
Qualified Types for MLF

Daan Leijen Andres Löh
Institute of Information and Computing Sciences, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
{daan,andres}@cs.uu.nl

Abstract
MLF is a type system that extends a functional language with im-
predicative rank-n polymorphism. Type inference remains possible
and only in some clearly defined situations, a local type annotation
is required. Qualified types are a general concept that can accom-
modate a wide range of type systems extension, for example, type
classes in Haskell. We show how the theory of qualified types can
be used seamlessly with the higher-ranked impredicative polymor-
phism of MLF, and give a solution to the non-trivial problem of
evidence translation in the presence of impredicative datatypes.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design, Theory

Keywords qualified types, impredicativity, higher-rank polymor-
phism, MLF

1. Introduction
MLF [6] is a type system that extends a functional language (in
the style of ML [9] or Haskell [10]) with impredicative rank-
n polymorphism. Type inference in the extended system remains
possible, but in some clearly defined situations, code that makes use
of polymorphic arguments must be locally annotated with types.

Applications that require rank-n polymorphism are surprisingly
common in advanced functional programming. Shan [12] as well as
Peyton Jones and Shields [11] present plenty of convincing exam-
ples, such as dynamic types, datatype invariants, and generic (poly-
typic) functions. Current Haskell implementations are therefore al-
ready equipped with a type system that supports a limited form of
rank-n polymorphism.

The excellent tutorial paper by Peyton Jones and Shields [11]
describes the ideas behind the Haskell implementation in great
detail and explains many of the design decisions made.

A significant limitation of the Haskell implementation with re-
spect to the MLF system is that the former is predicative: a quan-
tified variable can only range over monomorphic types, whereas
in MLF, a type variable can be instantiated to a polymorphic type
again. Impredicativity is essential for abstraction over polymorphic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’05 September 26–28, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-064-7/05/0009. . . $5.00.

values and has a number of advantages for the programmer that
make MLF more flexible and more intuitive to use.

However, there are two reasons that currently prevent a wider
adoption of the more general MLF approach:

• In MLF, quantifiers have bounds that are all collected in a
prefix at the beginning of the type. This requires the reader to
perform an on-the-fly substitution, which makes it much harder
to understand a complicated type. Also, it just looks plainly
unfamiliar.

• Functional programming languages used in practice already
possess other extensions to the type system besides rank-n
polymorphism. Many of these type system extensions, such as
type classes, implicit parameters, or records, are based on the
theory of qualified types [3]. Due to impredicativity, it is unclear
how MLF can work in conjunction with such extensions.

We have the firm belief that both doubts just raised can be elimi-
nated, and we make the following contributions:

• In Section 2.6 we present a simple convention that can be used
to write MLF types in a more intuitive way. The additional
notational complexity that bounded quantification introduces is
only imposed on the programmer when it plays a crucial role.

• In Section 5 we introduce a variant of the MLF type inference
algorithm which performs type-directed evidence translation to
System F. The idea of this modification is informally described
in Section 4.3. The evidence translation is the key contribution
of this paper, because it allows the addition of qualified types
to MLF in a way that it can be used efficiently in an actual
implementation.

With the addition of qualified types, we believe that this paper is
a substantial step forward to making MLF fit for use in practical
programming languages.

The paper starts by introducing the two main topics that we want
to connect: The MLF type system is explained by example in Sec-
tion 2, comparing it to a plain Hindley-Milner type system with-
out rank-n polymorphism and the system used in current Haskell
implementations. Section 3 introduces qualified types, giving ex-
amples of a number of different applications, including the Haskell
type class system. We also show that the sum of the two features,
rank-n and qualified types, is greater than its parts, by pointing
out applications that are only possible with impredicative qualified
types.

Interestingly, the difficult part in combining the features is not to
extend the MLF type system with qualified types, but how to imple-
ment the resulting system. Qualified types are usually implemented
using evidence translation, explained in Section 4. We demonstrate
why a naı̈ve extension of the standard translation scheme fails. In
Section 4.3, we present the core idea to overcome the problems
with the standard translation.

Following the path outlined in Section 4.3, we present a variant
of the MLF type inference algorithm that is augmented with a type-
directed evidence translation to System F in Section 5. Adding
actual qualified types to the system is then easy and explained in
Section 6. In Section 7, we conclude and discuss future work.

2. A tour of MLF
In this section, we introduce first-class polymorphism and analyze
the advantages that MLF offers over Hindley-Milner and other
implementations of higher ranked types.

2.1 Higher-ranked types
The Hindley-Milner type system [2] stands at the basis of almost
all polymorphic programming language type systems. An impor-
tant property of the Hindley-Milner type system is that there ex-
ists a type inference algorithm that automatically infers most gen-
eral types for expressions, and there is no need for extra type an-
notations. At the same time, the type system is sound, where the
execution of a well-typed program cannot “go wrong”. The com-
bination of these features, together with a straightforward imple-
mentation, makes the Hindley-Milner type system well-suited for
practical use.

However, the Hindley-Milner type system has a significant limi-
tation: polymorphic values are not first-class. In practice this means
that only values that are bound by a let construct can have a poly-
morphic type. It is not possible for the argument of a function to
be used with a polymorphic type. Here is an example of a function
that takes a polymorphic argument1:

f choose = (choose True False, choose ’a’ ’b’)

The function f takes a function choose and calls it on two booleans
and two characters in the body of the function. Neither Haskell, nor
ML, would accept this definition, because in the Hindley-Milner
type system, lambda-bound variables such as choose can only
have monomorphic types, which is equivalent to the property that
universal quantifiers can only appear at the outermost level of a
type.

In contrast, explicitly typed languages such as System F allow
universal quantifiers to appear deep within a type. For example, if
we know that choose has the polymorphic type ∀α. α → α → α,
then the above definition makes sense, and f can be given the
following type:

(∀α. α → α → α) → (Bool ,Char)

This is a rank-2 type, as it contains quantifiers to the left of the
function arrow. The Haskell implementations GHC and Hugs sup-
port higher-rank polymorphism such as it occurs in the definition
of f above. If f is equipped with a type signature, the compiler
accepts the definition. However, even though higher-ranked, the
implementations are still limited due to a second restriction of
Hindley-Milner: quantified variables can only be instantiated with
a monomorphic type. Systems with this restriction are called pred-
icative.

The MLF type system is an extension of Hindley-Milner that
fully supports first-class polymorphism: universal quantifiers can
appear anywhere in a type, and quantified variables can be instan-
tiated with a polymorphic type. Because of the last feature, MLF is
an impredicative type system.

We believe that impredicativity is very important for abstraction
and we discuss its advantages in more detail in Section 2.4. First,

1 Note that we adopt a Haskell-like notation throughout this paper, even
though we are talking about a type system that has been introduced as an
extension of ML.

we take a closer look at the difference between predicative and
impredicative instantiation. Take for example the following two
functions:

choose :: ∀α. α → α → α
id :: ∀β. β → β

Let us consider the application choose id . In a predicative system,
the type variable β of id has to be instantiated to a fresh γ, because
as an argument to choose , id cannot have a polymorphic type.
Consequently, we get:

choose id :: ∀γ. (γ → γ) → (γ → γ)

This is the type derived by GHC for example. Impredicatively, we
have a choice. We can do the same as above, but we can also
instantiate α to the polymorphic type ∀β. β → β:

choose id :: (∀β. β → β) → (∀β. β → β)

However, the choose id example immediately reveals a problem
with impredicative polymorphism: neither of the two types above
is an instance of the other. Indeed, a naı̈ve implementation of
impredicative polymorphism does not have principal types.

2.2 Principal types
A type system is said to have principal types if each expression
can be assigned a “best possible type”, of which all other types
it could have are instances. Principal types are necessary for type
inference to work efficiently, because it allows that optimal types
are inferred by looking only at a part of the program, rather than
having to perform a global analysis.

The achievement of MLF is that it restores the principal types
property even in the presence of impredicativity. It does so by
extending the type language, so that we can assign a type to
choose id of which both types above are instances. As a con-
sequence, MLF does support efficient type inference. The principal
type for choose id in MLF is

choose id :: ∀(α ≥ ∀β. β → β). α → α

The quantification on α gets a bound, meaning that it can be
instantiated only with types that are an instance of ∀β. β → β.
Instantiating α with γ → γ for a fresh γ, or with ∀β. β → β, leads
to the two types of choose id given above.

2.3 Type annotations
Type inference in MLF never invents polymorphism: whenever a
lambda-bound argument is used polymorphically, a type annotation
is required. The same holds for the Haskell implementation of
higher-ranked polymorphism.

All these systems, however, share the property that type anno-
tations are only required for programs which actually make use of
higher-ranked polymorphism. All other programs continue to work
without type annotations. Therefore, switching the underlying type
system of an ML-like language to MLF will not break any existing
programs.

2.4 Advantages of MLF
Until now, we have seen that we can handle impredicative types by
complicating the type language. We will argue in Section 2.6 that
this complication is not very serious. But first, we want to show
what we gain by having the MLF system rather than, for instance,
the Haskell implementation of higher-ranked types.

We will present two significant examples.

Function application is not a special construct Consider the
function

($) :: ∀α β. (α → β) → α → β
($) = id

defined in the Haskell prelude. This function replaces function
application, such that we can write f $ x instead of f x to denote
the application of f to x . Fixity rules in Haskell specify that $ is
right-associative and binds very weakly, whereas ordinary function
application is left-associative and binds very strongly. The operator
($) is often used to remove the need for parentheses that would
otherwise extend over large portions of code.

In the context of higher-ranked types, however, ($) in Haskell is
strictly weaker than normal function application, because the quan-
tified variables α and β in the type of ($) cannot be instantiated
to polymorphic types. We demonstrate this with the help of well-
known higher-ranked function runST , which is part of the Haskell
libraries:

runST :: ∀α. (∀γ.ST γ α) → α

This function was one of the first motivations to consider higher-
ranked types in Haskell. The function runST is used to evaluate a
stateful computation of type ST γ α, yielding a value of type α.
The computation must be independent of the parameter γ, which
ensures that the state does not escape from the computation and is
not used in other stateful computations. Values of type ST γ α are
often complex and extend over multiple lines of code, therefore it
would be tempting to write

runST $ very complicated computation

This, however, is rejected by all Haskell implementations. How-
ever, the expression

runST (very complicated computation)

is accepted. With the impredicative MLF type system, both ver-
sions work without type annotations.

This example stands for a whole class of applications of impred-
icativity which leads to less type annotations required, or actually
more programs becoming admissible. For instance,

id runST (very complicated computation)

is not possible to write in Haskell either for much the same reason
(id cannot be instantiated to runST ’s polymorphic type). In effect,
the usual abstraction mechanism of polymorphism no longer works
for higher-ranked types in Haskell. This means that the programmer
needs to define specific versions of general functions like id and ($)
for each kind of higher-rank type occurring in the program.

The special role of function application is not merely an incon-
venience to the programmer, it makes it also more difficult to prove
theorems, perform program derivations, or any kind of source-to-
source transformations. Many common transformations such as

id x ≡ x

are suddenly subject to side conditions which require looking at the
type of arguments that are involved! With MLF, neither program-
mers nor tool developers need to consider rank-n types as some-
thing special, and the usual abstraction mechanism remain valid.

Data structures over polymorphic types In a predicative system,
not only function application is special in being able to deal with
polymorphic types, also the function space type constructor (→)
takes a special role: it is the only type constructor that can be
parameterized over polymorphic types.

In an impredicative system, any parameterized datatype can be
instantiated to polymorphic types just as it can be instantiated to

monomorphic types. With MLF, we can build lists, tuples, trees, or
complex abstract datatypes such as Haskell’s IO monad which are
parametrized over a polymorphic type.

Recall the rank-2 polymorphic function runST :

runST :: ∀α. (∀γ.ST γ α) → α

In Haskell, it is not possible to place this function in a list or a pair
– both of the expressions

[runST]
(runST , ’a’)

are rejected by the Haskell type checker, and this situation cannot
be improved by providing type signatures. The reason is that the
types would have to be

[∀α. (∀γ.ST γ α) → α]
(∀α. (∀γ.ST γ α) → α,Char)

respectively, and these are just not legal in a predicative system.
With MLF as type system, both expressions are accepted.

It should be mentioned that Haskell allows to place polymorphic
values into data structures by hiding the polymorphism within a
datatype. One can define

newtype RunSTType = Pack (∀α. (∀γ.ST γ α) → α)
unPack (Pack x) = x

and then use Pack runST to store the value into a data structure,
and unPack after we extract it from the data structure.

The disadvantage of this approach is immediately obvious:
while newtype can be implemented efficiently and causes no
runtime overhead, it is very tedious to use this technique as a
programmer. Separate datatypes to pack polymorphic values are
needed for each polymorphic type.

We believe that the current situation, while theoretically no less
expressive, in practice prevents the programmer from adopting a
solution which makes use of polymorphic types. The MLF type
system encourages programmers to see polymorphic values as first-
class values in every respect, that need not be avoided and require
no special treatment.

2.5 MLF formally
After having looked at the features of the MLF system, let us
now introduce the MLF type language more formally. The MLF
type language distinguishes monomorphic types (monotypes) from
polymorphic types (polytypes). The syntax of monotypes is defined
as:

τ ::= g τ1 . . τn | α
In other words, a monotype is either an applied constructor g , or a
type variable. We assume that the binary function space constructor
(→) is among the possible constructors.

A polytype is either bottom (⊥), or a monotype quantified with
a (possibly empty) prefix Q :

σ ::=⊥ | ∀Q . τ

A Prefix is a list of constraints that associate a type variable with a
polytype. Each constraint is of the form:

(α ¦ σ)

Here, ¦ stands either for =, in which case the constraint is called
a rigid bound, or it stands for >, and then we speak of a flexible
bound.

A bound (α ¦ σ) quantifies the type variable α in the rest of
the prefix and the qualified type. The idea is that a rigid bound can
only be instantiated with exactly the type given, whereas a flexible
bound can be instantiated with any instance of the given type.

We will not describe the instance relation precisely, but will
focus on some important properties of instantiation. First of all, the
instance relation is transitive and reflexive, where every type is an
instance of ⊥ (written ⊥ v σ), thus if bottom is used in a flexible
bound, this represents ordinary unbounded quantification.

For example, the identity function has the MLF type

∀(α ≥ ⊥). α → α

We abbreviate unbounded quantification and write

∀α. α → α

instead.
We have seen a nontrivial MLF type for choose id ,

∀(α ≥ ∀β. β → β). α → α

where α can be instantiated with both ∀β. β → β itself and γ → γ
for a fresh variable γ. Formally,

∀(α ≥ ∀β. β → β). α → α v ∀(α = ∀β. β → β). α → α
∀(α ≥ ∀β. β → β). α → α v ∀γ. (γ → γ) → (γ → γ)

Bounded quantification allows us to express flexibility while at the
same time maintaining a relation between different parts of the type
that are represented by the same variable.

Rigid bounds occur whenever a function requires a polymorphic
argument, such as runST , which has MLF type

∀α (β = ∀γ.ST γ α). β → α

Here, we can not instantiate the type as a truly polymorphic type
is required. Since this restricts instantiation, we can turn flexible
bounds into rigid bounds (but not the other way around), in other
words: ∀(α ≥ σα). σ v ∀(α = σα). σ.

Besides the instance relation on types there is also an equiva-
lence relation on polytypes, written ≡. For instance, the type

∀γ. (γ → γ) → (γ → γ)

is equivalent to the more complicated

∀γ (β = γ → γ). β → β

Equivalence preserves the free type variables in a type. Each MLF
type has an equivalent normal form. The algorithm to compute the
normal form of a type is shown in Figure 1. The labels on the
bounds v can be ignored for now – they will only become rele-
vant in Section 5 when these are used for the type directed transla-
tion. The normal form algorithm basically simplifies trivial bounds
away. From the definition we can see that there are three forms of
trivial bounds: the quantified variable is bound by a monotype, the
variable does not occur in the body of the type, or if the body of the
type is itself a variable.

THEOREM 1. The normal form of a type is always equivalent to
the type itself, i.e.,

nf(σ) ≡ σ

For a more thorough explanation of the MLF theory including
the exact definitions of instantiation and equivalence, the reader is
referred to the MLF article [6] or thesis [5].

nf(τ)
.
= τ

nf(⊥)
.
= ⊥

nf(∀(α ¦v σα). σ)
.
= nf(σ) if α /∈ ftv(σ)

nf(∀(α ¦v σα). σ)
.
= nf(σα) if nf(σ) = α

nf(∀(α ¦v σα). σ)
.
= nf(σ) [α 7→ τ] if nf(σα) = τ

nf(∀(α ¦v σα). σ)
.
= ∀(α ¦v nf(σα)). nf(σ)

Figure 1. Normal form of MLF types

2.6 Presentation of MLF types
MLF types put us in a dilemma: they are nice to work with from
a theoretician’s or an implementor’s point of view, but they are
awkward to read for a programmer. The reason for both is that MLF
types, although higher-ranked, collect all the qualifiers in a prefix,
at the beginning of the type.

In some cases the normal form computation can help to simplify
the presentation of a type: if a quantified variable is bounded by a
monotype, if a variable does not occur in the body of the type, or if
the body of the type is itself a variable. But even the normal form
can still be unexpectedly verbose. For instance, the type of runST
in MLF is

∀α (β = ∀γ.ST γ α). β → α

and this type is in normal form. Yet, the originally given type

∀α. (∀γ.ST γ α) → α

would probably be considered to be much more readable by most
programmers. We therefore propose to adopt a simple heuristic
when presenting types to users in MLF-based systems:

• types are first converted to normal form,
• a flexible constraint (α ≥ σ) is inlined only if there is a single

occurrence of α in the scope of the constraint, and when that
occurrence is positive (i.e., to the right of a function arrow),

• a rigid constraint (α = σ) is inlined only if there is a single
occurrence of α in the scope of the constraint, and when that
occurrence is negative (i.e., to the left of a function arrow).

For the purpose of this heuristic, only function arrows (but no other
type constructors) influence the sign of a position. This heuristic is
loss-free: the original MLF type can easily be recovered from the
simplified type. As an example, the following explicit MLF type

∀(β = ∀α. α → α) (γ ≥ ∀α. α → α). [β] → [γ]

can be presented according to this heuristic as:

[∀α. α → α] → [∀α. α → α]

The heuristic is used in the experimental Morrow compiler [7],
which presents the above type and the type of runST in their sim-
pler form. Experience to the present day shows that it makes MLF
much easier to work with, because the bounded quantifications that
remain are the ones where the expressed sharing actually plays a
crucial role in the type. Most simple functions, however, get the
same types as they would in ML or Haskell. In the remainder of
this article we will make use of this convention.

3. Qualified types
Jones introduced the theory of qualified types [3] to generally
describe a wide range of type system extensions, ranging from ad-
hoc overloading to record operations. The main reason to consider

qualified types in conjunction with MLF is that it gives us a general
framework to easily extend MLF with features that are essential in
practice. For example, the MLF type system is simply not feasible
for languages such as Haskell if it does not support qualified types
properly, because of the prominent position of type classes in the
Haskell language.

However, qualified types have several applications beyond type
classes, and the fact that MLF proves to be compatible with qual-
ified types says that MLF is a good underlying system for all lan-
guages that support any of these features. For instance, MLF forms
the basis of the type system for the experimental Morrow lan-
guage [7], which deals with records and employs MLF in the ex-
pectation that it can use an efficient type-directed translation where
predicates correspond to runtime offsets [1].

Furthermore, we show that adding qualified types to MLF is not
just useful in its own right but can also profit from impredicative
types itself. This can lead to new applications of qualified types
that are not possible with current predicative type systems.

3.1 Predicates
Qualified types extend the type language with predicates. A quali-
fied type ∀π. σ denotes those instances of σ that satisfy the predi-
cate π. For consistency with MLF we write predicates in the same
way as bounds (instead of the more usual π ⇒ σ). The theory of
qualified types makes just few assumptions of the language of pred-
icates π, and there are many interesting instances. We discuss three
of those extensions in this paper. One of the most widely known is
the type class system in Haskell.

3.2 Type classes
A type class in Haskell denotes a family of types (instances) on
which a number of values (the member functions) are defined. Each
predicate C τ is an assertion that τ is an instance of class C . For
example, the class Eq denotes those types for which equality (= =)

is defined:

(= =) :: ∀α (Eq α). α → α → Bool

The predicate Eq α indicates that equality is not parametrically
polymorphic, but only works for those types that are an instance of
the Eq class. In other words, type classes implement ad-hoc over-
loading where functions can behave differently for different types.
This normally requires some sort of global analysis. By adding
predicates to the types, this analysis is provided automatically by
the theory of qualified types: constraints are specified locally in the
predicates of a type, and these predicates are propagated through
expressions by the type system. Take for instance the following ex-
pression:

(λα β. if (α = = β) then "yes" else "no")
:: ∀α (Eq α). α → α → String

The equality predicate of (= =) is automatically propagated to the
type of the entire expression. Operationally, we can interpret pred-
icates as extra runtime parameters that give the runtime evidence
that the predicate holds. For an Eq α predicate, this is would for
example be a dictionary that contains the implementation of the
equality function for type α.

It is not advisable to allow type schemes in type class predicates
themselves as instance resolution would become much more com-
plicated, or even undecidable. However, the combination of MLF
with type classes can still lead to new uses of overloading. This is
mostly because polymorphic functions become more useful. Take
for example a plain MLF list that contains the identity function:

xs :: [∀α. α → α]

xs = [id]

This list is not very exciting as there simply exist few functions
that have such a polymorphic type (modulo undefined values, just
the identity function). With a type class, we can assert that we
can apply certain operations to a polymorphic type. Here is a
more interesting example with a list of functions that work on any
numeric type:

let precise :: (∀α (Num α). α → α) → Bool
precise f = (f 1 6= round (f 0.9))

in map precise [id , (+1),negate, (∗2)]

This is also an example of how MLF scales with respect to pred-
icative systems: we can reuse the map abstraction on lists with
polymorphic components without having to resort to packing and
unpacking (cf. Section 2.4).

3.3 Implicit parameters
Another instance of qualified types are implicit parameters [8]. A
predicate ?x :: τ asserts that the term can access an implicit argu-
ment ?x with type τ . This reduces the burden on a programmer to
pass this argument explicitly. A typical application for implicit pa-
rameters are options that can be used inside deeply nested functions
without passing them explicitly through each call site. For example,
a pretty-printer may use the width of the screen deep inside the ren-
der function:

pretty :: ∀(?width :: Int).Doc → String
pretty doc = . . . if (i < ?width) . . .

The type signature of pretty asserts that it expects an implicit
argument width of type Int , and a normal argument of type Doc.
Implicit arguments are bound using the with keyword:

(pretty (text "hi") with ?width = 78) :: String

An interesting advantage with respect to type classes is that we can
bind an implicit argument of a certain type to different values, while
type classes only allow a single instance per type.

Of course, we may want to bind implicit arguments to polymor-
phic values. For example, we could pass monad operations as an
implicit argument instead of using overloading, as is standard in
Haskell. The function twice applies an implicit unit parameter to
its argument:

twice :: ∀m (?unit :: ∀β. β → m β) α. α → m (m α)
twice x =?unit (?unit x)

Note that we use ?unit at two different types and that the type
of ?unit must be polymorphic. Alas, the function twice will not
type check in a predicative type system as the type of the implicit
parameter predicate is instantiated to a type scheme. Here we see
that the combination of an impredicative type system like MLF
and qualified types can lead to new applications of qualified types
themselves. In the next section, we give another example of this in
the context of records.

3.4 Records
Record operations can also be elegantly typed with qualified types.
For example, the has predicate (l :: τ ∈ r) asserts that a record r
contains a particular field l of type τ . Using this predicate, we can
give a type signature for record selection:

(.l) :: ∀α r (l :: α ∈ r). r → α

The qualified type allows us to write functions that work for any
record containing a particular field. For example, the function len
works for any record containing an x and y field of type Float .

len :: ∀r (x :: Float ∈ r) (y :: Float ∈ r). r → Float
len r = sqrt (r .x ∗ r .x + r .y ∗ r .y)

Polymorphic predicates arise naturally with records. For example,
the type signature for monads m contains two polymorphic fields:

type Monad m =
{unit :: ∀α. α → m α
, bind :: ∀α β.m α → (α → m β) → m β}

We can now define the function twice with an explicit monad
record as its argument, which applies the unit field twice on its
second argument:

twice :: ∀m.Monad m → (∀α. α → m (m α))
twice r x = r .unit (r .unit x)

As before, twice uses the unit field polymorphically at two differ-
ent types. The selection of unit from r gives rise to the predicate
unit :: ∀α. α → m α ∈ Monad m . This predicate obviously
holds, but it is just not allowed in a predicative type system: the
field type of the has predicate is instantiated here to a type scheme,
and thus requires impredicative predicates. Record systems based
on lacks predicates [1] suffer from the same problem as the record
type in the predicate is instantiated with a record containing type
schemes.

3.5 Qualified types and MLF
Since MLF is already based on bounded quantification, it is rela-
tively easy to extend the theory of MLF with qualified types. First
of all, we allow predicates to occur together with the bounds in a
prefix. Besides extending the equivalence relation we just need to
add two new instance rules for predicates:

(Q) σ v ∀π. σ
Q `̀ π

(Q) ∀π. σ v σ

The first rule states that we make a type less polymorphic by
adding a qualifier. The second rule goes in the other direction: if
a predicate is entailed by the context, we can leave it out. Note
that we generalize the entailment relation of the theory of qualified
types to work under a prefix Q instead of a set of predicates.

4. Evidence translation
Qualified types are usually implemented using a technique called
evidence translation. During evidence translation, implicit infor-
mation represented by the predicates is turned into explicit function
arguments. The compiler automatically abstracts from and provides
evidence where necessary. In Section 4.1, we show how to use
evidence translation for different sorts of qualified types. In Sec-
tion 4.2, we discuss why a naı̈ve evidence translation for MLF fails.
We then describe how to overcome this problem in Section 4.3.
This section contains the core idea of our translation, which is made
precise in Section 5.

4.1 Examples of evidence translation
All three of the applications of qualified types discussed in the
previous section can be translated in this fashion.

With type classes, the class constraints are turned into dictio-
nary arguments. Dictionaries are records containing all the meth-
ods of a class. For instance, a dictionary for Eq Int contains the

equality and unequality functions for Int , because the Eq class in
Haskell has precisely these two methods.

Whenever a let-defined value is overloaded, i.e., has a class
constraint, its translation expects an additional argument, namely
the dictionary. And whenever an overloaded function is called, the
compiler supplies the appropriate dictionary argument.

For implicit parameters, the situation is simpler than for type
classes, as the evidence consists of only a single value, the implicit
parameter itself. When dealing with records, the evidence of a has
constraint of the form (l :: τ ∈ r) can be the offset of label l in
record r .

In the following, we investigate how we can perform evidence
translation in a system based on MLF.

4.2 Evidence in MLF
When adding qualified types to MLF, it is relatively straightforward
to extend the type rules in order to deal with predicates. However,
higher rank and impredicativity makes it non-trivial to perform
evidence translation. Consider the following four lists:

xs1 = [] :: ∀α. [α]
xs2 = const : xs1 :: [∀α β. α → β → α]
xs3 = min : xs2 :: [∀α (Ord α). α → α → α]
xs4 = (<) : xs3 :: [Bool → Bool → Bool]

where we assume:

const :: ∀α β. α → β → α
min :: ∀α (Ord α). α → α → α
(<) :: ∀α (Ord α). α → α → Bool

Each of the lists is obtained from the previous one by adding one
additional element in the front, using the ‘cons’-operation that is
written (:) in Haskell. With each of the additions, the type of the
list changes.

All the lists contain elements that are polymorphic. The types
are thus different from the types that Haskell would assign. In fact,
the Haskell types of the four lists would be

xs1 :: ∀α. [α]
xs2 :: ∀α β. [α → β → α]
xs3 :: ∀α (Ord α). [α → α → α]
xs4 :: [Bool → Bool → Bool]

all instances of the MLF types given above. However, the Haskell
types of x2 and x3 are strictly less general than their MLF counter-
parts. With the MLF types, we can extract elements from the lists
and use them polymorphically; with the Haskell types, we cannot.
Consider a function

let f ys = (head ys 2 3, head ys ’a’ ’b’) in f xs2

as an example of a function which could not be typed (be it anno-
tated or not) in Haskell, because it really requires the more general
impredicative MLF type of xs2.

The evidence translation of each of the lists in Haskell is easy,
because evidence is only passed on the outside of a let-bound term.
We can represent the lists at runtime as follows:

xs∗1 = Λα. []∗ α
xs∗2 = Λα β. const∗ α β : xs∗1 (α → β → α)
xs∗3 = Λα. λordα.min∗ α ordα : xs∗2 α α
xs∗4 = (<)∗ Bool ordBool : xs∗3 Bool ordBool

Here, x∗ denotes the runtime term corresponding to the source term
x . We are using System F as the runtime language in this paper,
because it is sufficiently powerful to express the programs we are

xs∗1 = Λγ. []∗ γ
xs∗2 = Λγ. λ(v2 :: (∀α β · α → β → α) → γ). v2 const∗ : xs∗1 γ
xs∗3 = Λγ. λ(v3 :: (∀α (Ord α) · α → α → α) → γ). v3 min∗ : xs∗2 γ (λx . v3 (Λα. λordα. x α α))
xs∗4 = (<)∗ Bool ordBool : xs∗3 (Bool → Bool → Bool) (λx . x Bool ordBool)

Figure 2. Idea of the evidence translation for MLF with qualified types

interested in, and it is fully typed; it is thus easy to see that the
evidence translation produces well-typed terms. To retain clarity,
however, we have omitted the type arguments of the (:) calls as
well as the annotations for the dictionary arguments, because they
are uninteresting to the example at hand.

This runtime representation is, however, not adequate if we want
to use the MLF types above, because in order to extract a value from
such a list, we must first provide evidence fixing the type and the
dictionary. This way, xs2 cannot be used in function f above.

What we want is a representation of the lists where each element
accepts the evidence, “within” the list. For instance,

xs∗2 = [Λα β. const∗ α β]
xs∗3 = [Λα. λordα.min∗ α ordα, Λα. λordα. const∗ α α]

In xs3, both elements now accept evidence for Ord α, but only
min makes use of it. All list elements must have the same runtime
representation, because they are of the same type.

But xs3 = = min : xs2, so there must be a way to construct
xs∗3 from xs∗2! Similarly, we have to construct xs∗4, which as a
monomorphic list should still have the same representation as given
above, from xs∗3. In this simple situation, we could map over xs2,
parametrizing each element with an Ord α-dictionary that is not
used, and also map over xs3, providing evidence for Ord α by
supplying the ordBool dictionary. But in the general case, very
complicated traversals of runtime values might be required, that are
both difficult to get correct and inefficient to perform. Interestingly,
Peyton Jones and Shields have identified this problem in their
discussion of design decisions, and argue that the necessity of such
traversals makes impredicative datatypes infeasible [11, Section
7.3].

4.3 Evidence translation using transformation functions
We are now going to present a variation of the standard evidence
translation that overcomes the problem of traversing data structures
in complicated ways at runtime. The variation presented here is the
basis of the evidence translation that is described formally in the
context of MLF type inference in Section 5.

Recall that the problem with the original approach is that the
runtime representation of values is too static: if we learn more
about the type of a polymorphic value, we may have to traverse the
data structure to fix the representation that has been chosen prema-
turely. Rather than to fix things afterwards, our idea is to build the
necessary flexibility into the runtime representation of values from
the beginning. The core idea of our evidence translation for MLF
is that polymorphic values, rather than being parametrized over a
fixed amount of evidence, are parametrized over a transformation
function. By passing a suitable transformation function to a poly-
morphic value, we can change the amount of evidence it expects.

In particular, if we learn enough about a value that it becomes
monomorphic, we can supply a transformation function which pro-
vides all evidence and thus removes all polymorphism. Often, how-
ever, we gain only partial information about a polymorphic type,
such that two quantified variables must be the same. In such a case
we have to chain transformation functions: we supply a transforma-
tion which applies the knowledge gained and subsequently calls a

new transformation function. In effect, we thus substitute one trans-
formation with a new one, more specific than the first.

Applying this idea, the runtime representations of the four lists
become as shown in Figure 2. Again, we have omitted irrelevant
annotations for (:) and dictionary arguments. To understand these
representations, it is useful to look at the real MLF types of the
lists – not using the presentation convention that we defined in
Section 2.5:

xs1 :: ∀(α ≥ ⊥). [α]
xs2 :: ∀(γ ≥ ∀α β. α → β → α). [γ]
xs3 :: ∀(γ ≥ ∀α (Ord α). α → α → α). [γ]
xs4 :: [Bool → Bool → Bool]

A non-trivial flexible bound (γ ≥ σ) is at runtime represented by
an additional parameter of type σ∗ → γ, where σ∗ is the runtime
representation of σ. This parameter can be used to add, remove,
or modify evidence deep down in the value, as is required by the
MLF type system. In particular, from xs2 to xs3, we transform xs2

to accept evidence for Ord α which is ignored. And from xs3

to xs4 we pass evidence for Ord Bool to xs3. These two steps
correspond to the instance rules that we have given for qualified
types in Section 3.5. Note that the list xs4 is no longer polymorphic,
and does thus not expect any further transformation function.

In this simple example, the passing of transformation functions
essentially amounts to mapping over the list multiple times, but in
the general situation, we can apply exactly the same technique to
perform complex transformations at low cost.

Note that we are actually only interpreting the concept of ev-
idence translation in a more rigorous way. The additional trans-
formation functions that are passed around are evidence on their
own: evidence for the fact that quantified types indeed respect their
bounds!

The actual translation that we introduce in the following section
passes a few more arguments for technical reasons, which will,
however, all be instantiated to identity functions. A clever compiler
can easily optimize the generated expressions statically to pass
evidence and evidence transformers only where they are actually
needed, i.e., where bounded quantifications occur in the types.

5. Type inference for MLF
In this section, we present the type-inference algorithm taken from
the MLF paper [6], augmented with a type-directed translation that
produces a System-F term (also called runtime term) from an MLF
term.

5.1 Runtime types
The difference between a term and its translation is that the transla-
tion is fully type-annotated, and that evidence is passed explicitly.
Since the evidence that is required is dictated by the MLF types, it
is not surprising that the types of the translated System-F terms are
directly related to the types of the original MLF terms.

Figure 3 shows how a System-F type σ∗ can be computed from
an MLF type σ. We call σ∗ the runtime type of σ. The definition is
organized in such a way that the following property holds:

τ∗
.
= τ

⊥∗ .
= ∀α · α

(∀(α ¦v σα). σ)∗
.
= σ∗ if α /∈ ftv(σ)

(∀(α ¦v σα). σ)∗
.
= σ∗α if nf(σ) = α

(∀(α ¦v σα). σ)∗
.
= σ∗ [α 7→ τ] if nf(σα) = τ

(∀(α ¦v ⊥). σ)∗
.
= ∀α · σ∗

(∀(α ¦v σα). σ)∗
.
= ∀α · (σ∗α → α) → σ∗

Figure 3. Translation of types

THEOREM 2. The runtime type of an MLF type σ is the runtime
type of its normal form2, i.e.,

σ∗ = (nf(σ))∗

The translation of a monotype τ is τ itself. No qualified types
can occur in monotypes, neither is there polymorphism, so we
can safely reuse τ , which is a valid System-F type. The type ⊥
is mapped to ∀α · α.

When dealing with bounds, most cases are dictated by the de-
sired property given by Theorem 2. The next three cases are there-
fore directly based on the corresponding rules for normalization.

A constraint for a variable that does not occur in the rest of
the type is irrelevant and can be dropped. No evidence is required,
because it would not be used anyway. If we have a type ∀(α ¦v
σα). σ where nf(σ) = α, then the type is equivalent to σα, and
we can use the runtime representation of σα. Each monotype τ
in MLF has the property that only τ itself is an instance of τ .
Since we already argued that there is no need for evidence in
relation to monotypes, we can inline a constraint where the bound
is equivalent to a monotype.

The final two cases deal with non-trivial bounds. In the case
of an unbounded quantification, we introduce a quantification in
System F as well. Because any type argument will do, no further
information is required. This is different in the final case:

(∀(α ¦v σα). σ)∗
.
= ∀α · (σ∗α → α) → σ∗

It shows that any bound that does not match any of the other cases
is represented using a function argument. The argument provides
evidence for the bound: for a flexible bound, it demonstrates that α
is indeed an instance of σα by giving a transformation from any σ∗α
value into an α value; for a rigid bound, the argument demonstrates
that α is equivalent to σα.

For the type inference algorithm to be correct, it must supply
well-behaved functions for evidence parameters. The transforma-
tion functions may provide, remove, or reorder evidence, but not
add any computation beyond that. As an example of the type trans-
lation, consider the type of xs2 from Section 4:

∀(γ ≥ ∀α β. α → β → α). [γ]

Let σγ = ∀α β. α → β → α. Then ∀(γ ≥ σγ). [γ] matches the
last case in the definition of ()∗, hence its translation is

∀γ · (σ∗γ → γ) → [γ]∗

The type [γ] is a monotype, its translation is thus also [γ]. It
remains to translate σγ . The quantifications on α and β are un-
bounded, and abbreviations for (α ≥ ⊥) and (β ≥ ⊥). The next

2 Recall that Figure 1 describes how to compute the normal form of an MLF
type.

app(τ)
.
= •

app(⊥)
.
= • (∀α · α)

app(∀(α ¦v σα). σ)
.
= app(σ) if α /∈ ftv(σ)

app(∀(α ¦v σα). σ)
.
= app(σα) if nf(σ) = α

app(∀(α ¦v σα). σ)
.
= app(σ) if nf(σα) = τ

app(∀(α ¦v ⊥). σ)
.
= app(σ) [• α]

app(∀(α ¦v σα). σ)
.
= app(σ) [• α v]

abs(τ)
.
= •

abs(⊥)
.
= Λα. •

abs(∀(α ¦v σα). σ)
.
= let α 7→ σ∗α; v 7→ I α in abs(σ) if α /∈ ftv(σ)
.
= let α 7→ σ∗α; v 7→ I α in (abs(σα)[abs(σ)]) if nf(σ) = α
.
= let α 7→ σ∗α; v 7→ I α in abs(σ) if nf(σα) = τ

abs(∀(α ¦v ⊥). σ)
.
= Λα. let v 7→ λx . x α in abs(σ)

abs(∀(α ¦v σα). σ)
.
= Λα. λ(v : σ∗α → α). abs(σ)

Figure 4. Type-directed application and abstraction

to last case matches twice, hence σ∗γ = ∀α β · α → β → α, and
consequently

∀γ · ((∀α β · α → β → α) → γ) → [γ]

If we return to the runtime representation given for x2 in Figure 2,
namely

Λγ. λ(v2 :: (∀α β · α → β → α) → γ). (v2 const∗ : xs∗1 γ)

we see that it indeed has precisely this System-F type.
In the term translation we refer to runtime evidence by name,

like the v2 in the above example. In the translation algorithm we
therefore make use of labeled prefixes where each bound is labeled.
The runtime evidence for a bound (α ¦v σ) is now defined by the
name v with type (σ∗ → α). Of course, the labels are assigned
internally by the compiler and are never exposed to the user. Fur-
thermore, just like the names of quantifiers can be alpha-converted
within a polytype σ, the labels associated with the bounds of the
quantifiers can be converted as well, and we assume that this is im-
plicitly done in such a way that all bound variables and all labels in
a prefix are always distinct.

A slight complication to the translation algorithm is that we do
not pass evidence for trivial bounds that are removed by normal-
izing the type. The type inference algorithm therefore makes use
of two helper functions app and abs, given in Figure 4, that sup-
ply evidence parameters or abstract from evidence. Both functions
turn an MLF type into a context that can be filled with a proper
System-F term.

The function app supplies evidence arguments for a term of
type σ. It is structured exactly like the cases of type translation
and it behaves uniformly over normalized types:

app(σ) = app(nf(σ))

Furthermore, we can check that it always supplies type-correct
evidence for non-trivial bounds:

e∗ :: (∀Q . τ)∗ ⇒ app(∀Q . τ)[e∗] :: τ∗

The interesting cases for app are again the last two cases. For
an unconstrained bound (α ¦v ⊥) we pass the type parameter α.
This is the same as in a standard translation from Hindley-Milner

types to System F. The last case supplies evidence for a non-trivial
bound (α ¦v σ). As signified by the label, the evidence is bound
in the environment by the name v , and we simply pass the type
parameter α and the evidence v .

The abstraction function abs abstracts from evidence for non-
trivial bounds, and binds the names and types of all trivial bounds.
Again, this function is structured exactly like type translation and
app. However, it does not behave uniformly over normalized types
since it explicitly binds the names of non-trivial bounds that are
eliminated during normalization. As we will see in the unification
algorithm, the function abs is always used under a certain prefix. If
a term e has a translation term e∗ of type τ∗ under a prefix Q , then
abs can lift it to the type (∀Q . τ)∗. More formally:

abs(∀Q . τ)[e∗] :: (∀Q . τ)∗

The abstraction algorithm needs to bind all evidence names and
types in the prefix. Trivial bounds can be satisfied in only one
way, we therefore substitute their labels and type arguments. It
makes no sense to abstract over trivial evidence, we rather provide
it immediately.

Non-trivial bounds, however, are lambda bound, and have to be
supplied later.

The first two cases on monomorphic types and ⊥ have nothing
to abstract. The next three cases deal with trivial bounds. The
first of these three deals with a dead binding α /∈ ftv(σ). It is
safe to treat α as σα, and to bind the evidence v to an identity
transformation. We use the notation let v 7→ e in x to denote the
substitution of v by e in the System-F term x . The next case is a
direct substitution where α can be bound to σα itself, and where v
is again an identity transformation. The last trivial bound concerns
monomorphic types where the evidence can also be bound to an
identity since τ∗ = τ .

The final two cases of abstraction handle non-trivial bounds
where the evidence is passed at runtime. The unconstrained bound
(α ¦v ⊥) just abstracts over the type argument α – the runtime
evidence v is bound to a function that passes α as any type is
trivially an instance of ∀α · α. As apparent from the corresponding
rule in app, the bound (α ¦v σα) gets full evidence passed: both
the type argument α and the runtime evidence v are lambda bound,
where v is bound to a function that transforms a type σ∗α to its
instantiation type α.

5.2 Type inference
We are now in the position to present the type inference algorithm
for MLF, extended with type-directed translation, as shown in
Figure 5. The expression Q |Γ ` e : (Q ′, σ) Ã e∗ infers for a
given expression e , under a prefix Q and type environment Γ a type
σ that holds under prefix Q ′. Furthermore, it derives a translated
System-F term e∗. Note that the algorithm is exactly the same as the
standard type inference algorithm of MLF modulo the translation
terms.

THEOREM 3. The type inference algorithm in Figure 5 derives a
well-typed translation term:

Q |Γ ` e : (Q ′, σ) Ã e∗ ⇒ e∗ :: σ∗

This can be proved by induction on the structure of types.
Usually, Hindley-Milner based type inference algorithms infer

a type under a certain substitution. With MLF, the prefix subsumes
the role of the substitution. In the prefix, type variables can be
bound to monomorphic and polymorphic types. The type environ-
ment Γ is standard and maps term variables x to polymorphic types
σ. The environment Γ is extended with a variable x as Γ, x :: σ,

(inf-var)
x : σ ∈ Γ

Q |Γ ` x : (Q , σ) Ã x

(inf-let)

Q |Γ ` e1 : (Q1, σ1) Ã e∗1
Q1 | (Γ, x : σ1) ` e2 : (Q2, σ2) Ã e∗2

Q |Γ ` (let x = e1 in e2) : (Q2, σ2) Ã
(λ(x : σ∗1). e∗2) e∗1

(inf-app)

fresh(v ,w , u, α, β, γ)
Q |Γ ` e1 : (Q1, σ1) Ã e∗1
Q1 |Γ ` e2 : (Q2, σ2) Ã e∗2

Q ′ = (Q2, α ≥v σ1, β ≥w σ2, γ ≥u ⊥)
(Q ′) α ∼ β → γ : (Q3,L)

(Q4,Q5) = Q3 ↑ dom(Q) σ = ∀Q5. γ
e∗ = abs(σ)[L in (v e∗1) (w e∗2)]

Q |Γ ` (e1 e2) : (Q4, σ) Ã e∗

(inf-lam)

fresh(v ,w , α, β)
(Q , α ≥v ⊥) | (Γ, x : α) ` e : (Q1, σ1) Ã e∗

(Q2,Q3) = Q1 ↑ dom(Q)
σ = ∀(Q3, β ≥w σ1). α → β
f ∗ = abs(σ)[λ(x : α).w e∗]

Q |Γ ` (λx . e) : (Q2, σ) Ã f ∗

Figure 5. Type inference

where the new binding of x shadows a previous binding of x in Γ.
Initially, both the prefix Q and the environment Γ are empty.

The rule (inf-var) infers the type of a variable x by simply look-
ing up the type in the environment. The translated term is just x and
the prefix is unchanged. The rule (inf-let) is also straightforward:
it infers the type for the let bound expression e1 and then for the
body e2 with x bound to the inferred type of e1. The translated term
is phrased as lambda expression since the System-F language has
no let bindings. The rule for let bindings is much more involved in
Hindley-Milner systems as it is the one place where generalization
to polymorphic types takes place. In contrast, in MLF generaliza-
tion is performed as part of the rules for application and lambda,
hence no special actions are necessary for let bindings.

The rule for application (inf-app) first infers the types for the
function e1 and the argument e2. After that, it extends the prefix
with fresh bindings for those types and unifies them using the
unification algorithm shown in Figure 7. The unification algorithm
is the core of MLF and we discuss this in depth in the next section.
For now, it is sufficient to know that the expression (Q) τ1 ∼ τ2 :
(Q ′,L) unifies two monomorphic types τ1 and τ2 under prefix Q ,
returning a new prefix Q ′ such that (Q ′) τ1 ≡ τ2. It also returns an
evidence substitution L which is explained in the next paragraph.
Since the MLF inference algorithm infers polymorphic types, it
must generalize the result type γ. Generalization works by splitting
the prefix resulting from unification (Q3) under the domain of
original prefix Q in the prefixes (Q4,Q5). The generalized type
σ of the application is simply (∀Q5. γ) under the prefix Q4. See
Appendix A for a definition of the split function.

The translation of the application terms is more involved. First
of all, we need to use the translated term e∗1 and e∗2 at their in-
stantiated types, namely α and β. Fortunately, as apparent from the
bounds in Q ′, the runtime evidence for the conversion from σ∗1 to
α is given by v , and w gives the evidence for σ∗2 → β. A well-
typed translated application is now given by (v e∗1) (w e∗2). Of
course, we must be careful to ensure that the names v and w are
actually bound somewhere. As we saw in the previous section, the
abstraction function binds all evidence of a certain σ. In our case,
abs(σ)[(v e∗1) (w e∗2)] binds all evidence in Q5. Since we work

(update)

(Q1, (Q3, α ¦v σ0,Q4)) = Q ↑ ftv(σ)

(¦v = (>)) ∨ ((Q) σ0 @−? σ) fresh(w)
L′ = let v 7→ w ◦ f in L

(Q ,L) C (α ¦ σ)f
.
= ((Q1Q3, α ¦w σ,Q4),L′)

(merge)

((Q1, α1 ¦v1 σ,Q2, α2 ¦v2 σ,Q3) = Q ∨
(Q1, α2 ¦v2 σ,Q2, α1 ¦v1 σ,Q3) = Q)

Q ′ = (Q1, α1 ¦v1 σ, α2 =w α1,Q2Q3) fresh(w)

(Q ,L) C (α1 ∧ α2)
.
= (Q ′, let v2 7→ w ◦ v1 in L)

Figure 6. Update and merge

under prefix Q4 all evidence in Q4 and Q5, i.e., Q3 is bound. How-
ever, we took v and w from Q ′ and we can not be sure that Q3

is equal to Q ′. That is where the evidence substitution L resulting
from unification comes into play: the evidence substitution L is a
finite map (written as a sequence of let-bindings) from labels to
actual conversion functions that defines all evidence in Q ′ in terms
of evidence in Q3. By applying L to the translated application, we
get a well-formed System-F term: abs(σ)[L in (v e∗1) (w e∗2)].

The inference rule for lambda expression (inf-lam) infers a type
for the body e under the assumption that argument x has type
α, where the bound on α is unconstrained (α ≥v ⊥). Again, it
generalizes the result type by splitting the inferred prefix of the
body Q1 under the original prefix Q in the prefixes (Q2,Q3).
The inferred type of the lambda expression σ is now ∀(Q3, β ≥w

σ1). α → β. This nicely shows that the result of the lambda
expression can be polymorphic itself. As a practical example, the
inferred type of the const function in MLF is:

(λx . λy . x) :: ∀α. α → (∀β. β → α)

The translated term for a lambda expression uses the evidence w
to instantiate the term e∗ of type σ∗1 to β, resulting in the term
(λ(x : α).w e∗) :: (α → β). The abstraction function on σ binds
all evidence in (Q3, β ≥w σ1) and returns a well-formed System-F
term of type σ∗, namely abs(σ)[λ(x : α).w e∗].

5.3 Update and merge
Before we can describe the unification algorithm, we define two
helper functions (update) and (merge) shown in Figure 6. These
functions are used by unification and are the only functions that
change the unification prefix. A consequence is that these are the
only functions that change the evidence substitutionL. Note that up
to the evidence substitution, the (update) and (merge) algorithms
are exactly the same as the standard MLF algorithms.

The expression (Q ,L) C (α ¦ σ)f updates the prefix Q and
evidence substitution L returning a pair (Q ′,L′) where Q ′ is the
updated prefix, and where L′ is the updated evidence substitution.
As defined in Figure 6, the update operation updates the bound
(α ¦v σ0) ∈ Q with the bound (α ¦w σ). It also prevents the
update of rigid bindings with a less polymorphic type through the
abstraction check algorithm (Q) σ0 @−? σ, which is described in
the thesis of Le Botlan [5].

Since the bound of v disappears from the prefix, we need to bind
it in the evidence substitution L. The evidence term for v must have
type σ∗0 → α. Since the newly bound evidence w has type σ∗ → α,
we just need a runtime function of type σ∗0 → σ∗ to be able to bind
the evidence v in terms of the new prefix. This function f is passed
with the update expression as a subscript of the new bound and will
be constructed during unification. Therefore, we can substitute all
occurrences of evidence v by the term w ◦ f .

The merge expression (Q ,L) C (α1 ∧ α2) merges the equal
bounds of two type variables α1 and α2 in the prefix Q and

(uni-var) (Q) α ∼ α : (Q , ε)

(uni-con)

(Qi−1) τi ∼ τ ′i : (Qi,Li) for i ∈ 1..n
L′ = Ln in . . . in L1

(Q0) g τ1 . . . τn ∼ g τ ′1 . . . τ ′n : (Qn,L′)

(uni-mvar-l)

(α ¦v σ) ∈ Q σ ∈ V
(Q) τ ∼ nf(σ) : (Q ′,L)

(Q) τ ∼ α : (Q ′,L)

(uni-mvar-r)

(α ¦v σ) ∈ Q σ ∈ V
(Q) nf(σ) ∼ τ : (Q ′,L)

(Q) α ∼ τ : (Q ′,L)

(uni-mono-r)

(α ¦v σ) ∈ Q τ /∈ A σ /∈ V
α /∈ dom(Q / τ)

(Q) σ ∼m τ : (Q0,L0, f)
(Q1,L1) = (Q0,L0) C (α ¦ τ)f

(Q) α ∼ τ : (Q1,L1)

(uni-mono-l)

(α ¦v σ) ∈ Q τ /∈ A σ /∈ V
α /∈ dom(Q / τ)

(Q) σ ∼m τ : (Q0,L0, f)
(Q1,L1) = (Q0,L0) C (α ¦ τ)f

(Q) τ ∼ α : (Q1,L1)

(uni-poly)

(α1 ¦v1 σ1) ∈ Q (α2 ¦v2 σ2) ∈ Q
α1 6= α2 σ1 /∈ V σ2 /∈ V

α1 /∈ dom(Q / σ2) α2 /∈ dom(Q / σ1)
(Q) σ1 ∼p σ2 : (Q0, σ0,L0, f1, f2)
(Q1,L1) = (Q0,L0) C (α1 ¦ σ0)f1

C (α2 ¦ σ0)f2
C (α1 ∧ α2)

(Q) α1 ∼ α2 : (Q1,L1)

Figure 7. Monomorphic unification

(mono-bot) (Q) ⊥ ∼m τ : (Q , ε, λx . x τ∗)

(mono-poly)

∀Q1. τ1 = σ1

(QQ1) τ1 ∼ τ : (Q2,L)
(Q3,Q4) = Q2 ↑ dom(Q) σ = ∀Q4. τ
fσ∗1→τ∗ = λeσ∗1 . abs(σ)[L in app(σ1)[e]]

(Q) σ1 ∼m τ : (Q3,L, f)

Figure 8. Mono-poly unification

(poly-bot-l) (Q) ⊥ ∼p σ : (Q , σ, ε, λx . x σ∗, I σ∗)

(poly-bot-r) (Q) σ ∼p ⊥ : (Q , σ, ε, I σ∗, λx . x σ∗)

(poly-poly)

∀Q1. τ1 = σ1 ∀Q2. τ2 = σ2

disjoint(dom(Q), dom(Q1), dom(Q2))
(QQ1Q2) τ1 ∼ τ2 : (Q0,L)

(Q3,Q4) = Q0 ↑ dom(Q) σ = ∀Q4. τ1

fσ∗1→σ∗ = λeσ∗1 . abs(σ)[L in app(σ1)[e]]
gσ∗2→σ∗ = λeσ∗2 . abs(σ)[L in app(σ2)[e]]

(Q) σ1 ∼p σ2 : (Q3, σ,L, f , g)

Figure 9. Poly unification

evidence substitution L, returning an updated prefix and evidence
substitution as a pair (Q ′,L′). Since the evidence v2 disappears,
we redefine it in terms of the new evidence w and v1. Since the
evidence w transforms α1 → α2 and v1 transforms σ∗ → α1, we
can substitute all occurrences of the evidence v2 by the term w ◦v1.

5.4 Unification
The algorithm for unification (∼) is defined in Figure 7 and makes
use of the helper functions for mono-poly unification (∼m) defined
in Figure 8 and poly unification (∼p) defined in Figure 9. Again,
the unification algorithm is exactly like that of MLF modulo the
evidence translation. Also, we have specialized the poly unification
where one argument is a mono type to the mono-poly unification
for ease of presentation.

As stated before, the expression (Q) τ1 ∼ τ2 : (Q ′,L) uni-
fies two monomorphic types τ1 and τ2 under prefix Q , returning
a new prefix Q ′ such that τ1 and τ2 are equivalent under Q ′, i.e.,
(Q ′) τ1 ≡ τ2. The evidence substitution L binds all evidence of
Q in terms of evidence in Q ′. The unification essentially follows
the structure of standard first-order unification, except that compu-
tation of the unifier is replaced by the computation of a unifying
prefix. Furthermore, we need to do extra work for variables bound
to polymorphic types.

During unification, we frequently have to perform a kind of
“occurs check”, using the notation α /∈ dom(Q / σ), where
dom(Q / σ) is defined in Appendix A.

The first rule states that equal variables unify with an unchanged
prefix and an empty evidence substitution. Constructors unify if
all their arguments unify. The rules (uni-mvar-l) and (uni-mvar-r)
unify bounds that are variables themselves. The next two rules,
(uni-mono-l) and (uni-mono-r) unify monomorphic types with a
possibly polymorphic bound using mono-poly unification and up-
date the bound of α to the monomorphic type τ . The last rule uni-
fies two polymorphic bounds using poly unification, updating and
merging the bounds of α1 and α2 with the possibly polymorphic
type σ that is a common instance of their bounds.

The poly unification (∼p) algorithm is defined in Figure 9.
The expression (Q) σ1 ∼p σ2 : (Q ′, σ,L, f , g) unifies two
polymorphic types σ1 and σ2 under prefix Q . The algorithm as-
sumes that σ1 and σ2 are in constructed form. The constructed
form is a weak form of a normalization that just reveals the struc-
ture of polymorphic type [6], given in Appendix A. Poly unifica-
tion returns a new prefix Q ′ under which the type σ is a com-
mon instance of σ1 and σ2. Furthermore, poly unification returns
an evidence substitution and two translations functions: f of type
σ∗1 → σ∗, and g of type σ∗2 → σ∗. The latter functions are used
by the (uni-poly) rule to update the bounds. The first two rules
(poly-bot-l) and (poly-bot-r) unify with unconstrained bounds and
return trivial transformations. Things become more interesting in
rule (poly-poly) where two non-trivial polymorphic types are uni-
fied.

The algorithm is exactly like that of MLF: first it instantiates
both types and than generalizes over the result. The interesting part
is formed by the construction of the evidence transformers f and g .
The transformer f must have the runtime type σ∗1 → σ∗, and thus
takes a runtime term e of type σ∗1 . The term is instantiated to type
τ1 by using the app(σ1) function. After binding the evidence under
Q0 using the evidence substitutionL resulting from the mono unifi-
cation, we can use abstraction over σ to transform to a runtime term
of type σ∗, namely fσ∗1→σ∗ = λeσ∗1 . abs(σ)[L in app(σ1)[e]].
The construction of g is equivalent. Note that we rely essentially
here on the law that app(σ) = app(nf(σ)), otherwise we could
not work on the constructed forms required by the poly unification.

The mono-poly unification is basically just a specialization of
poly unification where one argument is a monomorphic type. Just

(∀(πv). σ)∗
.
= π∗ → σ∗

app(∀(πv). σ)
.
= app(σ) [• v]

abs(∀(πv). σ)
.
= λ(v : π∗). abs(σ)

Figure 10. Qualified type translation, application, and abstraction

simplify(Q , τ)
.
= (τ, ε)

simplify(Q ,⊥)
.
= (⊥, ε)

Q `̀ π Ã e∗ (σ′,L) = simplify(Q , σ)

simplify(Q , ∀(πv). σ)
.
= (σ′, let v 7→ e∗ in L)

(σ′,L) = simplify(Q , σ)

simplify(Q , ∀Q ′. σ)
.
= (∀Q ′. σ′,L)

Figure 11. Simplification

like poly unification, it expects its arguments in constructed form.
Instead of two functions that transform to a common instantiation,
mono-poly unification just returns a single evidence transformer
f of type σ∗ → τ∗, which is the main reason for creating a
specialized instance of poly unification.

6. Adding predicates
With all the evidence machinery in place, we can now add evidence
translation for qualified types. Since we store predicates as part of
the prefix, we only need to extend the definitions of type transla-
tion ()∗, evidence application app, and evidence abstraction abs
as shown in Figure 10. We assume here that each language of pred-
icates comes with a suitable translation function from predicates π
to runtime evidence of type π∗.

Picking up the examples from Section 4.1, a type class C
could be represented by a proper runtime dictionary of type C ∗

that contains the member functions of C . An implicit argument
predicate (?x :: σ) is represented by a function of the same type:
(?x :: σ)∗ = σ∗. As a final example, a has predicate (l :: α ∈ r)
for records could be represented by the runtime offset of l in r , in
other words, (l :: α ∈ r)∗ = Int .

There is one other place where we have to change the unifi-
cation algorithm. In the (update) function (Figure 6), the abstrac-
tion check verifies if the new bound is polymorphic enough. The
abstraction check algorithm needs to take predicates into account,
namely, it must test if the two type schemes contain exactly the
same predicates. Fortunately, predicates come with an entailment
relation (`̀) that make this easy to verify. Since the type schemes
in the abstraction check are already in an instance relation, we can
consider two predicate sets equal when each predicate set entails
the other.

Normally, an implementation of qualified types performs sim-
plification where constant predicates are resolved to known evi-
dence. For example, once a predicate Num α is instantiated to
Num Int , we can eliminate the predicate and supply constant evi-
dence at runtime. We assume that the language of predicates comes
with an entailment relation that derives the evidence e of a predi-
cate π under a prefix Q :

Q `̀ π Ã e

For example, the expression Q `̀ Num Int Ã numInt asserts
that we can derive evidence numInt that Num Int holds under

some prefix Q . The derived evidence is in this case the runtime
dictionary of the Num class for Int . Of course, the entailment
relation should only derive well-typed evidence terms:

Q `̀ π Ã e ⇒ e :: π∗

Since the entailment works under a prefix instead of a set of pred-
icates, this also allows for a satisfactory treatment of improve-
ment [4], but a full discussion is beyond the scope of this paper.

Using the entailment relation, we can define a simplifica-
tion algorithm for types, as shown in Figure 11. The expression
simplify(Q , σ) simplifies σ under prefix Q . It returns a pair of a
simplified type σ′ and an evidence substitution L. The evidence
substitution will bind the evidence of predicates that are resolved
during simplification. We assume that the argument to simplify is
in normal form. The first two cases deal with mono types and ⊥.
The next case uses the entailment relation to simplify a resolved
predicate. The evidence substitution is extended with the derived
evidence for the predicate π. Since we work on normal forms, the
final case simply ignores a bound and leaves the type as it is.

The type inference algorithm is now extended with the rule
(simplify) that can be applied at any time to simplify the type of
an expression.

(simplify)

Q |Γ ` e : (Q ′, σ1) Ã e∗

(σ2,L) = simplify(Q ′, nf(σ1))
e∗2 = abs(σ2)[L in app(σ1)[e

∗]]

Q |Γ ` e : (Q ′, σ2) Ã e∗2

We use the abstraction and application algorithm to construct a
well-typed runtime term with the simplified type, where the ev-
idence substitution resulting from simplification binds resolved
predicates. Since we call simplify with the normalized form of σ1,
simplification can also speed up type inference without predicates
as the abstraction and application functions can deal with simpler
types.

7. Conclusion
In this article, we have shown how to combine the MLF type system
with qualified types, and given an evidence translation to System
F that demonstrates how to implement such a system efficiently.
MLF with its impredicative first-class polymorphism has a number
of advantages over comparable systems, and it seems so far that
it scales well to programming languages with other type system
extensions. In the future, we plan to analyze interactions of MLF
with other features such as existential types.

We have given examples of MLF usage and demonstrated that
it is convenient to use in practice, and that the added complexity
can be kept hidden from the user most of the time. We would like
to see MLF more widely used. In particular, we believe that MLF
with qualified types can be seriously considered as an underlying
type system for the Haskell programming language.

Acknowledgements We are indebted to Didier Le Botlan for his
extensive and constructive comments on a draft of this paper. We
also thank the four anonymous referees for numerous comments
and suggestions.

References
[1] B. R. Gaster and M. P. Jones. A polymorphic type system for

extensible records and variants. Technical Report NOTTCS-TR-96-3,
Dept. of Computer Science, University of Nottingham, 1996.

[2] J. Hindley. The principal type scheme of an object in combinatory
logic. Transactions of the American Mathematical Society, 146:29–
60, Dec. 1969.

[3] M. P. Jones. A theory of qualified types. In 4th. European Symposium
on Programming (ESOP’92), volume 582 of Lecture Notes in
Computer Science, pages 287–306. Springer-Verlag, Feb. 1992.

[4] M. P. Jones. Simplifying and improving qualified types. Technical
Report YALEU/DCS/RR-1040, Dept. of Computer Science, Yale
University, 1994.

[5] D. Le Botlan. MLF: Une extension de ML avec polymorphisme
de second ordre et instanciation implicite. PhD thesis, INRIA
Rocquencourt, May 2004. Available in English.

[6] D. Le Botlan and D. Rémy. MLF: raising ML to the power of
system F. In Proceedings of the eighth ACM SIGPLAN international
conference on Functional programming, pages 27–38. ACM Press,
2003.

[7] D. Leijen. Morrow: a row-oriented programming language.
http://www.cs.uu.nl/∼daan/morrow.html, July 2004.

[8] J. R. Lewis, M. B. Shields, E. Meijer, and J. Launchbury. Implicit
parameters: Dynamic scoping with static types. In T. W. Reps, editor,
Proceedings of the 27th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Boston, Massachusetts,
pages 108–118, 2000.

[9] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of
Standard ML (Revised). The MIT Press, 1997.

[10] S. Peyton Jones, editor. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

[11] S. Peyton-Jones and M. Shields. Practical type inference for arbitrary-
rank types. Submitted to the Journal of Functional Programming
(JFP), 2004.

[12] C. Shan. Sexy types in action. ACM SIGPLAN Notices, 39(5):15–22,
2004.

A. Supplemental algorithms
Useful domain:

dom(Q / σ)
.
= dom(Q / ftv(σ))

α ∈ dom(Q / β1 . . . βn)
⇔̇

Q = (Q1, α ¦ σ,Q2) ∧ α ∈ ftv(∀Q2. β1 → · · · → βn → ())

Constructed forms:

cf(τ)
.
= τ

cf(⊥)
.
= ⊥

cf(∀(α ¦ σα). σ)
.
= cf(σα) if nf(σ) = α

cf(∀(α ¦ σα). σ)
.
= ∀(α ¦ σα). cf(σ)

Free type variables:

ftv(α)
.
= {α}

ftv(g τ1 . . . τn)
.
= ftv(τ1) ∪ · · · ∪ ftv(τn)

ftv(⊥)
.
= ∅

ftv(∀(α ¦ σα). σ)
.
= (ftv(σ)− {α}) ∪ ftv(σα) if α ∈ ftv(σ)

ftv(∀(α ¦ σα). σ)
.
= ftv(σ) if α /∈ ftv(σ)

Splitting a prefix. The split algorithm takes a prefix Q and a set of
type variables α, and splits Q in two parts (Q1,Q2) such that the
domain of Q1 is the domain of Q relevant to α.

() ↑ α
.
= ((), ())

α ∈ α (Q1,Q2) = Q ↑ (α− α) ∪ ftv(σ)

(Q , α ¦ σ) ↑ α
.
= ((Q1, α ¦ σ),Q2)

α /∈ α (Q1,Q2) = Q ↑ α

(Q , α ¦ σ) ↑ α
.
= (Q1, (Q2, α ¦ σ))

