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Abstract. In this paper, we explore the more practical aspects of building and
rendering concentric mosaics. First, we use images captured with only approxi-
mately circular camera trajectories. The image sequence capture can be achieved
by holding a camcorder in position and rotating the body all around. In addition,
we investigate the use of variable input sampling and fidelity of scene geometry
based on the level of interest (and hence quality of view synthesized) on the ob-
jectsinthe scene. We achieve the tolerance for minor perturbations about the exact
circular camera path and variable input sampling by using and analyzing a variant
of the Hough space of all captured rays. Examples using real scenes are shown to
validate our approach.

1 Introduction

Image-based rendering (IBR) hasbecomeapopular approach for modeling and rendering
avirtual environment. Whilethe conventional means of rendering usesa3D model (with
possibly acomplicated photometric model), image-based rendering directly interpol ates
novel viewsfrom captured images. If theinput images are captured sparsely in the space,
establishing correspondences may still be necessary. However, if the input images are
densely captured, direct view interpolation will suffice.

In theory, one needs only to capture a complete plenoptic function [1, 7] in order to
synthesize a novel image from any viewpoint and at any viewing direction. However,
a complete plenoptic function is at least 5D, which includes 3D spatial location and
2D ray directions at any point. If free space is assumed, the plenoptic function can be
reduced to 4D, as shown in the lumigraph [2] and light field rendering [6]. However,
for modeling avirtual environment, the size of the database for the light field is usually
massive because it hasto sample four dimensions.

Recently, concentric mosaics[11] hasbeen proposed to sampleavirtual environment
wherethe viewpoints are constrained on aplanar surface. It hasbeen shownin[11] that a
novel view can be generated from a sequence of images captured from a camerarotated
off-center along a circular path. A linear pushbroom camera model is assumed [3] (as
iswith our work). In other words, the camera model used comprises a stack of parallel
perspective views perpendicular to the y-axis, with each perspective view representing
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a horizontal scanline. While vertical distortion exists as a result of using this camera
model, the synthesized images show good rendering quality with the help of constant
depth correction and bilinear interpolation.

However, there are at | east two disadvantages associated with the current concentric
mosaics work. First, it requires a capturing rig that is bulky. It is much more practical
if a user can hold a camcorder in a position and rotate his body around to capture
the necessary images. Second, it is desirable to capture the environment with variable
sampling rates and fidelities. For example, it is intuitive that more samples should be
taken at regions that are deemed more interesting. It also makes more sense to make
more samples at areas that is highly textured and where depth variation is significant.

This paper addresses the above two practical issues in concentric mosaic building
and rendering, namely using hand-held camera to acquire images and variable input
sampling. The input sequences of images are captured using a hand-held camera, and
recovery of the camera pose is accomplished using a structure from motion algorithm.
However, we do not explicitly build a 3D model from the input images (e.g., generate
3D panoramic models from stereo [4]). To handle the variable sampling resolution, we
propose a new representation we call called signed Hough space that enables uniform
sampling and efficient computation in the ray space.

1.1 Previouswork

There has been significant work done on image-based rendering using large quantities
of input images. The pioneering work on the lumigraph [2] and light-field rendering
work [6] have spawned a number of related work. Two of the more notable ones are the
concentric mosaic [11] and the stereo panorama [8]. There are also others who use the
approach of generating 3D panoramic models [4], or computing panoramic depth as a
means for rendering [7, 12].

1.2 Outline of paper

The remainder of this paper is organized as follows. We describe our new representation
called signed Hough space in Section 2. In Section 3, we give a summary of the least-
sguares method to extract camera pose from a sequence of tracked images. Once camera
poses are known, the input data is mapped to the new representation space. | ssues with
rendering with approximate concentric mosai cs using the new representationisdiscussed
in Section 4. Experimental results using synthetic and real images are shown in Section
5. We conclude this paper in Section 6.

2 Signed Hough space

Our image-based approach isbased on reusing captured raysfrom input imagesto recon-
struct an image at anovel viewpoint. Animportant problem in image-based rendering is
the representation, namely, how to represent the rays that are captured. For example, the
lumigraph is a particular way of sampling the ray space using a 4D two-plane parame-
terization. Concentric mosaics sampl e the space using three parameters, i.e., therotation
angle, radius and vertical field of view.
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In this section, we present a new approach to represent non-uniform concentric mo-
saics from a large collection of images taken along an approximate circle. The major
issue in choosing arepresentation for non-uniform plenoptic sampling is how to param-
eterize the space of oriented lines. We consider a good choice of parameterization of
oriented rays to have the following characteristics:

— Efficient calculation. The computation of the position of oriented ray from its pa-
rameter space, and vice versa, should be fast.

— Uniform sampling. The sampling within the spatial and directional spaces should
be uniform. Thisisto avoid potential problemsin rendering.

— All inclusive. All possible oriented rays in the space should be represented, with no
exceptions.

Note 1.

Duality. Reciprocal behavior should exist between the destination (within apanorama
inview space), and source (ageometric point with itsradiancein Cartesian space). In

other words, analysis would proceed exactly the same if the destination and source

are switched.

It is obvious that light field representation using the two-plane parameterization
cannot satisfy the third item. Rays that are parallel or do not intersect the slabs are not
represented. In our case, rays at all orientations and positions can be included in our
representation.

Note 2. For simplicity, wefirst describe the representation of oriented raysin 2D Carte-
sian space, and then we will extend it to 3D space for the representation of approximate
concentric mosaics.

One of the ways that we can visualize the popul ation of rays availableisto construct
the usual Hough space which usesthe norma (r, 6) parameterization. However, raysare
directional, and the conventional Hough spaceis unableto distinguish raysthat have the
same eguation by are of opposite directions. We solve this by using the right-hand rule:
A ray that isdirected in an anti-clockwise fashion about the coordinate center is labeled
positive, otherwise it is labeled negative. “Positive’ rays have positive r values, i.e.,
(r,0), while “negative” rays have negative r values, i.e., (—r, 7 + 6). Figure 2.1 shows
four different raysin 2D space and their corresponding pointsin the signed Hough space.

An attractive feature of this representation is the duality between points and sinu-
soids in both Cartesian and signed Hough space. Figure 2 shows examples of common
proj ections are represented in signed Hough space. For example, panoramic visibility at
apoint in Cartesian space (Figure 2(a)) is represented as a sampled sinusoidal curvein
the parameter space. A concentric mosaic (Figure 2(b)) is mapped to ahorizontal linein
the signed Hough space, while parallel projections (Figure 2(c)) are mapped to avertical
linein the signed Hough space.

Note 3. Specifically, the bundle of all rays emitted by a 3D geometric point in Cartesian
space aso takes the shape of a sampled sinusoidal curve featured by its space location
(ro,00). Thus, the captured perspective scene can be easily transformed into the pa-
rameter space. Rendering a novel view in the scene is equivalent to extracting a partial
sinusoidal curve from the signed Hough space. Interestingly, computing the depth of
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Fig. 1. Definition of the ray space we captured to reconstruct the 3D geometry. Each oriented ray
in Cartesian space (at |eft) is represented by a sampled point in the signed Hough space.
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Fig. 2. Three typical viewing setups and their associate sampled curve in signed Hough space.
(a) Panoramic visibility at a point in 2D Cartesian space, (b) A concentric mosaic, (c) Parallel
projection, and (d) Their respective sampled curvesin the signed Hough space.
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scene can aso be defined as a curve fitting problem that is constrained by a specific
BRDF model.

3 Rendering using handheld sequential images asinput

The previouswork on concentric mosaic[11] usesimagesfrom acamerawith aperfectly
circular trajectory using amotorized setup. We extend thiswork to amore practical level
by allowing visualization from approximate concentric mosaics. The input images can
be captured from a hand-held camera that is moved through an approxiately circular
trajectory.

3.1 Computing structure from motion

Building the approximate concentric mosaic requires accurate camera poses associated
with the input images. To do this, we first calibrate the camera to extract intrinsic pa-
rameters using the method described in [15]. Subsequently, we automatically track point
features in the image sequence using Shi and Tomasi’s tracker [10]. Their tracker uses
an affine model and a Hessian-based measure of the local texturedness to determine
removal and addition of point features at each frame.

Oncethe point tracks are available, we apply theiterative least-squares minimization
technique based on Levenberg-Marquardt on these point tracks [14] to recover camera
motion. For completeness, we provide a brief description of this algorithm.

Structure and motion are solved simultaneously to minimize the difference between
the 2-D track points and the 3-D object points projected into 2-D. The Levenberg-
Marquardt algorithm [9], a standard iterative least-squares solver, is used to minimize
the objective function

C(a) = ZZCMUU - f(aij)|27 1

where u;; isthe measured point feature location, f(a;; ) isthe predicted projected point,

a;; = (p; ,mj,my) @)
and c;; isameasure of confidence of the position, based on the amount of local texture
at the point.

The vector a contains the 3-D points p; for each point ¢, thelocal motion parameters
m; for each frame j, and the global motion and cameraintrinsic parameters my,. The
function f(a;;) is the projective function that maps the point p; to the image j, using
the camera position and the cameraintrinsic parameters.

For each iteration, the L evenberg-Marquardt al gorithm finds an approximate Hessian
matrix A and gradient vector b, which is used to solve for an increment da towards the
minimum. The equation solved is

(A + AI)da = —b, ©)

where )\ isatime-varying stabilization factor and | is the identity matrix.
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The elements of the Hessian A are approximated asthe product of partial derivatives
with respect to a:
Of T (ay;) Of (ai)

T
3aij

and the gradient vector b is
3fT a;q
b= Y320y 2 e, ®
i g aij

wheree;; = u;; — f(a;;) isthe position error.

Note 4. For our application of rendering with approximate concentric mosai cs, wewoul d
also like to constrain the camera motion to a simple planar motion from general rigid
motion. The structure from motion algorithms would be more robust with the reduction
in the number of parameters.

Once we have obtained the camera poses using the tracker and subsequent structure
from motion agorithm, we can then map all the input rays associated with the cameras
to the signed Hough space for subsequent rendering.

4 Rendering from the signed Hough space

By resampling the input raysinto the signed Hough space, we can achieve the tolerance
for minor perturbations about the exact camera poses. These camera parameters may
not be perfectly recovered from the above structure from motion agorithms. In the
new space, we improve rendering quality by designing optimal interpolation filters. We
analyze various interpolation filters, including parallel interpolation and constant depth
interpolation along ~ and 6 directions. Furthermore, multi-resolution rendering (i.e.,
zoom in and out of objects/regions of interest) can also be easily implemented in the
new representation space.

Which iscloser tol;:
[,orl;?

Depth uncertainty

Fig. 3. Ambiguous definition of closest ray.



Rendering with non-uniform approximate concentric mosaics

Planeof e T 5
constant depth P+

VGD

Virtual camera center M’ - )

Fig. 4. Rendering and depth correction curves.
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Fig. 5. Different bilinear interpolation filters. (a) Parallel bilinear interpolation, (b) Bilinear in-
terpolation with constant depth correction along angular direction, (c) Bilinear interpolation with
constant depth correction along radiusdirection, and (d) Bilinear interpolation with constant depth

correction aong both directions. Note that the horizontal axis is that of 6 while the vertical axis
isthat of r.
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Given a set of non-uniform concentric mosaics collected from a camera moving
non-uniformly along an approximately circular path, we can render any novel view. The
rendered views are constrained by the camera trgjectory, similar to concentric mosaics
where viewpoints of the rendering camera are constrained by the capturing circle.

Rendering a new image at any viewpoint becomes the problem of extracting a si-
nusoidal curve in the signed Hough volume. However, due to the discretization of the
signed Hough volume, interpolation techniques have to be carefully chosen in order to
obtain high quality rendering results.

Before we describe the interpol ation techniques, let us make a couple of definitions,
with the help of Figure 4. All the rays for a given virtual camera map into what we call
arendering curve. If the depth correction is specified, any given ray will intersect at a
known point, say P. P then maps onto the depth correction curve in ray space.

To continue, agood interpolation filter should make use of depth information. How-
ever, when no information about the scene geometry is available, the parallel bilinear
filter (e.g., [11]) is commonly used to interpolate the rendering rays. It works by as-
suming al of the scene points are located in infinity, as shown in Figure 5(a). In this
particular case, the four closest ray bins I1, I, I3, and I, are used to compute the color
of the virtual ray indicated by I,,, ...

Bilinear interpolation and constant depth assumption can be used to improve the
quality of rendered images. With the constant depth assumption, all of the objects seen
by the camera are deemed to be located along a ssmple surface such as a cylinder. As
with any assumption on scene depth, the issue is how to choose the closest points to
reconstruct the rendered point.

The definition of “closest” points is ambiguous if no accurate depth information is
known. Consider, for example, the question as to which of therays, [, or I3, is"closer”
toray I;? The notion of closeness makes sense only if the object distanceisknown, even
approximately. The interpolation techniques shown in Figure 5(b)-(d) uses specified
depth corrections to decide which ray binsto use. As an example asto how the ray bins
are chosen for interpolation, consider the case of constant depth correction along the
angular direction, as shown in Figure 5(b). First, the intersections between the depth
correction curve and horizontal rows closest to the virtual ray fmm are computed. The
sampling ray bins are those just on each horizontal side of these intersections. Similar
reasoning can be applied to Figure 5(c) and (d).

5 Experiments

Unlike most capture setups for image-based rendering, the image capture process here
isvery smple. Specifically, asingle camerais moved by hand to rotate along an approx-
imate circular path. In our experiments, a total number of 1864 images of area scene
is captured. Theimage sizeis 360 x 288. Only 530 frames are used to recover camera
poses using our SFM algorithm. Two input images are shown in Figure 7(a)(b) where a
number of feature points are tracked for the SFM algorithm. As shown in Figure 6, the
rotation and translation parameters are recovered fairly well.

Using the estimated camera motion, we transform the input images into our signed
Hough space. The binning processisbased on nearest neighborhood. The new parameter
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space hastheresolution of 230 x 310 inradial and angular dimensions. Thesigned Hough
space can a so be examined to seeif it can be represented with coarser discretization by
checking the density of ray occupancy. Downsampling has the benefit of compactness.
In addition, we have applied vector quantization compression to our database to further
reduce its size; in our example, the reduced size is about 4MB.

Figure 7(c,d) show two rendered images. Note the significant parallax changes
around the monitor in the middle and through the window on the right. Four differ-
ent interpolation techniques have been applied to render the new images, as shown in
Figure 8. These techniques are parallel interpolation, depth correction around radial di-
rection, depth correction around angular direction, and depth correction with both radial
and angular directions, respectively. Among these techniques, depth correction along ra-
dial direction producesthe best rendering result, whereas depth correction along angular
direction isthe worst. Because angular sasmpling is much denser than radial samplingin
the original images, interpolation along radial direction is effective. In fact, the angular
direction is over-sampled. Depth correction along both directions produces comparable
rendering result as with depth correction along radial direction only. Parallel interpola-
tion has better rendering result than depth correction along angular direction because
parallel interpolation isin fact along the radial direction, albeit at the infinite radius.

With the new parameter space, we can aso render images in different resolutions.
Figure 9 showstheresultsof zoominginand zooming out. Noticetheappropriate changes
in apparent size of the bunny. In general, there are two approaches to obtain the zoom-in
effect. First, we can sample the areas of interest more densely than others. But muilti-
resolution representations should be applied for efficiently storing the data. Second,
depth information can be used to improve the resolution. Higher resolution of output
images can be achieved with more accurate depth information. The depth information
can be obtained by either vision reconstruction techniques or human interaction. For
example, Figure 9(b) is obtained with a different depth specified by the user than the
depth used in Figure 9(a).
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Fig. 6. Camera poses estimated using structure from motion algorithms. Left: Graph depicting the
variation in rotation (in degrees) about they, x, and z axes (curves from top to bottom). Right:
Graph depicting the variation in translation along the x, y, and z axes (curves from top to bottom).
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Fig. 7. Rendering with non-uniform concentric mosaics. (a,b) Two frames in the input image
sequence, and (c,d) Two rendered images with significant parallax change.
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Fig. 8. Results of using different bilinear interpolation filters. (a) Parallel bilinear interpolation,
(b) Bilinear interpolation with constant depth correction along angular direction, (c) Bilinear
interpolation with constant depth correction along radius direction, and (d) Bilinear interpolation
with constant depth correction along both directions.
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Fig. 9. Results of zooming in and out. (a) No zoom, (b) Zooming in with a factor of 0.75, and (c)
Zooming out with afactor of 1.25. Note the size of change of the bunny.
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6 Discussion

Database acquisition for light-field-based IBR is usualy a very laborious process and
often require specialized (and thus expensive) equipment. Until drastic simplications
are made to the acquisition process, IBR will remain beyond the reach of ordinary
consumers. With our technique, however, such specialized equipment is not necessary.
We have shown that we can provide high-quality visualization from a database created
from images taken using just a hand-held camera that is manually moved along an
approximately circular path.

We haveal so used the notion of variable samplingin our work. In areaswhere objects
arelessinteresting to us, we can afford sparser input sampling and without (or with less
accurate) depth information. This may not be very evident in our results, because our
overall sampling is actually rather dense, even in the least densely sampled areas.

While the camera motion parameters are required to build the database for the con-
centric mosai ¢, absol ute accuracy of these parametersare, in practice, not necessary. This
is evidenced by our results. There are enhancements to our current SFM algorithm that
we can make. Our SFM algorithm is currently too general. If we know that the motion
isplanar (or assumed planar), we can impose additional constraintsin our algorithm, so
that fewer parameters need to be computed. (In the handheld camera case, this may or
may not be applicable.) Parameter recovery will be faster as well, especially when we
are dealing with alarge number of images and tracks.

7 Conclusions and futurework

In this paper, we have proposed a practical method for capturing and rendering approx-
imate and non-uniform concentric mosaics. The method does not require a specialized
rig for image capture; manually moving ahand-held cameraalong an approximately cir-
cular path is sufficient. In addition, we introduced the signed Hough space to represent
the captured rays. The extension to the conventional Hough space is necessary in order
to encode rays with direction. For full 3D space of rays (i.e., using anormal perspective
camera model instead of a pushbroom camera model), we can use an alternative repre-
sentation based on oriented projective geometry [13]. This representation has been used
to recover shape from silhouettes [5].

Judicious use of variable input sampling can be effective in making more optimal
use of the available limited manual and rendering resources. This basically trades off
fidelity of output with the level of interest. We intend to investigate this aspect more
thoroughly.

Finally, we have describe different interpolation regimes and show the results of
applying them. The bilinear interpolation with depth correction seemsto work the best.
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