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Abstract

Disk-based storage is becoming increasingly problem-
atic in meeting the needs of large-scale cloud applica-
tions. Recently RAM-based storage is proposed by ag-
gregating the RAM of thousands of commodity servers
in data center networks (DCN). These studies focus on
improving performance with high throughput I/O, low
latency RPC and fast failure recovery. RAM-based stor-
age brings great DCN-related challenges, for example,
false server failure detection due to network problems,
traffic congestion during failure recovery, and top-of-
rack (ToR) switch failures.

This paper presentsRAMCube, a DCN-oriented de-
sign for RAM-based key-value store based on the BCube
network [24]. RAMCube exploits network proximity to
restrict all failure detection and recovery traffic within
one-hop neighborhood, and leverages BCube’s multiple
paths to handle switch failures. Prototype implementa-
tion and experimental evaluation demonstrate that RAM-
Cube is promising to achieve reliable, high performance
I/O and fast failure recovery in large-scale data centers.

1 Introduction

Disk-based storage is becoming more and more problem-
atic in meeting the needs of large-scale cloud systems in
terms of I/O latency and bandwidth. As a result, in re-
cent years we see an increasing trend of migration of data
from disks to random access memory (RAM) in storage
systems. For example, memcached [3] is an in-memory
key-value store that has been widely used by a number
of Web service providers, including Facebook, Twitter,
and Youtube, to offload their storage servers. Google and
Microsoft keep entire search indexes in RAM [28], and
Google’s Bigtable keeps certain columns (or even entire
column family) in RAM [15].

Keeping data in RAM brings great challenges to re-
liable data access. Cache-based approaches (like mem-

cached) cause difficulties for applications to effectively
utilize RAM. E.g., it is the responsibility of applications
to manage consistency between caches and storage, mak-
ing it vulnerable to consistency problems. Most recently,
RAMCloud [28, 29] is proposed as a RAM-based key-
value store where data is kept entirely in the RAM of
storage servers. It achieves fast server failure recovery by
scattering backup data across a large number of disks and
reconstructing lost data in parallel across high-bandwidth
(but expensive) InfiniBand networks.

RAM-based storage has a number of benefits such
as low latency RPC and high-throughput I/O. For ex-
ample, a RAM-based storage system can provide 100-
1000x greater throughput than disk-based systems [29].
Moreover, the applications need no longer manage the
consistency between RAM and a separate backing store.
To achieve practical RAM-based storage in data centers,
however, many realistic DCN-related issues need to be
addressed. (i) It is difficult to quickly distinguish tem-
porary network problems from server failures across a
large-scale network. (ii) The large number (up to thou-
sands) of parallel unarranged recovery flows is likely to
bring traffic congestion, resulting in unexpected recovery
delay. (iii) Top-of-rack (ToR) switch failures bring great
difficulty to fast failure recovery.

This work describesRAMCube, a DCN-oriented de-
sign for RAM-based key-value store that supports thou-
sands or tens of thousands of servers to offer up to hun-
dreds of terabytes of RAM storage. In this paper, we
follow the technical trend that large data centers are con-
structed using commodity Ethernet switches, and use
Ethernet-based BCube [24] as the underlying network of
RAMCube.

The key idea of RAMCube is to have a codesign in
which the storage system and the the underlying network
can make joint efforts to achieve efficient RAM-based
storage. Specifically, RAMCube exploits the proxim-
ity of BCube network to construct a symmetricMulti-
Ring structure, restricting all failure detection and re-



covery traffic within one-hop neighborhood, which ad-
dresses the aforementioned problems including false fail-
ure detection and recovery traffic congestion. In addi-
tion, RAMCube leverages BCube’s multiple paths be-
tween any pairs of servers to handle switch failures.

Note that although our RAMCube is designed based
on BCube, a well-known network architecture for data
centers [24], we believe that thegeneralidea ofone-hop
failure discovery and recovery is promising and could be
explored in many other DCN topologies such as hyper-
cube [13], MDCube [32], andk-aryn-cube [34].

The rest of the paper is organized as follows. Section 2
discusses background and challenges. Section 3 presents
RAMCube structure. Section 4 introduces failure detec-
tion and recovery. Section 5 addresses other design is-
sues. Section 6 introduces prototype implementation and
experiments. Section 8 introduces related work. Finally,
Section 9 concludes the paper.

2 Preliminaries

In this section, we first discuss the challenges of the
RAMCube design, and then briefly introduce the BCube
network on which RAMCube is based.

2.1 Challenges

Fast failure recovery is crucial to improve availabil-
ity [21] and durability [28] in RAM-based storage sys-
tems. Current studies, like RAMCloud, realize fast fail-
ure recovery by using aggressive data partitioning [15,
23], a distributed approach that scatters backup data
across hundreds or thousands of disks on backup servers,
and quickly reconstructs lost data in the RAM of hun-
dreds of servers. In large-scale data centers, however,
many network related issues make it challenging to re-
cover a failed storage server with several tens of GB
RAM in a short period of time (e.g., a few seconds).
These challenges mainly include false failure detection
due to temporary network problems, traffic congestion
during recovery, and ToR switch failures.

False failure detection. In order to quickly recover
from a storage server failure (e.g., in a few seconds),
the timeout of heartbeat messages should be relatively
short (at most a few hundred milliseconds). However,
various circumstances like incast and temporary network
partitions may make heartbeats be discarded (in Eth-
ernet) or suspended (in InfiniBand), making it difficult
to be distinguished from real server failures. Although
false failure detection is not fatal (which is discussed
in Section 4), the recovery of several tens of GB data
is definitely very “expensive”. Since network problems
cannot be completely avoided in any large-scale sys-
tems, our solution to this problem is to shorten the paths

that heartbeat messages have to traverse, reducing the
chances of encountering network problems. Ideally, if
the servers only need to inspect the status of directly-
connected neighbors, then we can minimize the possibil-
ity of network-induced false server failure detection.

Recovery traffic congestion.Recovering several tens
of GB data in a short period of time (e.g., 1∼2 sec-
onds) requires an aggregate recovery bandwidth of tens
of GB/sec both for disks and for networks. This means
that hundreds or even thousands of servers will be in-
volved in the recovery of a failed server. If the distributed
recovery takes place in a random and unarranged man-
ner and the recovery flows traverse long paths, it will
bring hot spots in the network and result in unexpected
long recovery delay. Even in multi-rooted trees with the
highest-end switches, this can also bring severe conges-
tion because per-flow ECMP generates collisions due to
mapping multiple flows into one path [9]. To address this
problem, our solution is to restrict the recovery traffic
within an area as small as possible. Ideally, if the recov-
ered data is only sent to directly-connected neighbors,
then the possibility of congestion will be minimized, and
it will also be easy to control the recovery traffic.

ToR switch failures. In data centers a rack usually
contains several tens of servers that are connected to a
ToR switch. In previous studies [28] when a ToR switch
fails, all the servers connected to it are considered failed
and several TB data has to be recovered. The recov-
ery storm takes much more time than recovering a sin-
gle server failure does, and this would become worse
if we consider the congestion among the tens of thou-
sands of recovery flows. Since all the servers connected
to a failed switch are actually “alive”, our solution to this
problem is to construct the RAM-based storage system
with a multi-homed topology, i.e., each server connects
to multiple switches. When one switch fails, the servers
can utilize other paths to remain connected and thus no
urgent failure recovery is needed.

Based on the above discussion, we design RAMCube
on top of the BCube network [24] (which will be intro-
duced in the next subsection), so that we can exploit the
proximity of BCube to restrict all failure detection and
recovery traffic within one-hop neighborhood, and use
BCube’s multiple paths to handle switch failures.

2.2 BCube

BCube [24] is a server-centric network architecture,
where servers with multiple network ports connect to
multiple layers of switches. Servers act as not only end
hosts, but also relay nodes for each other. BCube sup-
ports various bandwidth-intensive applications, and ex-
hibits graceful performance degradation as the servers
and/or switches fail.
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Figure 1: An example of BCube(4,1) [24].

BCube is recursively defined. A BCube(n,0) is simply
n servers connecting to ann-port switch. A BCube(n,1)
is constructed fromn BCube(n,0) andn n-port switches.
More generically, a BCube(n,k) (k ≥ 1) is constructed
from n BCube(n,k− 1) and nk n-port switches. Each
server in a BCube(n,k) hask+ 1 ports, which are num-
bered from level-0 to level-k. BCube(n,k) has N =
nk+1 servers andk + 1 levels of switches, with each
level havingnk n-port switches. Fig. 1 shows an ex-
ample of BCube(4,1), which is constructed from four
BCube(4,0) and four level-1 4-port switches.

BCube’s software-based routing approach suffers
from high CPU overhead and processing latency. To
address this problem, most recently Lu et al. design
and implementServerSwitch[27], a programmable com-
modity switching chip that supports high-performance
BCube routing and achieves very low CPU overhead,
high throughput and low processing latency.

3 The RAMCube Structure

This section first introduces the basics of RAMCube, and
then presents the design of RAMCube structure.

3.1 Basics

Large-scale cloud systems usually contains thousands of
servers that can be divided into two categories: applica-
tion servers implementing application logic, and storage
servers providing long-term shared storage for the appli-
cation servers. RAMCube is designed to aggregate the
RAM of the storage servers, each with tens of GB RAM,
into a single RAM-based key-value store with totally
hundreds of TB RAM. This subsection briefly discusses
some design choices of RAMCube in network hardware,
data model, and structure.

Network hardware. Network hardware is an important
factor that influences the performance of a RAM-based
storage system. InfiniBand is featured by its high band-
width, low latency, as well as high price. For example,
in a small-scale InfiniBand testbed, RAMCloud claims

400∼800 MB/sec recovery bandwidth per NIC [28].
However, in this paper we choose to follow the techni-
cal trend that almost all large-scale data centers are con-
structed using commodity Ethernet switches. Our vision
is that high-performance Ethernet is more promising and
cost-effective than InfiniBand for data centers. Recent
technology trends show that Ethernet switches with 40
Gbps bandwidth [6] and sub-µs latency [5] are practical
in the near future. Therefore, We design RAMCube on
top of Ethernet-based BCube [24].

Data model. The current data model in RAMCube is a
simple key-value store that supports tables containing ar-
bitrary number of key-value pairs. A key-value pair con-
sists of a variable-length (up to 1 KB) key and a variable-
length (up to 1 MB) value. RAMCube provides a simple
set of operations (“setkey value”, “getkey” and “delete
key”) for writing/updating, reading and deleting data. In
the future RAMCube will extend the data model with
support of more powerful features such as indexes and
super columns [15].

Primary-recovery-backup. For durability, RAM-based
storage system has multiple copies for each key-value
pair. There are two choices, namelysymmetric repli-
cation [17] and primary-backup[14], to maintain con-
sistency in normal read/write operations. In symmetric
replication all copies of a key-value pair have to be kept
in the RAM of different servers and a quorum-like tech-
nique [20] is used for conflict resolution. In contrast,
in primary-backup only one primary copy is needed to
be stored in RAM with redundant backup copies being
stored in disks, and all read/write operations are through
the primary copy. Considering the relatively high cost
and energy usage per bit of RAM, primary-backup is pre-
ferred for RAM-based storage [29].

We refer to the servers storing the primary copies in
RAM as primary servers, and the servers storing the
backup copies in the disks asbackup servers. Consid-
ering the typical bandwidth of disks (100∼200 MB/sec),
if we want to recover a primary server failure in a short
period of time (a few seconds), one primary server with
tens of GB RAM needs at least several hundred backup
disks. Once having been read from disks of backup
servers, the backup data should be recovered to asfew
as possible healthy servers since fragmentation changes
the locality of original data and might degrade appli-
cation performance after recovery. The healthy servers
that accommodate the recovered data are calledrecovery
servers. Considering the currently available commodity
NIC bandwidth (10 Gbps), at least several tens of recov-
ery servers are needed for recovering a failed primary
server with tens of GB RAM in a few seconds. This
“primary-recovery-backup”structure [15, 28] is depicted
in Fig. 2(a). Note that each server symmetrically acts as
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Figure 2: (a) Primary-recovery-backup structure [28]. (b)Directly connected tree in RAMCube.

all the three roles at the same time.
“Primary-recovery-backup” requiresfast failure re-

covery. First, fast failure recovery is crucial to im-
proveavailability, which is defined as MTTF / (MTTF +
MTTR) [21] where MTTF and MTTR respectively refer
to “mean time to failure” and “mean time to recovery”.
Second, fast failure recovery is also important to improve
durability. Previous studies [28] show that assuming two
backup copies for each primary copy and two failures
per year per server with a Poisson arrival distribution in a
10,000-server RAM-based storage system, the probabil-
ity of data loss in one year is about 10−6 if the recovery
is finished in 1 second; and the probability is about 10−4

when the recovery delay is 10 seconds.

3.2 RAMCube MuitiRing Construction

The basic idea of RAMCube for addressing the chal-
lenges discussed in Section 2.1 is to leverage network
proximity to restrict all failure detection and recovery
traffic within one-hop neighborhood. We improve the
primary-recovery-backup structure (shown in Fig. 2(a))
with adirectlyconnected tree (shown in Fig. 2(b)), where
a primary server has multiple directly connected recov-
ery servers, each of which corresponding to multiple di-
rectly connected backup servers. Clearly, Fig. 2(b) can
be viewed as a special case of Fig. 2(a).

In Fig. 2(b), the primary server periodically sends
heartbeat messages to all its recovery servers, and once
the recovery servers detect (with certain mechanisms de-
scribed in the next section) the primary server fails, they
will start a recovery procedure reading backup data from
their directly connected backup servers. Clearly, here
the recovery servers play an important role both in fail-
ure detection and in failure recovery: since the recovery
servers directly connect to the primary server, they can
eliminate much of the possibility of false failure detec-
tion; and since the recovery servers also directly connect
to the backup servers, the recovery traffic is guaranteed
to have little overlap or congestion.

The directly connected tree provides great benefit for
accurate failure detection and fast failure recovery. In or-
der to apply it to RAMCube, we needsymmetricallymap
the tree onto the entire network, i.e., each server equally

0 0
2 0 1 03 0 0 21 22 23 2 0 1 0 31 11 32 12 33 1

3 1 3 2 3 3 1 11 21 3 1 32 33 31 2 2 2 3 20 1 0 20 31 02 03 0 1 1 2 1 3 12 12 22 3
P r i m a r y r i n g

R e c o v e r y r i n gS i x b a c k u p r i n g s
3 3

Figure 3: The primary ring (1st layer ring) of
BCube(4,1), and the recovery ring (2nd layer ring) and
backup rings (3rd layer ring) of server 00.

plays all the three roles of primary server, recovery server
and backup server. Our insight is that for BCube if we
replace each switch and itsn links with ann× (n− 1)
full mesh that directly connects the servers, we will get a
generalized hypercube [13]. Then, we can construct the
multi-layer logical rings (MultiRing for short) for sym-
metrically mapping the tree as depicted in Fig. 3.

• The first layer ring is calledprimary ring, which is
composed of all servers in the BCube network. The
entire key space is divided into sub key spaces and
each server on the primary ring is responsible for
one sub key space. Fig. 3 shows an example of the
primary ring of BCube(4,1) depicted in Fig. 1.

• Each primary server on the primary ring, say server
P, has a second layer ring calledrecovery ring. P’s
recovery ring is composed of all one-hop neighbors
of P, and whenP fails its data should be recov-
ered to the RAM of the servers on its recovery ring.
Fig. 3 shows an example of the recovery ring (01,
02, 03, 10, 20, 30) of a primary server 00.
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• Each recovery server, say serverR, corresponds to
a third layer ring calledbackup ring. The backup
ring is composed of the servers that are one-hop to
the recovery serverR and two-hop to the primary
serverP. The backup copies of the key-value pairs
of P are stored in the disks of servers on the backup
rings. Fig. 3 shows an example of six backup rings.

In Fig. 3, all the 16 primary servers have the same
primary-recovery-backup structure (i.e., a directly con-
nected tree) with server 00. Note that the order of the
primary/recovery/backup servers on the rings can be de-
cided by any deterministic methods, and here we sim-
ply arrange them alphabetically which is known by all
servers. Clearly in the symmetric MultiRing structure, if
a serverA is a primary/recovery/backupserver of another
serverB, thenB is also a primary/recovery/backupserver
of A. For MultiRing, we obtain the following theorem.

Theorem 1 Consider a RAMCube constructed based on
BCube(n,k). There are nk+1, (n−1)(k+1), and(n−1)k
servers on the primary ring, recovery ring, and backup
ring, respectively. And a primary server has totally
(n−1)2k(k+1)

2 backup servers.

The formal proof of Theorem 1 is given in Ap-
pendix A. For BCube(16,2), for example, there are 4096
primary servers, each of which has 45 recovery servers
(each having a 30-server backup ring) and 675 backup
servers. Note that it is not mandatory for a primary server
to employ all its recovery/backup servers. For example, a
primary server in BCube(16,2) may employ 30 (instead
of all the 45) recovery servers on its recovery ring to re-
duce fragmentation, at the cost of longer recovery delay
and lower aggregate backup bandwidth.

Similarly, a slightly different design for backup rings
is to include the recovery server itself in its own backup
ring, in which the number of servers on a backup ring in-
creases by 1

(n−1)k. RAMCube does not adopt this asym-
metric design because it adds the complexity of manage-
ment while brings only insignificant improvement. For
example, by including the recovery server in its own
backup ring in BCube(16,2) the number of servers on
a backup ring increases from 30 to 31.

4 Failure Detection and Recovery

This section first introduces failure detection in RAM-
Cube, and then discusses the recovery of single server
failures, multiple server failures and switch failures.

4.1 Failure Detection

In order to quickly detect server/switch failures, RAM-
Cube uses a lightweight heartbeat mechanism as a gauge

of server liveness. A primary server periodically sends
heartbeat messages to each of its recovery servers. The
timeouts should be relatively short (e.g., a few hundred
milliseconds) for fast failure detection.

In RAMCube for each primary serverP there is alo-
cal coordinator, which is usually one ofP’s recovery
servers. The ZooKeeper service [25] can be used to
achieve high availability and durability of the coordina-
tors. If a recovery server (sayR) does not receive heart-
beats from its primary server (sayP) for a certain period,
thenRwill report this suspicious server failure toP’s lo-
cal coordinator, which would verify the problem by im-
mediately asking allP’s recovery servers. This would
test all thek + 1 paths through thek + 1 switches di-
rectly connected toP. If P does fail, then all the recovery
servers should report the failure to the local coordinator
and the coordinator will initiate the recovery. Otherwise
if some recovery servers reportP is still alive, then the
coordinator will notify the available paths to the recov-
ery servers that lose connections toP so that they can
temporarily connect toP by using BCube source routing
(BSR) [24]. If the primary server keeps being unreach-
able through a switch for a period of time (e.g., 10 sec-
onds), then the switch will be considered failed.

For example, in the network depicted in Fig. 1, if
server 01 suspects 00 fails since it cannot receive heart-
beats from 00, it would report to the local coordinator
(say, 02) and then all paths to 00 (through switches〈0,0〉
and〈1,0〉) will be tested. If all the tests fail the coordi-
nator 02 would make a final decision to initiate recovery.

In case of false failure detection due to rare condi-
tions, e.g., allk+ 1 switches directly connected to pri-
mary serverP aresimultaneouslytemporarily congested,
for each recovery serverR after the recovery starts, the
backup servers connected toR would reject any further
backup requests fromP and indicateP to stop servicing
the corresponding sub key space. By this means, false
failure detection in RAMCube is NOTfatal but expen-
sive. Our local detection eliminates much of the pos-
sibility of false positives induced by network problems
and thus effectively reduces unnecessary recoveries.

4.2 Single Server Failure Recovery

RAMCube uses aglobal coordinatorto assign the en-
tire key space to the primary servers. For each primary
serverP, a local coordinator is used to assignP’s sub
key space toP’s recovery servers, and to assign the sub
sub space of each recovery server to the backup servers.
Recovering a server failure includes restoring data and
maintaining the MultiRing structure. Three cases have
to be considered corresponding to the three roles of the
failed server. For simplicity in this subsection we assume
that a primary server employs all its recovery servers and
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each key-value pair has one backup copy.

Primary server failures. A primary server failure
should be recovered as fast as possible since it greatly af-
fects system availability and durability. After a primary
server fails, the recovery servers would fetch backup
copies from their directly connected backup servers.

In this process each backup server services at mosttwo
recovery servers because it has two digits different from
the failed primary server. For example, in Fig. 3 if a
primary server (say 00) fails, a backup server (11) ser-
vices two recovery servers (01 and 10). Thus there is
little traffic overlap or congestion either in the network
or in the disks of backup servers. Therefore, given the
normal configuration with 10 Gbps network bandwidth
and 100 MB/sec disk I/O bandwidth, a RAMCube con-
structed based on BCube(16,2) with 4096 servers can
easily recover several tens of GB data in a few seconds.

After this process, these recovery servers become the
new primary servers of their newly assigned sub key
space. We refer to this urgent data transfer process as
“backup-to-primary” process.

In order to maintain the MultiRing structure, the
backup key-value pairs also need to be transferred to the
new backup rings. For example, after a primary server
(say 00) fails in Fig. 3, server 01 will become a new
primary server, and 11, 21, 31 become the new recov-
ery servers and transfer the backup data to their backup
rings (11 to 10, 12, 13; 21 to 20, 22, 23; 31 to 30, 32,
33). Compared to the “backup-to-primary” process, this
“backup-to-backup” process is not urgent and could be
accomplished offline in a relatively longer period of time.

Recovery server failures. If a recovery server fails,
for each affected primary serverP, the affected sub key
space would be reassigned to some other servers onP’s
recovery ring. In normal cases a backup serverB directly
connects to two recovery serversR1 andR2, then after
one recovery server (say,R1) fails B can simply register
to R2, i.e., tells the primary serverP andP’s local coor-
dinator to redirectR1’s sub key space toR2. This process
can be accomplished instantaneously.

In Fig. 3, for example, if the recovery server (01) of a
primary server (00) fails, RAMCube can register a new
recovery server for each affected backup server (11, 21,
31): new recovery server 10 for backup server 11, 20 for
21, and 30 for 31.

If the backup serverB has no more directly connected
recovery servers for the primary serverP (e.g., due to a
previous failure), thenP will designate a new recovery
serverR′ for B’s sub key space, and transferB’s backup
data to a serverB′ on the backup ring ofR′. HereB has
a big chance to find a directly connectedB′, becauseB is
two-hop away fromP while R′ is one-hop away fromP,
which means initially in BCube(n,k) there are 2(n−2)

recovery servers ofP that are two-hop away fromB and
each have a backup server one-hop away fromB.

Continue with the previous example. After the recov-
ery server (01) of a primary server (00) fails, the backup
serverB (11) finds a new recovery server (10). And if 10
also fails, 11 could find another recovery serverR′ (e.g.,
02) and transfer backup data to a new serverB′ (12) that
is on the backup ring ofR′ (02) and one-hop away from
11. This “backup-to-backup” data transfer process is not
urgent and could be done offline.

Backup server failures. The recovery of backup server
failures is straightforward and not critical: after the
backup serverB fails, each affected primary serverP will
transferB’s backup data to another healthy server on the
same backup ring withB. The “primary-to-backup” data
transfer process is not urgent and could be done offline.

Generally speaking, if initially each RAMCube server
storesβ GB data in RAM, then after a server failure,
on average: (i)β GB data needs to be transferred one-
hop as fast as possible (within a few seconds) andβ GB
data needs to be transferred one-hop in a relatively long
period (e.g., several minutes) due to the primary server
role; (ii) 0∼ β GB data needs to be transferred one-hop
(with high probability) or two-hop in a relatively long
period due to the recovery server role; and (iii)β GB
data needs to be transferred one-hop in a relatively long
period due to the backup server role. The data transfer to
backup servers is not urgent because (i) backup data has
little affect on I/O performance, and (ii) even if another
failure happens before the transfer is over it still can be
recovered at acceptable price.

Maintaining the mappings. RAMCube uses two kinds
of coordinators to maintain the mappings between the
key space and the multi-layer logical rings.

First, there is aglobal coordinatorthat maintains the
mapping between the entire key space and the primary
ring. Any changes of the mapping should be notified to
the global coordinator. The clients have a local cache
of (part of) the mapping, and normally they can directly
send requests to primary servers without querying the co-
ordinator. If a client cannot locate a key either because
the mapping has not been cached or because the cached
information stales due to server failures, it will fetch up-
to-date information from the global coordinator.

Second, for each primary serverP there is alocal co-
ordinator that maintains the mappings betweenP’s sub
key space andP’s recovery ring/backup rings. Similar
to the global coordinator, any changes of the mappings
should be notified to the local coordinator. As discussed
in Section 4.1, the local coordinators are also responsible
for aggregating failure reports from recovery servers and
identifying switch failures.

Both kinds of coordinators can use the ZooKeeper ser-
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vice [25] to provide high availability and durability.

4.3 Handling Multiple Server Failures

RAMCube treats multiple server failures as separated
single server failures. If the multiple failures take place
one by one, i.e., one failure happens after the previous
failure has been recovered, two factors limit the num-
ber of failures that can be tolerated while keeping the
MultiRing structure. First, if a server is disconnected
from RAMCube or all servers on a recovery/backup ring
fail, then the MultiRing structure fails. Second, recovery
servers must have enough spare RAM to accommodate
the recovered data. We obtain the following theorem for
this one-by-one failure pattern.

Theorem 2 Consider a RAMCube constructed based on
BCube(n,k). Suppose that each server installsα GB
RAM and storesβ GB data. Then in the worst case at

leastmin{nk−k−1,
(α−β )(nk+n−k)

α } one-by-one failures
can be tolerated before the MultiRing structure fails.

The formal proof of Theorem 2 is given in Ap-
pendix B. In BCube(16,2), for example, ifα = 64 and
β = 48 then in the worst case the MultiRing structure
can tolerate at least 11 server failures; and ifα = 64 and
β = 56 then at least 5 failures can be tolerated in the
worst case. Note that here aMultiRing structure fail-
ure does NOT necessarily mean any data loss. This is
because even if the data cannot be backuped/recovered
in the backup/recovery ring after the MultiRing structure
fails, we can still maintain durability by utilizing other
servers in RAMCube for backup/recovery, in which case
RAMCube performs similar to RAMCloud [28].

Another multiple failures pattern is simultaneous fail-
ures. We handle simultaneous failures in the same way
as the one-by-one failure pattern, unless they are re-
covery/backup servers of each other. If two directly-
connected neighbors fail at the same time, RAMCube
will exclude them from each other’s recovery ring; and
if a primary serverP and its backup serverB (and vice
versa) fail simultaneously, RAMCube will ask the local
coordinators ofP andB to locate the redundant backup
copies as discussed below.

For durability each key-value pair has multiple backup
copies distributed in the backup servers’ disks. We as-
sign one of the backup copies for each key-value pair
as thedominantbackup copy (dominant copy for short).
Normally during recovery only the dominant copies are
read from disks and transferred to the recovery servers.
Non-dominant copies are requested only if the dominant
copies are failed. Several factors should be considered
for the placement of the backup copies. E.g., the copies
should reside in different racks in case of rack failure,

and different disk I/O bandwidths should also be consid-
ered for balancing the load. Currently RAMCube simply
uses a straightforward mapping method: the key space
held by a primary server is partitioned and each sub space
is assigned to a recovery server, and the sub space of a re-
covery server is divided intob shares each being assigned
to its f backup servers, whereb and f are the number of
backup servers and the replication factor (i.e.,f backup
copies on disks in addition to one primary copy in RAM),
respectively. For simultaneous failures pattern, clearlyin
the worst case at leastf failures can be tolerated.

4.4 Handling Switch Failures

RAMCube can easily handle switch failures by leverag-
ing the multiple paths of the BCube network. For exam-
ple, in the network depicted in Fig. 1, if servers 01, 02, 03
all find server 00 is unreachable through switch〈0,0〉 but
they can receive ping acknowledgements through switch
〈1,0〉, then RAMCube considers switch〈0,0〉 failed.
Since a switch failure in BCube results in only grace-
ful performance degradation [24] but no data loss or un-
availability, it is not critical and we can replace the failed
switch in a relatively longer period of time (compared to
the primary server failure recovery).

Since there arek+1 paths between any pair of servers,
RAMCube is very unlikely to have a network partition
that may result in serious unavailability like the service
disruption that Amazon EC2 suffered in April 2011 [1].

5 Other Design Issues

5.1 Servicing During Recovery

Since RAMCube requires the involved recovery/backup
servers to be one-hop/two-hop neighbors of the primary
server, the recovery is guaranteed to be restricted within
a region at most two-hop away from the failed server.
Therefore, despite the failure recovery all the servers and
switches out of that region are free to service I/O re-
quests. The ability to “servicing during recovery” im-
proves the overall availability of the system. In contrast,
in previous studies such as RAMCloud [28], since a fail-
ure recovery involves all the servers and switches, when
a server fails, either the whole system has to stop storage
services during failure recovery, or the recovery and the
services would affect each other unpredictably both on
servers and in network.

Servicing during failure recovery is very similar to ser-
vicing under normal circumstances, except that the pri-
mary server should not backup its data to the servers
involved in the recovery. We illustrate the ability of
RAMCube to servicing during recovery by utilizing
BCube(4,2) with 64 servers (because the diameter of
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BCube(4,1) is only 2). Suppose that a primary server,
say server 000, fails. Then the 36 servers 001∼110, 120,
130, 200∼210, 220, 230, 300∼310, 320, 330 are recov-
ery servers or backup servers of the failed server 000, and
the remaining 27 servers can service read/write requests
as usual, except that they should not employ their recov-
ery/backup servers involved in the recovery. For exam-
ple, primary server 111 can still service requests, but it
cannot employ three servers 110, 101 and 011 as its re-
covery servers, and it also cannot use the backup rings
corresponding to those three servers.

To describe the ability of RAMCube to servicing dur-
ing recovery, we define the “availability ratio of storage
servers during recovery” (availability ratio for short), as
the ratio of the number of available storage servers that
can still service requests without interfering with the re-
covery to the number of all storage servers. For avail-
ability ratio, we obtain the following theorem.

Theorem 3 Consider a RAMCube constructed based on
BCube(n,k). During the recovery of a single server fail-
ure, the availability ratio (denoted asγ) satisfiesγ =

1− (k2+k)n2−2(k2−1)n+(k2−k)
2nk+1 .

The formal proof of Theorem 3 is given in Ap-
pendix C. When using relatively largen andk RAMCube
has a high availability ratio, which improves overall sys-
tem availability. For example, whenn= 16 andk= 2 we
haveγ ≈ 0.824. Clearly in multiple one-by-one server
failures RAMCube withk≥ 2 still has a high availability
ratio due to the high proportion of the more-than-two-
hop-away neighbors. Section 6.6 will show through sim-
ulations that the availability ratio of RAMCube in simul-
taneous failures is also high. In contrast, the availability
ratio of RAMCloud [28] is always 0.

5.2 Handling Heterogeneity

This subsection considers two kinds of heterogeneity in
RAMCube.

Different number of recovery servers per backup
server. As discussed in Section 4.2, a backup server may
service 1 or 2 recovery servers during recovery. This is
because initially in RAMCube a backup server has two
recovery servers, but as more failures happen it may lose
one recovery server due to previous failures. For exam-
ple, in Fig. 3 if a recovery server (01) of a primary server
(00) first fails, the backup servers (11, 21, 31) register
to other recovery servers (respectively 10, 20, 30). If
00 also fails, then in the recovery of 00, backup servers
11, 21, 31 will service one recovery server, while other
backup servers service two.

To fully utilize the network/disks bandwidth in recov-
ery, RAMCube should try to finish the recovery pro-

cesses of all backup-recovery server pairs at the same
time, meaning all backup servers have similar recovery
bandwidth despite the number of their recovery servers.

Consider a RAMCube constructed based on
BCube(n,k) and we use BCube(16,2) as an exam-
ple. First suppose that a recovery server (001) of a
primary server (000) fails. Then 001’s(n− 1)k backup
servers (011, 021,. . .) would respectively register to the
other recovery server (010, 020,. . .). Then the primary
server (000) fails. In this case the(n− 1)k backup
servers (011, 021,. . .) have one recovery server, while
others have two. We call the backup servers with only
one recovery server as “lonely backup servers”. Now
among the(n−1)(k+ 1)−1 recovery servers,(n−1)k
servers (010, 020,. . .) have a lonely backup server and
we call them “affected recovery servers”, while the
remaining(n−1)(k+ 1)−1− (n−1)k = n−2 servers
have no lonely backup server and we call them “free
recovery servers” (002, 003,. . .). The backup servers
on a backup ring can be divided into three types: (i) 1
lonely backup servers (e.g., 011), (ii)n−2 “free backup
servers” (012, 013,. . .) that connect to one free recovery
servers and one affected recovery servers, and (iii)
(n−1)k−1− (n−2) = (n−1)(k−1) “affected backup
servers” (110, 210,. . .) that connect to two affected
recovery servers.

Let α, β , γ be the optimal bandwidth shares assigned
to the lonely/free/affected backup servers on the backup
ring of the affected recovery server with per-portλ Gbps
bandwidth, respectively. To finish all the recovery at
the same time, we haveα = 2γ, α = β + λ

(n−1) , and

α + (n− 2)β = λ . Therefore we haveα = 2n−3
(n−1)2 λ ,

β = n−2
(n−1)2 λ , andγ = n−1.5

(n−1)2 λ . Whenn ≫ 1 we have

α ≈ 2β ≈ 2γ. Therefore, the lonely backup servers
that have only one recovery serverR should use ap-
proximately twice the bandwidth ofR used byR’s other
backup servers. E.g., for BCube(16,2) with λ = 10 we
haveα ≈ 4

3 Gbps andβ ≈ γ ≈ 2
3 Gbps. Clearly for multi-

ple failures as long asn≫ 1 and the failures happen ran-
domly we can get similar results forα, β , γ. Therefore,
as discussed in Orchestra [16], we can get nearly-optimal
bandwidth allocation by simply creating two separate
TCP connections for the backup servers connecting to
only one recovery server.

Different disk bandwidths of backup servers. The
backup servers may have different number of disks, dif-
ferent disk parameters, or even different kinds of stor-
age media (e.g., flash memory). If RAMCube handles
failure recovery despite these differences, the slowest
backup server may degrade the recovery performance.
This kind of heterogeneity can be handled in a way sim-
ilar to RAMCloud [28]: The sub key spaces could be as-
signed to the backup servers according to their disk band-
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Figure 4: Data path in processing a write request in
RAMCube.

widths, so that they can finish the recovery processes
with similar delays.

5.3 Defragmentation and Cold Start

After a primary server fails RAMCube recovers its data
to multiple recovery servers, on which the recovered
fragmented data may lost locality. Although locality has
no effects on our current simple key-value data model,
this issue might become important if RAMCube supports
richer data models in the future. A simple method for de-
fragmentation is to restart or reinstall the failed primary
server at the same place in the BCube network where
it had been. With the coordinator’s help, the revived
primary server can easily restore its data from relevant
servers offline.

A dangerous situation for RAMCube is that the entire
system loses power at once. A simple way to addressing
this problem is to install on each server a backup bat-
tery that extends the power long enough to flush all the
primary data to disks. Then the cold start after power
returns is simple: each server restores its primary data
to RAM and reconstructs connections with its backup
servers. If the battery cannot support flushing all the
data, at least it needs to ensure the buffered backup data
(not yet written to disks) to be flushed. When power re-
turns the cold start is performed as many simultaneous
defragmentations for all the servers (with the difference
that data is fetched from backup disks). The primary
servers should be reconstructed exactly the same as they
had been before the power failure.

6 Implementation and Evaluation

6.1 Implementation Architecture

We have prototyped RAMCube by designing and im-
plementing a service in Windows Server 2008 R2. The

C a c h e _ c h a i nC a c h e [ 0 ]C a c h e [ 1 ]C a c h e [ 2 ] s l a b s s l a bs l a bs l a b D e l e t e do b j e c to b j e c to b j e c t H a s h _ c h a i nR e u s e _ s t a c k o b j e c t
Figure 5: Slab-based memory management.

RAMCube service is multi-threaded and has the follow-
ing components: theconnection manager(containing 3K
lines of C++ code) which maintains the status of directly
connected neighbors and interacts with other servers, and
the memory manager(having 2K lines of C++ code)
which handlesset/get/deleterequests inside a server.

The connection manageruses libevent [2] to han-
dle events and buffer data. Since in RAMCube all
servers symmetrically act as primary/backup/recovery
servers, the connection manager handles multiple net-
work events including receiving data from clients
and sending/receiving backup/recovery data. Besides,
the connection manager is also responsible for send-
ing/receiving heartbeat messages.

When the primary server receives a key-value pair, it
stores the data in its RAM (handled by thememory man-
ager discussed later) and sends a copy to the relevant
backup server. The backup server acknowledges after
the copy is written to the RAM (not disks), and then the
primary server acknowledges to its client. The process is
depicted in Fig 4. This approach provides efficiency both
in normal operations and in recovery.

The memory manageruses a slab-based mecha-
nism [3, 4], to alleviate fragmentation problems caused
by frequent alloc/free operations in memory manage-
ment inside a server. As shown in Fig. 5, it pre-allocates
a large amount of memory during initialization, and uses
fixed-size memory chunks with a series of predetermined
size classes. The memory manager uses a hash table to
quickly locate the keys, and implements a reusable stack
to efficiently collect and reuse obsolete memory.

The memory manager uses a simple log-structured ap-
proach similar to previous logging file systems [30] for
asynchronously writing backup data into the disks of
backup servers. When a backup server receives a write
request, it stores the key-value pair in its in-memory
buffer. When the buffer fills, it writes the buffered data
to its disk in one single large transfer and then frees the
buffer. This is achieved by appending the new key-values
to the log in its disk, which is divided into 8 MB seg-
ments.

We also implement a simple coordinator that can man-
age configuration information, maintain the mapping be-
tween the key space and the rings, aggregate failure re-
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ports from recovery servers, and identify switch fail-
ures. For simplicity in current prototype we only imple-
ment theglobal coordinatorwhich takes charge of all the
responsibilities oflocal coordinatorsdiscussed in Sec-
tion 4. This should not become a bottleneck since our
testbed is relatively small (introduced in the next subsec-
tion). Our prototype also has not implemented a mech-
anism for handling coordinator failures. We will incor-
porate the ZooKeeper service [25], which provides high
availability and durability for coordinators, into RAM-
Cube in our future work.

In order to minimize the recovery delay, RAMCube
pipelines the recovery procedure [28], including reading
logs from disks, transmitting logs to recovery servers,
and replying logs. The order in which the segments are
read is decided in advance so that the recovery server can
reply the logs immediately after receiving them. Cur-
rently we have not implemented a log cleaner as well as
a cold start mechanism (discussed in Section 5.3) in our
prototype, which is orthogonal to the design of RAM-
Cube and will be implemented in our future work.

6.2 Testbed

We have built a RAMCube testbed with 16 Dell
R610 servers and 2 48-port Gigabit Ethernet switches
(Pronto 3290 and Quanta LB4G) constructing a 1 Gbps
BCube(4,1) network. Each server has one Intel Xeon
2.27 GHz quad core CPU and 16 GB RAM, and installs
one Seagate ST9500430SS 7200 RPM, 1 TB disk. In
the future we would replace the 1 Gbps network with the
10 Gbps BCube by using the ServerSwitch 10 Gbps NIC
(which is still under development and will be available
soon).

In our experiments each key-value pair has only one
backup copy, because our current testbed is relatively
small (only three servers on a backup ring) and each
server has only one disk installed. In practice a simple
way to effectively supporting larger replication factors is
to install multiple disks on each server.

We in turn study the performance of normal I/O oper-
ations, the recovery of server failures, the performance
after a switch failure, and the availability ratio during
multiple server failures. Each experiment is repeated at
least 100 times.

6.3 Throughput

Our first experiment evaluates the write throughput of a
RAMCube server, measured by the number of requests
handled per second. Like the RAMCube service, we im-
plement a multi-threaded benchmark. We runm service
threads on a RAMCube server andmbenchmark threads
on a client machine. Each thread has a busy loop with
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Figure 6: RAMCube server throughput.

150 connections (to the RAMCube service) that asyn-
chronously perform write operations with the form of
“setkey value”. The size of the key-value pairs is 100
bytes and the key is a random 15-byte string. For sim-
plicity we map the entire key space onto the tested server.
For comparison, we also emulated memcached [3] (an
in-memory key-value store on Linux) by discarding the
backup operations of RAMCube and letting the primary
server acknowledge to clients as soon as the data is writ-
ten to its RAM. We measure the number ofsetrequests
handled per second as a function of the number of threads
(m) running on the server.

The result (depicted in Fig. 6) shows that RAMCube
and (emulated) memcached have comparable through-
puts, both of which increase as the number of threads
increases. The difference is because memcached does
not need to send data to backup servers. The through-
put of RAMCube increases little when there are more
than 8 threads because the CPU is quad-core. Clearly,
the write throughput is bounded by the CPU (while our
experiments use a relatively slow CPU) and we can ex-
pect a higher throughput by running more threads on a
RAMCube server with more cores and higher frequency.

6.4 Server Failure Recovery

One important ability of RAMCube is fast recovery from
server failures. In our second experiment we first fill
a primary server with 12 GB data (each key-value pair
having 100 bytes), and then cause a failure of that server
and measure the size of the aggregate transferred backup
data over time. The heartbeat timeout is set to 200 ms.

The result is depicted in Fig. 7. RAMCube recovers 12
GB data in less than 17.5 seconds. The aggregate recov-
ery bandwidth keeps almost always about 699.5 MB/sec
during the entire recovery, which is very close to the opti-
mal recovery bandwidth bounded by the NIC bandwidth
(1 Gbps) and the number (6) of recovery servers. Note
that in our experiments the bandwidth of the NIC is com-
parable to that of disks. We can expect a much faster
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Figure 7: Single server failure recovery.
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Figure 8: Multiple server failures recovery.

recovery speed by using ServerSwitch 10 Gbps NIC and
more recovery/backupservers in a larger RAMCube with
more levels (meaning more NIC ports per server).

RAMCube also supports multiple server failures re-
covery. Here we show how RAMCube recovers from a
primary server failure right after a recovery server fail-
ure. In the network depicted in Fig. 1, we first cause a
failure of the recovery server (01) of a primary server
(00), which can be recovered instantaneously by regis-
tering the affected backup servers (11, 21, 31) to new
recovery servers (respectively 10, 20, 30). We then make
00 also fail.

The recovery process is depicted in Fig. 8, where “1-
connection” represents that each backup-recovery pair
has exactly one TCP connection, while “2-connection”
represents that if a backup server has only one re-
covery serverR then it has two TCP connections to
R. At the beginning both “1-connection” recovery and
“2-connection” recovery have a high aggregate recov-
ery bandwidth of about 587 MB/sec, which is bounded
by the NIC bandwidth (1 Gbps) and the number (5)
of recovery servers. After 16 seconds, however, only
“2-connection” can keep the recovery speed while “1-
connection” receives an obvious degradation. This is be-
cause in “1-connection” recovery after this point some
backup servers finish recovery, resulting in a waste of the
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Figure 9: RAMCube throughput with a switch failure.

network bandwidth. This figure shows that our simple
method (discussed in Section 5.2) for handling backup
servers heterogeneity has a near-optimal result.

6.5 Switch Failures

Switch failures are a critical problem that prevents RAM-
based storage systems from being practical. We turn off a
switch and evaluate the write throughput of a RAMCube
server, as a function of the number of threads (m).

The result is depicted in Fig. 9, where the through-
put without switch failures is also included for compar-
ison. The throughput of RAMCube with a switch fail-
ure is very similar to that without a failure. This is be-
cause RAMCube handles switch failures by using BCube
source routing [24] which can remain all the connections
between the primary server and its backup servers. In
both cases it is the CPU, not the network, that bounds
the throughput. Therefore, in theory a RAMCube server
should have the same throughput with/without a switch
failure, and the small variance depicted in Fig. 9 mainly
comes from hardware differences between the switches.
When the network is heavy-loaded, which is not shown
in this figure, RAMCube may have a more obvious per-
formance degradation with switch failures.

6.6 Availability Ratio

This subsection studies theavailability ratio of RAM-
Cube under simultaneous failures through simulations.
Recall that availability ratio is the ratio of the num-
ber of available storage servers to the number of all
servers (Section 5.1), which reflects the capability of
servicing during server failure recovery that improves
the overall availability of the storage system. We sim-
ulate two RAMCube topologies constructed based on
BCube(16,2) (with 4K servers) and BCube(16,3) (with
64K servers). For each topology, we simulate various
number of simultaneous failures randomly chose from
all servers. The result is plotted in Fig. 10.
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Figure 10: RAMCube availability ratio

The result shows that when there is one failure
both topologies provide high availability ratio, 0.824 in
BCube(16,2) and 0.978 in BCube(16,3). As the number
of failures increases, the ratios degrade gracefully. E.g.,
when there are 5 failures in BCube(16,2) there are still
35.4% available servers. A potential impact not shown in
Fig. 10 is that with the same number of servers a higher
availability ratio usually means lower aggregate recovery
bandwidth. However, this should not be a problem in a
relatively large network. E.g., given the normal configu-
ration with 10 Gbps network bandwidth and 100 MB/sec
disk I/O bandwidth, in BCube(16,2) with 4K servers
the available aggregate network/disk bandwidths for re-
covery are respectively 112.5 GB/sec and 67.5 GB/sec,
which are sufficient to recover several tens of GB data in
1∼2 seconds even with the presence of multiple failures.

7 Discussion and Future Work

This section discusses several challenging issues that will
be considered in the future RAMCube design.

First of all, since low latency [31] is one primary ad-
vantage of RAM-based storage over other storages, in the
future RAMCube may require a low-latency Ethernet in-
frastructure of 10-µs level RTT, with the presence of var-
ious traffic patterns like shuffle and incast. This may be
achieved by leveraging the programmability of Server-
Switch to realize in-network traffic control and conges-
tion avoidance. We also need to support user-level appli-
cations to communicate directly with the NICs to send
and receive data bypassing the kernel.

Second, as introduced in Section 6.1, the backup
servers are two hops away from the primary servers and
all backup data passes intermediate recovery servers. We
can have an alternative data path depicted in Fig. 11.
Here the different backup copies for a key-value pair are
sent to different recovery servers, and the primary server
returns to the client as soon as it receives acknowledge-
ments from them. The recovery server acts as abackup
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Figure 11: Alternative data path in processing a write
request in RAMCube.

surrogateand ensures backup data to be eventually writ-
ten to the disk of one of its backup servers. This approach
reduces the response time of write operations which may
become non-trivial after we realize the aforementioned
low-latency Ethernet, while of course introducing more
complexity.

Third, our prototype only implements a simple data
model of key-value pairs with variable lengths and
set/get/deleteoperations. We plan to implement richer
data model and more complex operations in RAMCube,
such as column families [15], graphs, indexes, atomic
updates to multiple key-value paris, conditional updates,
and transactional operations [8].

Some practical issues orthogonal to the network de-
sign also need to be considered, for example, designing
a segment cleaner for the logging system, implementing
the ZooKeeper service [25] for handling coordinator fail-
ures, replacing replication with erasure coding for better
durability, and incorporating flash memory into RAM-
Cube.

8 Related Work

8.1 Large-Scale Cache

In recent years, large-scale web applications have been
moving more and more data to RAM-based caches to
meet their performance goals. E.g., memcached [3] is
an in-memory key-value store for small chunks of data,
widely used by a number of Web service providers to of-
fload their storage servers. Google and Microsoft keep
their entire Web search indexes in RAM [28].

Using RAM as a cache of disk-based storage systems
has many limitations on consistency and efficiency. For
example, it is the responsibility of applications to man-
age consistency between caches and storage, making it
vulnerable to consistency problems. E.g., the software
bug of the automated consistency verifying system made
Facebook flush all its cache and stop all storage ser-
vices [7]. The slowly refilling process made Facebook
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unreachable for approximately 2.5 hours.

8.2 RAM-Based Storage

Disk performance has not been improved as rapid as
its capacity, making it increasingly difficult to meet the
needs of more and more large-scale applications even
with the help of cache [29]. This makes people consider
new solutions of permanently storing data in RAM.

The idea of permanently storing data in RAM is not
new. For example, main-memory databases [22, 26] keep
entire databases in the RAM of one or more servers and
support full RDBMS semantics. However, these sys-
tems cannot survive coordinated server failures and do
not provide enough durability for large-scale systems.

Most recently, RAMCloud [28] is proposed as a
RAM-based key-value store in data centers, where data
is kept entirely in RAM. RAMCloud realizes low-
latency RPC by using expensive InfiniBand networks
and supporting user-level applications to send/receive
data directly through the NICs bypassing the kernel.
RAMCloud realizes fast server failure recovery by us-
ing aggressive data partitioning [15, 23]. They scatter
backup data across hundreds or thousands of disks on
backup servers. RAMCloud employs randomized tech-
niques [12], mainly including random replica placement
(with refinement) for load balance and random ping for
server failure detection, to manage the system in a de-
centralized and scalable fashion.

Compared with RAMCloud, we improve RAM-based
storage by addressing several critical DCN-related is-
sues, including false failure detection due to temporary
network problems, traffic congestion during failure re-
covery, and ToR switch failures.

8.3 Flash-Based Storage

Recently, flash memory is receiving increasing attention
for high-performance storage [11, 19, 10, 18].

FAWN [11] couples low-power embedded CPUs to
small amounts of flash storage, and balances computa-
tion and I/O capabilities to enable efficient, massively
parallel access to data. FlashStore [18] uses flash mem-
ory as a non-volatile cache between RAM and disks. It
organizes key-value pairs in a log-structure on flash to
exploit faster sequential write performance and uses an
in-memory hash table for indexing.

SkimpyStash [19] is a RAM space skimpy key-value
store on flash-based storage, which uses a hash table di-
rectory in RAM to index key-value pairs stored on flash.
HashCache [10] is also targeted at DRAM and flash
combined storage system, leveraging an efficient flash-
oriented data-structure to lower the amortized cost of in-
sertions and updates.

As discussed in FAWN [11], for high query rates and
smaller sized storage RAM is the most efficient; for low
query rates and large sized storage disk is the most effi-
cient; and flash memory lies in the middle ground. From
a research standpoint, since the cost/bit of RAM im-
proves rapidly, we want to be more aggressive and prefer
RAM to flash memory as the primary storage to achieve
higher throughput and lower latency. In our future work
we will study replacing backup disks with flash mem-
ory, which may improve I/O performance (e.g., in a cold
start) and adapt to emerging 40 Gbps Ethernet.

9 Conclusion

We have presented the design of RAMCube as a novel
RAM-based key-value store for high-performance I/O
in data centers. By exploiting the proximity of BCube
network, RAMCube restricts all failure detection and re-
covery traffic within one-hop neighborhood. This elim-
inates much of the possibility of false failure detection
and recovery traffic congestion. RAMCube uses multiple
paths of BCube to handle switch failures. Our prototype
implementation and evaluation show that RAMCube is
promising to meet the requirements of RAM-based stor-
age in high performance, availability, durability and scal-
ability.
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Appendix

A. Proof of Theorem 1

BCube(n,k) is equal to ann-tuple, k + 1 dimensional
generalized hypercube. Therefore there arenk+1 servers
on the primary ring. For each primary server, there are
k+ 1 directly connected switches, each withn− 1 di-
rectly connected recovery servers. So there are(n−
1)(k+1) servers on the recovery ring. For each recovery
server, there arek directly connected switches (except
the one it uses to connect to its primary server), each
with n−1 directly connected backup servers. Therefore,
there are(n−1)k servers on the backup ring.

The backup servers is two hops away from their pri-
mary server, and thus they have exactly two digits dif-
ferent from their primary server. Thus each backup
server services 2 recovery servers irrespective ofn and
k. Therefore each primary server has totally(n−1)(k+

1)× (n−1)k/2= (n−1)2k(k+1)
2 backup servers.

B. Proof of Theorem 2

The number of one-by-one failures that can be tolerated
is the smaller one of the following two cases.

First, if a server is disconnected from RAMCube or
all servers on a recovery/backup ring fails, then the

14



RAMCube structure fails. From Theorem 1, there are
(n−1)(k+ 1) and(n−1)k servers on the recovery ring
and backup ring, respectively. Therefore, in the worst
case(n−1)k−1= nk−k−1 server failures (on the same
backup ring) can be tolerated.

Second, recovery servers must have enough spare
RAM to accommodate the recovered data. Letm =
(n− 1)(k+ 1). After the first server fails, RAMCube
must satisfyβ + β

m = β (1+ 1
m) ≤ α; after the second

server fails, which in the worst case may be a recovery
server of the first failed server, RAMCube should satisfy
β + β

m + 1
m−1(β + β

m) < β (1+ 1
m−1)2 ≈ β (1+ 2

m−1)≤ α;
. . .; and after ther th failure (m− r >> 1), in the worst
case RAMCube should satisfyβ (1 + r

m−r+1) ≤ α, or

r ≤ (m+1)(α−β )
α =

(α−β )(nk+n−k)
α .

C. Proof of Theorem 3

By Theorem 1, for each primary server in a RAMCube
based on BCube(n,k), there are(n−1)(k+ 1) recovery

servers and(n−1)2k(k+1)
2 backup servers, and the number

of all storage servers isnk+1. Therefore, the availability
ratio equals to the number of servers more than two hops
away from the failed server divided by the number of all

servers, i.e.,γ = nk+1−1−(n−1)(k+1)−(n−1)2k(k+1)/2
nk+1 = 1−

(k2+k)n2−2(k2−1)n+(k2−k)
2nk+1 .
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