
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 6, JUNE 2014 891

Captcha as Graphical Passwords—A New Security
Primitive Based on Hard AI Problems

Bin B. Zhu, Jeff Yan, Guanbo Bao, Maowei Yang, and Ning Xu

Abstract— Many security primitives are based on hard math-
ematical problems. Using hard AI problems for security is
emerging as an exciting new paradigm, but has been under-
explored. In this paper, we present a new security primitive
based on hard AI problems, namely, a novel family of graph-
ical password systems built on top of Captcha technology,
which we call Captcha as graphical passwords (CaRP). CaRP
is both a Captcha and a graphical password scheme. CaRP
addresses a number of security problems altogether, such as
online guessing attacks, relay attacks, and, if combined with
dual-view technologies, shoulder-surfing attacks. Notably, a CaRP
password can be found only probabilistically by automatic online
guessing attacks even if the password is in the search set.
CaRP also offers a novel approach to address the well-known
image hotspot problem in popular graphical password systems,
such as PassPoints, that often leads to weak password choices.
CaRP is not a panacea, but it offers reasonable security and
usability and appears to fit well with some practical applications
for improving online security.

Index Terms— Graphical password, password, hotspots, CaRP,
Captcha, dictionary attack, password guessing attack, security
primitive.

I. INTRODUCTION

AFUNDAMENTAL task in security is to create crypto-
graphic primitives based on hard mathematical problems

that are computationally intractable. For example, the problem
of integer factorization is fundamental to the RSA public-key
cryptosystem and the Rabin encryption. The discrete logarithm
problem is fundamental to the ElGamal encryption, the Diffie-
Hellman key exchange, the Digital Signature Algorithm, the
elliptic curve cryptography and so on.

Using hard AI (Artificial Intelligence) problems for
security, initially proposed in [17], is an exciting new par-
adigm. Under this paradigm, the most notable primitive
invented is Captcha, which distinguishes human users from
computers by presenting a challenge, i.e., a puzzle, beyond

Manuscript received April 15, 2013; revised July 22, 2013 and
October 14, 2013; accepted February 21, 2014. Date of publication March
19, 2014; date of current version April 21, 2014. This work was done when
G. Bao and M. Yang worked as interns at Microsoft Research Asia. The
associate editor coordinating the review of this manuscript and approving it
for publication was Prof. Carlo Blundo.

B. B. Zhu and N. Xu are with Microsoft Research Asia, Beijing 100080,
China (e-mail: binzhu@microsoft.com; ningx@microsoft.com).

J. Yan is with Newcastle University, Newcastle NE 1 7RU, U.K. (e-mail:
jeff.yan@ncl.ac.uk).

G. Bao is with the Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China (e-mail: guanbo.bao@gmail.com).

M. Yang is with Sichuan University, Chengdu 610207, China (e-mail:
djyangmaowei@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2014.2312547

the capability of computers but easy for humans. Captcha is
now a standard Internet security technique to protect online
email and other services from being abused by bots.

However, this new paradigm has achieved just a limited
success as compared with the cryptographic primitives based
on hard math problems and their wide applications. Is it
possible to create any new security primitive based on hard
AI problems? This is a challenging and interesting open prob-
lem. In this paper, we introduce a new security primitive based
on hard AI problems, namely, a novel family of graphical pass-
word systems integrating Captcha technology, which we call
CaRP (Captcha as gRaphical Passwords). CaRP is click-based
graphical passwords, where a sequence of clicks on an image is
used to derive a password. Unlike other click-based graphical
passwords, images used in CaRP are Captcha challenges, and
a new CaRP image is generated for every login attempt.

The notion of CaRP is simple but generic. CaRP can have
multiple instantiations. In theory, any Captcha scheme relying
on multiple-object classification can be converted to a CaRP
scheme. We present exemplary CaRPs built on both text
Captcha and image-recognition Captcha. One of them is a text
CaRP wherein a password is a sequence of characters like
a text password, but entered by clicking the right character
sequence on CaRP images.

CaRP offers protection against online dictionary attacks on
passwords, which have been for long time a major security
threat for various online services. This threat is widespread
and considered as a top cyber security risk [13]. Defense
against online dictionary attacks is a more subtle problem than
it might appear. Intuitive countermeasures such as throttling
logon attempts do not work well for two reasons:

1) It causes denial-of-service attacks (which were exploited
to lock highest bidders out in final minutes of eBay
auctions [12]) and incurs expensive helpdesk costs for
account reactivation.

2) It is vulnerable to global password attacks [14] whereby
adversaries intend to break into any account rather than
a specific one, and thus try each password candidate on
multiple accounts and ensure that the number of trials on
each account is below the threshold to avoid triggering
account lockout.

CaRP also offers protection against relay attacks, an increas-
ing threat to bypass Captchas protection, wherein Captcha
challenges are relayed to humans to solve. Koobface [33]
was a relay attack to bypass Facebook’s Captcha in creating
new accounts. CaRP is robust to shoulder-surfing attacks if
combined with dual-view technologies.

1556-6013 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

892 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 6, JUNE 2014

CaRP requires solving a Captcha challenge in every login.
This impact on usability can be mitigated by adapting the
CaRP image’s difficulty level based on the login history of
the account and the machine used to log in.

Typical application scenarios for CaRP include:

1) CaRP can be applied on touch-screen devices whereon
typing passwords is cumbersome, esp. for secure Internet
applications such as e-banks. Many e-banking systems
have applied Captchas in user logins [39]. For example,
ICBC (www.icbc.com.cn), the largest bank in the world,
requires solving a Captcha challenge for every online
login attempt.

2) CaRP increases spammer’s operating cost and thus helps
reduce spam emails. For an email service provider
that deploys CaRP, a spam bot cannot log into an
email account even if it knows the password. Instead,
human involvement is compulsory to access an account.
If CaRP is combined with a policy to throttle the number
of emails sent to new recipients per login session, a spam
bot can send only a limited number of emails before
asking human assistance for login, leading to reduced
outbound spam traffic.

The remaining paper is organized as follows: Background
and related work are presented in Section II. We outline CaRP
in Section III, and present a variety of CaRP schemes in
Sections IV and V. Security analysis is provided in Section VI.
A usability study on two CaRP schemes that we have imple-
mented is reported in Section VII. Balance of security and
usability is discussed in Section VIII. We conclude the paper
with Section IX.

II. BACKGROUND AND RELATED WORK

A. Graphical Passwords

A large number of graphical password schemes have been
proposed. They can be classified into three categories accord-
ing to the task involved in memorizing and entering passwords:
recognition, recall, and cued recall. Each type will be briefly
described here. More can be found in a recent review of
graphical passwords [1].

A recognition-based scheme requires identifying among
decoys the visual objects belonging to a password portfolio.
A typical scheme is Passfaces [2] wherein a user selects a
portfolio of faces from a database in creating a password.
During authentication, a panel of candidate faces is presented
for the user to select the face belonging to her portfolio. This
process is repeated several rounds, each round with a different
panel. A successful login requires correct selection in each
round. The set of images in a panel remains the same between
logins, but their locations are permuted. Story [20] is similar
to Passfaces but the images in the portfolio are ordered, and
a user must identify her portfolio images in the correct order.
Déjà Vu [21] is also similar but uses a large set of computer-
generated “random-art” images. Cognitive Authentication [22]
requires a user to generate a path through a panel of images as
follows: starting from the top-left image, moving down if the
image is in her portfolio, or right otherwise. The user identifies
among decoys the row or column label that the path ends.

This process is repeated, each time with a different panel.
A successful login requires that the cumulative probability
that correct answers were not entered by chance exceeds a
threshold within a given number of rounds.

A recall-based scheme requires a user to regenerate
the same interaction result without cueing. Draw-A-Secret
(DAS) [3] was the first recall-based scheme proposed. A user
draws her password on a 2D grid. The system encodes the
sequence of grid cells along the drawing path as a user-
drawn password. Pass-Go [4] improves DAS’s usability by
encoding the grid intersection points rather than the grid cells.
BDAS [23] adds background images to DAS to encourage
users to create more complex passwords.

In a cued-recall scheme, an external cue is provided to help
memorize and enter a password. PassPoints [5] is a widely
studied click-based cued-recall scheme wherein a user clicks
a sequence of points anywhere on an image in creating a
password, and re-clicks the same sequence during authenti-
cation. Cued Click Points (CCP) [18] is similar to PassPoints
but uses one image per click, with the next image selected
by a deterministic function. Persuasive Cued Click Points
(PCCP) [19] extends CCP by requiring a user to select a
point inside a randomly positioned viewport when creating a
password, resulting in more randomly distributed click-points
in a password.

Among the three types, recognition is considered the easiest
for human memory whereas pure recall is the hardest [1].
Recognition is typically the weakest in resisting guessing
attacks. Many proposed recognition-based schemes practically
have a password space in the range of 213 to 216 passwords [1].
A study [6] reported that a significant portion of passwords of
DAS and Pass-Go [4] were successfully broken with guessing
attacks using dictionaries of 231 to 241 entries, as compared to
the full password space of 258 entries. Images contain hotspots
[7], [8], i.e., spots likely selected in creating passwords.
Hotspots were exploited to mount successful guessing attacks
on PassPoints [8]–[11]: a significant portion of passwords were
broken with dictionaries of 226 to 235 entries, as compared to
the full space of 243 passwords.

B. Captcha

Captcha relies on the gap of capabilities between humans
and bots in solving certain hard AI problems. There are two
types of visual Captcha: text Captcha and Image-Recognition
Captcha (IRC). The former relies on character recogni-
tion while the latter relies on recognition of non-character
objects. Security of text Captchas has been extensively studied
[26]–[30]. The following principle has been established: text
Captcha should rely on the difficulty of character segmenta-
tion, which is computationally expensive and combinatorially
hard [30].

Machine recognition of non-character objects is far less
capable than character recognition. IRCs rely on the difficulty
of object identification or classification, possibly combined
with the difficulty of object segmentation. Asirra [31] relies on
binary object classification: a user is asked to identify all the
cats from a panel of 12 images of cats and dogs. Security of

ZHU et al.: NEW SECURITY PRIMITIVE BASED ON HARD AI PROBLEMS 893

IRCs has also been studied. Asirra was found to be susceptible
to machine-learning attacks [24]. IRCs based on binary object
classification or identification of one concrete type of objects
are likely insecure [25]. Multi-label classification problems are
considered much harder than binary classification problems.

Captcha can be circumvented through relay attacks whereby
Captcha challenges are relayed to human solvers, whose
answers are fed back to the targeted application.

C. Captcha in Authentication

It was introduced in [14] to use both Captcha and password
in a user authentication protocol, which we call Captcha-based
Password Authentication (CbPA) protocol, to counter online
dictionary attacks. The CbPA-protocol in [14] requires solving
a Captcha challenge after inputting a valid pair of user ID and
password unless a valid browser cookie is received. For an
invalid pair of user ID and password, the user has a certain
probability to solve a Captcha challenge before being denied
access. An improved CbPA-protocol is proposed in [15] by
storing cookies only on user-trusted machines and applying
a Captcha challenge only when the number of failed login
attempts for the account has exceeded a threshold. It is further
improved in [16] by applying a small threshold for failed
login attempts from unknown machines but a large threshold
for failed attempts from known machines with a previous
successful login within a given time frame.

Captcha was also used with recognition-based graphical
passwords to address spyware [40], [41], wherein a text
Captcha is displayed below each image; a user locates her own
pass-images from decoy images, and enters the characters at
specific locations of the Captcha below each pass-image as
her password during authentication. These specific locations
were selected for each pass-image during password creation
as a part of the password.

In the above schemes, Captcha is an independent entity, used
together with a text or graphical password. On the contrary,
a CaRP is both a Captcha and a graphical password scheme,
which are intrinsically combined into a single entity.

D. Other Related Work

Captcha is used to protect sensitive user inputs on an
untrusted client [35]. This scheme protects the communication
channel between user and Web server from keyloggers and
spyware, while CaRP is a family of graphical password
schemes for user authentication. The paper [35] did not
introduce the notion of CaRP or explore its rich properties
and the design space of a variety of CaRP instantiations.

III. CAPTCHA AS GRAPHICAL PASSWORDS

A. A New Way to Thwart Guessing Attacks

In a guessing attack, a password guess tested in an unsuc-
cessful trial is determined wrong and excluded from subse-
quent trials. The number of undetermined password guesses
decreases with more trials, leading to a better chance of finding
the password. Mathematically, let S be the set of password
guesses before any trial, ρ be the password to find, T denote

a trial whereas Tn denote the n-th trial, and p(T = ρ) be
the probability that ρ is tested in trial T . Let En be the set
of password guesses tested in trials up to (including) Tn . The
password guess to be tested in n-th trial Tn is from set S\En−1,
i.e., the relative complement of En−1 in S. If ρ ∈ S, then we
have

p (T = ρ|T1 �= ρ, . . . , Tn−1 �= ρ) > p(T = ρ), (1)

and

En → S
p(T = ρ|T1 �= ρ, . . . , Tn−1 �= ρ)→ 1

}
with n→ |S|, (2)

where |S| denotes the cardinality of S. From Eq. (2), the
password is always found within |S| trials if it is in S;
otherwise S is exhausted after |S| trials. Each trial determines
if the tested password guess is the actual password or not, and
the trial’s result is deterministic.

To counter guessing attacks, traditional approaches in
designing graphical passwords aim at increasing the effective
password space to make passwords harder to guess and thus
require more trials. No matter how secure a graphical password
scheme is, the password can always be found by a brute force
attack. In this paper, we distinguish two types of guessing
attacks: automatic guessing attacks apply an automatic trial
and error process but S can be manually constructed whereas
human guessing attacks apply a manual trial and error process.

CaRP adopts a completely different approach to counter
automatic guessing attacks. It aims at realizing the following
equation:

p(T = ρ|T1, . . . , Tn−1) = p(T = ρ), ∀n (3)

in an automatic guessing attack. Eq. (3) means that each trial
is computationally independent of other trials. Specifically,
no matter how many trials executed previously, the chance
of finding the password in the current trial always remains
the same. That is, a password in S can be found only
probabilistically by automatic guessing (including brute-force)
attacks, in contrast to existing graphical password schemes
where a password can be found within a fixed number of trials.

How to achieve the goal? If a new image is used for each
trial, and images of different trials are independent of each
other, then Eq. (3) holds. Independent images among different
login attempts must contain invariant information so that the
authentication server can verify claimants. By examining the
ecosystem of user authentication, we noticed that human users
enter passwords during authentication, whereas the trial and
error process in guessing attacks is executed automatically.
The capability gap between humans and machines can be
exploited to generate images so that they are computationally-
independent yet retain invariants that only humans can iden-
tify, and thus use as passwords. The invariants among images
must be intractable to machines to thwart automatic guessing
attacks. This requirement is the same as that of an ideal
Captcha [25], leading to creation of CaRP, a new family of
graphical passwords robust to online guessing attacks.

894 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 6, JUNE 2014

B. CaRP: An Overview

In CaRP, a new image is generated for every login attempt,
even for the same user. CaRP uses an alphabet of visual
objects (e.g., alphanumerical characters, similar animals) to
generate a CaRP image, which is also a Captcha challenge.
A major difference between CaRP images and Captcha images
is that all the visual objects in the alphabet should appear
in a CaRP image to allow a user to input any password but
not necessarily in a Captcha image. Many Captcha schemes
can be converted to CaRP schemes, as described in the next
subsection.

CaRP schemes are clicked-based graphical passwords.
According to the memory tasks in memorizing and enter-
ing a password, CaRP schemes can be classified into two
categories: recognition and a new category, recognition-recall,
which requires recognizing an image and using the recog-
nized objects as cues to enter a password. Recognition-recall
combines the tasks of both recognition and cued-recall, and
retains both the recognition-based advantage of being easy
for human memory and the cued-recall advantage of a large
password space. Exemplary CaRP schemes of each type will
be presented later.

C. Converting Captcha to CaRP

In principle, any visual Captcha scheme relying on recogniz-
ing two or more predefined types of objects can be converted
to a CaRP. All text Captcha schemes and most IRCs meet this
requirement. Those IRCs that rely on recognizing a single
predefined type of objects can also be converted to CaRPs
in general by adding more types of objects. In practice,
conversion of a specific Captcha scheme to a CaRP scheme
typically requires a case by case study, in order to ensure
both security and usability. We will present in Sections IV
and V several CaRPs built on top of text and image-recognition
Captcha schemes.

Some IRCs rely on identifying objects whose types are not
predefined. A typical example is Cortcha [25] which relies
on context-based object recognition wherein the object to be
recognized can be of any type. These IRCs cannot be converted
into CaRP since a set of pre-defined object types is essential
for constructing a password.

D. User Authentication With CaRP Schemes

Like other graphical passwords, we assume that CaRP
schemes are used with additional protection such as secure
channels between clients and the authentication server through
Transport Layer Security (TLS). A typical way to apply CaRP
schemes in user authentication is as follows. The authentica-
tion server AS stores a salt s and a hash value H (ρ, s) for
each user ID, where ρ is the password of the account and
not stored. A CaRP password is a sequence of visual object
IDs or clickable-points of visual objects that the user selects.
Upon receiving a login request, AS generates a CaRP image,
records the locations of the objects in the image, and sends
the image to the user to click her password. The coordinates
of the clicked points are recorded and sent to AS along

Fig. 1. Flowchart of basic CaRP authentication.

with the user ID. AS maps the received coordinates onto the
CaRP image, and recovers a sequence of visual object IDs or
clickable points of visual objects, ρ′, that the user clicked on
the image. Then AS retrieves salt s of the account, calculates
the hash value of ρ′ with the salt, and compares the result
with the hash value stored for the account. Authentication
succeeds only if the two hash values match. This process is
called the basic CaRP authentication and shown in Fig. 1.

Advanced authentication with CaRP, for example,
challenge-response, will be presented in Section V-B. We
assume in the following that CaRP is used with the basic
CaRP authentication unless explicitly stated otherwise.

To recover a password successfully, each user-clicked point
must belong to a single object or a clickable-point of an
object. Objects in a CaRP image may overlap slightly with
neighboring objects to resist segmentation. Users should not
click inside an overlapping region to avoid ambiguity in
identifying the clicked object. This is not a usability concern in
practice since overlapping areas generally take a tiny portion
of an object.

IV. RECOGNITION-BASED CaRP

For this type of CaRP, a password is a sequence of visual
objects in the alphabet. Per view of traditional recognition-
based graphical passwords, recognition-based CaRP seems
to have access to an infinite number of different visual
objects. We present two recognition-based CaRP schemes and
a variation next.

A. ClickText

ClickText is a recognition-based CaRP scheme built on top
of text Captcha. Its alphabet comprises characters without any
visually-confusing characters. For example, Letter “O” and
digit “0” may cause confusion in CaRP images, and thus one
character should be excluded from the alphabet. A ClickText
password is a sequence of characters in the alphabet, e.g.,
ρ =“AB#9CD87”, which is similar to a text password. A
ClickText image is generated by the underlying Captcha
engine as if a Captcha image were generated except that all
the alphabet characters should appear in the image. During
generation, each character’s location is tracked to produce
ground truth for the location of the character in the generated
image. The authentication server relies on the ground truth to
identify the characters corresponding to user-clicked points.
In ClickText images, characters can be arranged randomly

ZHU et al.: NEW SECURITY PRIMITIVE BASED ON HARD AI PROBLEMS 895

Fig. 2. A ClickText image with 33 characters.

Fig. 3. Captcha Zoo with horses circled red.

Fig. 4. A ClickAnimal image (left) and 6 × 6 grid (right) determined by
red turkey’s bounding rectangle.

on 2D space. This is different from text Captcha challenges
in which characters are typically ordered from left to right
in order for users to type them sequentially. Fig. 2 shows a
ClickText image with an alphabet of 33 characters. In entering
a password, the user clicks on this image the characters in her
password, in the same order, for example “A”, “B”, “#”, “9”,
“C”, “D”, “8”, and then “7” for password ρ = “AB#9CD87”.

B. ClickAnimal

Captcha Zoo [32] is a Captcha scheme which uses
3D models of horse and dog to generate 2D animals with
different textures, colors, lightings and poses, and arranges
them on a cluttered background. A user clicks all the horses
in a challenge image to pass the test. Fig. 3 shows a sample
challenge wherein all the horses are circled red.

ClickAnimal is a recognition-based CaRP scheme built on
top of Captcha Zoo [32], with an alphabet of similar animals
such as dog, horse, pig, etc. Its password is a sequence of
animal names such as ρ = “Turkey, Cat, Horse, Dog,….”
For each animal, one or more 3D models are built. The
Captcha generation process is applied to generate ClickAnimal
images: 3D models are used to generate 2D animals by
applying different views, textures, colors, lightning effects,
and optionally distortions. The resulting 2D animals are then
arranged on a cluttered background such as grassland. Some
animals may be occluded by other animals in the image, but
their core parts are not occluded in order for humans to identify
each of them. Fig. 4 shows a ClickAnimal image with an
alphabet of 10 animals. Note that different views applied in
mapping 3D models to 2D animals, together with occlusion in

the following step, produce many different shapes for the same
animal’s instantiations in the generated images. Combined
with the additional anti-recognition mechanisms applied in the
mapping step, these make it hard for computers to recognize
animals in the generated image, yet humans can easily identify
different instantiations of animals.

C. AnimalGrid

The number of similar animals is much less than the number
of available characters. ClickAnimal has a smaller alphabet,
and thus a smaller password space, than ClickText. CaRP
should have a sufficiently-large effective password space to
resist human guessing attacks. AnimalGrid’s password space
can be increased by combining it with a grid-based graphical
password, with the grid depending on the size of the selected
animal.

DAS [3] is a candidate but requires drawing on the grid.
To be consistent with ClickAnimal, we change from drawing
to clicking: Click-A-Secret (CAS) wherein a user clicks the
grid cells in her password. AnimalGrid is a combination of
ClickAnimal and CAS. The number of grid-cells in a grid
should be much larger than the alphabet size. Unlike DAS,
grids in our CAS are object-dependent, as we will see next.
It has the advantage that a correct animal should be clicked
in order for the clicked grid-cell(s) on the follow-up grid to
be correct. If a wrong animal is clicked, the follow-up grid
is wrong. A click on the correctly labeled grid-cell of the
wrong grid would likely produce a wrong grid-cell at the
authentication server side when the correct grid is used.

To enter a password, a ClickAnimal image is displayed first.
After an animal is selected, an image of n × n grid appears,
with the grid-cell size equaling the bounding rectangle of the
selected animal. Each grid-cell is labeled to help users identify.
Fig. 4 shows a 6 × 6 grid when the red turkey in the left image
of Fig. 4 was selected. A user can select zero to multiple
grid-cells matching her password. Therefore a password is a
sequence of animals interleaving with grid-cells, e.g., ρ =
“Dog, Grid〈2〉, Grid〈1〉; Cat, Horse, Grid〈3〉”, where Grid〈1〉
means the grid-cell indexed as 1, and grid-cells after an animal
means that the grid is determined by the bounding rectangle
of the animal. A password must begin with an animal.

When a ClickAnimal image appears, the user clicks the
animal on the image that matches the first animal in her
password. The coordinates of the clicked point are recorded.
The bounding rectangle of the clicked animal is then found
interactively as follows: a bounding rectangle is calculated and
displayed, e.g., the white rectangle shown in Fig. 4. The user
checks the displayed rectangle and corrects inaccurate edges
by dragging if needed. This process is repeated until the user is
satisfied with the accuracy of the bounding rectangle. In most
cases, the calculated bounding rectangle is accurate enough
without needing manual correction.

Once the bounding rectangle of the selected animal is
identified, an image of n×n grid with the identified bounding
rectangle as its grid-cell size is generated and displayed. If the
grid image is too large or too small for a user to view, the
grid image is scaled to a fitting size. The user then clicks
a sequence of zero to multiple grid-cells that match the grid-

896 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 6, JUNE 2014

cells following the first animals in her password, and then gets
back to the ClickAnimal image. For the example password ρ
given previously, she clicks a point inside grid-cell〈2〉, and
then a point inside grid-cell〈1〉 to select the two grid-cells.
The coordinates of user-clicked points on the grid image (the
original one before scaling if the grid image is scaled) are
recorded. The above process is repeated until the user has
finished entering her password. The resulting sequence
of coordinates of user-clicked points, e.g., “AP〈150,50〉,
GP〈30,66〉, GP〈89,160〉, AP〈135,97〉,…” where “AP〈x,y〉”
denotes the point with coordinates 〈x,y〉 on a ClickAnimal
image, and “GP〈x,y〉” denotes the point with coordinates 〈x,y〉
on a grid image, is sent to the authentication server.

Using the ground truth, the server recovers the first animal
from the received sequence, regenerates the grid image from
the animal’s bounding rectangle, and recovers the clicked
grid-cells. This process is repeated to recover the password
the user clicked. Its hash is then calculated and compared with
the stored hash.

V. RECOGNITION-RECALL CaRP

In recognition-recall CaRP, a password is a sequence of
some invariant points of objects. An invariant point of an
object (e.g. letter “A”) is a point that has a fixed relative
position in different incarnations (e.g., fonts) of the object,
and thus can be uniquely identified by humans no matter
how the object appears in CaRP images. To enter a password,
a user must identify the objects in a CaRP image, and then
use the identified objects as cues to locate and click the
invariant points matching her password. Each password point
has a tolerance range that a click within the tolerance range
is acceptable as the password point. Most people have a click
variation of 3 pixels or less [18]. TextPoint, a recognition-
recall CaRP scheme with an alphabet of characters,
is presented next, followed by a variation for challenge-
response authentication.

A. TextPoints

Characters contain invariant points. Fig. 5 shows some
invariant points of letter “A”, which offers a strong cue to
memorize and locate its invariant points. A point is said
to be an internal point of an object if its distance to the
closest boundary of the object exceeds a threshold. A set of
internal invariant points of characters is selected to form a
set of clickable points for TextPoints. The internality ensures
that a clickable point is unlikely occluded by a neighboring
character and that its tolerance region unlikely overlaps with
any tolerance region of a neighboring character’s clickable
points on the image generated by the underlying Captcha
engine. In determining clickable points, the distance between
any pair of clickable points in a character must exceed a
threshold so that they are perceptually distinguishable and
their tolerance regions do not overlap on CaRP images.
In addition, variation should also be taken into consideration.
For example, if the center of a stroke segment in one character
is selected, we should avoid selecting the center of a similar
stroke segment in another character. Instead, we should select

Fig. 5. Some invariant points (red crosses) of “A”.

a different point from the stroke segment, e.g., a point at
one-third length of the stroke segment to an end. This variation
in selecting clickable points ensures that a clickable point is
context-dependent: a similarly structured point may or may not
be a clickable point, depending on the character that the point
lies in. Character recognition is required in locating clickable
points on a TextPoints image although the clickable points
are known for each character. This is a task beyond a bot’s
capability.

A password is a sequence of clickable points. A character
can typically contribute multiple clickable points. Therefore
TextPoints has a much larger password space than ClickText.

Image Generation. TextPoints images look identical to
ClickText images and are generated in the same way except
that the locations of all the clickable points are checked to
ensure that none of them is occluded or its tolerance region
overlaps another clickable point’s. We simply generate another
image if the check fails. As such failures occur rarely due
to the fact that clickable points are all internal points, the
restriction due to the check has a negligible impact on the
security of generated images.

Authentication. When creating a password, all clickable
points are marked on corresponding characters in a CaRP
image for a user to select. During authentication, the user first
identifies her chosen characters, and clicks the password points
on the right characters. The authentication server maps each
user-clicked point on the image to find the closest clickable
point. If their distance exceeds a tolerable range, login fails.
Otherwise a sequence of clickable points is recovered, and its
hash value is computed to compare with the stored value.

It is worth comparing potential password points between
TextPoints and traditional click-based graphical passwords
such as PassPoints [5]. In PassPoints, salient points should
be avoided since they are readily picked up by adversaries
to mount dictionary attacks, but avoiding salient points would
increase the burden to remember a password. This conflict
does not exist in TextPoints. Clickable points in TextPoints
are salient points of their characters and thus help remember
a password, but cannot be exploited by bots since they are both
dynamic (as compared to static points in traditional graphical
password schemes) and contextual:
• Dynamic: locations of clickable points and their contexts

(i.e., characters) vary from one image to another. The
clickable points in one image are computationally inde-
pendent of the clickable points in another image, as we
will see in Section VI-B.

• Contextual: Whether a similarly structured point is a
clickable point or not depends on its context. It is only
if within the right context, i.e., at the right location of a
right character.

ZHU et al.: NEW SECURITY PRIMITIVE BASED ON HARD AI PROBLEMS 897

These two features require recognizing the correct contexts,
i.e., characters, first. By the very nature of Captcha, recogniz-
ing characters in a Captcha image is a task beyond computer’s
capability. Therefore, these salient points of characters cannot
be exploited to mount dictionary attacks on TextPoints.

B. TextPoints4CR

For the CaRP schemes presented up to now, the coordinates
of user-clicked points are sent directly to the authentication
server during authentication. For more complex protocols, say
a challenge-response authentication protocol, a response is sent
to the authentication server instead. TextPoints can be modified
to fit challenge-response authentication. This variation is called
TextPoints for Challenge-Response or TextPoints4CR.

Unlike TextPoints wherein the authentication server stores
a salt and a password hash value for each account, the
server in TextPoints4CR stores the password for each account.
Another difference is that each character appears only once
in a TextPoints4CR image but may appear multiple times in
a TextPoints image. This is because both server and client
in TextPoints4CR should generate the same sequence of
discretized grid-cells independently. That requires a unique
way to generate the sequence from the shared secret,
i.e., password. Repeated characters would lead to several pos-
sible sequences for the same password. This unique sequence
is used as if the shared secret in a conventional challenge-
response authentication protocol.

In TextPoints4CR, an image is partitioned into a fixed grid
with the discretization grid-cell of size μ along both directions.
The minimal distance between any pair of clickable points
should be larger than μ by a margin exceeding a threshold
to prevent two clickable points from falling into a single
grid-cell in an image. Suppose that a guaranteed tolerance
of click errors along both x-axis and y-axis is τ , we require
that μ ≥ 4τ .

Image Generation. To generate a TextPoints4CR image,
the same procedure to generate a TextPoints image is applied.
Then the following procedure is applied to make every click-
able point at least τ distance from the edges of the grid-cell it
lies in. All the clickable points, denoted as set �, are located
on the image. For every point in �, we calculate its distance
along x-axis or y-axis to the center of the grid-cell it lies
in. A point is said to be an internal point if the distance is
less than 0.5μ−τ along both directions; otherwise a boundary
point. For each boundary point in �, a nearby internal point
in the same grid-cell is selected. The selected point is called
a target point of the boundary point. After processing all the
points in �, we obtain a new set �′ comprising internal points;
these are either internal clickable points or target points of
boundary clickable points. Mesh warping [36], widely used in
generating text Captcha challenges, is then used to warp the
image so that � maps to �′. The result is a TextPoint4CR
image wherein every clickable point would tolerate at least
τ of click errors. Selection of target points should try to reduce
warping distortion caused by mapping � to �′.

Authentication. In entering a password, a user-clicked point
is replaced by the grid-cell it lies in. If click errors are within τ ,

each user-clicked point falls into the same grid-cell as the
original password point. Therefore the sequence of grid-cells
generated from user-clicked points is identical to the one that
the authentication server generates from the stored password
of the account. This sequence is used as if the shared secret
between the two parties in a challenge-response authentication
protocol.

Unlike other CaRP schemes presented in this paper, Text-
Points4CR requires the authentication server to store pass-
words instead of their hash values. Stored passwords must be
protected from insider attacks; for example, they are encrypted
with a master key that only the authentication server knows.
A password is decrypted only when its associated account
attempts to log in.

VI. SECURITY ANALYSIS

A. Security of Underlying Captcha

Computational intractability in recognizing objects in CaRP
images is fundamental to CaRP. Existing analyses on Captcha
security were mostly case by case or used an approximate
process. No theoretic security model has been established
yet. Object segmentation is considered as a computationally-
expensive, combinatorially-hard problem [30], which modern
text Captcha schemes rely on. According to [30], the com-
plexity of object segmentation, C , is exponentially dependent
of the number M of objects contained in a challenge, and
polynomially dependent of the size N of the Captcha alphabet:
C = αM P(N), where α > 1 is a parameter, and P() is a
polynomial function. A Captcha challenge typically contains
6 to 10 characters, whereas a CaRP image typically contains
30 or more characters. The complexity to break a Click-
Text image is about α30 P(N)/(α10 P(N)) = α20 times the
complexity to break a Captcha challenge generated by its
underlying Captcha scheme. Therefore ClickText is much
harder to break than its underlying Captcha scheme. Fur-
thermore, characters in a CaRP scheme are arranged two-
dimensionally, further increasing segmentation difficulty due
to one more dimension to segment. As a result, we can
reduce distortions in ClickText images for improved usability
yet maintain the same security level as the underlying text
Captcha. ClickAnimal relies on both object segmentation
and multiple-label classification. Its security remains an open
question.

As a framework of graphical passwords, CaRP does not rely
on any specific Captcha scheme. If one Captcha scheme gets
broken, a new and more robust Captcha scheme may appear
and be used to construct a new CaRP scheme. In the remaining
security analysis, we assume that it is intractable for computers
to recognize any objects in any challenge image generated by
the underlying Captcha of CaRP. More accurately, the Captcha
is assumed to be chosen-pixel attack (CPA)-secure defined
with the following experiment: an adversary A first learns from
an arbitrary number of challenge images by querying a ground-
truth oracle O as follows: A selects an arbitrary number of
internal object-points and sends to O, which responds with the
object that each point lies in. Then A receives a new challenge
image and selects an internal object-point to query O again.

898 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 6, JUNE 2014

This time O chooses a random bit b ← {0, 1} to determine
what to return: It returns the true object if b = 1; otherwise
a false object selected with a certain strategy. A is asked to
determine whether the returned object is the true object that
the internal object-point lies in or not. A Captcha scheme is
said to be CPA-secure if A cannot succeed with a probability
non-negligibly higher than ½, the probability of a random
guess.

B. Automatic Online Guessing Attacks

In automatic online guessing attacks, the trial and error
process is executed automatically whereas dictionaries can be
constructed manually. If we ignore negligible probabilities,
CaRP with underlying CPA-secure Captcha has the following
properties:

1. Internal object-points on one CaRP image are
computationally-independent of internal object-points on
another CaRP image. Particularly, clickable points on
one image are computationally-independent of clickable
points on another image.

2. Eq. (3) holds, i.e., trials in guessing attacks are mutually
independent.

The first property can be proved by contradiction. Assume
that the property does not hold, i.e., there exists an inter-
nal object-point α on one image A that is non-negligibly
dependent of an internal object-point β on another image
B . An adversary can exploit this dependency to launch the
following chosen-pixel attack. In the learning phase, image
A is used to learn the object that contains point α. In the
testing phase, point β on image B is used to query the oracle.
Since point α is non-negligibly dependent of point β, this
CPA-experiment would result in a success probability non-
negligibly higher than a random guess, which contradicts the
CPA-secure assumption. We conclude that the first property
holds.

The second property is a consequence of the first
property since user-clicked internal object-points in one
trial are computationally-independent of user-clicked internal
object-points in another trial due to the first property. We have
ignored background and boundary object-points since clicking
any of them would lead to authentication failure.

Eq. (3) indicates that automatic online guessing attacks
can find a password only probabilistically no matter how
many trials are executed. Even if the password guess to
be tested in a trial is the actual password, the trial has a
slim chance to succeed since a machine cannot recognize
the objects in the CaRP image to input the password cor-
rectly. This is a great contrast to automatic online guessing
attacks on existing graphical passwords which are determin-
istic, i.e., that each trial in a guessing attack can always
determine if the tested password guess is the actual password
or not, and all the password guesses can be determined by
a limited number of trials. Particularly, brute-force attacks
or dictionary attacks with the targeted password in the dic-
tionary would always succeed in attacking existing graphical
passwords.

C. Human Guessing Attacks

In human guessing attacks, humans are used to enter
passwords in the trial and error process. Humans are much
slower than computers in mounting guessing attacks. For
8-character passwords, the theoretical password space is
338 ≈ 240 for ClickText with an alphabet of 33 characters,
108 ≈ 226 for ClickAnimal with an alphabet of 10 animals,
and 10× 467 ≈ 242 for AnimalGrid with the setting as
ClickAnimal plus 6× 6 grids. If we assume that 1000 people
are employed to work 8 hours per day without any stop in a
human guessing attack, and that each person takes 30 seconds
to finish one trial. It would take them on average 0.5 · 338 ·30/
(3600 · 8 · 1000 · 365) ≈ 2007 years to break a ClickText
password, 0.5 · 108 · 30/(3600 · 8 · 1000) ≈ 52 days to break
a ClickAnimal password, or 0.5 · 10 · 467 · 30/(3600 · 8 ·
1000 · 365) ≈ 6219 years to break an AnimalGrid password.
Human guessing attacks on TextPoints require a much longer
time than those on ClickText since TextPoints has a much
larger password space.

Just like any password scheme, a longitudinal evaluation
is needed to establish the effective password space for each
CaRP instantiation. This requires a separate study similar to
what Bonneau [42] did for text passwords.

A recent study on text passwords [42] indicates that users
tend to choose passwords of 6–8 characters and have a
strong dislike of using non-alphanumeric characters, and that
an acceptable benchmark of effective password space is the
expected number of optimal guesses per account needed to
break 50% of accounts, which is equivalent to 21.6 bits for
Yahoo! users. If we assume that ClickText has roughly the
same effective password space as text passwords, it requires
on average 1000 people to work 1.65 days or one person to
work 4.54 years to find a ClickText password.

D. Relay Attacks

Relay attacks may be executed in several ways. Captcha
challenges can be relayed to a high-volume Website hacked
or controlled by adversaries to have human surfers solve the
challenges in order to continue surfing the Website, or relayed
to sweatshops where humans are hired to solve Captcha
challenges for small payments. Is CaRP vulnerable to relay
attacks? We make the same assumption as Van Oorschot and
Stubblebine [15] in discussing CbPA-protocol’s robustness to
relay attacks: a person will not deliberately participate in relay
attacks unless paid for the task. The task to perform and the
image used in CaRP are very different from those used to
solve a Captcha challenge. This noticeable difference makes
it hard for a person to mistakenly help test a password guess by
attempting to solve a Captcha challenge. Therefore it would be
unlikely to get a large number of unwitting people to mount
human guessing attacks on CaRP. In addition, human input
obtained by performing a Captcha task on a CaRP image is
useless for testing a password guess.

If sweatshops are hired to mount human guessing attack, we
can make a rough estimation of the cost. We assume that the
cost to click one password on a CaRP image is the same as
solving a Captcha challenge. Using the lowest retail price, $1,

ZHU et al.: NEW SECURITY PRIMITIVE BASED ON HARD AI PROBLEMS 899

reported [34] to solve 1000 Captcha challenges, the average
cost to break a 26-bit password is 0.5 · 226 · 1/1000, or about
33.6 thousand US dollars.

E. Shoulder-Surfing Attacks

Shoulder-surfing attacks are a threat when graphical
passwords are entered in a public place such as bank ATM
machines. CaRP is not robust to shoulder-surfing attacks
by itself. However, combined with the following dual-view
technology, CaRP can thwart shoulder-surfing attacks.

By exploiting the technical limitation that commonly-used
LCDs show varying brightness and color depending on the
viewing angle, the dual-view technology can use software
alone to display two images on a LCD screen concurrently,
one public image viewable at most view-angles, and the other
private image viewable only at a specific view-angle [38].
When a CaRP image is displayed as the “private” image by the
dual-view system, a shoulder-surfing attacker can capture user-
clicked points on the screen, but cannot capture the “private”
CaRP image that only the user can see. However, the obtained
user-clicked points are useless for another login attempt, where
a new, computationally-independent image will be used and
thus the captured points will not represent the correct password
on the new image anymore.

To the contrary, common implementations of graphical
password schemes such as PassPoints use a static input image
in the same location of the screen for each login attempt.
Although this image can be hidden as the private image by
the dual-view technology from being captured by a shoulder-
surfer, the user-clicked points captured in a successful login
are still the valid password for next login attempt. That is,
capturing the points alone is sufficient for an effective attack
in this case.

In general, the higher the correlation of user-clicked points
between different login attempts is, the less effective protection
the dual-view technology would provide to thwart shoulder-
surfing attacks.

F. Others

CaRP is not bulletproof to all possible attacks. CaRP is
vulnerable if a client is compromised such that both the image
and user-clicked points can be captured. Like many other
graphical passwords such as CCP and PCCP, CaRP schemes
using the basic CaRP authentication are vulnerable to phishing
since user-clicked points are sent to the authentication server.
However, CaRP schemes such as TextPoints4CR used with
challenge-response authentication are robust to phishing to
a certain level: a phishing adversary has to mount offline
guessing attacks to find out the password using the verifiable
data obtained through a successful phishing attack.

VII. EMPIRICAL EVALUATIONS

A. Implementations

ClickText and AnimalGrid were implemented using
ASP.NET. ClickText was implemented by calling a config-
urable text Captcha engine commercially used by Microsoft.

This Captcha engine accepts only capital letters. As a result,
we chose the following 33 characters in our usability studies:
capital letters except I, J, O, and Z, digits except 0 and 1,
and three special characters “#”, “@”, and “&”. The last three
special characters were chosen to balance security and users’
strong dislike of using non-alphanumeric characters in text
passwords [42]. Characters were arranged in 5 rows. Each
character was randomly rotated from −30◦ to 30◦ and scaled
from 60% to 120%. Neighboring characters could overlap up
to 3 pixels. Warping effect was set to the light level. Each
image was set to 400 by 400 pixels. Fig. 2 in Section IV-A
shows an image generated with the above setting.

In our implementation of AnimalGrid, we used an alphabet
of 10 animals: bird, cow, horse, dog, giraffe, pig, rabbit, camel,
element, and dinosaur. Each animal had three 3D models. The
number of animals in a ClickAnimal image ranged randomly
from 10 to 12, with the extra animals randomly selected
from the alphabet. In generating an animal object, one of
the three 3D animal models was randomly selected, and
posed at a random view in generating a 2D object. Each
animal was assigned a color randomly selected from a set
of 12 colors. Generated 2D objects were placed randomly
on a grass background, with the main part of each animal
not occluded by other animals. Each ClickAnimal image was
also set to 400 by 400 pixels. A 6× 6 grid was used for
CAS. Cells were labeled clockwise starting from cell 0. Fig. 4
in Section IV shows an example of generated ClickAnimal
images and an example of grid images. There was a cross
icon on top of a grid image that a user could click to close
the grid image.

B. Usability Study

1) Experimental Settings
We conducted an in-lab usability study to compare Click-

Text, AnimalGrid, PassPoints, text password (Text), and text
password combined with text Captcha (P + C). P + C was
used to simulate a CbPA-protocol when a Captcha challenge
was used in login. In P + C , a user was asked to enter
a password and solve a Captcha challenge generated with
the same Captcha engine used in ClickText. Each Captcha
challenge contained 6 to 8 random characters. Keyboard input
was used to create and enter passwords for Text and P + C
as well as to enter user IDs for all the schemes. As explained
later, Text and P + C were conducted as if they were a single
scheme to participants.

We recruited 40 (30 males and 10 females) voluntary senior
and graduate students majoring in engineering and sciences,
with ages ranging from 20 to 28 years (the average age = 23.4
and the standard deviation = 1.74). For pragmatic rea-
sons, they were recruited from interns working at Microsoft
Research Asia. None of them had studied security or was
involved in any security usability study before. They were
involved in this work solely as participants in our usability
study. All participants were trained to get familiar with each
authentication scheme and their experimental tasks before our
data collection. During the experiment, one of the authors got
each participant when it was time for the participant to take

900 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 6, JUNE 2014

a test, which ensures that we could collect the required data
from every participant.

Each scheme was tested in the following setting: a partic-
ipant used a web browser to interact with an authentication
server, creating passwords or logging into the server. Once
a participant submitted his/her credentials to the server, the
browser would show the login result.

The schemes were classified into two categories according
to their types of passwords: AnimalGrid and PassPoints in
the first category, and the remaining schemes in the second
category. A password for the schemes in the second category
was a string of characters.

Each participant was asked to create a new password never
used previously for each scheme, 4 in total, and a user
ID for all the schemes. Each created password consisted of
8 characters or click-points. We also made it explicit that
participants were not allowed to write down their passwords.

Each password must meet the following minimum com-
plexity requirements. A password must contain at least one
letter, one digit, and one non-alphanumerical character for
both Text and ClickText, and at least three different animals
for AnimalGrid. No repeating patterns such as “A#A#…” or
“Dog, Dog,…” were allowed. For PassPoints, click-points in
a password must be distinct (i.e., no click-point was inside
another click-point’s tolerance range). Each password was
verified immediately after creation.

The study was partitioned into two stages. Two schemes
were tested in each stage. In the first stage, two schemes, one
from each category, were randomly selected for a participant to
test. One scheme had a string of text characters as a password
while the other had a string of animals and grid cells or click-
points as a password.

During the study, each participant was asked to log in
with the following intervals between two consecutive login
tests: one hour after creation, one day, one week, and three
weeks. In each test, a participant was allowed three tries to
log in. If he/she failed three attempts, his/her password was
considered forgotten, and no more test would be conducted
with the participant for that specific scheme.

In the second stage, the remaining two schemes were tested
in the same way as above.

In the end, each participant was required to fill a question-
naire to compare ClickText and AnimalGrid with PassPoints
and Text, and to compare ClickText with P+C, in terms of
ease of use as a password system, taking both memorizing
and entering a password into consideration.

A participant’s login time in each trial was recorded by
the server. We define the login time as the duration from the
time when the server received a login request to the time
when the server gave its response to the login request, which
includes the time to enter user ID and password, to generate
a CaRP image, and to communicate between the server and a
participant’s browser.

For Text and P + C, a participant was asked to enter a
password. If successful, the server recorded the time as the
login time for Text, and then generated a Captcha challenge
and sent to the user to solve. If the participant failed with
the challenge, another challenge was generated and used. This

process was repeated until the server received a correct answer
to a challenge. Then the server recorded the time as the login
time for P + C, which included the time that the participant
failed to solve a challenge.

2) Experimental Results
Usability. Among all the recorded login attempts, 24.4%

failed. Tests after a larger interval tended to have more
failed attempts. Some participants contributed significantly
more failed attempts than others. At the end of tests, 40
(100%) participants remembered their PassPoints passwords,
39 (97.5%) remembered their passwords of both ClickText and
AnimalGrid, and 34 (85%) remembered their Text passwords.
One participant forgot the AnimalGrid password at the one-
hour test, and another one forgot the ClickText password
at the one-week test. For Text, two participants forgot their
passwords at the one-week test, and four forgot at the three-
week test. PassPoints scored the best in memorability whereas
Text scored the worst. This may be partially due to the fact that
hotspots were allowed for PassPoints passwords, and that Text
passwords had a much larger alphabet than both ClickText and
AnimalGrid.

Table I shows the login time averaged over the
40 participants’ successful login attempts and the sample
standard deviation as well as the maximum and minimum
login times for each scheme. ClickText, AnimalGrid and
P + C had similar average login time whereas PassPoints had
a little shorter average login time. Text had a much shorter
average login time than the other schemes. Each scheme
had a large sample standard deviation relative to the average
login time, indicating large variations of login time for each
scheme, which is confirmed by the great difference between
the minimum and maximum login times in each column
shown in Table I. This is mainly caused by large individual
differences. We did not detect obvious patterns indicating that
a test with a longer interval had a larger login time than a test
with a shorter interval. We did notice that some participants
had a much larger login time when the preceding trial failed,
but many other participants didn’t follow this observation.

The passwords in our tests were used much less fre-
quently than typical usage of a password in practice since we
would like to test password memorability for each scheme.
We expect improved results when a password is used more
frequently.

Table II shows the comparison results of different scheme
for ease of use as a password system. We assign a value
ranging from 1 to 5 to each category, indicating the spectrum
from “much more difficult” to “much easier”. ClickText has
a mean value of 3.2 and a median value of 3 as compared to
PassPoints, and a mean of 2.85 and a median of 2 as compared
to Text. AnimalGrid has a mean of 3.325 and a median of 4 as
compared to PassPoints, and a mean of 3.5 and a median of
4 as compared to Text. ClickText has a mean of 3.875 and a
median of 4 as compared to P + C.

Security. We also analyzed the security of the passwords
we collected for Text and ClickText, with a popular password-
cracking tool, John the Ripper version 1.7.9 [43]. Given our
sample size of 40 users, the distribution of passwords will not
be as complete as a larger study with significantly more users,

ZHU et al.: NEW SECURITY PRIMITIVE BASED ON HARD AI PROBLEMS 901

TABLE I

LOGIN TIME FOR DIFFERENT SCHEMES: AVERAGE (T), SAMPLE

STANDARD DEVIATION (σ), MAX. AND MIN.

TABLE II

COMPARING DIFFERENT SCHEMES FOR EASE OF USE

but such an analysis can provide at least an indication of their
security.

John the Ripper has three operation modes: “single crack”,
“wordlist”, and “incremental”. In the “single crack” mode,
login names and other account information as well as a
large set of mangling rules are used to generate password
guesses. In the “wordlist” mode, a list of words and word
mangling rules are used to generate password guesses. In the
“incremental” mode, a brute force attack is applied, with
guesses being tested at the descending order of their likelihood
to be a password.

In our study, the default parameters and settings were used
for John the Ripper except that length of a password was set
to 8 characters, and that the recommended wordlist “all.lst”
from [44] was used in the “wordlist” mode. When operat-
ing in both “single crack” and “wordlist” modes, John the
Ripper didn’t find any password for either Text or ClickText.
When running in the “incremental” mode for 24 hours on a
HP Compaq Elite 8100 PC with Intel Core i7-870 CPU, 8GB
RAM and 64-bit Windows 7 OS, John the Ripper found two
of 40 (i.e., 5.0%) passwords for Text but didn’t find any
password for ClickText. The small difference in the results
of the “incremental” mode is probably because the unusual
alphabet set in ClickText increased a user’s chance to choose
more random passwords in order to meet the same password
complexity requirement applied to both Text and ClickText.
A separate longitudinal study is needed to fully understand
the distribution and security of ClickText passwords that users
would select.

We conclude from the cracking results that the pass-
words the participants selected for Text and ClickText were
reasonably strong, which matches our expectation of the

password complexity requirement described in the previous
subsection.

3) Discussions
Wiedenbeck et al. [5] studied memorability of text pass-

words and PassPoints with 20 participants for each scheme:
their recall rate after one week was 65% and 70%, respectively.
Our memorability results are higher than theirs for both text
and PassPoints passwords.

The sample sizes in both [5] and our studies were too small
to explain conclusively the difference in the results. However,
this difference could probably be explained by the difference
of the subjects in both studies. First, although randomly
chosen, our participants were from the pool of interns working
at Microsoft Research Asia, who were selected typically from
leading universities. Second, our participants were used to
strong text passwords as their Microsoft accounts were strictly
enforced with strong password policies (e.g. each account must
use a complex password, and a password has to be changed
regularly, with the new password having to be significantly
different from previously used ones). Third, our participants
were much younger, with an average age of 23.4 years as
compared to the average of 32.9 years in Wiedenbeck et al.’s
experiment.

However, we do not think this sample bias introduced an
undue impact on the main goal of our experiment, namely,
comparing the performance of CaRP with other authentication
schemes. Nonetheless, user studies with a diverse sample pool
are needed for CaRP, which are our future work.

C. Computation Load on Server

Compared with many graphical password schemes, gener-
ation of CaRP images is an extra load on the server side.
We tested our implementations of ClickText and AnimalGrid
on the same HP Compaq Elite 8100 PC we used to run
John the Ripper, as described in Section VII-B. For images
of 400x400 pixels, the average speed was 10.68 images
per second in generating a ClickText image with 33 characters
and 0.86 images/s in generating an AnimalGrid image with
10 to 12 animals. Our implementations were single-threaded
without code optimization, and did not take any advantage
of multi-core capability of the test machine. Much faster
image generation should be viable by exploiting multi-core
architecture of today’s servers and by optimizing the code.

VIII. BALANCE OF SECURITY AND USABILITY

Some configurations of CaRP offer acceptable usability
across common device types, e.g. our usability studies used
400 × 400 images, which fit displays of smart phones, iPads,
and PCs. While CaRP may take a similar time to enter
a password as other graphical password schemes, it takes
a longer time to enter a password than widely used text
passwords. We discuss two approaches for balancing CaRP’s
security and usability.

A. Alphabet Size

Increasing alphabet size produces a larger password space,
and thus is more secure, but also leads to more complex CaRP

902 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 6, JUNE 2014

images. When the complexity of CaRP images gets beyond a
certain point, humans may need a significant amount of time
to recognize the characters in a CaRP image and may get
frustrated. The optimal alphabet size for a CaRP scheme such
as ClickText remains an open question.

It is possible to use a fixed subset of the alphabet to generate
CaRP images for a user if the server receives her user ID
before sending an image. In this case, the authentication server
allows a user to create her password from the full alphabet.
Once the password is created, the server finds a suitable subset
of a reasonable size, which contains all the symbols in the
password. The server stores the subset or its index for the
account, and retrieves it later when the account attempts to
log in to generate a CaRP image. This scheme is suitable
when the alphabet must be large while some people would
log in on small-screen devices for which an image using the
full alphabet would be too complex to quickly identify the
objects in the image.

B. Advanced Mechanisms

The CbPA-protocols described in Section II-C require a
user to solve a Captcha challenge in addition to inputting a
password under certain conditions. For example, the scheme
described in [16] applies a Captcha challenge when the number
of failed login attempts has reached a threshold for an account.
A small threshold is applied for failed login attempts from
unknown machines but a large threshold is applied for failed
attempts from known machines on which a successful login
occurred within a given time frame. This technique can be
integrated into CaRP to enhance usability:

1. A regular CaRP image is applied when an account has
reached a threshold of failed login attempts. As in [16],
different thresholds are applied for logins from known
and unknown machines.

2. Otherwise an “easy” CaRP image is applied.
An “easy” CaRP image may take several forms depending

on the application requirements. It can be an image generated
by the underlying Captcha generator with less distortion or
overlapping, a permuted “keypad” wherein undistorted visual
objects (e.g. characters) are permuted, or even a regular
“keypad” wherein each visual object (e.g., character) is always
located at a fixed position. These different forms of “easy”
CaRP images allow a system to adjust the level of difficulty
to fit its needs.

With such a modified CaRP, a user would always enter a
password on an image for both cases listed above. No extra
task is required. The only difference between the two cases
is that a hard image is used in the first case whereas an easy
image is used in the second case.

IX. CONCLUSION

We have proposed CaRP, a new security primitive relying
on unsolved hard AI problems. CaRP is both a Captcha and
a graphical password scheme. The notion of CaRP intro-
duces a new family of graphical passwords, which adopts
a new approach to counter online guessing attacks: a new
CaRP image, which is also a Captcha challenge, is used

for every login attempt to make trials of an online guessing
attack computationally independent of each other. A password
of CaRP can be found only probabilistically by automatic
online guessing attacks including brute-force attacks, a desired
security property that other graphical password schemes lack.
Hotspots in CaRP images can no longer be exploited to mount
automatic online guessing attacks, an inherent vulnerability in
many graphical password systems. CaRP forces adversaries
to resort to significantly less efficient and much more costly
human-based attacks. In addition to offering protection from
online guessing attacks, CaRP is also resistant to Captcha
relay attacks, and, if combined with dual-view technologies,
shoulder-surfing attacks. CaRP can also help reduce spam
emails sent from a Web email service.

Our usability study of two CaRP schemes we have
implemented is encouraging. For example, more participants
considered AnimalGrid and ClickText easier to use than
PassPoints and a combination of text password and Captcha.
Both AnimalGrid and ClickText had better password memora-
bility than the conventional text passwords. On the other hand,
the usability of CaRP can be further improved by using images
of different levels of difficulty based on the login history of
the user and the machine used to log in. The optimal tradeoff
between security and usability remains an open question for
CaRP, and further studies are needed to refine CaRP for actual
deployments.

Like Captcha, CaRP utilizes unsolved AI problems.
However, a password is much more valuable to attackers than
a free email account that Captcha is typically used to protect.
Therefore there are more incentives for attackers to hack CaRP
than Captcha. That is, more efforts will be attracted to the
following win-win game by CaRP than ordinary Captcha:
If attackers succeed, they contribute to improving AI by
providing solutions to open problems such as segmenting
2D texts. Otherwise, our system stays secure, contributing
to practical security. As a framework, CaRP does not rely
on any specific Captcha scheme. When one Captcha scheme
is broken, a new and more secure one may appear and be
converted to a CaRP scheme.

Overall, our work is one step forward in the paradigm of
using hard AI problems for security. Of reasonable security
and usability and practical applications, CaRP has good
potential for refinements, which call for useful future work.
More importantly, we expect CaRP to inspire new inventions
of such AI based security primitives.

REFERENCES

[1] R. Biddle, S. Chiasson, and P. C. van Oorschot, “Graphical passwords:
Learning from the first twelve years,” ACM Comput. Surveys, vol. 44,
no. 4, 2012.

[2] (2012, Feb.). The Science Behind Passfaces [Online]. Available:
http://www.realuser.com/published/ScienceBehindPassfaces.pdf

[3] I. Jermyn, A. Mayer, F. Monrose, M. Reiter, and A. Rubin, “The design
and analysis of graphical passwords,” in Proc. 8th USENIX Security
Symp., 1999, pp. 1–15.

[4] H. Tao and C. Adams, “Pass-Go: A proposal to improve the usability of
graphical passwords,” Int. J. Netw. Security, vol. 7, no. 2, pp. 273–292,
2008.

[5] S. Wiedenbeck, J. Waters, J. C. Birget, A. Brodskiy, and N. Memon,
“PassPoints: Design and longitudinal evaluation of a graphical password
system,” Int. J. HCI, vol. 63, pp. 102–127, Jul. 2005.

ZHU et al.: NEW SECURITY PRIMITIVE BASED ON HARD AI PROBLEMS 903

[6] P. C. van Oorschot and J. Thorpe, “On predictive models and user-
drawn graphical passwords,” ACM Trans. Inf. Syst. Security, vol. 10,
no. 4, pp. 1–33, 2008.

[7] K. Golofit, “Click passwords under investigation,” in Proc. ESORICS,
2007, pp. 343–358.

[8] A. E. Dirik, N. Memon, and J.-C. Birget, “Modeling user choice in the
passpoints graphical password scheme,” in Proc. Symp. Usable Privacy
Security, 2007, pp. 20–28.

[9] J. Thorpe and P. C. van Oorschot, “Human-seeded attacks and exploiting
hot spots in graphical passwords,” in Proc. USENIX Security, 2007,
pp. 103–118.

[10] P. C. van Oorschot, A. Salehi-Abari, and J. Thorpe, “Purely automated
attacks on passpoints-style graphical passwords,” IEEE Trans. Inf.
Forensics Security, vol. 5, no. 3, pp. 393–405, Sep. 2010.

[11] P. C. van Oorschot and J. Thorpe, “Exploiting predictability in click-
based graphical passwords,” J. Comput. Security, vol. 19, no. 4,
pp. 669–702, 2011.

[12] T. Wolverton. (2002, Mar. 26). Hackers Attack eBay Accounts
[Online]. Available: http://www.zdnet.co.uk/news/networking/2002/03/
26/hackers-attack-ebay-accounts-2107350/

[13] HP TippingPoint DVLabs, Vienna, Austria. (2010). Top Cyber Security
Risks Report, SANS Institute and Qualys Research Labs [Online].
Available: http://dvlabs.tippingpoint.com/toprisks2010

[14] B. Pinkas and T. Sander, “Securing passwords against dictionary
attacks,” in Proc. ACM CCS, 2002, pp. 161–170.

[15] P. C. van Oorschot and S. Stubblebine, “On countering online dictionary
attacks with login histories and humans-in-the-loop,” ACM Trans. Inf.
Syst. Security, vol. 9, no. 3, pp. 235–258, 2006.

[16] M. Alsaleh, M. Mannan, and P. C. van Oorschot, “Revisiting
defenses against large-scale online password guessing attacks,” IEEE
Trans. Dependable Secure Comput., vol. 9, no. 1, pp. 128–141,
Jan./Feb. 2012.

[17] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA:
Using hard AI problems for security,” in Proc. Eurocrypt, 2003,
pp. 294–311.

[18] S. Chiasson, P. C. van Oorschot, and R. Biddle, “Graphical password
authentication using cued click points,” in Proc. ESORICS, 2007,
pp. 359–374.

[19] S. Chiasson, A. Forget, R. Biddle, and P. C. van Oorschot, “Influencing
users towards better passwords: Persuasive cued click-points,” in Proc.
Brit. HCI Group Annu. Conf. People Comput., Culture, Creativity,
Interaction, vol. 1. 2008, pp. 121–130.

[20] D. Davis, F. Monrose, and M. Reiter, “On user choice in graphical
password schemes,” in Proc. USENIX Security, 2004, pp. 1–11.

[21] R. Dhamija and A. Perrig, “Déjà Vu: A user study using images for
authentication,” in Proc. 9th USENIX Security, 2000, pp. 1–4.

[22] D. Weinshall, “Cognitive authentication schemes safe against spyware,”
in Proc. IEEE Symp. Security Privacy, May 2006, pp. 300–306.

[23] P. Dunphy and J. Yan, “Do background images improve ‘Draw a Secret’
graphical passwords,” in Proc. ACM CCS, 2007, pp. 1–12.

[24] P. Golle, “Machine learning attacks against the Asirra CAPTCHA,” in
Proc. ACM CCS, 2008, pp. 535–542.

[25] B. B. Zhu et al., “Attacks and design of image recognition CAPTCHAs,”
in Proc. ACM CCS, 2010, pp. 187–200.

[26] J. Yan and A. S. El Ahmad, “A low-cost attack on a microsoft
CAPTCHA,” in Proc. ACM CCS, 2008, pp. 543–554.

[27] G. Mori and J. Malik, “Recognizing objects in adversarial clutter,”
in Proc. IEEE Comput. Society Conf. Comput. Vis. Pattern Recognit.,
Jun. 2003, pp. 134–141.

[28] G. Moy, N. Jones, C. Harkless, and R. Potter, “Distortion estimation
techniques in solving visual CAPTCHAs,” in Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., Jul. 2004, pp. 23–28.

[29] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, “Computers
beat humans at single character recognition in reading-based human
interaction proofs,” in Proc. 2nd Conf. Email Anti-Spam, 2005, pp. 1–3.

[30] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, “Building
segmentation based human-friendly human interaction proofs,” in Proc.
2nd Int. Workshop Human Interaction Proofs, 2005, pp. 1–10.

[31] J. Elson, J. R. Douceur, J. Howell, and J. Saul, “Asirra: A CAPTCHA
that exploits interest-aligned manual image categorization,” in Proc.
ACM CCS, 2007, pp. 366–374.

[32] R. Lin, S.-Y. Huang, G. B. Bell, and Y.-K. Lee, “A new CAPTCHA
interface design for mobile devices,” in Proc. 12th Austral. User Inter.
Conf., 2011, pp. 3–8.

[33] N. Joshi. (2009, Nov. 29). Koobface Worm Asks for CAPTCHA [Online].
Available: http://blogs.mcafee.com/mcafee-labs/koobface-worm-asks-
for-CAPTCHA

[34] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker,
and S. Savage, “Re: CAPTCHAs—Understanding CAPTCHA-Solving
Services in an Economic Context,” in Proc. USENIX Security, 2010,
pp. 435–452.

[35] M. Szydlowski, C. Kruegel, and E. Kirda, “Secure input for web
applications,” in Proc. ACSAC, 2007, pp. 375–384.

[36] G. Wolberg, “2-pass mesh warping,” in Digital Image Warping.
Hoboken, NJ, USA: Wiley, 1990.

[37] HP TippingPoint DVLabs, New York, NY, USA. (2011). The
Mid-Year Top Cyber Security Risks Report [Online]. Available:
http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA3-7045ENW.pdf

[38] S. Kim, X. Cao, H. Zhang, and D. Tan, “Enabling concurrent dual views
on common LCD screens,” in Proc. ACM Annu. Conf. Human Factors
Comput. Syst., 2012, pp. 2175–2184.

[39] S. Li, S. A. H. Shah, M. A. U. Khan, S. A. Khayam, A.-R. Sadeghi,
and R. Schmitz, “Breaking e-banking CAPTCHAs,” in Proc. ACSAC,
2010, pp. 1–10.

[40] H. Gao, X. Liu, S. Wang, and R. Dai, “A new graphical password scheme
against spyware by using CAPTCHA,” in Proc. Symp. Usable Privacy
Security, 2009, pp. 760–767.

[41] L. Wang, X. Chang, Z. Ren, H. Gao, X. Liu, and U. Aickelin, “Against
spyware using CAPTCHA in graphical password scheme,” in Proc. IEEE
Int. Conf. Adv. Inf. Netw. Appl., Jun. 2010, pp. 1–9.

[42] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus
of 70 million passwords,” in Proc. IEEE Symp. Security Privacy,
Jun. 2012, pp. 20–25.

[43] John the Ripper Password Cracker [Online]. Available: http://www.
openwall.com/john/

[44] Openwall Wordlists Collection [Online]. Available: http://www.
openwall.com/wordlists/

Bin B. Zhu received the B.S. degree in physics
from the University of Science and Technology
of China, Hefei, China, and the M.S. and Ph.D.
degrees in electrical engineering from the University
of Minnesota, Minneapolis, MN, in 1986, 1993,
and 1998, respectively. From 1997 to 2001, he
was a Lead Scientist with Cognicity, Inc., a startup
company he cofounded with his dissertation Advisor
and a Colleague in 1997. Since 2001, he has been a
Researcher with Microsoft Research Asia, Beijing,
China. He has published four book chapters and

more than 60 journal and conference papers. He has also received 38 U.S.
patents. His research interests include Internet security, applied cryptography,
data security and privacy, and multimedia processing.

Jeff Yan received the Ph.D. degree in computer
security from Cambridge University. He is on the
faculty of computer science, Newcastle Univer-
sity, England. His recent research includes breaking
various graphical passwords and CAPTCHAs, and
inventing new ones. He has published novel attacks
that broke reCAPTCHA, and CAPTCHAs designed
by Microsoft, Yahoo, and Google. A variant of
his graphical password design, Background Draw a
Secret, is deployed in Microsoft Windows 8.

Guanbo Bao received the Ph.D. degree in computer
science from the Institute of Automation, Chinese
Academy of Sciences, in 2012, where he is an
Assistant Professor. His research interests include
high performance rendering and image editing.

904 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 6, JUNE 2014

Maowei Yang was born in Chongqing in 1986. He
received the B.S. and M.S. degrees in computer
science and technology from Sichuan University,
China, in 2009 and 2012, respectively. He joined
Tencent, Guangzhou, China, in 2012, and is cur-
rently working on mobile Internet applications.

Ning Xu received the B.S. degree from the Nanjing
University of Science and Technology and the M.S.
degree from Shanghai Jiao Tong University, both in
automation, in 2005 and 2008, respectively. He is a
Research Software Development Engineer with the
Innovation Engineering Group, Microsoft Research
Asia. He is currently working on image processing
and computer vision related projects.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

