtain that for all τ , there exists a t ≤ τ
such that

ψ(b(t))− ψ(b?) +D (p? || p(t)) ≤ D (b? || b(0))
τ

.

(21)
instead of obtaining that for all t

ψ(b(t))− ψ(b?) +D (p? || p(t)) ≤ D (b? || b(0))
t

.

In fact, we can derive all of Zhang’s results in the
stronger form by bounding each of ψ(b(t))− ψ(b?)
and D (p(t) || p?) separately by ϕ(b(t))−ϕ(b?) (and
the fact that ϕ is monotonically decreasing).

Lemma 18. For all t, D (p(t) || p?) ≤ ϕ(b(t)) −
ϕ(b?).

Lemma 19. For all b ∈ S, ψ(b)− ψ(b?) ≤ ϕ(b)−
ϕ(b?).

We also have the following bound on the total devi-
ation of the symmetric KL-divergence between p?

and p(t).

Lemma 20.

∑

t

(

D (p? || p(t)) +D (p(t) || p?)
)

≤ D (b? || b(0)) +
(

ϕ(b(0))− ϕ(b?)
)

.

Proofs are in Appendix B.

9



4.3 Improved bounds

The bounds mentioned in Section 4.1 (in partic-
ular, (18) and (19) ) are stronger than the corre-
sponding ones in [Zha09]. These are obtained by
using Lemmas 15 and 16 with a better bound for
p?min, which is as in the following lemma. (The
proof is in Appendix B).

Lemma 21. p?min ≥ umin/n.

Finally, we also give a bound on the aggregate no-
tion of suboptimality of allocations (20) that is
new.

Lemma 22. Suppose ϕ(b(t))−ϕ(b?) ≤ u2min/(8n
2).

Let the vector δ be such that

ui(t) = (1− δi)ũi(t),

where ui(t) =
∑

j uijbij(t)/pj(t) is the utility of
buyer i at time t and ũi(t) = Bimaxj(uij/pj(t)) =
Biβi(t) is the maximum utility that buyer i could
obtain given the prices p(t). Then

(

∑

i

Biδi

)2

= O

(

n

umin

)

(ϕ(b(t))− ϕ(b?)) .

Proof. To ease notation, we drop the argument t.
For all i, j, let αi = log βi = maxj log(uij/pj), εij =
αi − log(uij/pj), and εi =

∑

j bijεij/Bi. Observe

ui =
∑

j

bij
uij
pj

=
∑

j

bijβi exp(−εij)

≥
∑

j

bijβi(1− εij)

= Biβi − βi
∑

j

bijεij

= Biβi −Biβiεi = (1− εi)ũ
′
i,

and hence δi ≤ εi for all i. Therefore,

∑

i

Biδi ≤
∑

i

Biεi =
∑

i,j

bijεij ,

and it suffices to bound
∑

i,j bijεij . In particular,
we show that

∑

i,j bijεij ≤ O(η) + ε. The proof
then follows immediately from (18). To do this, we

start by rewriting the objective function ϕ(b) as

ϕ(b) = −
∑

i,j

bij

(

log
uij
pj

− αi + αi

)

=
∑

i,j

bijεij −
∑

i,j

bijαi

=
∑

i,j

bijεij −
∑

i

Biαi.

Let α?
i = maxj log(uij/p

?
j ). The optimality con-

dition states that ϕ(b?) = −∑iBiα
?
i . Let ε =

ϕ(b)− ϕ(b?). Then

∑

i,j

bijεij =
∑

i

Bi(αi − α?
i ) + ε .

Since
∑

iBi = 1, we have
∑

iBi(αi − α?
i ) ≤

maxi(αi − α?
i ). Furthermore, for all i,

αi − α?
i = max

j
log

uij
pj

−max
j

log
uij
p?j

= max
j

(

log
uij
p?j

+ log
p?j
pj

)

−max
j

log
uij
p?j

≤ max
j

log
uij
p?j

+max
j

log
p?j
pj

−max
j

log
uij
p?j

= max
j

log
p?j
pj

≤ O(η).

5 Conclusion and Future Work

Our work opens up many interesting directions for
future research.

• Eisenberg-Gale-type convex programs also
capture equilibria for other classes of markets,
especially for many resource allocation mar-
kets [JV07] and markets with Leontief util-
ities. It is not clear if there are analogs of
our convex program for these markets. Such
programs might lead to interesting algorithms
and dynamics for these other markets as well.
Also such programs have been used to design
distributed algorithms to achieve proportional
fairness. It is conceivable that our new convex
program and/or the PR dynamics could get
better results for the same.
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• Can we get a better convergence bound for
PR dynamics? While it seems difficult to get
a convergence rate better than O(1/ε) w.r.t ϕ,
it is possible one could get faster rates w.r.t
other notions of approximate equilibria that
we discuss.

• Can we design other similar dynamics that
converge faster? We note that under the
stronger condition of Lipschitz continuity
of gradients, there are gradient algorithms
[Nes83, Nes05, Tse08] that converge in time
O(1/

√
ε) (as opposed to the one we use which

converges in time O(1/ε)). However, these al-
gorithms do not seem to work with the weaker
assumption that we have. It would be very
interesting (from a more general convex pro-
gramming point of view) to get an O(1/

√
ε)

time algorithm with our weaker assumption.

• Is there any relation to the primal-dual algo-
rithms of [DPSV08] and [Vaz10] with our con-
vex program?

• There is a natural asynchronous version of the
PR dynamics: in each iteration, the bids of
a single buyer and the corresponding prices
are updated, with some non-saturation condi-
tion saying that every buyer updates his bids
frequently enough. There are also random-
ized versions where a buyer wakes up with a
Poisson clock and updates his bids and the
corresponding prices. We believe our tech-
niques (perhaps combined with some of the
techniques from the book by Bertsekas and
Tsitsiklis [BT97]) could be extended to han-
dle these cases as well.
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A The Eisenberg-Gale Convex

Program

The Eisenberg-Gale Convex Program is as follows

minimize −∑iBi log(ui)
subject to ∀ i, ui =

∑

j uijxij .

∀ j,∑i xij ≤ 1.
∀ i, j, xij ≥ 0.

We denote by ψ(b) the objective function of the
Eisenberg-Gale Convex Program as a function of
the bids, by setting xij = bij/pj . Note that this
satisfieses

∑

i xij ≤ 1 for all j. Also ui is then
∑

j
uijbij
pj

. Hence

ψ(b) = −
∑

i

Bi log

(

∑

j

uijbij
pj

)

.

B Missing Proofs

Proof of Theorem 1. By definition
∑

i xij =
∑

i b
?
ij/pj = 1, so the market clears. A straightfor-

ward calculation shows that

∂ϕ(b)

∂bij
= 1− log

uij
pj
.

From this, we can derive using the KKT conditions
for b? that for each buyer i, there is a number λi
such that log(uij/pj) − 1 ≤ λi for all j, and if
b?ij > 0, then log(uij/pj) − 1 = λi. Since there
must be at least one good j such that b?ij > 0,
this implies that λi = maxj(log(uij/pj) − 1) and
exp(λi+1) = βi, the maximum bang-for-buck that
buyer i can get. The KKT conditions can now be
reinterpreted as saying that each buyer only bids
on goods that maximize his bang for buck, which
implies the buyer optimality condition for market
equilibria. Hence, both conditions are satisfied,
and (x, p) is a market equilibrium.

Proof of Theorem 2. This is almost identical to the
Proof of Theorem 1.

Proof of Lemma 9. The optimality condition for
x+ states that there is a subgradient ν ∈ ∂ψ(x+)
such that

〈ν +∇d(x+, y), x− x+〉 ≥ 0, ∀x ∈ C,
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where ∇d(x+, y) = ∇h(x+) − ∇h(y). Now using
the triangle identity, we have for all x ∈ C,

g(x) + d(x, y) = g(x) + 〈∇h(x+)−∇h(y), x− x+〉
+ d(x, x+) + d(x+, y)

≥ g(x+) + 〈ν +∇h(x+)−∇h(y), x− x+〉
+ d(x, x+) + d(x+, y)

≥ g(x+) + d(x+, y) + d(x, x+),

where in the first inequality above we used convex-
ity of g, and in the second inequality we used the
optimality condition of x+.

Proof of Lemma 11. We have

ϕ(b)− `ϕ(b; a) = ϕ(b)− ϕ(a)− 〈∇ϕ(a), b− a〉
= −

∑

i,j

bij log
uij
pj(b)

+
∑

i,j

aij log
uij
pj(a)

−
∑

i,j

(

1− log
uij
pj(a)

)

(bij − aij)

=
∑

i,j

bij log
pj(b)

pj(a)
= D (p(b) || p(a)) ,

where in the third equality we used
∑

i,j bij =
∑

i,j aij = 1.

Proof of Theorem 6. The following standard proof
can be found in, for example [Nes05]. For each i =
1, . . . , n,

bi(t+ 1) = argmin
ai:

∑
j aij=Bi

{

∑

j

aij
(

∇ϕ(b(t))
)

ij

+
∑

j

aij log
aij
bij(t)

}

.

Note that we do not need the nonnegative con-
straints because log can serve as the natural barrier
for nonnegativity. Introducing λi as the Lagrange
multiplier for the constraint

∑

j aij = Bi, we have
the Lagrangian

L(ai, λ) =
∑

j

aij
(

∇ϕ(b(t))
)

ij

∑

j

aij log
aij
bij(t)

+ λi

(

∑

j

aij − 1

)

.

Taking the derivative with respect to aij and set-
ting it to zero yields

(

∇ϕ(b(t))
)

ij
+ log

aij
bij(t)

+ 1 + λi = 0,

then solving for aij gives

aij = bij(t) exp
(

−
(

∇ϕ(b(t))
)

ij
− 1− λi

)

= bij(t) exp

(

−
(

1− log
uij
pj

)

− 1− λi

)

=
1

exp(2 + λi)
bij(t)

uij
pj

Then bij(t) is the aij when λi is adjusted such that
the sum over j equals Bi.

Proof of Theorem 12. The minimization prob-
lem (12) can be solved separately for each agent i,

bi(t+ 1) = argmin
∑

j,l a
l
ij≤Bi,

0≤alij≤Bl
ij , ∀j,l

{

∑

j,l

alij
(

∇ϕ(b(t))
)

i,j,l

+
∑

j,l

alij log

(

alij

blij(t)

)}

.

To solve this problem, we introduce Lagrange mul-
tipliers λi and µ

l
ij . The Lagrangian is

Li(ai, λi, µi)

=
∑

j,l

alij
(

∇ϕ(b(t))
)

i,j,l
+
∑

j,l

alij log

(

alij

blij(t)

)

+ λi





∑

j,l

alij −Bi



+
∑

j,l

µlij

(

alij −Bl
ij

)

=
∑

j,l

alij

(

(

∇ϕ(b(t))
)

i,j,l
+ λi + µlij

)

+
∑

j,l

alij log

(

alij

blij(t)

)

− λiBi −
∑

j,l

µlijB
l
ij .

Taking derivatives with respect to alij and setting

them to be zero, i.e., let
(

∇Li(ai, λi, µi)
)

jl
= 0, we

have

(

∇ϕ(b(t))
)

i,j,l
+ λi + µlij + log

(

alij

blij(t)

)

+ 1 = 0.

14



The solution is

alij =
1

exp
(

2 + λi + µlij
)

ulijb
l
ij(t)

pj(t)
.

Using the optimality conditions (KKT conditions),

µlij

(

alij −Bl
ij

)

= 0, ∀ i, j, l,

we can find the optimal solution bi(t+ 1) using an
iterative PR and capping algorithm.

Proof of Lemma 14 in our framework. First by
using Corollary 10, we have

ϕ(b(t+1)) ≤ `ϕ(b(t+1); b(t)) +D (b(t+1) || b(t))
≤ `ϕ(b

?; b(t)) +D (b? || b(t))−D (b? || b(t+1)) .

Next using Lemma 11, i.e., ϕ(b?) = `ϕ(b
?; b(t)) +

D (p? || p(t)), we get

ϕ(b(t+1))− ϕ(b?) +D (p? || p(t))
≤ D (b? || b(t))−D (b? || b(t+1)) .

Summing the above inequality over all t and notic-
ing D(b?||b(t+ 1)) ≥ 0 lead to

∑

t

(

ϕ(b(t+1))−ϕ(b?)+D (p? || p(t))
)

≤ D (b? || b(0)) .

Further using Lemma 19 finishes the proof.

Proof of Lemma 13. We have

D (b? || b(0)) =
∑

i,j

b?ij log
b?ij
b(0)ij

=
∑

i,j

b?ij log
mb?ij
Bi

= logm+
∑

i,j

b?ij log b
?
ij −

∑

i,j

b?ij logBi

= logm−
∑

i

Bi logBi +
∑

i,j

b∗ij log b
∗
ij

≤ logm−
∑

i

Bi logBi

≤ logm+ log n.

Proof of Lemma 18. By Lemma 11,

ϕ(b(t)) = `ϕ(b(t); b
?) +D (p(t) || p?)

= ϕ(b?) + 〈∇ϕ(b?), b(t)− b?〉+D (p(t) || p?)

By optimality, 〈∇ϕ(b?), b(t)− b?〉 ≥ 0, so the
lemma follows.

Proof of Lemma 19. It suffices to show

ψ(b) ≤ ϕ(b)−
∑

i

Bi logBi

and
ψ(b?) = ϕ(b?)−

∑

i

Bi logBi.

For the inequality above, we use convexity of − log:

ψ(b) = −
∑

i

Bi log





∑

j

uij
bij
pj





= −
∑

i

Bi log





∑

j

uij
pj

bij
Bi



−
∑

i

Bi logBi

≤ −
∑

i

Bi

∑

j

bij
Bi

log
uij
pj

−
∑

i

Bi logBi

= −
∑

i,j

bij log
uij
pj

−
∑

i

Bi logBi.

For the equality at b?, we use the optimality con-
ditions:

ψ(b?) = −
∑

i

Bi log





∑

j

uij
p?j

b?ij
Bi



−
∑

i

Bi logBi

= −
∑

i

Bi log

(

max
j

uij
p?j

)

−
∑

i

Bi logBi

= −
∑

i,j

b?ij log
uij
p?ij

−
∑

i

Bi logBi.

Proof of Lemma 20. First using Corollary 10, we
have

ϕ(b(t+1)) ≤ `ϕ(b(t+1); b(t)) +D (b(t+1) || b(t))
≤ `ϕ(b

?; b(t)) +D (b? || b(t))−D (b? || b(t+1)) .

Plugging in `ϕ(b
?; b(t)) = ϕ(b(t)) + 〈∇ϕ(b(t)), b? −

b(t)〉 gives

〈∇ϕ(b(t)), b(t)− b?〉 ≤ D (b? || b(t))−D (b? || b(t+1))

+ ϕ(b(t))− ϕ(b(t+1)).

The optimality of b? implies 〈∇ϕ(b?), b(t)−b?〉 ≥ 0.
Subtracting 〈∇ϕ(b?), b(t) − b?〉 from the left hand
gives

〈∇ϕ(b(t))−∇ϕ(b?), b(t)− b?〉
≤D (b? || b(t))−D (b? || b(t+1)) + ϕ(b(t))− ϕ(b(t+1)).
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Using ∇ϕ(b) = 1− log(uij/pj), we have

〈∇ϕ(b(t))−∇ϕ(b?), b(t)− b?〉

=
∑

i,j

(bij(t)− b?ij) log
pj(t)

p?j

=
∑

j

(pj(t)− p?j ) log
pj(t)

p?j

=D (p(t) || p?) +D (p? || p(t)) .

Therefore,

D (p(t) || p?) +D (p? || p(t))
≤D (b? || b(t))−D (b? || b(t+1)) + ϕ(b(t))− ϕ(b(t+1)).

Summing over all t gives the desired result.

Proof of Lemma 21. Let b? be an equilibrium bid
vector, and let β?i = maxj uij/p

?
j . Suppose for con-

tradiction that there exists an item j̃ such that
p?
j̃
< umin/n. Then for all bidders i,

β?i ≥
uij̃
p?
j̃

≥ umin

p?
j̃

> n .

By the buyer optimality condition, b?ij > 0 implies
uij/p

?
j = β?i . Combining this with the above yields

the condition

b?ij > 0 =⇒ p?j <
uij
n

.

We now obtain the contradiction

1 =
∑

i,j : b?ij>0

b?ij ≤
∑

i,j : b?ij>0

p?j

<
∑

i,j : b?ij>0

uij
n

≤ 1

n

∑

i,j

ui,j = 1.

Hence, we conclude that there can be no such item
j̃, and therefore p?min ≥ umin/n.
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