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Abstract cached) cause difficulties for applications to effectively
. . o _ utilize RAM. E.g., it is the responsibility of applications

D|.sk.-based storage Is becoming increasingly probl_emfo manage consistency between caches and storage, mak-
a}tlc in meeting the needs of Iarge—sc;ale cloud appl'(:""Tng it vulnerable to consistency problems. Most recently,
tions. _Recently RAM-based storage is propqsed by agdr AMCloud [28,[29] is proposed as a RAM-based key-
gregating the RAM of thousands of commodity Servers, oy e store where data is kept entirely in the RAM of
in data center networks (DCN). These studies focus 0y, a6 servers. It achieves fast server failure recovery b
improving performance with high throughput 1/O, low scattering backup data across a large number of disks and

latency RPC and fast failure recovery. RAM-based Stor'reconstructing lost data in parallel across high-bandwidt

age brings great DCN-related challenges, for example(but expensive) InfiniBand networks.
false server failure detection due to network problems, RAM-based storage has a number of benefits such
traffic congestion during failure recovery, and top-of- as low latency RPC and high-throughput I/O. For ex-

rack (ToR) switch failures. ample, a RAM-based storage system can provide 100-

This paper presenfRAMCube a DCN-oriented de- :
. 1000x greater throughput than disk-based systénis [29].
sign for RAM-based key-value store based on the BCUb(?\/Ioreover, the applications need no longer manage the

net){/v_o;k Eﬁ]‘_l RAI\QCtUbf_ explogs network frof}qmlt}{[rt](_) consistency between RAM and a separate backing store.
restrict afl farure detection and recovery tratfic Within , 5 -jieye practical RAM-based storage in data centers,

one-hap neighborhood, and leverages BCube’s multpl owever, many realistic DCN-related issues need to be

tF.’athS tg handle SWt't‘fh fal"“rft‘s- g’romtyﬁe 'tmtpr:e;néztl\j‘éddressed. (i) It is difficult to quickly distinguish tem-
lon and experimental evaluation demonstrate tha ‘porary network problems from server failures across a
Cube is promising to achieve reliable, high performance1P

/O and fast fail il le dat ¢ arge-scale network. (i) The large number (up to thou-
and astiafiure recovery in large-scaie data cen erS‘sands) of parallel unarranged recovery flows is likely to

bring traffic congestion, resulting in unexpected recovery
1 Introduction delay. (iii) Top-of-rack (ToR) switch failures bring great

difficulty to fast failure recovery.
Disk-based storage is becoming more and more problem- This work describe®RAMCube a DCN-oriented de-
atic in meeting the needs of large-scale cloud systems isign for RAM-based key-value store that supports thou-
terms of 1/0O latency and bandwidth. As a result, in re-sands or tens of thousands of servers to offer up to hun-
cent years we see an increasing trend of migration of datdreds of terabytes of RAM storage. In this paper, we
from disks to random access memory (RAM) in storagefollow the technical trend that large data centers are con-
systems. For example, memcachéd [3] is an in-memorgtructed using commodity Ethernet switches, and use
key-value store that has been widely used by a numbegthernet-based BCube]24] as the underlying network of
of Web service providers, including Facebook, Twitter, RAMCube.
and Youtube, to offload their storage servers. Google and The key idea of RAMCube is to have a codesign in
Microsoft keep entire search indexes in RAMI[28], and which the storage system and the the underlying network
Google’s Bigtable keeps certain columns (or even entirecan make joint efforts to achieve efficient RAM-based
column family) in RAM [15]. storage. Specifically, RAMCube exploits the proxim-

Keeping data in RAM brings great challenges to re-ity of BCube network to construct a symmetiidulti-

liable data access. Cache-based approaches (like merRing structure, restricting all failure detection and re-



covery traffic within one-hop neighborhood, which ad- that heartbeat messages have to traverse, reducing the
dresses the aforementioned problems including false failehances of encountering network problems. Ideally, if
ure detection and recovery traffic congestion. In addithe servers only need to inspect the status of directly-
tion, RAMCube leverages BCube’s multiple paths be-connected neighbors, then we can minimize the possibil-
tween any pairs of servers to handle switch failures. ity of network-induced false server failure detection.

Note that although our RAMCube is designed based Recovery traffic congestionRecovering several tens
on BCube, a well-known network architecture for dataof GB data in a short period of time (e.g.~2 sec-
centers[[214], we believe that tlyeneralidea ofone-hop  onds) requires an aggregate recovery bandwidth of tens
failure discovery and recovery is promising and could beof GB/sec both for disks and for networks. This means
explored in many other DCN topologies such as hyperthat hundreds or even thousands of servers will be in-
cube [13], MDCubel[32], ank-ary n-cube [3%]. volved in the recovery of a failed server. If the distributed

The rest of the paper is organized as follows. Sefion Zecovery takes place in a random and unarranged man-
discusses background and challenges. Sellion 3 presemtsr and the recovery flows traverse long paths, it will
RAMCube structure. Sectidd} 4 introduces failure detec-ring hot spots in the network and result in unexpected
tion and recovery. Sectidd 5 addresses other design ideng recovery delay. Even in multi-rooted trees with the
sues. Sectidd 6 introduces prototype implementation antlighest-end switches, this can also bring severe conges-
experiments. Sectidd 8 introduces related work. Finallytion because per-flow ECMP generates collisions due to
Sectior® concludes the paper. mapping multiple flows into one pathl[9]. To address this
problem, our solution is to restrict the recovery traffic
within an area as small as possible. Ideally, if the recov-
ered data is only sent to directly-connected neighbors,

In this section, we first discuss the challenges of thethen the possibility of congestion will be minimized, and

RAMCube design, and then briefly introduce the BCube't Will also be easy to control the recovery traffic.
network on which RAMCube is based. ToR switch failures. In data centers a rack usually

contains several tens of servers that are connected to a

ToR switch. In previous studies 28] when a ToR switch
2.1 Challenges fails, all the servers connected to it are considered failed
Fast failure recovery is crucial to improve availabil- @nd several TB data has to be recovered. The recov-

ity [27] and durability [28] in RAM-based storage sys- €Y storm tak_es much more tim_e than recovering a sin-
tems. Current studies, like RAMCloud, realize fast fail- 9 server failure does, and this would become worse
ure recovery by using aggressive data partitioniig [15’|f we consider the congespon among the tens of thou-
23], a distributed approach that scatters backup datgands_of recovery flows. Since gll the servers connepted
across hundreds or thousands of disks on backup servef8, 2 failed switch are actually “alive”, our solution to this
and quickly reconstructs lost data in the RAM of hun- Problem is to construct the RAM-based storage system
dreds of servers. In large-scale data centers, howevefith @ multi-homed topology, i.e., each server connects
many network related issues make it challenging to relo muIFl_pIe switches. When one switch fails, the servers
cover a failed storage server with several tens of GBS@n utilize other paths to remain connected and thus no
RAM in a short period of time (e.g., a few seconds). Urgentfailure recovery is needed.
These challenges mainly include false failure detection Based on the above discussion, we design RAMCube
due to temporary network problems, traffic congestionon top of the BCube network[24] (which will be intro-
during recovery, and ToR switch failures. duced in the next subsection), so that we can exploit the
False failure detection. In order to quickly recover proximity of BCube to restrict all failure detection and
from a storage server failure (e.g., in a few seconds)reécovery traffic within one-hop neighborhood, and use
the timeout of heartbeat messages should be relativelCube’s multiple paths to handle switch failures.
short (at most a few hundred milliseconds). However,
various circumstances like incast and temporary networlg'z BCube
partitions may make heartbeats be discarded (in Eth-
ernet) or suspended (in InfiniBand), making it difficult BCube [24] is a server-centric network architecture,
to be distinguished from real server failures. Althoughwhere servers with multiple network ports connect to
false failure detection is not fatal (which is discussedmultiple layers of switches. Servers act as not only end
in Section[#), the recovery of several tens of GB datahosts, but also relay nodes for each other. BCube sup-
is definitely very “expensive”. Since network problems ports various bandwidth-intensive applications, and ex-
cannot be completely avoided in any large-scale syshibits graceful performance degradation as the servers
tems, our solution to this problem is to shorten the path&nd/or switches fail.

2 Preliminaries



Lovel 1 400~800 MB/sec recovery bandwidth per NIC[28].
<1.0> <1.1> \<1,2>\ \<1,3>\ However, in this paper we choose to follow the techni-
cal trend that almost all large-scale data centers are con-
structed using commodity Ethernet switches. Our vision
is that high-performance Ethernet is more promising and
cost-effective than InfiniBand for data centers. Recent
technology trends show that Ethernet switches with 40

Gbps bandwidtH]6] and sups latencyl[b] are practical
in the near future. Therefore, We design RAMCube on
Figure 1: An example of BCul§4, 1) [24]. top of Ethernet-based BCule]24].
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Data model The current data model in RAMCube is a
simple key-value store that supports tables containing ar-
bitrary number of key-value pairs. A key-value pair con-
sists of a variable-length (up to 1 KB) key and a variable-
length (up to 1 MB) value. RAMCube provides a simple

BCube is recursively defined. A BCufpe0) is simply
n servers connecting to anport switch. A BCubgn, 1)
is constructed fronm BCubgn,0) andn n-port switches.

More generically, a BCut(e,IE) (k> 1) is constructed  get of gperations Eetkey value”, ‘getkey” and ‘delete
from n BCubgn,k — 1) andn® n-port switches. Each ey for writing/updating, reading and deleting data. In
server in a BCub@, k) hask + 1 ports, which are num- ¢ f,1yre RAMCube will extend the data model with

bkered from level-0 to levek:  BCubgn,k) hasN = g 501t of more powerful features such as indexes and
n“*1 servers anck + 1 levels of switches, with each super columngTa5].

level havingn® n-port switches. Figdl shows an ex-
ample of BCubé4,1), which is constructed from four Primary-recovery-backup. For durability, RAM-based
BCubg4,0) and four level-1 4-port switches. storage system has multiple copies for each key-value
BCube’s software-based routing approach suffergpair. There are two choices, namelymmetric repli-
from high CPU overhead and processing latency. Tocation [I7] and primary-backup[4], to maintain con-
address this problem, most recently Lu et al. desigrsistency in normal read/write operations. In symmetric
and implemenServerSwitchi27], a programmable com- replication all copies of a key-value pair have to be kept
modity switching chip that supports high-performancein the RAM of different servers and a quorum-like tech-
BCube routing and achieves very low CPU overheadpique [20] is used for conflict resolution. In contrast,
high throughput and low processing latency. in primary-backup only one primary copy is needed to
be stored in RAM with redundant backup copies being
stored in disks, and all read/write operations are through
the primary copy. Considering the relatively high cost

This section first introduces the basics of RAMCube, ancfnd energy usage per bit of RAM, primary-backupis pre-

. d for RAM-based st 9].
then presents the design of RAMCube structure. erredor aseds oragEﬂZ ] . L
We refer to the servers storing the primary copies in

) RAM as primary servers and the servers storing the
3.1 Basics backup copies in the disks &mckup servers Consid-

Large-scale cloud systems usually contains thousands ¢ ing the typical bandwidth of disks (16200 MB/sec),

o . S ™ if we want to recover a primary server failure in a short
servers that can be divided into two categories: applica- _ . . . .
eriod of time (a few seconds), one primary server with

tion servers i.m_plementing application logic, and storag. ens of GB RAM needs at least several hundred backup
servers providing long-term shared storage for the apphzjiSkS Once having been read from disks of backup
cation servers. RAMCube is designed to aggregate the ~ ™

RAVI o the storage servers, sach with tens of G Ram, 110, 15, BUR (8 SIE0C U8 0B RS
into a single RAM-based key-value store with totally P y 9 9

hundreds of TB RAM. This subsection briefly discussesthe locality of original data and might degrade appli-

some design choices of RAMCube in network hardwarecatlon performance after recovery. The healthy servers
that accommodate the recovered data are cadleavery
data model, and structure.

servers Considering the currently available commodity
Network hardware. Network hardware is an important NIC bandwidth (10 Gbps), at least several tens of recov-
factor that influences the performance of a RAM-basecery servers are needed for recovering a failed primary
storage system. InfiniBand is featured by its high bandserver with tens of GB RAM in a few seconds. This
width, low latency, as well as high price. For example, “primary-recovery-backup” structurgill5,128] is depicted
in a small-scale InfiniBand testbed, RAMCloud claims in Fig.[2(a). Note that each server symmetrically acts as

3 The RAMCube Structure



Q Primary server
Q Backup server

@ Recovery server

Figure 2: (a) Primary-recovery-backup structlire [28].Birectly connected tree in RAMCube.

all the three roles at the same time.
“Primary-recovery-backup” requireast failure re-
covery. First, fast failure recovery is crucial to im-
proveavailability, which is defined as MTTF / (MTTF +
MTTR) [21] where MTTF and MTTR respectively refer
to “mean time to failure” and “mean time to recovery”.
Second, fast failure recovery is also important to improve
durability. Previous studie§ 28] show that assuming two
backup copies for each primary copy and two failures
per year per server with a Poisson arrival distribution in a
10,000-server RAM-based storage system, the probabil-
ity of data loss in one year is about 10if the recovery
is finished in 1 second; and the probability is about41.0
when the recovery delay is 10 seconds.

3.2 RAMCube MuitiRing Construction

The basic idea of RAMCube for addressing the chal-

lenges discussed in Sectibml2.1 is to leverage networkigure 3:  The primary ring (L layer ring) of

proximity to restrict all failure detection and recovery BCubg4,1), and the recovery ring (2 layer ring) and

traffic within one-hop neighborhood. We improve the backup rings (3 layer ring) of server 00.

primary-recovery-backup structure (shown in fih. 2(a))

with adirectlyconnected tree (shown in FIg. 2(b)), where

a primary server has multiple directly connected recov-plays all the three roles of primary server, recovery server

ery servers, each of which corresponding to multiple di-and backup server. Our insight is that for BCube if we

rectly connected backup servers. Clearly, Elg. 2(b) carfeplace each switch and itslinks with ann x (n—1)

be viewed as a special case of h. 2(a). full mesh that directly connects the servers, we will get a
In Fig. B(b), the primary server periodically sends 9eneralized hypercube][13]. Then, we can construct the

heartbeat messages to all its recovery servers, and onéeulti-layer logical rings MultiRing for short) for sym-

the recovery servers detect (with certain mechanisms dehetrically mapping the tree as depicted in fg. 3.

scribed in the next section) the primary server fails, they

will start a recovery procedure reading backup data from

their directly connected backup servers. Clearly, here

the recovery servers play an important role both in fail-

ure detection and in failure recovery: since the recovery

servers directly connect to the primary server, they can

eliminate much of the possibility of false failure detec-

tion; and since the recovery servers also directly connect e Each primary server on the primary ring, say server

to the backup servers, the recovery traffic is guaranteed P, has a second layer ring callegtovery ring P’s

to have little overlap or congestion. recovery ring is composed of all one-hop neighbors
The directly connected tree provides great benefit for ~ of P, and whenP fails its data should be recov-

accurate failure detection and fast failure recovery. n or ered to the RAM of the servers on its recovery ring.

der to apply it to RAMCube, we neesymmetricallymap Fig.[d shows an example of the recovery ring (01,

the tree onto the entire network, i.e., each server equally 02, 03, 10, 20, 30) of a primary server 00.

e The first layer ring is callegrrimary ring, which is
composed of all servers in the BCube network. The
entire key space is divided into sub key spaces and
each server on the primary ring is responsible for
one sub key space. Fig. 3 shows an example of the
primary ring of BCubé4, 1) depicted in Fig[lL.



e Each recovery server, say sern®rcorresponds to of server liveness. A primary server periodically sends
a third layer ring calledbackup ring The backup heartbeat messages to each of its recovery servers. The
ring is composed of the servers that are one-hop tdgimeouts should be relatively short (e.g., a few hundred
the recovery servelR and two-hop to the primary milliseconds) for fast failure detection.
serverP. The backup copies of the key-value pairs  In RAMCube for each primary servé there is do-
of P are stored in the disks of servers on the backupcal coordinator which is usually one of’s recovery
rings. Fig[B shows an example of six backup rings.servers. The ZooKeeper servide][25] can be used to

. . hi high ilabilit d durability of th dina-
In Fig.[d, all the 16 primary servers have the sameac eve nigh avallabiity anc: durabiity of the coordina

primary-recovery-backup structure (i.e.. a directly con tors. If a recovery server (sd3) does not receive heart-
i " o “beats from its primary server (s&) for a certain period,
nected tree) with server 00. Note that the order of th b y (s&y P

. X ShenRwill report this suspicious server failure R lo-
p_rlmary/recovery/bac_kgp_servers on the rings can be_deéal coordinator, which would verify the problem by im-
cided by any determ|n|st|c_methods_, and here we Slm'mediately asking alP’s recovery servers. This would
ply arrange the”.‘ alphabetlcall)_/ Whlch IS known by a." test all thek + 1 paths through th& + 1 switches di-
SEIVErS. C_:Iearly in the symmetric MultiRing structure, if rectly connected t®. If P does fail, then all the recovery
a serveAis a primary/recovery/backup server of another

B thenBis al . / Tback servers should report the failure to the local coordinator
SEIVerD, henb IS S0 a primary/recovery/backup SEVer o, 4 the coordinator will initiate the recovery. Otherwise
of A. For MultiRing, we obtain the following theorem.

if some recovery servers repdrtis still alive, then the

Theorem 1 Consider a RAMCube constructed based oncoordinator will notify the available paths to the recov-
BCubén, k). There are 71, (n—1)(k+1),and(n—1)k  ery servers that lose connectionsReso that they can
servers on the primary ring, recovery ring, and backuptemporarily connect t& by using BCube source routing

ring, respectively. And a primary server has totally (BSR) [24]. If the primary server keeps being unreach-
(n—1)2K(k+1 able through a switch for a period of time (e.g., 10 sec-
2

)

backup servers. onds), then the switch will be considered failed.

The formal proof of Theorenl1 is given in Ap-  For example, in the network depicted in FIg. 1, if
pendix A. For BCubél6,2), for example, there are 4096 server 01 suspects 00 fails since it cannot receive heart-
primary servers, each of which has 45 recovery serverbeats from 00, it would report to the local coordinator
(each having a 30-server backup ring) and 675 backugsay, 02) and then all paths to 00 (through switc{@8)
servers. Note that it is not mandatory for a primary serverand (1,0)) will be tested. If all the tests fail the coordi-
to employ all its recovery/backup servers. For example, aator 02 would make a final decision to initiate recovery.
primary server in BCubid6,2) may employ 30 (instead In case of false failure detection due to rare condi-
of all the 45) recovery servers on its recovery ring to re-tions, e.g., allk + 1 switches directly connected to pri-
duce fragmentation, at the cost of longer recovery delaynary serveP aresimultaneouslyemporarily congested,
and lower aggregate backup bandwidth. for each recovery servék after the recovery starts, the

Similarly, a slightly different design for backup rings backup servers connectedRowould reject any further
is to include the recovery server itself in its own backupbackup requests frof® and indicateP to stop servicing
ring, in which the number of servers on a backup ring in-the corresponding sub key space. By this means, false
creases by fl)k. RAMCube does not adopt this asym- failure detection in RAMCube is NOTatal but expen-
metric design because it adds the complexity of managesive Our local detection eliminates much of the pos-
ment while brings only insignificant improvement. For sibility of false positives induced by network problems
example, by including the recovery server in its ownand thus effectively reduces unnecessary recoveries.
backup ring in BCubgl6,2) the number of servers on

a backup ring increases from 30 to 31. 4.2 Single Server Failure Recovery

4 Failure Detection and Recovery RAMCube uses a@lobal coordinatorto assign the en-

tire key space to the primary servers. For each primary
This section first introduces failure detection in RAM- serverP, alocal coordinatoris used to assigR’s sub
Cube, and then discusses the recovery of single servéey space td’s recovery servers, and to assign the sub
failures, multiple server failures and switch failures. sub space of each recovery server to the backup servers.
Recovering a server failure includes restoring data and
maintaining the MultiRing structure. Three cases have
to be considered corresponding to the three roles of the
In order to quickly detect server/switch failures, RAM- failed server. For simplicity in this subsection we assume
Cube uses a lightweight heartbeat mechanism as a gaugfeat a primary server employs all its recovery servers and

4.1 Failure Detection



each key-value pair has one backup copy. recovery servers d? that are two-hop away from and
. . . . each have a backup server one-hop away fBom
Primary server failures. A primary server failure

. . , Continue with the previous example. After the recov-
should be recovered as fast as possible since it greatly afe-r server (01) of a primary server (00) fails, the backu
fects system availability and durability. After a primary y P Y ' P

server fails, the recovery servers would fetch backupserverB(ll) finds a new recovery server (10). And if 10

copies from their directly connected backup servers. also fails, 11 could find another recovery seri®(e.g.,

. . 02) and transfer backup data to a new seB/d2) that
In this process each backup server services at twost is on the backup ring ¥ (02) and one-hop away from

recovery servers because it has two digits different fror’rh1 This “backup-to-backup” data transfer process is not
the failed primary server. For example, in Fig. 3ifa ;
urgent and could be done offline.

primary server (say 00) fails, a backup server (11) ser-
vices two recovery servers (01 and 10). Thus there iBackup server failures The recovery of backup server
little traffic overlap or congestion either in the network failures is straightforward and not critical: after the
or in the disks of backup servers. Therefore, given thebackup serveB fails, each affected primary servemvill
normal configuration with 10 Gbps network bandwidth transferB’'s backup data to another healthy server on the
and 100 MB/sec disk I/O bandwidth, a RAMCube con- same backup ring witB. The “primary-to-backup” data
structed based on BCufdb,2) with 4096 servers can transfer process is not urgent and could be done offline.
easily recover several tens of GB data in a few seconds. Generally speaking, if initially each RAMCube server

After this process, these recovery servers become thgtores3 GB data in RAM, then after a server failure,
new primary servers of their newly assigned sub keyon average: (i3 GB data needs to be transferred one-
space. We refer to this urgent data transfer process dsop as fast as possible (within a few seconds) AieB
“backup-to-primary” process. data needs to be transferred one-hop in a relatively long

In order to maintain the MultiRing structure, the period (e.g., several minutes) due to the primary server
backup key-value pairs also need to be transferred to thesle; (ii) 0 ~ B GB data needs to be transferred one-hop
new backup rings. For example, after a primary servefwith high probability) or two-hop in a relatively long
(say 00) fails in Fig[1B, server 01 will become a new period due to the recovery server role; and (Bi)GB
primary server, and 11, 21, 31 become the new recoveata needs to be transferred one-hop in a relatively long
ery servers and transfer the backup data to their backuperiod due to the backup server role. The data transfer to
rings (11 to 10, 12, 13; 21 to 20, 22, 23; 31 to 30, 32,backup servers is not urgent because (i) backup data has
33). Compared to the “backup-to-primary” process, thislittle affect on 1/0O performance, and (ii) even if another
“backup-to-backup” process is not urgent and could befailure happens before the transfer is over it still can be
accomplished offline in a relatively longer period of time. recovered at acceptable price.

Recovery server failures If a recovery server fails, Maintaining the mappings. RAMCube uses two kinds
for each affected primary server the affected sub key of coordinators to maintain the mappings between the
space would be reassigned to some other servePsson key space and the multi-layer logical rings.

recovery ring. In normal cases a backup seBrdirectly First, there is alobal coordinatorthat maintains the
connects to two recovery serveRg and Ry, then after mapping between the entire key space and the primary
one recovery server (saly;) fails B can simply register ring. Any changes of the mapping should be notified to
to Ry, i.e., tells the primary servé? andP’s local coor-  the global coordinator. The clients have a local cache
dinator to redirecR;’s sub key space tB,. This process of (part of) the mapping, and normally they can directly
can be accomplished instantaneously. send requests to primary servers without querying the co-

In Fig.[3d, for example, if the recovery server (01) of a ordinator. If a client cannot locate a key either because
primary server (00) fails, RAMCube can register a newthe mapping has not been cached or because the cached
recovery server for each affected backup server (11, 2linformation stales due to server failures, it will fetch up-
31): new recovery server 10 for backup server 11, 20 foito-date information from the global coordinator.

21, and 30 for 31. Second, for each primary serveithere is docal co-

If the backup serveB has no more directly connected ordinator that maintains the mappings betwes sub
recovery servers for the primary senefe.g., due to a key space and’s recovery ring/backup rings. Similar
previous failure), ther® will designate a new recovery to the global coordinator, any changes of the mappings
serverR for B's sub key space, and transt&s backup  should be notified to the local coordinator. As discussed
data to a serveB’ on the backup ring oR. HereB has  in Sectio4l]L, the local coordinators are also responsible
a big chance to find a directly connec@®¢becaus®is  for aggregating failure reports from recovery servers and
two-hop away fronP while R is one-hop away frorf?,  identifying switch failures.
which means initially in BCub, k) there are 2h— 2) Both kinds of coordinators can use the ZooKeeper ser-



vice [28] to provide high availability and durability. and different disk I/O bandwidths should also be consid-
ered for balancing the load. Currently RAMCube simply
uses a straightforward mapping method: the key space
held by a primary server is partitioned and each sub space

RAMCube treats multiple server failures as separateds assigned to arecovery server, and the sub space of are-

single server failures. If the multiple failures take placecovery server is divided intoshares each being assigned

one by one, i.e., one failure happens after the previou¥? its f backup servers, wheteandf are the number of

failure has been recovered, two factors limit the num-backup servers and the replication factor (ifebackup

ber of failures that can be tolerated while keeping thecopies on disks in addition to one primary copy in RAM),

MultiRing structure. First, if a server is disconnected respectively. For simultaneous failures pattern, clearly

from RAMCube or all servers on a recovery/backup ringthe worst case at lea$tfailures can be tolerated.

fail, then the MultiRing structure fails. Second, recovery

servers must have enough spare RAM to accommodatg 4 Handling Switch Failures

the recovered data. We obtain the following theorem for

this one-by-one failure pattern. RAMCube can easily handle switch failures by leverag-
ing the multiple paths of the BCube network. For exam-

Theorem 2 Consider a RAMCube constructed based onple, in the network depicted in Fig. 1, if servers 01, 02, 03

BCubén,k). Suppose that each server instatisGB all find server 00 is unreachable through switél0) but

RAM and storeg8 GB data. Then in the worst case at they can receive ping acknowledgements through switch

Ieastmin{nk—k—l,%} one-by-onefailures  (1,0), then RAMCube considers switct0,0) failed.

can be tolerated before the MultiRing structure fails. ~ Since a switch failure in BCube results in only grace-
ful performance degradatiof[24] but no data loss or un-

The formal proof of Theorenll2 is given in Ap- availability, it is not critical and we can replace the fdile
pendix B. In BCubé16,2), for example, ifa = 64 and switch in a relatively longer period of time (compared to
B = 48 then in the worst case the MultiRing structure the primary server failure recovery).
can tolerate at least 11 server failures; and i 64 and Since there ark+ 1 paths between any pair of servers,

B = 56 then at least 5 failures can be tolerated in theRAMCube is very unlikely to have a network partition
worst case. Note that hereMultiRing structure fail- that may result in serious unavailability like the service
ure does NOT necessarily mean any data loss. This iglisruption that Amazon EC2 suffered in April 2011 [1].
because even if the data cannot be backuped/recovered

in_the backup/re_cove_ry ring after t_h_e MuItiRi_ng structure, Other Design Issues

fails, we can still maintain durability by utilizing other
servers in RAMCube for backup/recovery, in which case
RAMCube performs similar to RAMCloud]28].

Another multiple failures pattern is simultaneous fail- Since RAMCube requires the involved recovery/backup
ures. We handle simultaneous failures in the same wagervers to be one-hop/two-hop neighbors of the primary
as the one-by-one failure pattern, unless they are reserver, the recovery is guaranteed to be restricted within
covery/backup servers of each other. If two directly-a region at most two-hop away from the failed server.
connected neighbors fail at the same time, RAMCubeTherefore, despite the failure recovery all the servers and
will exclude them from each other’s recovery ring; and switches out of that region are free to service 1/O re-
if a primary servelP and its backup serveB (and vice  quests. The ability to “servicing during recovery” im-
versa) fail simultaneously, RAMCube will ask the local proves the overall availability of the system. In contrast,
coordinators oP andB to locate the redundant backup in previous studies such as RAMClolid][28], since a fail-
copies as discussed below. ure recovery involves all the servers and switches, when

For durability each key-value pair has multiple backupa server fails, either the whole system has to stop storage
copies distributed in the backup servers’ disks. We asservices during failure recovery, or the recovery and the
sign one of the backup copies for each key-value paiservices would affect each other unpredictably both on
as thedominantbackup copy (dominant copy for short). servers and in network.

Normally during recovery only the dominant copies are  Servicing during failure recovery is very similar to ser-
read from disks and transferred to the recovery serversicing under normal circumstances, except that the pri-
Non-dominant copies are requested only if the dominantnary server should not backup its data to the servers
copies are failed. Several factors should be consideremvolved in the recovery. We illustrate the ability of
for the placement of the backup copies. E.g., the copieRAMCube to servicing during recovery by utilizing
should reside in different racks in case of rack failure,BCub&4,2) with 64 servers (because the diameter of

4.3 Handling Multiple Server Failures

5.1 Servicing During Recovery



BCub€4,1) is only 2). Suppose that a primary server, cesses of all backup-recovery server pairs at the same
say server 000, fails. Then the 36 servers0010, 120, time, meaning all backup servers have similar recovery
130, 200-210, 220, 230, 300310, 320, 330 are recov- bandwidth despite the number of their recovery servers.
ery servers or backup servers of the failed server 000, and Consider a RAMCube constructed based on
the remaining 27 servers can service read/write requesBCuben, k) and we use BCulig¢6,2) as an exam-
as usual, except that they should not employ their recovple. First suppose that a recovery server (001) of a
ery/backup servers involved in the recovery. For examprimary server (000) fails. Then 001(s — 1)k backup
ple, primary server 111 can still service requests, but iservers (011, 021, .) would respectively register to the
cannot employ three servers 110, 101 and 011 as its rether recovery server (010, 020,). Then the primary
covery servers, and it also cannot use the backup ringserver (000) fails. In this case th@ — 1)k backup
corresponding to those three servers. servers (011, 021,..) have one recovery server, while
To describe the ability of RAMCube to servicing dur- others have two. We call the backup servers with only
ing recovery, we define the “availability ratio of storage one recovery server as “lonely backup servers”. Now
servers during recoveryagailability ratio for short), as  among theln—1)(k+ 1) — 1 recovery servergn — 1)k
the ratio of the number of available storage servers thaservers (010, 02Q,..) have a lonely backup server and
can still service requests without interfering with the re-we call them “affected recovery servers”, while the
covery to the number of all storage servers. For avail+emaining(n—1)(k+1) —1— (n—1)k=n—2 servers
ability ratio, we obtain the following theorem. have no lonely backup server and we call them “free
recovery servers” (002, 003,.). The backup servers
Theorem 3 Consider a RAMCube constructed based ONpn a backup ring can be divided into three types: (|) 1
BCubén, k). During the recovery of a single server fail- lonely backup servers (e.g., 011), (ii}- 2 “free backup
ure, the availability ratio (denoted ag) satisfiesy =  servers” (012, 013...) that connect to one free recovery
1— (k2+k)”2’22(kk2j11>”+(k2*k). servers and one affected recovery servers, and (iii)
" (n—1)k—1—(n—2) = (n—1)(k— 1) “affected backup
The formal proof of Theorenf]3 is given in Ap- servers” (110, 210,..) that connect to two affected
pendix C. When using relatively largeandk RAMCube  recovery servers.
has a high availability ratio, which improves overall sys-  Leta, 3, y be the optimal bandwidth shares assigned
tem availability. For example, when= 16 andk=2we  to the lonely/free/affected backup servers on the backup
havey ~ 0.824. Clearly in multiple one-by-one server ring of the affected recovery server with per-pdrGbps
failures RAMCube wittk > 2 still has a high availability ~bandwidth, respectively. To finish all the recovery at
ratio due to the high proportion of the more-than-two-the same time, we have =2y, a = 8 + ﬁ and
hop-away neighbors. Sectibnlb.6 will show through sim-, +(N—2)B = A. Therefore we haver — 2-3
ulations that the availability ratio of RAMCube in simul- - s (-1
taneous failures is also high. In contrast, the availapilit 8 = 124, andy = g=zA. Whenn> 1 we have
ratio of RAMCloud [28] is always O. a ~ 2B ~ 2y. Therefore, the lonely backup servers
that have only one recovery servBrshould use ap-
proximately twice the bandwidth d® used byR's other
backup servers. E.g., for BCuliss, 2) with A = 10 we
This subsection considers two kinds of heterogeneity irhavea ~ % Gbpsan@B ~ y= % Gbps. Clearly for multi-
RAMCube. ple failures as long as>> 1 and the failures happen ran-

. domly we can get similar results far, 8, y. Therefore,
Different number of recovery servers per backup as discussed in Orchestfal16], we can get nearly-optimal
server. As discussed in Sectign .2, a backup server ma ' 9 y-op

Y andwidth allocation by simply creating two separate

service 1 or 2 recovery servers during recovery. This i . .
L ) CP connections for the backup servers connecting to
because initially in RAMCube a backup server has two
8nly one recovery server.

recovery servers, but as more failures happen it may los
one recovery server due to previous failures. For exambBifferent disk bandwidths of backup servers The
ple, in Fig B if a recovery server (01) of a primary serverbackup servers may have different number of disks, dif-
(00) first fails, the backup servers (11, 21, 31) registerferent disk parameters, or even different kinds of stor-
to other recovery servers (respectively 10, 20, 30). Ifage media (e.g., flash memory). If RAMCube handles
00 also fails, then in the recovery of 00, backup serverdailure recovery despite these differences, the slowest
11, 21, 31 will service one recovery server, while otherbackup server may degrade the recovery performance.
backup servers service two. This kind of heterogeneity can be handled in a way sim-
To fully utilize the network/disks bandwidth in recov- ilar to RAMCloud [28]: The sub key spaces could be as-
ery, RAMCube should try to finish the recovery pro- signed to the backup servers according to their disk band-

5.2 Handling Heterogeneity
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) A v ) T ) . RAMCube service is multi-threaded and has the follow-
Figure 4: Data path in processing a write request 'ning components: theonnection managdcontaining 3K
RAMCube. lines of C++ code) which maintains the status of directly
connected neighbors and interacts with other servers, and
the memory managethaving 2K lines of C++ code)
widths, so that they can finish the recovery processes/hich handleset/get/deleteequests inside a server.
with similar delays. The connection manageuses libevent[]2] to han-
dle events and buffer data. Since in RAMCube all
servers symmetrically act as primary/backup/recovery
servers, the connection manager handles multiple net-

After a primary server fails RAMCube recovers its data WOk €vents including receiving data from clients
to multiple recovery servers, on which the recoveredand sendmg/recewmg ba(_:kup/recovery d"?“a- Besides,
fragmented data may lost locality. Although locality hasf[he/ conne_ctl(;]n mabnager is also responsible for send-
no effects on our current simple key-value data model!Ng/TeCEVING eartbeal messages.

this issue might become important if RAMCube supports

When the primary server receives a key-value pair, it
richer data models in the future. A simple method for de-Stores the data in its RAM (handled by tmemory man-
fragmentation is to restart or reinstall the failed primary

ager discussed later) and sends a copy to the relevant
server at the same place in the BCube network wher@ackup server. The backup server acknowledges after
it had been. With the coordinator’s help,

the revived the copy is written to the RAM (not disks), and then the
primary server can easily restore its data from relevanPfimary server acknowledges to its client. The process is
servers offline. depicted in Fiil. This approach provides efficiency both

A dangerous situation for RAMCube is that the entire" normal operations and in recovery.
system loses power at once. A simple way to addressing. The memory manageruses a §Iab—based mecha-
this problem is to install on each server a backup bat!iSM [2,[4], to alleviate fragmentation problems caused
tery that extends the power long enough to flush all the?Y frequent alloc/free operations in memory manage-
primary data to disks. Then the cold start after powerMentinside a server. As shown in Fig. 5, it pre-allocates

returns is simple: each server restores its primary datg [2r9e amount of memory during initialization, and uses
to RAM and reconstructs connections with its backupﬁ?(ed—sme memory chunks with a series of predetermined
servers. If the battery cannot support flushing all theS!#€ classes. The memory manager uses a hash table to
data, at least it needs to ensure the buffered backup dafi/ickly locate the keys, and implements a reusable stack
(not yet written to disks) to be flushed. When power re-t© €fficiently collect and reuse obsolete memory.

turns the cold start is performed as many simultaneous 1€ Mémory manager uses a simple log-structured ap-
defragmentations for all the servers (with the differenceProach similar to previous logging file systerhsl[30] for
that data is fetched from backup disks). The primaryasynchronously writing backup data into the disks of

servers should be reconstructed exactly the same as th&Ckup servers. When a backup server receives a write
had been before the power failure. request, it stores the key-value pair in its in-memory
buffer. When the buffer fills, it writes the buffered data

to its disk in one single large transfer and then frees the

5.3 Defragmentation and Cold Start

6 Implementation and Evaluation buffer. Thisis achieved by appending the new key-values
to the log in its disk, which is divided into 8 MB seg-
6.1 Implementation Architecture ments.

We also implement a simple coordinator that can man-
We have prototyped RAMCube by designing and im-age configuration information, maintain the mapping be-
plementing a service in Windows Server 2008 R2. Thetween the key space and the rings, aggregate failure re-



ports from recovery servers, and identify switch fail- 80000 : . .
ures. For simplicity in current prototype we only imple-
ment theglobal coordinatomwhich takes charge of all the
responsibilities ofocal coordinatorsdiscussed in Sec-

tion@. This should not become a bottleneck since ourg
testbed is relatively small (introduced in the next subsec-g 40000+~

tion). Our prototype also has not implemented a mech-3 3y
anism for handling coordinator failures. We will incor- é
porate the ZooKeeper servide[25], which provides high 2
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ts Per Second
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T

20000 RAMCube —+—

memcalched -m X

10000 L L

availability and durability for coordinators, into RAM- 1 5 4 3 16
Cube in our future work. Number of Threads
In order to minimize the recovery delay, RAMCube Figure 6: RAMCube server throughput.

pipelines the recovery procedufe]28], including reading
logs from disks, transmitting logs to recovery servers,

and replying logs. The order in which the segments ar% 50 connections (to the RAMCube service) that asyn-

read is decided in advance so that the recovery server Cac!hronously perform write operations with the form of
reply the logs immediately after receiving them. Cur- ssetkey value”. The size of the key-value pairs is 100

. . X : %ytes and the key is a random 15-byte string. For sim-
a cold start m(_achgnlsm (discussed in Sem 5.3) in Ouf)licity we map the entire key space onto the tested server.
prototype, Wh'Ch.'S orthogonal_ to the design of RAM- For comparison, we also emulated memcachéd [3] (an
Cube and will be implemented in our future work. in-memory key-value store on Linux) by discarding the
backup operations of RAMCube and letting the primary
6.2 Testbed server acknowledge to clients as soon as the data is writ-
) . ten to its RAM. We measure the numbersgtrequests
We have built a RAMCube testbed with 16 Dell handled per second as a function of the number of threads
R610 servers and 2 48-port Gigabit Ethernet switcheS(m) running on the server.
(Pronto 3290 and Quanta LB4G) constructing a 1 Gbps The result (depicted in Fi@l 6) shows that RAMCube
BCube4,1) network. Each server has one Intel Xeon anq (emulated) memcached have comparable through-
2.27 GHz quad core CPU and 16 GB RAM, and installspts photh of which increase as the number of threads
one Seagate ST9500430SS 7200 RPM, 1 TB disk. Ifncreases. The difference is because memcached does
the future we would replace the 1 Gbps network with thenot need to send data to backup servers. The through-
10 Gbps BCube by using the ServerSwitch 10 Gbps NIGy,t of RAMCube increases little when there are more
(which is still under development and will be available than 8 threads because the CPU is quad-core. Clearly,
soon). the write throughput is bounded by the CPU (while our
In our experiments each key-value pair has only oneyperiments use a relatively slow CPU) and we can ex-
backup copy, because our current testbed is relativelbect a higher throughput by running more threads on a

small (only three servers on a backup ring) and eaclRamMCube server with more cores and higher frequency.
server has only one disk installed. In practice a simple

way to effectively supporting larger replication factoss i .
to install multiple disks on each server. 6.4  Server Failure Recovery

We in turn study the performance of normal I/O oper- One important ability of RAMCube is fast recovery from
ations, the recovery of server failures, the performancgerver failures. In our second experiment we first fill
after a switch failure, and the availability ratio during a primary server with 12 GB data (each key-value pair
multiple server failures. Each experiment is repeated ahaving 100 bytes), and then cause a failure of that server

least 100 times. and measure the size of the aggregate transferred backup
data over time. The heartbeat timeout is set to 200 ms.
6.3 Throughput The resultis depicted in Figl 7. RAMCube recovers 12

GB data in less than 17.5 seconds. The aggregate recov-
Our first experiment evaluates the write throughput of aery bandwidth keeps almost always about 699.5 MB/sec
RAMCube server, measured by the number of requestduring the entire recovery, which is very close to the opti-
handled per second. Like the RAMCube service, we im-mal recovery bandwidth bounded by the NIC bandwidth
plement a multi-threaded benchmark. We mervice (1 Gbps) and the number (6) of recovery servers. Note
threads on a RAMCube server ambenchmark threads thatin our experiments the bandwidth of the NIC is com-
on a client machine. Each thread has a busy loop wittparable to that of disks. We can expect a much faster
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3 method (discussed in Sectibn15.2) for handling backup
2 10000 1 servers heterogeneity has a near-optimal result.
E 8000 1
g . .
g 6000 - . 6.5 Switch Failures
=
g 4000 |- i Switch failures are a critical problem that prevents RAM-
“gg 2000 |- 1 based storage systems from being practical. We turn off a
< 0 : : : : switch and evaluate the write throughput of a RAMCube
0 5 10 15 20 25

server, as a function of the number of threaa (
. . . The result is depicted in Fifll 9, where the through-
Figure 8: Multiple server failures recovery. put without switch failures is also included for compar-
ison. The throughput of RAMCube with a switch fail-
ure is very similar to that without a failure. This is be-
recovery speed by using ServerSwitch 10 Gbps NIC an¢ause RAMCube handles switch failures by using BCube
more recovery/backup servers in a larger RAMCube withsource routing[24] which can remain all the connections
more levels (meaning more NIC ports per server). between the primary server and its backup servers. In
RAMCube also supports multiple server failures re-both cases it is the CPU, not the network, that bounds
covery. Here we show how RAMCube recovers from athe throughput. Therefore, in theory a RAMCube server
primary server failure right after a recovery server fail- should have the same throughput with/without a switch
ure. In the network depicted in Fill 1, we first cause afailure, and the small variance depicted in fly. 9 mainly
failure of the recovery server (01) of a primary servercomes from hardware differences between the switches.
(00), which can be recovered instantaneously by regiswhen the network is heavy-loaded, which is not shown
tering the affected backup servers (11, 21, 31) to newn this figure, RAMCube may have a more obvious per-
recovery servers (respectively 10, 20, 30). We then makéormance degradation with switch failures.
00 also fail.
The r(_eco:/ery process is depicted in Hify. 8, where “1'.6.6 Availability Ratio
connection” represents that each backup-recovery pair
has exactly one TCP connection, while “2-connection”This subsection studies ttevailability ratio of RAM-
represents that if a backup server has only one reCube under simultaneous failures through simulations.
covery serverR then it has two TCP connections to Recall that availability ratio is the ratio of the num-
R. At the beginning both “1-connection” recovery and ber of available storage servers to the number of all
“2-connection” recovery have a high aggregate recovservers (Sectiofi 3.1), which reflects the capability of
ery bandwidth of about 587 MB/sec, which is boundedservicing during server failure recovery that improves
by the NIC bandwidth (1 Gbps) and the number (5)the overall availability of the storage system. We sim-
of recovery servers. After 16 seconds, however, onlyulate two RAMCube topologies constructed based on
“2-connection” can keep the recovery speed while “1-BCubg16,2) (with 4K servers) and BCul§&6, 3) (with
connection” receives an obvious degradation. This is be64K servers). For each topology, we simulate various
cause in “1-connection” recovery after this point somenumber of simultaneous failures randomly chose from
backup servers finish recovery, resulting in a waste of thall servers. The result is plotted in FIg] 10.

Time (sec)
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The result shows that when there is one failuresurrogateand ensures backup data to be eventually writ-
both topologies provide high availability ratio, 0.824 in ten to the disk of one of its backup servers. This approach

BCubg16,2) and 0.978 in BCub@6, 3). As the number reduces the response time of wri?e operations whic_h may
of failures increases, the ratios degrade gracefully., E.g.become non-trivial after we realize th_e aforementloned
when there are 5 failures in BCulis, 2) there are still Iow-Iatency Ethernet, while of course introducing more
35.4% available servers. A potential impact not shown incomplexny. . .

Fig.[I0 is that with the same number of servers a higher Third, our prototype qnly w_nplemgnts a simple data
availability ratio usually means lower aggregate recover))T'OdeI of key-value pairs with variable lengths and

bandwidth. However, this should not be a problem in gSetgetdeleteoperations. We plan to implement richer

relatively large network. E.g., given the normal configu-data model and more complex operations in RAMCube,

ration with 10 Gbps network bandwidth and 100 MB/secSUCh as colump familie€11.5], gr_aphs, ir)c_iexes, atomic
disk /O bandwidth, in BCub@eé,2) with 4K servers updates to m_uIt|pIe key—yalue paris, conditional updates,
the available aggregate network/disk bandwidths for re-anOI transactlo.nal qperatlorE [8].

covery are respectively 112.5 GB/sec and 67.5 GB/sec, S°Me practical issues orthogonal to the network de-

which are sufficient to recover several tens of GB data in>/9" &/S0 need to be considered, for example, designing

1~2 seconds even with the presence of multiple failures® S€gMent cleaner for the logging system, implementing

the ZooKeeper service[R5] for handling coordinator fail-
ures, replacing replication with erasure coding for better

7 Discussion and Future Work durability, and incorporating flash memory into RAM-
Cube.

This section discusses several challenging issues tHat wil

be considered in the future RAMCube design. 8 Related Work

First of all, since low latency131] is one primary ad-
vantage of RAM-based storage over other storages, in th
future RAMCube may require a low-latency Ethernet in-
frastructure of 1Q4s level RTT, with the presence of var- In recent years, large-scale web applications have been
ious traffic patterns like shuffle and incast. This may bemoving more and more data to RAM-based caches to
achieved by leveraging the programmability of Server-meet their performance goals. E.g., memcachéd [3] is
Switch to realize in-network traffic control and conges- an in-memory key-value store for small chunks of data,
tion avoidance. We also need to support user-level appliwidely used by a number of Web service providers to of-
cations to communicate directly with the NICs to sendfload their storage servers. Google and Microsoft keep
and receive data bypassing the kernel. their entire Web search indexes in RAM[28].

Second, as introduced in Secti@nl6.1, the backup Using RAM as a cache of disk-based storage systems
servers are two hops away from the primary servers antias many limitations on consistency and efficiency. For
all backup data passes intermediate recovery servers. \Weample, it is the responsibility of applications to man-
can have an alternative data path depicted in Eifj. 11age consistency between caches and storage, making it
Here the different backup copies for a key-value pair arevulnerable to consistency problems. E.g., the software
sent to different recovery servers, and the primary servebug of the automated consistency verifying system made
returns to the client as soon as it receives acknowledgd-acebook flush all its cache and stop all storage ser-
ments from them. The recovery server acts &sekup  vices [1]. The slowly refilling process made Facebook

8.1 Large-Scale Cache
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unreachable for approximately 2.5 hours. As discussed in FAWNT11], for high query rates and
smaller sized storage RAM is the most efficient; for low
query rates and large sized storage disk is the most effi-

8.2 RAM-Based Storage cient; and flash memory lies in the middle ground. From

Disk performance has not been improved as rapid a8 research standpoint, since the cost/bit of RAM im-

its capacity, making it increasingly difficult to meet the proves rapidly, we want to be more aggressive and prefer

needs of more and more large-scale applications eveRAM to flash memory as the primary storage to achieve

with the help of cachd]29]. This makes people considehigher throughput and lower latency. In our future work

new solutions of permanently storing data in RAM. we will study replacing backup disks with flash mem-

The idea of permanently storing data in RAM is not Ory, which may improve /O performance (e.g., in a cold

new. For example, main-memory databaBes[22, 26] keeptart) and adapt to emerging 40 Gbps Ethernet.

entire databases in the RAM of one or more servers and

support full RDBMS semantics. However, these sys-9 Conclusion

tems cannot survive coordinated server failures and do

not provide enough durability for large-scale systems. We have presented the design of RAMCube as a novel
Most recently, RAMCloud [[28] is proposed as a RAM-based key-value store for high-performance 1/0
RAM-based key-value store in data centers, where dati data centers. By exploiting the proximity of BCube
is kept entirely in RAM. RAMCloud realizes low- network, RAMCube restricts all failure detection and re-
latency RPC by using expensive InfiniBand networkscovery traffic within one-hop neighborhood. This elim-
and supporting user-level applications to send/receivénates much of the possibility of false failure detection
data directly through the NICs bypassing the kerneland recovery traffic congestion. RAMCube uses multiple
RAMCloud realizes fast server failure recovery by us-paths of BCube to handle switch failures. Our prototype
ing aggressive data partitioning_[15.123]. They scattefimplementation and evaluation show that RAMCube is
backup data across hundreds or thousands of disks gsromising to meet the requirements of RAM-based stor-
backup servers. RAMCloud employs randomized techage in high performance, availability, durability and scal
niques [12], mainly including random replica placementability.
(with refinement) for load balance and random ping for
server failure detection, to manage the system in a deA
centralized and scalable fashion.

Compared with RAMCloud, we improve RAM-based s \york was supported in part by the National Ba-

storage by addressing several critical DCN-related is—siC Research Program of China (973) under Grant No.

sues, including false failure detection due to temporary,n11cB302601. the National Natural Science Eounda-
network problems, traffic congestion during failure re- tion of China (i\lSFC) under Grant No. 60903205
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Recc—_:‘ntly, flash memory is receiving increasing attentiongrs and the iVCE Group for their insightful comments.
for high-performance storage 111 9] [0} 18]. Some preliminary results of this work were presented at

FAWN [L1] couples low-power embedded CPUs 10 the HotCloud’12 workshofi [33].
small amounts of flash storage, and balances computa-
tion and I/O capabilities to enable efficient, massively References
parallel access to data. FlashStdre [18] uses flash mem-
ory as a non-volatile cache between RAM and disks. It [1] http://avs.amazon.com/message/65648/|
organizes key-value pairs in a log-structure on flash to[2] http://libevent.org/|
exploit faster sequential write performance and uses anl3] http://memcached.org/l
in-memory hash table for indexing. [4] http://redis.io/}

SkimpyStash[[19] is a RAM space skimpy key-value [5] http://wwv.aristanetworks.com/en/products/7100series|
store on flash-based storage, which uses a hash table dI6] http://www.broadcom.com/press/release.php?id=s634491]
rectory in RAM to index key-va|ue pairs stored on flash. [7] http://www.facebook.com/notes/facebook-engineering/
HashCache[[10] is also targeted at DRAM and flash  more-details-on-todays-outage/431441336919/}
combined storage system, leveraging an efficient flagh-[8] AGUILERA, M. K., MERCHANT, A., SHAH, M. A, VEITCH,

. . . A. C., AND KARAMANOLIS, C. T. Sinfonia: A new paradigm
Or'e_nted data-structure to lower the amortized cost of in- for building scalable distributed systemACM Trans. Comput.
sertions and updates. Syst. 273 (2009).
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Appendix
A. Proof of Theorem[1

IIBCubdn, k) is equal to am-tuple, k+ 1 dimensional
generalized hypercube. Therefore thereréte servers

on the primary ring. For each primary server, there are
k+ 1 directly connected switches, each with- 1 di-
rectly connected recovery servers. So there (are
1)(k+1) servers on the recovery ring. For each recovery
server, there ar& directly connected switches (except
the one it uses to connect to its primary server), each
with n— 1 directly connected backup servers. Therefore,
there argn— 1)k servers on the backup ring.

The backup servers is two hops away from their pri-
mary server, and thus they have exactly two digits dif-
ferent from their primary server. Thus each backup
server services 2 recovery servers irrespective ahd
k. Therefore each primary server has totay- 1)(k+

1) x (n—1)k/2= (”’1)2% backup servers.

B. Proof of Theorem[2

The number of one-by-one failures that can be tolerated
is the smaller one of the following two cases.

First, if a server is disconnected from RAMCube or
all servers on a recovery/backup ring fails, then the



RAMCube structure fails. From Theordh 1, there are
(n—1)(k+ 1) and(n— 1)k servers on the recovery ring
and backup ring, respectively. Therefore, in the worst
casg(n—1)k— 1= nk—k—1server failures (on the same
backup ring) can be tolerated.

Second, recovery servers must have enough spare
RAM to accommodate the recovered data. bet=
(n—1)(k+1). After the first server fails, RAMCube
must satisfyf + % =pB(1+ %) < a; after the second
server fails, which in the worst case may be a recovery
server of the first failed server, RAMCube should satisfy
Bt tmr(Btm) <BLtmtp)?~B(l+giy) <a;

...; and after the™ failure (m—r >> 1), in the worst

case RAMCube should satisf§(1+ ——) < a, or

m—r+1
n+1)(a—B o—B)(nk+n—k

C. Proof of Theorem[3

By TheorenfdL, for each primary server in a RAMCube
based on BCul@, k), there argn— 1)(k+ 1) recovery

12
servers and?—2 2"("“) backup servers, and the number

of all storage servers ig"1. Therefore, the availability
ratio equals to the number of servers more than two hops

away from the failed server divided by the number of all
nk“—lf(n—l)(k+k1)—(n71)2k(k+1)/2 —1_
nk+1 -

servers, i.e.y =

(kKN —2(k2—1)n+(k2—k)
onk+1 .
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