Pushing on String: Adventures in the 'Don't Care' Regions of Password Strength

Cormac Herley
Microsoft Research, Redmond
@cormacherley

Joint work with Dinei Florêncio and Paul C. van Oorschot

Two recent studies:

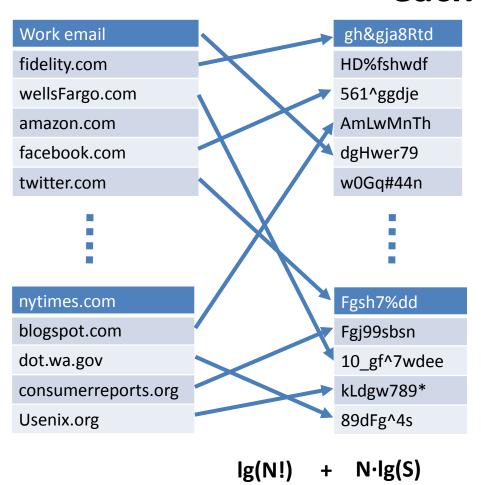
1. Managing a *portfolio* of passwords

2. Administering password-protected site

Ch1: Password Portfolios:

Sustainably Managing Large Numbers of Accounts

Choosing a password


Everyone knows

A1: Passwords should be random and strong

A2: Passwords should not be re-used across accounts

But no-one does.

Portfolio of N random, unique passwords lg(S) each

Must remember:

- N passwords = N·lg(S)
- NxN pwd-to-acct assignment = lg(N!)

$$E(N) = N \cdot lg(S) + lg(N!)$$

N=100 random passwords of lg(S) bits

$$E(N) = N \cdot lg(S) + lg(N!)$$

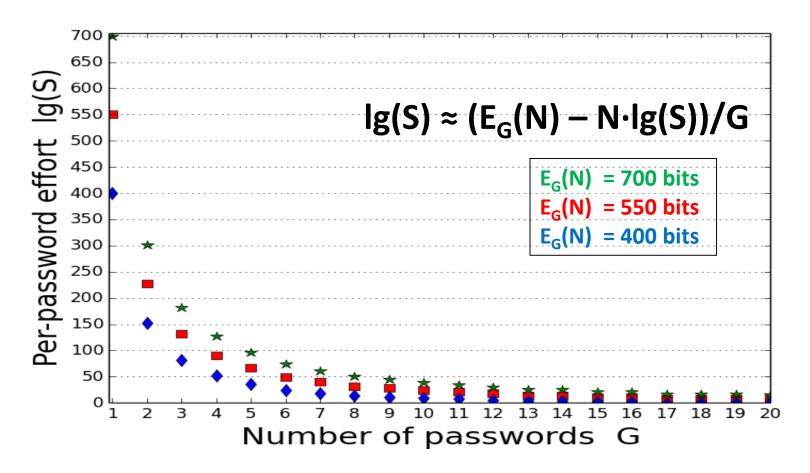
remember passwords

$E(N) = 100 \cdot lg(S) + 524$

Claim: memorization task is impossible

N accounts in G groups

$$E_G(N) \approx G \cdot lg(S) + N \cdot lg(G)$$


$$=> lg(S) \approx \frac{(EG(N) - N \cdot lg(G))}{G}$$

Tradeoff between strength and avoiding re-use (i.e. lg(S) and G)

N = #accts
G = #unique pwds
Ig(S) = pwd strength

Many ways to organize portfolio:

(e.g. 4 groups of 25, 5 groups of 20)

Fixed effort:

- lg(S) α 1/G
- Stronger pwd => more re-use

Over-constrained Problems

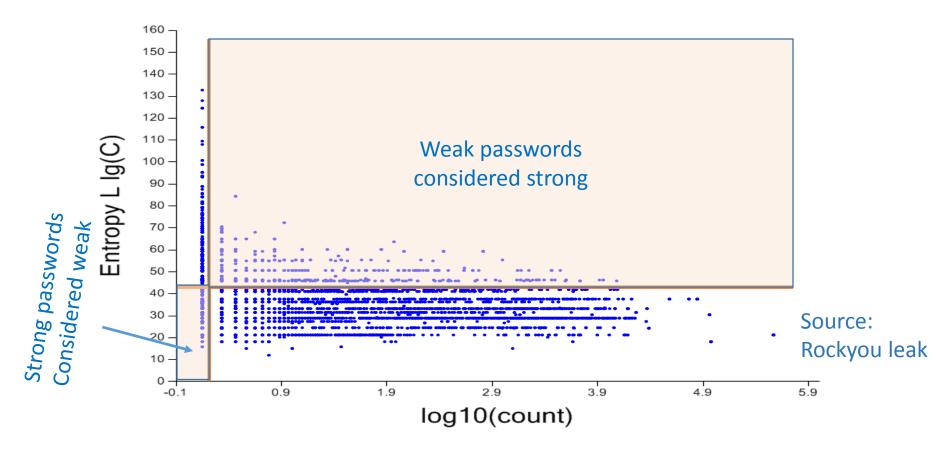
- Password Portfolios
 - Insisting on the necessity of impossible things
- •How end up over-constrained?

А	Is re-use a real threat vector?	Υ
В	Do bad things happen because of re-use?	Υ
С	Can we eliminate that risk by avoiding re-use?	Υ
D	Does it follow that you should not re-use?	N

$$X\Rightarrow Y$$
 does not mean $\overline{X}\Rightarrow \overline{Y}$

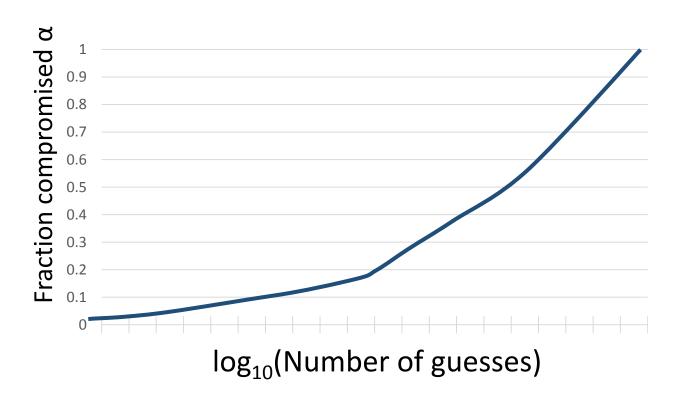
Take-aways on Chap.I

- One password/account impossible as portfolio grows.
- Inherent tradeoff between re-use/strength.
- A strategy that rules out re-use is sub-optimal
- A strategy that rules out weak passwords is suboptimal


Ch2: Administering a password-protected site

- •Why do we want strength?
 - Want to deny access to bad guys

- •How much strength do we need?
 - More. More. More.


- •Does more strength always help deny access?
 - No. Even against guessing attacks.

Measure strength of a password? Don't use entropy = L·lg(C)

- L·lg(C) not even approximately monotonic in frequency
- Partial Guess numbers: #guesses to get fraction α of accts (e.g. Bonneau measure)

Measure strength of a distribution?

Administrator's task: defend the population

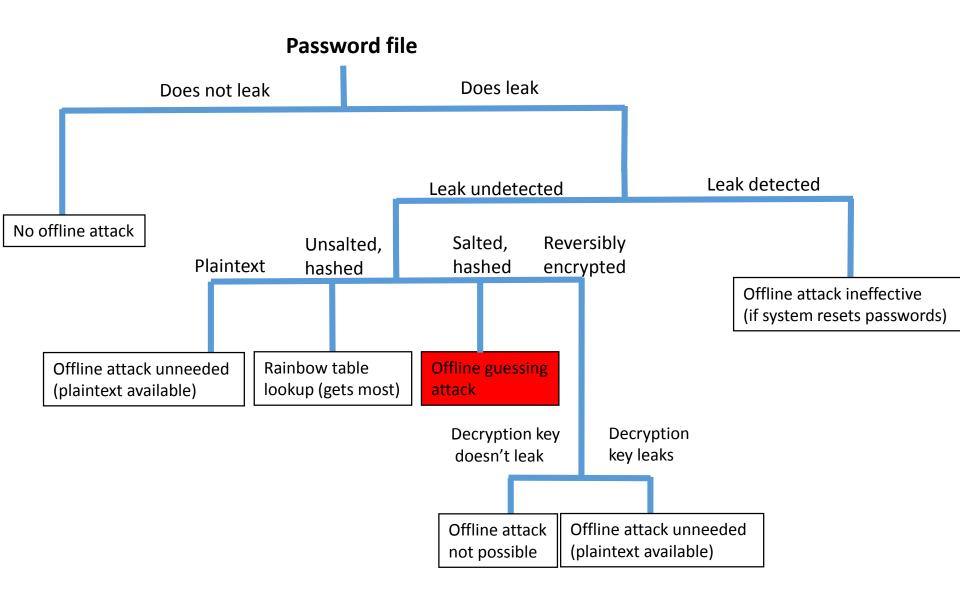
• With limited ability to shape the distribution what should you do?

How much strength do we need?

Two very different guessing attacks

- Online: computed on defender's HW
 - Lockout, rate-limiting, forensics,

- Offline: computed on attacker's HW
 - Limited only by hardware
 - Needs to steal the hashed file


When strength has no influence

When is guessing a factor?

"The success of database breaches, client-side malware, phishing and network-sniffing are entirely unaffected by password choice."

E.g. Rockyou database breach: password choice had no effect on the outcome

When is offline guessing a factor?

Plaintext or reversibly encrypted: steps to go beyond online attacks unjustifiable—no offline guessing attack.

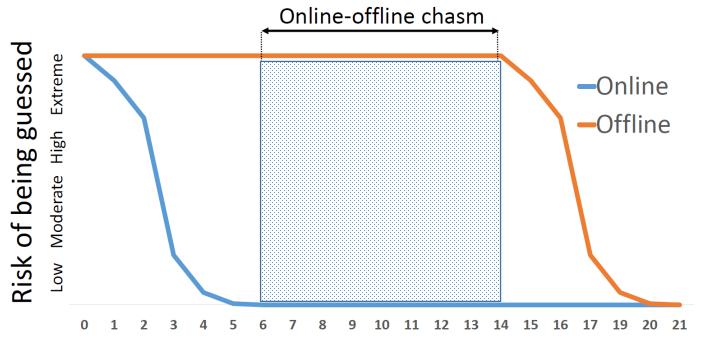
Recent breaches

						Offline guessing attack
					Reversibly	beyond rainbow tables
Site	Year	# Accounts	Hashed	Salted	Encrypted	needed and possible
Rockyou [64]	2009	32m				N
Gawker	2010	1.3m	✓	✓		Y
Tianya	2011	35m				N
eHarmony	2012	1.5m	✓			N
LinkedIn	2012	6.5m	✓			N
Evernote	2013	50m	✓	√		Y
Adobe	2013	150m			✓	N
Cupid Media	2013	42m				N

- August 2014: 1.2 billion CyberVor set: plaintext
- In only 2 leaks (Evernote, Gawker) and 51.3mln ex 1.5bln passwords was there an offline threat.

Online-offline chasm

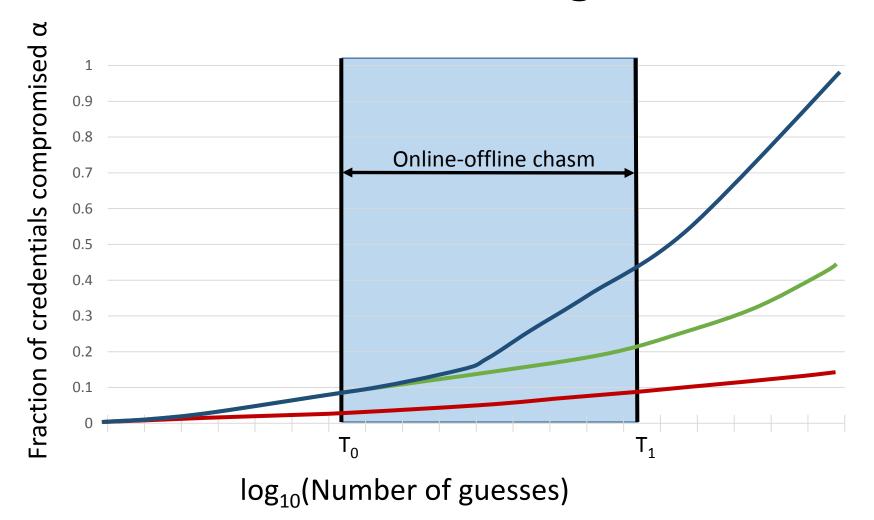
How many guesses?


Attack	Туре	Guesses	Example
Online	Breadth-first	10 ⁴	"6387"
Online	Depth-first	10 ⁶	"tincan24"
Offline	Breadth-first	1014	"7Qr&2Mu"
Offline	Depth-first	10 ²⁰	"eTh^D#aW3a8"

Note the enormous difference needed to withstand online/offline

Reasoning (salted, hashed, no iteration, 4 mos campaign):

- Online Breadth-first: 10⁴
 - Over 4 mos. 17300x more fail events than legit pop. (assuming 1 legit login/user/day, 5% fail rate)
- Online Depth-first: 10⁶
 - Lockout or Rate-limit requests, IP blocking
- Offline Breadth-first: 10¹⁴
 - 1000 GPUs @ 10¹⁰ guess/sec against 10⁶ accts for 4 mos
- •Offline Depth-first: 10²¹
 - 1000 GPUs @ 10¹⁰ guess/sec against 10 accts for 4 mos


No gain in exceeding online threshold while falling short of offline one.

log₁₀(#guesses a password withstands)

Chasm is 8 orders of magnitude wide!!

Passwords between T₀ and T₁ do too much and not enough

No security improvement between T₀ and T₁

Compromise Saturation Point

Q: if an attacker has 20% of credentials, are you 20% owned or fully owned?

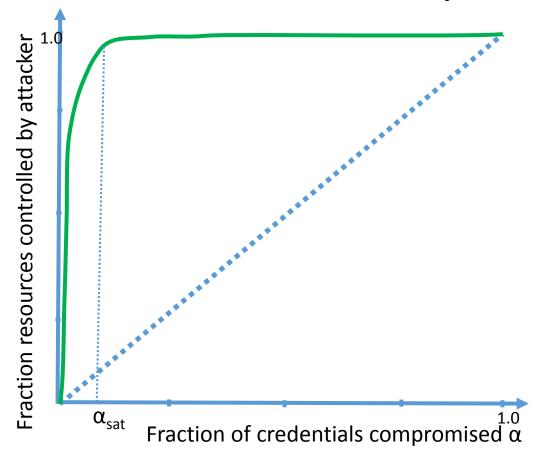
•RSA breach:

 Phishing "two small groups of employees none of whom were particularly high profile or high value"

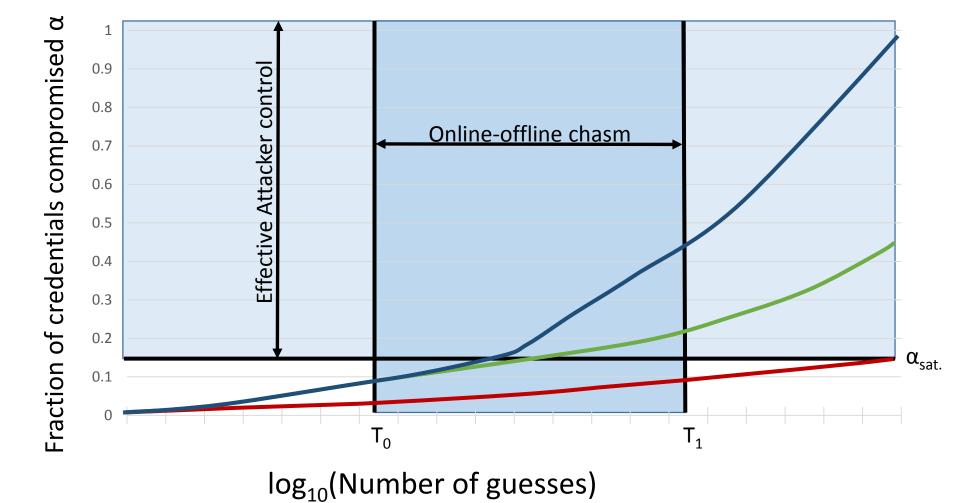
•NSA:

Snowden

•Snowball attacks:

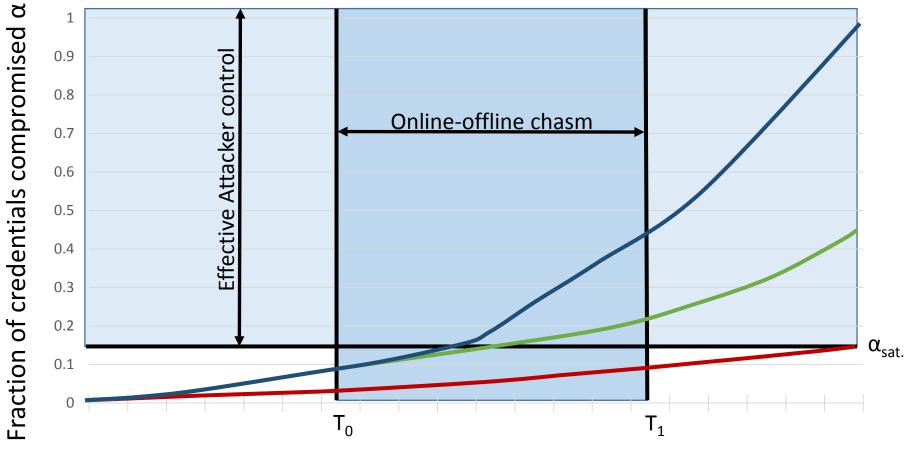

• 98.1% of machines allowed snowballing to at least 1k additional machines. [Dunagan et al 2009].

Q: if attacker already has N passwords how much gain by getting one more?

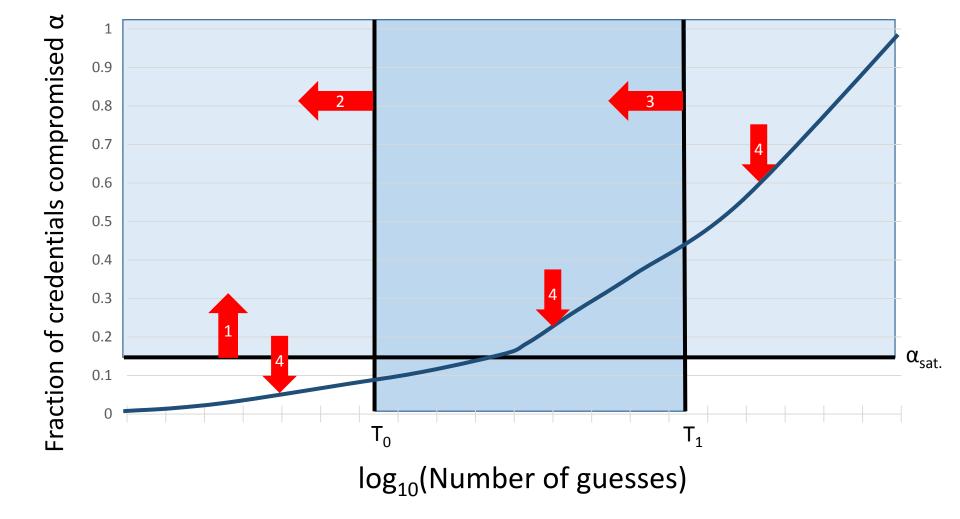

Claim: additional gain decreases steadily with N

 After getting a beachhead, each new cred adds a smaller and smaller amount

Attacker access saturates quickly


- α_{sat} = Point at which attacker control saturates
- For an enterprise: $\alpha_{sat} \approx 0.1$?

 T_0 = Max. #guesses to be safe from online T_1 = Min. # guesses to be safe from offline α_{sat} = Point at which attacker control saturates


- No security improvement for increasing strength between T₀ and T₁
- Once α_{sat} is reached additional strength denies attacker nothing
- Password distribution must be below α_{sat} at T_1

"Don't care" region

log₁₀(Number of guesses)

- Blue and Green distributions have same security outcomes
 - Unimportant whether offline attacker gets 20% or 40%

- 1. α_{sat} = Increase w/ least-privilege, compartmentalization
- 2. T_0 = Reduced by throttling
- 3. T_1 = Reduce by iterating hash
- 4. Improve user-chosen passwords

3. Hash iteration to decrease T₁

•Iterate hash $10x \rightarrow Reduce T_1 by 10x$

•Can we iterate until $T_1 \approx T_0$

- Assume 10ms delay tolerable
 - 1000 GPUs do 10¹² guesses in 4 mos
 - So 10¹⁰ for each of 100 accts
- •Hard to reduce T₁ below 10¹⁰

4. Improve password distribution

- Tools to alter distribution
 - education campaigns
 - password meters
 - blacklists
 - composition policies
- Recall:
 - distribution must be below α_{sat} at T_1
 - changes to distribution in "don't care" region don't improve outcomes.

Many tools to influence passwords are:

Indirect

Users are pretty good at ignoring

Unfocused

Can't focus effort outside don't care region

How achieve the needed amount of strength?

Blacklisting: direct, focused

- Block the most common choices
- Inconvenience only those who need it.
- Helps mostly against online (esp. breadth-first)

Composition Policies: indirect, unfocused

- Inadequate protection even against online!!!!
- Many LUDS(8) passwords in top 10⁴ Rockyou

Not even close.....

Distribution must be below α_{sat} at T_1

- CMU passwords (len 8, 3 ex 4 char sets) [Mazurek et al]
 - 48% guessed at 10¹⁴
 - 22% guessed at 10¹¹
- Study of different policies [Kelley et al]
 - Best (len 16 passwords) had 12% guessed at 10¹¹
 - Many 30-50% guessed at 10¹¹

Case against wasting user effort to defend against offline

- Entire waste if plaintext or reversibly encrypted
- We don't know how to do it
 - Composition policies, advice and meters are failures
- Exceeding online threshold, but short of offline is waste
- Task gets harder each year
 - GPUs follow Moore's Law, memory does not.
- Zero-user burden solutions exist
 - HSMs, novel hashing
- Online: defensible goal, currently poorly defended
- Offline: hopelessly remote goal

Conclusions:

- Blacklists for online
- Slow hashes, e.g. iteration
- Prevent the file from leaking, detect when it does
- Composition policies: very poor Rol

More info:

An Administrator's Guide to Internet Password Research, Proc. Usenix LISA 2014