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Abstract. In 2002 Jackson et al. [JKS02] asked whether AC® circuits
augmented with a threshold gate at the output can be efficiently learned
from uniform random examples. We answer this question affirmatively by
showing that such circuits have fairly strong Fourier concentration; hence
the low-degree algorithm of Linial, Mansour and Nisan [LMN93] learns
such circuits in sub-exponential time. Under a conjecture of Gotsman and
Linial [GL94] which upper bounds the total influence of low-degree poly-
nomial threshold functions, the running time is quasi-polynomial. Our
results extend to ACY circuits augmented with a small super-constant
number of threshold gates at arbitrary locations in the circuit. We also
establish some new structural properties of AC® circuits augmented with
threshold gates, which allow us to prove a range of separation results
and lower bounds.
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1 Introduction

The seminal result of Linial, Mansour and Nisan [LMN93] showed how to learn
the class AC” of constant depth circuits in quasi-polynomial time under the uni-
form distribution with random examples. Their work introduced the Low-Degree
Algorithm which can learn functions where the Fourier spectrum is concentrated
on low-degree coefficients; this algorithm and its extensions have since found
many applications in learning, see e.g. [FJS91,BT96] for some early work and
[JKS02,KOS04,M0S04,0507,BOW08, KKMS08,KOS08] for more recent results.

In the two decades since their work, despite much effort, there has been lim-
ited progress in designing learning algorithms for more expressive circuit classes.
Circuit classes like AC? with parity gates (ACY[2]) and depth-2 circuits of arbi-
trary threshold gates remain beyond the reach of currently known algorithms.
One obstacle is that there are no lower bounds known for some of these classes,
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such as depth-2 TCY, and the existence of lower bounds seems to be a pre-
requisite for any learning algorithm (see [FK09]). Devising learning algorithms
and lower bound techniques that can handle more powerful classes of circuits is
a central open problem at the intersection of computational learning theory and
circuit lower bounds.

Jackson et al. made some progress on learning circuits more expressive than
AC® in [JKS02]. They gave a quasipolynomial-time algorithm that can learn
Majority—of—ACO circuits — polynomial-size, constant-depth circuits augmented
with a single Majority gate at the output — under the uniform distribution.
Using a result of [Bei94], this yields a quaspolynomial-time algorithm that can
learn AC? circuits augmented with polylog(n) many Majority gates at arbitrary
locations in the circuit. The algorithm of Jackson et al. uses the low-degree al-
gorithm as a weak learner and combines it with boosting. [JKS02] posed as an
open question whether any efficient algorithm can learn Threshold-of-AC® cir-
cuits, in which the the topmost gate is a threshold gate (i.e. a weighted majority
in which the weights may be arbitrary). It is observed in [JKS02] via an explicit
counterexample that the analysis of their boosting-based algorithm breaks down
for Threshold-of-AC®. In this work, we take a significant step towards answering
the question of [JKS02].

ACP circuits augmented with a few threshold gates have been well studied in
the complexity theory literature, see e.g. [ABFR94,Bei94,GHR92,Gol97,Han07].
This is a natural class of circuits lying between the classes AC® (which we un-
derstand well) and TC® (for which we do not know lower bounds). One focus of
this work has been on understanding the difference in power between unweighted
threshold gates (i.e. majorities) versus threshold gates with arbitrary weights.
Aspnes et al. [ABFR94] prove that any AC circuit with a single threshold gate
at the top cannot compute (or even approximate) parity, and more recently
Hansen [Han07] has established 720°¢™) size bounds on AC circuits augmented
with up to elog?n threshold gates. In contrast, when we restrict ourselves to
Majority gates, an elegant result of Beigel [Bei94] alluded to above shows that
any polynomial-size AC® circuit with polylog(n) Majority gates is equivalent to
a quasi-polynomial size ACY circuit with a single majority gate at the top, and
lower bounds for such circuits follow from [ABFR94].

1.1 Our Results

We show that AC® circuits augmented with a few threshold gates with arbitrary
weights can be learned in subexponential time under the uniform distribution.
In doing this we establish some new structural properties of such circuits, which
allow us to prove new lower bounds and separations for such circuits.

Learning AC’ with threshold gates. Our first main result is a Fourier con-
centration bound for Threshold-of-AC® circuits: roughly speaking, this bound
says that any size-M, constant-depth Threshold-of-AC® circuit C' must satisfy

@ - 2/3
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This can be viewed as a natural extension of the [ABFR94] result showing that
Threshold-of-AC® cannot compute parity; we show that such circuits in fact
exhibit strong Fourier concentration. (Thus, roughly speaking, our result is to
[ABFR94] as the [LMN93] Fourier concentration bound for AC? is to the earlier
AC lower bounds of Hastad [Has86].) We note that Fourier concentration bounds
of the sort we establish were not known even for Majority-of-AC® prior to this
work; the [JKS02] algorithm requires boosting and its analysis does not establish
Fourier concentration.

With our Fourier concentration bound for Threshold-of-AC® in hand, apply-
ing the Low-Degree Algorithm of [LMNO93] we get the first subexponential-time

learning result for this class: any size-M, constant-depth Threshold-of-ACY can
o 112/3
be learned to any constant accuracy € in time p 27 s

An important ingredient in our proof is a recent 2°(@p upper bound
on the total influence of degree-d polynomial threshold functions over n Boolean
variables, proved recently by [HKMO09] and [DRST09]. In 1994 Gotsman and
Linial [GL94] conjectured a stronger bound, that every degree-d PTF has to-
tal influence O(dy/n). We show that under the [GL94] conjecture our results
become significantly stronger: every size-M depth-d Threshold-of-AC° circuit C
has Fourier concentration

1-1/0(d)

20(d) (log M)?
l=—>

Z Cla)? <e for

|a|>t

€

and consequently such circuits can be learned to constant accuracy in time
n20(d)(10g M)d'

We extend the above results by giving Fourier concentration and learning
results for AC” circuits with r threshold gates in arbitrary locations in the circuit.
We unconditionally learn such circuits with 7 = O((log M)'/?) many threshold

. 2O ((log M)2/3) .
gates, to any constant accuracy, in time n . Assuming the [GL94]
conjecture, we learn such circuits with » = O(log log M) to any constant accuracy

QO(d)(log M)O(d)

in time n . These results are achieved building on our results for

Threshold-of-AC°.

Lower bounds and separation results. To complement the positive (learn-
ing) results described above, in Section 6 we establish new lower bounds and
separation results for AC® circuits augmented with threshold gates. These re-
sults separate the classes Majority-of-AC? and Threshold-of-ACY and highlight
some interesting contrasts between them.

1. Since Majority-of-AC? is already known to be learnable in quasi-polynomial
time, our learning results are only of interest if Threshold-of-AC? is actually a
broader class than Majority-of-AC®. We show that this is indeed the case, by
exhibiting a single threshold gate for which any equivalent depth-d Majority-
of-AC circuit must have size 22"/ “™"). (See Section 6.1.)

2. Beigel [Bei94] showed that any size-s, depth-d circuit that contains m Ma-
jority gates is computed by a size-2m(O(log )T depth-(d 4 2) circuit with
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a single Majority gate at the root. We show that this size bound cannot be
improved to polynomial, by showing that a simple AND of two Majority
gates requires any constant-depth circuit with a single Majority gate at the
top (or even an arbitrary Threshold gate at the top) to have nf2alogn) gize.
(See Section 6.2.)

3. A natural question is whether Beigel’s result can be extended from Ma-
jority gates to arbitrary Threshold gates. Perhaps every AC’ circuit which
contains polylog(n) many Threshold gates is equivalent to a quasipoly(n)-
size Threshold-of-~AC%? In fact the answer is no: we show that no ana-
logue of Beigel’s result is possible for Threshold gates, by showing that
any Threshold-of-AC circuit that computes the AND of two (high-weight)
Threshold gates must have exponential size. (See Section 6.3.)

4. We also give lower bounds for ACY circuits with relatively many Thresh-
old gates. We prove that any AC® circuit with elogn Threshold gates can-
not compute parity, for a small constant € > 0. Previously, Aspnes et al.
[ABFRY4] proved this claim for AC® with a single threshold gate at the top.
Beigel [Bei94] showed that any AC’ circuit must be augmented with n()
many Majority gates in order to compute parity. Our bound allows for a
smaller number of gates augmenting the basic AC® circuit, but the gates
(Threshold instead of Majority) are more powerful. (See Section 6.4.)

We note that the previous lower bounds on Threshold-of-AC” due to [ABFR94]
apply to functions which have high PTF degree. This approach cannot be used
for results (1) and (2) above, where we are proving lower bounds against func-
tions which have low PTF degree. As mentioned above, using different techniques
Hansen [Han07] has established n2(°6™) size bounds on AC? circuits augmented
with up to € log? n threshold gates. Very recently V. Podolskii [Pod10] has shown
that any AC circuit augmented with O(logn) threshold gates that approximates
the parity function to high accuracy must have exponential size.

2 Preliminaries

2.1 MAC® and TAC® and TAC®[r]

Recall that a threshold function, or halfspace, over n variables is a Boolean func-
tion h: {—1,1}" — {-1,1}, h(z) = sign(}_]_, wiz; — 0), where wy,...,w,,0
may be arbitrary real values. We will sometimes write Thr to denote a single
threshold gate and Maj to denote a single Majority gate, where the Majority
function is the threshold function for which each w; equals 1 and the threshold
0 equals 0.

A Threshold-of-ACO circuit, or TAC, is a circuit consisting of a threshold
function (with arbitrary weights and fanin) as the output gate and AC° circuits
feeding into it. A depth-d TAC? is one in which each of the AC? circuits feeding
into the output threshold gate has depth at most d — 1. The size of a TAC? is
the total number of gates (so in particular, in a size-M TAC® each of the AC®
circuits is of size at most M).
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A Majority-of-AC® circuit, or MAC?, is a TAC® in which the top threshold
function is a majority gate.

Finally, we will also consider AC® circuits that have r arbitrary Thr gates
buried at arbitrary locations in the circuit; we refer to such a circuit as a
“Threshold-of-r-AC%”, or TAC[r].

We give standard definitions of polynomial threshold functions, influence
of variables on Boolean functions, noise sensitivity, and the basics of Fourier
analysis in the full version of the paper [GS10].

2.2 Random Restrictions and AC°

We write “p ~ R),” to indicate that p is a random restriction with parameter p.
Such a restriction p is chosen by independently fixing each variable to +1 or —1
each with probability 1%17, and leaving the variable unfixed with probability p.
We write f, to denote the function that results from applying p to f.

We will use several facts about the behavior of AC? circuits under random
restrictions. The first of these facts is Hastad’s Switching Lemma:

Lemma 1 ([H&as86]). Let C be a depth-2 circuit (i.e. a DNF or a CNF) of
bottom fan-in s. Then Pr,[C, cannot be written as a depth-t decision tree] <
(5ps)t, where p is a random restriction with parameter p.

(The above statement is implicit in [Has86] and is made explicit in e.g. [Has01].)
Repeated applications of the Switching Lemma can be used to prove the following
in a rather straightforward way:

Lemma 2 ([LMN93], Lemma 2). If C is a size-M depth-d AC® circuit, then
for any t > 0 we have Prp[C'p cannot be written as a depth-t decision tree] <
M2~ where p is a random restriction with parameter p = 10%%'

([LMN93] actually state a slightly weaker form in which the LHS is replaced by
“Pr,[deg(C,) > t].” It is easy to check that using Lemma 1, the [LMN93] proof
directly yields Lemma 2 as stated above.)

2.3 Sketch of the Random Restriction Argument.

The high-level idea of our proof is quite simple, and is similar to that of [LMN93].
We show that when a TACY is hit with a random restriction, with high prob-
ability it collapses into a “much simpler function,” specifically a low-degree
PTF. Recent results on the Fourier concentration of low-degree PTFs due to
[DRST09,HKMO09] let us infer that the original TAC® must also have had good
Fourier concentration. In the rest of this section we elaborate on this argument.

We begin by recalling the basic outline of [LMN93]’s Fourier concentration
bound for AC circuits. It will be useful for us to view the [LMN93] argument
as proceeding in two stages:
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The first stage analyzes what happens to a size-M, depth-d AC° circuit C
when it is hit with a random restriction with parameter p ~ W (recall
that p is the probability that a variable “survives” the restriction, i.e. is left
unfixed). [LMN93] show that with high probability such a restriction causes

C, to collapse down to a (log M )-depth decision tree.

. The second stage is the observation that a (log M)-depth decision tree T,

being a degree log M polynomial, has extremely strong Fourier concentra-
tion: Z\a|>1ogM T(a)? = 0. Linial et al. then use the Fourier concentration

of C, to argue that the original AC® function computed by C' must have had
most of its Fourier weight at levels < (log M)9.

Our argument for TAC? has a similar high-level structure, but with some

significant differences in both stages. Let C' now denote a size-M , depth-d TAC®
circuit.

1.

2’

In the first stage, we consider hitting C' with a “stronger” random restriction
with a smaller value of p (so fewer variables survive the restriction). We show
that with high probability such a restriction causes C), to collapse down to a
“low-degree” PTF of degree k < log M. The stronger restriction is necessary
since the results of [DRST09,HKMO09] are non-trivial only when the degree
of the PTF is o(v/logn).

The results of [DRST09,HKMO09] imply that C, must have some nontrivial
Fourier concentration. The Fourier concentration for C, is much weaker than
what one gets for decision trees, but one can adapt the original [LMN93]
argument to show that the original circuit C itself must have had some
Fourier concentration.

The conjecture of Gotsman & Linial significantly strengthens the bounds

on total influence and noise sensitivity of low-degree PTF's that are currently
known; it implies non-trivial bounds as long as the degree is o(y/n). This in
turn strengthens the Fourier concentration that we get for C), in Stage 2’, and
hence also for C'. We present each of the stages of the above argument in as
self-contained a way as possible in Section 3. Section 4 puts the pieces together
to prove the main results.

3

3.1

Random Restrictions of TACC.

Stage 1: Collapsing TAC® to a low-degree PTF

In this section we prove the following:

Lemma 3. Let C be a size-M, depth-d TAC®. Let p be a random restriction
with parameter p (specified below) and let k > 1. Then for any 0 < p’ < 1, with
failure probability at most § the function C, is a degree-k PTF, where

_ 4elog(M)p’ k 1
=M+ M| —=C d p= .
* ( k e P = 10 1(410g pyd-2 P
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Proof. The proof is conceptually quite simple. Let C = Thr(C1,...,Cy) where
Thr is the topmost threshold gate, £ < M is its fan-in, and each C; is an AC®
circuit of depth at most d — 1 and size M;, where M, ..., M, < M. We view the
restriction p as being obtained in two steps. The first step collapses each C; to a
decision tree of depth O(log M). The second step significantly reduces the depth
of each decision tree, down to k. After these two steps, with high probability
each C; has collapsed down to (C;), which is a degree-k polynomial. Thus C,, is
a PTF of degree k.

In the first step we take a random restriction p; with parameter p; =
W. For a given i, Lemma 2 gives that with failure probability at
most M; - M~*, the function (C;),, is equivalent to a decision tree T; of depth
4log M. Summing failure probabilities over all ¢ = 1,... £, this occurs for every
C; with overall failure probability at most (M + --- 4+ My)M 4 < M2,

In the second step, we take a random restriction with parameter p’ (thus the
overall probability that a variable survives the combined restriction is p = p1p’ as
desired). The following simple lemma analyzes the effect of a random restriction
on a depth-t decision tree:

Lemma 4. Let T be a depth-t decision tree and p be a random restriction with
parameter p'. Then for k > 1, we have Pr[T, cannot be written as a depth-k

decision tree] < 2! ((etp')/k)" .

Proof. Suppose that under p at most k variables survive in each root-to-leaf path
in 7. Then it is clear that T}, can be written as a decision tree of depth at most
k. So fix any given path of length at most ¢ in T'; wlog the variables appearing
on this path are x1,...,x;. The probability that at least k of these variables

survive p is at most
k N
t\, .k et N’ etp
<| - = .
(k>(p) _<k> ) <k>

A union bound over all (at most 2¢) paths in T finishes the proof.

We apply this lemma to each of the ¢ < M decision trees T; from step 1,
taking t = 4log M. A union bound gives that the probability that any 7; fails
to have its depth reduced to k is at most M -2t - (etp’ /k)* . Any decision tree of
depth k£ is exactly computed by a Fourier polynomial of degree at most k; the
top-level Thr gate takes the sign of a weighted sum of these polynomials, and we
obtain Lemma 3.

3.2 Stage 2: From Fourier concentration of C, to Fourier
concentration of C

We will use the following recent bound on the noise sensitivity of degree-k PTF's
due to Diakonikolas et al. [DRST09] and Harsha et al. [HKMO09]:

Theorem 1. For any degree-k PTF f over {—1,1}" and any 0 < € < 1, we
1
have ns.(f) < 200 . ¢,
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The following simple result (Corollary 17 of [KOSO04]) converts noise sensi-
tivity upper bounds to Fourier concentration bounds:

Lemma 5. Let f : {—1,1}" — {—1,1} be any Boolean function and let k :
[0,1/2] — RT be an increasing function such that ns.(f) < r(e). Then

1

Z fl@)* <e for m:m.

loe|>m
Plugging in Theorem 1 gives the following Fourier concentration bound:

Corollary 1. For any degree-k PTF f over {—1,1}" and any 0 < e < 1, we
have

~ 90(k?)

f(a)® <€ where m(e) = EOR

la|=m(e)

We now show that if f, has good Fourier concentration (w.h.p. over the
choice of random restriction p), then f itself has good Fourier concentration.
This is done by the following lemma, adapting arguments from [LMN93]; the
proof is in the full version [GS10].

Lemma 6. Let f : {-1,1}" — {—1,1} and let t,p be parameters such that
pt > 8. Then

Yo F@)? <2, [ Y R08)),

lee|>t |BI>pt/2

where p is a random restriction with parameter p.
As an easy corollary of Lemma 6 we have the following:

Corollary 2. Let f : {—=1,1}" — {=1,1} and let t,p be parameters such that
tp > 8. Suppose that with probability at least 1 — § (over the choice of a ran-
dom restriction p with parameter p) the function f, has Fourier concentration

218> pt/2 f:,(ﬂ)z <e. Then we have ), -, ]?(04)2 < 2e+ 26.

(This follows from the lemma because ]?p is a Boolean function and consequently
always has total Fourier weight at most 1.)

4 Proof of the Fourier concentration results for TAC®

Throughout this section C' is a size-M, depth-d TAC®. The regime we are most
interested in is when the circuit size M is poly(n) and the error parameter e is
something like a small constant; in particular, we are most interested in situations
where € > M 1. (We note that even the Majority function has f([n])? = ©(1/n),
so Fourier concentration bounds for TAC? must certainly be vacuous for € < 1/n.)
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4.1 The unconditional result

Putting together all the pieces, we have established a Fourier concentration
bound for TAC’:

Theorem 2. Let C be a size-M, depth-d TAC®. Let ¢ > 2M~2. Then C has
Fourier concentration

. 2/3
A~ - (log M)O(d) . 96((log M)=/*)
Z C(a)® < 4e for  t= 6 ((log 1)17%) . (1)

|a|>t

Proof. In Stage 1 we shall take (with foresight) & = (logM)Y/? and p/ =
so consequently p = k This choice of parame-

k
4eM7/F log M (40Tog M) T-e-MT/%
ters gives failure probability at most § = 2M ~2 in Lemma 3, so with this failure
probability we have that C, is a degree-k PTF which satisfies

o, 96((log M)*/?)
Zf(a) SG where m:W.

a>m

In Step 3, we take t = 2m/p so tp/2 = m which is at least 8. Corollary 2
thus gives us

(log M)®(@ . 20((log M)*/%)
€©((log M)1/3)

Z C(a)? < 2+ 25 where t =

|a| >t

Applying the well-known [LMN93] machinery for uniform distribution learn-
ing of Boolean functions with good Fourier concentration, we get the following:

Corollary 3. Size-M depth-d TAC® circuits can be learned to accuracy € in time
n' where ,
(log M)®(@) . 26((log M)*/?)

€©((log M)1/3) ’

Thus as long as € > 1/20((1°gM)1/3)) and d < O((log M)?/?/(loglog M))
20 ((log M)?/3)

this gives an algorithm to learn size-M depth-d TAC? in time n , 1.e.
sub-exponential time (2”0(”) for any M = poly(n).

4.2 The Gotsman-Linial Conjecture and its consequences

In 1994 Gotsman and Linial [GL94] asked the question of what is the maximum
total influence of any degree-k PTF over n variables. They conjectured that the
symmetric function which changes sign on the k& middle layers of the Boolean
hypercube has the highest total influence of any degree-k PTF (it is easy to
see that this function is indeed a degree-k PTF'). Since each layer of edges in
the Boolean hypercube contains at most \/n2" ! edges, a direct consequence of
their conjecture (which is nearly equivalent to it for k = o(y/n)) is the following:
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Conjecture 1 ([GL94]). Every degree-k PTF f over n variables has Inf(f) <
ky/n.

We show that using our approach, Conjecture 1 yields significantly improved
Fourier concentration (and significantly more efficient learnability) for TACY.
The noise sensitivity bounds of [DRST09] and [HKMO09] follow from a bound of
20(k)p1=1/0(k) on the average sensitivity of degree-k PTFs. This bound becomes
trivial for k = 2(y/logn), and hence we needed to use a very strong random re-
striction in order to reduce our initial TAC® to a PTF of degree o(v/logn). Conjec-
ture 1 implies that a weaker random restriction will suffice. We use the following
noise sensitivity and Fourier concentration consequences of the Gotsman-Linial
conjecture:

Corollary 4. If Conjecture 1 holds, then for any degree k PTF f over {—1,1}"
and any 0 <e <1,

24k
5

ns.(f) < 2ke and Z Fle)? <€ where m =

la|Zzm

€

The first inequality follows from the reduction from total influence to noise
sensitivity for PTFs given in [DRST09] (see Section 7), and the second inequality
then follows from Lemma 5. We thus obtain:

Theorem 3. Let C be a size-M, depth-d TACY. Let e > 2M 2. If Conjecture 1
is true, then we have

20(d) (log M)?

Z Cla)? < 4e for

|a|>t

€

Proof. In Stage 1 we shall take k = log M and p’ = 1074, s0p = W.
Lemma 3 gives that with probability at least 1 — 2M 2, the function C, is a
degree-k PTF, in which case we have, for m = 24k? /e Zla\>m C,(a)? < e For

Stage 3, in Corollary 2 we take ¢ = 2™ = M
p €

c1. Corollary 2 thus gives us >, -, 6(@)2 < 2e + 24.

for some absolute constant

Similar to before, the [LMN93] low-degree algorithm gives us:

Corollary 5. If Conjecture 1 is true, then size-M, depth-d TAC® can be learned
to accuracy € in time

29(d) (1og M) 9
n <2

This gives quasi-polynomial time learning for M = poly(n)-size TAC for any
constant (or even 1/polylog(n)) accuracy e.
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5 Learning TAC[r]

Our learning results can be extended from TAC” circuits to TAC®[r] circuits for
small (but superconstant) values of r. The high-level approach is as follows: We
first prove a general result showing that if a class C has Fourier concentration,
then any R-junta-of-functions-from-C must also have fairly good Fourier con-
centration provided that R is not too large. We then argue that any TAC? [r] is
equivalent to a R-junta-of-TACY for R = (r +1)2". This lemma and the argu-
ments used in its proof are similar to arguments found in [BRS95]. Combining
the above two ingredients with the Fourier concentration bounds for TAC® which
we obtained in Section 4, we get Fourier concentration bounds for TAC?[r].

Because of space limits here we only state the results and defer full proofs
to [GS10]. We show unconditionally that TAC’[O((log M)'/?)] circuits can be
learned in essentially the same time bound that we achieved for unconditionally
learning TAC? circuits:

Theorem 4. The class of TAC’[O((log M)'/3)] circuits of size M and depth d
can be learned to accuracy € (for e > 2M~2) in time n', where

t = (log M)®@ . 20105 M)*/?) —O((log A)'/?)

Assuming the Gotsman-Linial conjecture, we obtain

Theorem 5. If Conjecture 1 is true, then the class of TACO[T] circuits of size
M and depth d can be learned to accuracy € (for e > 2M~2) in time n', where

t = 2O(d+r) . (1og M)BdefS.

For constant d this gives quasi-polynomial time learning for r as large as O(loglog M).

6 Lower bounds

6.1 MAC° cannot compute TAC’

In this section we prove that there are TAC? circuits that have no small equivalent
MAC? circuit.

Theorem 6. There is a threshold function over N = O(n?) variables such that
any equivalent MAC® circuit of depth d > 2,d = O(1) must have size 92t/ 7))

The desired function is the function U, 4y (z) defined by Goldmann et al. in
Section 4 of [GHR92] (all variables below take values +1):

n—14n—1

Un.an(x) = sign(2ry an(z) + 1), Tnan(T) = Z Z 2wy (2)

i=0 j=0

It is clear that U, 4, is & TACY circuit (of depth 1), consisting of a single threshold
gate over N = 4n? input variables. It remains to show that any depth-d MAC®
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circuit for U, 4, (z) must be large. We do this in two steps as follows. Suppose
that C is a depth-d, size-M MACY circuit that computes Upan(z). f M =
22(n'"“"Y) then there is nothing to show, so we assume M = 20! e
shall consider the effect of applying a random restriction with parameter r =
W to C, where we select s = 3log M. We establish the following two
lemmas in [GS10]:

Lemma 7. With probability at least 1 — M~ over the random choice of p, the
function (U, an), is a polynomial threshold function of total weight at most M.

Lemma 8. With probability at least 1 — 2n=2 over the random choice of p, the
function (Uy an), has a sub-function (obtained by possibly fixing some additional
variables in (U an)p) that is equivalent, up to renaming variables, to Uy, am
where m = 2(n/(log M)1=2).

Fix a restriction p that satisfies both Lemmas (such a p must exist since
each of the two events has probability greater than 1/2). The function U, 4y, is
a restriction of the function (U, 45), from Lemma 7, and thus (U, 4m), must
have a polynomial threshold function of weight at most M7. However, the dis-
cussion following Corollary 8 of [GHR92] shows that the total weight of any

PTF for U,, 4m must be at least £2(2™/2//m). Since m = 2(n/(log M)4~2),

straightforward manipulation yields the desired lower bound M = 22(nt/ (7).

6.2 Lower bounds on MAC®

Beigel [Bei94] showed that any size-s, depth-d circuit that contains m Maj gates
is computed by a size—2m(0(1°g5))2d+l, depth-(d + 2) circuit with a single Maj
gate at the root. It is natural to ask whether this simulation can be improved
to a polynomial-size (rather than quasi-polynomial) Maj of AC®. In this section
we observe that no such strengthened version of Beigel’s theorem can exist, by
proving that there is no polynomial-size MAC® (or even TACY) for an AND of
two Maj gates:

Theorem 7. For any constant d, any TAC® circuit of depth d that computes
f(z,y) = Maj(z1,...,2,) AMaj(y1, ..., yn) must have size nf?a(ogm)

Proof. The proof is by contradiction. Let M = n°(°¢™) and let C be a depth-d
TAC? of size M that computes f (x,y). We analyze the effect of hitting C with a
very strong random restriction p, one which has parameter p = n=%1. It is easy
to see that with extremely high probability — much more than 1/2 — f, turns
into some function of the form

Folz,y) =sign( D zi+ C1) Asign( D y; + Ca),

1€S57 JES,

where |S1|, |S2| > n®® and |C1], |Cq| < n®5t. For any such p, by fixing at most
2n-51 additional variables, we get Maj(z’) A Maj(y’) where z’,y’ are £2(n%%)-bit
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strings. By the recent result of Sherstov [She09], any PTF for this function must
have degree at least cq logn for some absolute constant ¢; > 0.

On the other hand, let us consider what happens to the TAC’ C' under
such a strong random restriction using Lemma 3. Since p = n~%! we have
p = n"%1 . 109 (4log M)?2 < n=99 for n sufficiently large. Taking k =
(c1/2)logn, Lemma 3 gives us that C, has a PTF of degree at most (c1/2) logn
with failure probability at most

M2 4 M®(4elog(M)p' /k)F = M~2 4 M°p~?00s™) < 1/2

since M = n°1°8™) Thus, there must be some restriction p such that fp has
PTF degree at least ¢ logn, but C, has PTF degree at most (¢;1/2)logn. This
contradiction proves the theorem.

Aspnes et al. [ABFR94] prove lower bounds on the size of TAC” circuits that
compute various functions such as parity. The method of [ABFR94] is useful
for functions that have high weak PTF degree (such as parity). In contrast, our
argument above gives us a TAC? lower bound for the function Maj(z) A Maj(y),
which is known [BRS95] to have PTF degree only O(logn).

6.3 Lower bounds on TAC®

We prove that no analogue of Beigel’s theorem [Bei94] is possible for Thr gates:
even an AND of two Thr gates may require a TAC? of more than quasi-polynomial
size. The proof (see [GS10]) is similar to that of Theorem 7, it uses a recent result
of Sherstov [She09] showing that the function f(x,y) = Up an(2) AU, an(y) (see
Section 6.1) has PTF degree §2(n).

Theorem 8. Fiz any absolute constant d. Any TAC® circuit of depth d that
computes f(z,y) = Unan(z) A Upan(y) must have size 22/,

6.4 Lower bounds on TAC[t(n)]

Inspection of the proof of Theorem 4 is easily seen to imply that the parity
function cannot be computed by a TAC[(logn)?/3] circuit. In the full version
[GS10] we give an improved bound that allows up to O(logn) threshold gates.

Theorem 9. Fiz any absolute constant d. Any poly(n)-size, depth-d TAC"[t(n)]
circuit that computes the parity function must have t(n) = 2(logn).
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