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ABSTRACT 
The concept of resource pool has a very long history. Propelled by 
the need to share CPU cycles of supercomputers for high-
throughput computing jobs from the scientific community, the 
vision is most recently explored by the advocates of Grid.  On the 
other hand, the advent of P2P researches has demonstrated the 
feasibility of integrating potentially unlimited amount of less 
powerful machines around the world. Organizing a P2P resource 
pool thus becomes an interesting research topic.  

This paper attempts to address two problems. The first is how to 
organize a P2P resource pool, and our answer is to combine the 
self-organizing strength of P2P DHT with an in-system, self-
scaling monitoring infrastructure that is layered on top of DHT.  
The second question is the utility of the P2P resource pool for 
interesting applications. And we choose to showcase its power by 
optimizing wide-area application level multicasting (ALM), a 
problem far more challenging and interesting than conventional 
tasks such as massively parallel computation.  

We show that utilizing spare resources in the pool results in 
significant savings for single ALM session. Furthermore, we 
adopt a purely market-driven approach to optimize multiple 
concurrent sessions. As expected, sessions of higher priority are 
given higher share of resources. 

1. INTRODUCTION 
The concept of resource pool has a very long history. Most 
recently, the Grid community has propelled this vision by uniting 
the local resource pools (i.e. cluster) spread over a dozen sites into 
a global one. However, the applications are restricted mostly in 
the area of high-throughput computing. 

The advent of P2P paints a different direction. First of all, the 
research community has been actively investigating applications 
beyond that of number crunching. The scale and composition of 
resources are of an entirely different nature: we are talking about 
millions of desktop PCs spread widely apart. If a P2P resource 
pool is attempted, it is not clear that the same technologies in Grid 
can be adopted in a straightforward manner. 

On the other hand, A P2P resource pool differs from typical P2P 
applications in that there can be multiple active instances of 
different applications running in the pool. Also, a peer in the pool 
may be helping an application instance of which it is not 
necessarily a member. 

Broadly speaking, we define a P2P resource pool as a collection 
of desktop-grade resources on the edge of the internet, and some 
form of middleware is managing these resources such that they 
can offer computing, storage and networking capabilities for 
multiple instances of potentially different distributed applications.  

This paper addresses two related and important questions with 
respect to P2P resource pool: its architecture and utility to 
schedule interesting applications. We propose to employ 
structured P2P in the form of DHT (distributed hash table) 
[25][30][36][42] to pool together potentially unlimited amount of 
and widely distributed resources. However, DHT alone does not 
automatically generate a resource pool. Thus, we combine the 
self-organizing capability of P2P DHT with an in-system, self-
scaling monitoring infrastructure SOMO (Self-Organized 
Metadata Overlay). SOMO builds a dynamic system status 
database which is available internally to any peers. This database 
is being continuously updated and thus creates an illusion of a 
single, large resource pool. 

Next, we demonstrate the utility of P2P resource pool by 
describing how to schedule and optimize application-level 
multicasting (ALM), an application that is far more challenging 
than, for instance, massively parallel computations. By using peers 
that are otherwise idle, our finding is that up to 30% improvement 
can be made for small-to-medium group size. In the context of 
scheduling multiple competing sessions, our approach is 
remarkably simple: global scheduling is never attempted. Instead, 
we adopt a market-driven approach and let each session competes 
based on their priorities, armed with the information provided by 
SOMO. Our results show that, as expected, sessions of higher 
priority are given higher share of resources, resulting in better 
performance.  

The rest of the paper is organized as follows. We articulate the 
need of a P2P resource pool in Section-2 and contrast it with 
existing alternatives. The architecture of a P2P resource pool is 
described in Section-3. For many interesting P2P applications, 
there is a need to generate resource attributes that can not be 
derived locally from a machine. For instance, network coordinates 
and bottleneck bandwidth are necessary to evaluate potential 
helping peers in ALM. This problem is addressed in Section-4. 
Section-5 evaluates how P2P resource can help ALM and 
provides experiment results. We discuss related work in Section 6 
and conclude in Section 7.  

2. MOTIVATION AND ALTERNATIVES 
2.1 The argument for a P2P resource pool 
Over the recent years, the P2P research community has 
investigated many interesting P2P applications; ranging from 
wide-area distributed storage [20][9][10], scientific computing 
[18], application-level multicasting [6][4], distributed web cache 
[35], searching [29] and collaborative spam fighting [43], to name 
just a few. There is, however, a common assumption that underlies 
all these proposals: all peers are active participants in one 
application instance. 

* This work was performed when the author was a part-time student at 
Microsoft Research Asia. 



P2P resource pool explores a different dimension in which 1) 
there can be multiple and simultaneous instances of different 
applications and they could potentially overlap on the resources 
they are running; and 2) a peer maybe helping an application 
instance of which it is not a member. The first point illustrates 
aggregated power of all potential resources, and the second 
reflects and extends the very collaborative principle upon which 
the P2P premise is found.  

For instance, all existing application-level multicasting (ALM) 
algorithms assume that the only resources available are those in 
the ALM session. In a collaborative environment, many other 
stand-by resources could be included for an otherwise more 
optimal solution. For example, Microsoft Research has five 
branches across the globe, and has many thousands of machines 
that are geographically distributed. At a given hour, however, 
number of active video-conference sessions is likely to be only a 
handful, and each session may have a small number of participants 
(say less than 20). 

The availability of a P2P resource pool offers new optimization 
possibilities. As shown in Figure 1, when an otherwise idle but 
suitable helping peer is identified, it can be integrated into a 
topology with better performance. This is an actual output of our 
algorithm used in this paper. 

 
Figure 1. (a) An optimal plan for an ALM. (b) An even better 
plan using helper nodes in the resource pool. Circles are the 

original members of the session, and the square is an available 
peer with a large degree. 

The P2P resource pool has seen its first incarnation in PlanetLab 
[24], a wide-area P2P testbed. On PlanetLab, researchers upload 
experiments on to machines comprising the testbed that will be 
run concurrently with others. Up-to-date, its scale is still limited 
(220 nodes as of the writing of the paper), and thus a need to 
organize the pool in a more scalable and self-organizing fashion is 
not yet profound. This is one of the problem this paper attempts to 
address. 

2.2 Resource pool and its alternatives 
We wish to give a more concrete definition of resource pool by 
contrasting it against another interesting alternative: the job pool. 
This is necessary because, from a high-level perspective, both are 
venues to deliver the matchmaking between job and resource, and 
that neither is perfect: depending on the application scenario, each 
has its unique strength and weakness.  

Informally speaking, a job pool is a collection of jobs and is where 
an idle resource look for suitable work to perform, whereas a 
resource pool is the precisely the opposite: a task manager goes 
into a resource pool to discover and acquire necessary helping 
hands in order to accomplish a given mission. Of course, in a 
distributed environment, there can be legitimate combination of 
both. 

A perfect example of a p2p job pool is SETI@home [18] (and of 
course, many others of the same flavor). There is a well-
maintained central site and, typically, the application should be 

easily parceled out for distribution. Machines register themselves 
in order to grab a piece of work and then go away cranking away 
whenever they feel like. This is a very economical model and 
requires very limited amount of management at the central site. 
Provided that job is of coarse granularity, a centralized 
architecture works extremely well. It has been reported that 
SETI@home has aggregated computing power far exceeding some 
of the most powerful supercomputers in the world. The limitation 
is also obvious. Although it is possible to think of advanced 
variations, because the unpredictability of when and what 
resources will become available, applications are restricted mostly 
to those that are conventionally known as “embarrassingly 
parallel” ones. It is also possible to implement the job pool as a 
distributed architecture, but it will be far easier to just use a 
centralized architecture.  

In contrast, a node joins a resource pool in the hope that its power, 
when otherwise idle, can be of some use. The economic incentive 
can be stronger, especially in the context of P2P: tasks of arbitrary 
type (beyond those of number crunching) will tap into the power 
of other participants in the pool at some suitable point. The added 
flexibility is particularly useful for applications such as running 
application-level multicasting sessions with some level of QoS 
guarantee. This is so because planning the topology of the tree is 
itself a complex piece of work. On the other hand, the 
consequences are many. Foremost of all is an accurate accounting 
of what is going on in the resource pool. This is necessary for 
each job to quickly query the available candidates and 
subsequently make resource reservation. The implication is that, 
given the potentially huge amount of resources in the millions, a 
client-server architecture where each client updates one central 
entity about its status is no longer a scalable – not to say robust 
alternative.  

To summarize, job pool is best for scenarios where the task can be 
well-partitioned. Resource pool can ideally accommodate tasks of 
arbitrary type. However, it will need, as a minimum, a scalable 
way of monitoring and aggregating system information so that 
resource reservations can be carried out at the discretion of task 
managers that is responsible for individual incoming jobs.  

The principle of resource pool is what motivates the work in the 
Grid space, in particular the Condor-G line of work [14][8]. For 
instance, the Grip Resource Registration Protocol (GRRP) is used 
for an entity, typically representing a cluster of machines, to notify 
other entities that it is part of the pool. Grip Resource Information 
Protocol (GRIP), on the other hand, is the primitive to construct 
aggregated resource directory service through which tasks can 
query for potential candidates. The Condor-G agent can use such 
infrastructure to submit jobs and monitor its progress. 

There have been many discussions about the convergence of P2P 
and Grid [13][22]. We believe that indeed there are many 
synergies among the two in the space of resource pool 
organization. In particular, we argue that the self-organizing 
attributes is what the many excellent work of P2P can bring to the 
scene of Grid.  We will offer a more elaborate discussion at the 
conclusion of Section-3. 

3. BUILDING  P2P RESOURCE POOL 
The foundation of our resource pool proposal is the so-called 
structured peer-to-peer systems, and in particular the distributed 
hash table (DHT). DHT offers a way to pool together potentially 
unlimited amount of resources together. But the capacity to pool 
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resources together does not mean a resource pool is established; 
the latter requires the availability of an infrastructure to know 
what is going on. In this section, we will describe these points in 
turn, and will conclude with the comparison of Grid-based 
resource pool. 

3.1 P2P DHT 
We assume that the readers are reasonably familiar with the 

concept of DHT, and for the sake of brevity will only go through 
the basics. In DHT, a very large logical space (e.g. 160-bits) is 
assumed. Nodes join this space with random IDs and thus 
partition the spaced uniformly. The ID can be, for instance, MD5 
over a node’s IP address. An ordered set of nodes, in turn, allows 
a node’s responsible zone to be strictly defined. Let p and q be a 
node x’s predecessor and successor, respectively. One definition 
of a node’s zone is simply the space between the ID of its 
immediate predecessor ID (non-inclusive) and its own ID. In other 
words: zone(x) ≡ (ID(p), ID(x)]. This is essentially how consistent 
hashing assigns zones to DHT nodes [36] (Figure 2). To harden 
the ring against system dynamism, each node records r neighbors 
to each side in the rudimentary routing table that is commonly 
known as leaf-set. Neighbors exchange heartbeats to keep their 
routing tables current, updating their routing tables when node 
join/leave events occur. This base ring is the simplest P2P DHT. 

 

Figure 2. The simplest P2P DHT – a ring, the zone and the 
basic routing table that records r neighbors to each side. 

If one imagines the zone being a hash bucket in an ordinary hash 
table, then the ring is a distributed hash table. Given a key in the 
space, one can always resolve which node is being responsible. 
The lookup performance is O(N) in this simple ring structure, 
where N is  the number of nodes in the system. 

Elaborate algorithms built upon the above concept achieves 
O(logN) performance with either O(logN) or even constant states 
(i.e. the routing table entries). Representative systems including 
Chord[36], CAN[25], Pastry[30] and Tapestry[42]. 

The most interesting aspect of a DHT is that the whole system is 
self-organizing with very low overhead – typically in the order of 
O(logN). The second significant attribute is the virtualization of a 
space where both resources and other entities (such as documents 
stored in DHT) live together; this feature is what we explore the 
most in this paper.  

3.2 SOMO: Self-Organized Metadata Overlay 
As we described earlier, to complete a P2P resource pool, we must 
augment DHT with an in-system monitoring infrastructure. We 
emphasize the in-system property because for a large system, it is 
impractical to rely on external monitoring service. Such an 
infrastructure must satisfy a few key properties:  self-organizing at 
the same scale as the hosting DHT, fully distributed and self-
healing, and be as accurate as possible of the metadata gathered 
and disseminated. Our proposal, SOMO (for Self-Organized 
Metadata Overlay), was designed for this purpose and was first 

introduced in [41]. Its construction took a top-down approach; we 
describe in this paper an improved bottom-up version.  

The basic idea of SOMO is to draw a logical tree with a fixed fan-
out (e.g. 8) first. The positions of the tree nodes can be calculated 
by each brick independently. Given its responsible zone in the 
DHT, each node selects the highest logical tree node that it hosts 
as its representation in the SOMO hierarchy, and then calculates 
the position of the parent logical node, routes to that parent tree 
node to form a child-parent link. A hierarchy is thus built in a self-
organized fashion. The SOMO hierarchy is completely self-govern 
and self-repair, and can gather and disseminate metadata in 
O(logfan_outN) time. Given a data reporting interval T, information 
is gathered from the SOMO leaves and flows to its root with a 
maximum delay of logkN⋅T. This bound is derived when flow 
between hierarchies of SOMO is completely unsynchronized. If 
upper SOMO nodes’ call for reports immediately triggers the 
similar actions of their children, then the latency can be reduced to 
T+thop⋅logkN, where thop is average latency of a trip in the hosting 
DHT. The unsynchronized flow has latency bound of logkN⋅T, 
whereas the synchronized version will be bounded by T in 
practice (e.g. 5 minutes). Note that O(thop ⋅logkN) is the absolute 
lower bound. For 2M nodes and with k=8 and a typical latency of 
200ms per DHT hop, the SOMO root will have a global view with 
a lag of 1.6s. 

It would seem that SOMO derived all its self-organizing and self-
healing property by trading off configurability. For instance, what 
if we want the most capable machine to be at the top of the 
machine? The trick is to relax the requirement that node ID is 
purely random. What we need to do is to make an upward merge-
sort through SOMO and first identify the most capable node. This 
node then exchange ID with the one who currently possesses the 
root logical point of SOMO (i.e 0.5 of the total space [0, 1]), and 
this effectively changes the machine that acts as the root without 
disturbing any other peers. Note that this self-optimizing property 
is impossible unless we operate in the logical spaced first. 

We have implemented a SOMO-based global performance 
monitor called LiquidEye with which we monitor over 100 
machines in our lab on a daily basis. This tool employs SOMO 
built over a very simple ring-like DHT, and SOMO gathers data 
from various performance counter on each machine. The complete 
system status is obtained by querying the SOMO root report 
through a unified UI interface. We tested the SOMO stability by 
unplugging cables of servers being monitored, and each time the 
global view is regenerated after a short jitter.  The reporting cycle 
is 5 seconds, and the leaf SOMO report is 40bytes. In a wide-area 
and large-scale deployment, we will opt for a less aggressive 
interval and also employ compression optimization. Likewise, 
redundant links should be added to increase the robustness; this 
can be easily accomplished by letting the representative virtual 
node to connect to a random set of parent siblings.  

3.3 Discussion 
To summarize, our P2P resource pool is composed of two 
ingredients, see Figure 3: 

• DHT . A DHT is used not in the sense of sharing contents, 
but rather as an efficient way to pool together a very large amount 
of resources, with zero administration overhead and no scalability 
bottleneck. 

x 

p q 
zone(x)=(ID(p), ID(x)] 
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• SOMO. SOMO is a self-organizing “news broadcast” 
hierarchy layered over DHT. Aggregating resource status in 
O(logN) time then creates the illusion of a single resource pool. 

 
Figure 3. Combining DHT’s capability of pooling resource 

with SOMO collectively makes the resource pool. 

We are now ready to contrast the differences of a P2P resource 
pool versus the one created by Grid and identify their synergy. 
From a high-level point of view, the necessary steps are the same: 
register the resource, gather statistics and then aggregate them into 
a snapshot and, finally, ensure the resulting dynamic database can 
be queried by applications.  

While Grid is composed mostly by dozen of sites each maybe 
composed by supercomputers (possibly in the form of clusters), a 
P2P resource pool can potentially possess millions of machines 
that are widely distributed. KaZaA [17], for instance, has current 
installation base well over 4 million. 

The scale and composition of P2P resources requires that every 
layer be completely self-organizing, self-scaling and self-healing. 
There should be very little administration overhead, if at all. We 
have illustrated that how SOMO layered over P2P DHT 
accomplishes the goal. In essence, SOMO builds a skeleton upon 
which the aggregation is done. It makes perfect sense to adopt 
components of GRIP and GRRP from Grid protocols as primitives 
to do the job of pair-wise registration and aggregation.     

4. GENERATING RESOURCE METRICS 
FOR ALM 

For many P2P applications, resource statistics including not only 
the usual suspects such as CPU loads and network activities, but 
also more complex ones that can not be derived locally from the 
machine. A case in point is ALM, suppose we want to schedule a 
session and we obtained a huge list of potential helping peers by 
querying SOMO, we must select one that is nearby and also has 
adequate bandwidth. If only the peers IP addresses are given, 
pinging over them to find their vicinity is both time-consuming 
and error-prone. 

These two critical metrics are the focus of this section. We will 
explain how these attributes can be generated by leveraging the 
interactions among DHT nodes that maintain the logical space 
integrity. For a more detailed treatment, we refer reader to our 
technical report [39]. 

4.1 Node coordinate estimation 
The idea of coordinates-based latency estimation is proposed in 
GNP [12]. The point is that, in order to know latency(x, y), it is 
sufficient to compute distance(coord(x), coord(y)), where coord is 
a network coordinate in a d-dimension Euclidean space. 

The GNP proposal relies on a set of well-distributed nodes called 
the landmarks. GNP starts by computing coordinates of the 
landmarks, solving their coordinates as an optimization problem. 
Later, other nodes compute their coordinates using essentially the 
same principle, but this time against the landmark nodes.  

The requirement of landmark nodes contradicts to the fully 
distributed nature of P2P resource pool. Our observation, which is 
the same as Lighthouse [23] and PIC [3], is that the infrastructure 
nodes are not necessary. Recall that each node must heartbeats 
with its leafset nodes in order to collectively maintain the DHT 
space. If each node randomly chooses to acknowledge the 
heartbeat message from nodes in its leafset, then over time it will 
have a measured delay vector, dm, to its leafset neighbors. In the 
heartbeat message, each node also reports its current coordinates. 
Thus, a predicted delay vector dp is available locally as well. Node 
x update its own coordinates by executing downhill simplex 
algorithm, minimizing the function: 
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Notice that the optimization is done locally and only updates x’s 
own coordinate, which will be distributed to x’s leafset neighbors 
in subsequent heartbeats. 

The above procedure is executed by all nodes periodically, and 
node coordinates, the measured and predicted delay vectors are 
being updated continuously.  
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Figure 4. CDF of relative error of GNP and the leafset-based 
variance; number of infrastructure node/leafset size is 16 (left 

graph) and 32 (right graph) 

Figure 4 presents CDF of the relative errors of the original GNP 
and its leafset-based version with our simulation of 1200 nodes. 
These 1200 nodes are distributed according to the GT-ITM [38]. 
As can be seen, GNP is less sensitive to number of infrastructure 
nodes than the leafset version is to the leafset size. Our data 
indicates that when L (the leafset size) is 32, which is the default 
configuration of Pastry, the result is very close to GNP with 16 
infrastructure nodes. 

4.2 Bottleneck bandwidth estimation 
Network bandwidth of a peer is another important metrics for 
many applications running on top of P2P resource pool. It is 
shown that there is considerable correlation between bottleneck 
bandwidth and throughput [11]. Therefore, we choose bottleneck 
bandwidth as the predictor for throughput.  

We will adopt the common assumption that bottleneck link lies in 
the last hop. For each node, its upstream bottleneck bandwidth is 
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estimated as the maximum of the measured bottleneck bandwidths 
from the node to its leafset members, which are limited by both 
the node’s uplink bandwidth and the downlink bandwidths of the 
leafset nodes. The basic idea is that if there is one neighbor with 
downlink bandwidth greater than the node’s uplink bandwidth, 
the estimation is accurate. So with more leafset nodes the chance 
of getting accurate estimation would be better. For the same 
reason, the node’s downstream bottleneck bandwidth is estimated 
as the maximum of the measured bottleneck bandwidths from its 
leafset nodes to itself.  

Measuring bottleneck bandwidth is well understood. For instance, 
in packet-pair technique [21] two packets of size S are sent back-
to-back from a source node. The receiver measures the time 
dispersion T in between and estimates the bottleneck bandwidth 
from the source as S/T. 

The cooperation of leafset nodes over heartbeats enables packet-
pair technique to be naturally deployed. Periodically, a node x 
chooses to send a neighbor y two consecutive heartbeat messages 
back to back, padding each so that their size is sufficiently large 
(say 1.5KB). y now has the estimation of the bottleneck 
bandwidth on the path from x to itself. This value will be 
piggybacked in the next heartbeat to x. Likewise, y does the same 
probing as x. After x collects enough measured bandwidths from 
its leafset members, it can now estimate its own bottleneck 
bandwidth as above. 
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Figure 5. Average relative error vs. leafset size 

We have evaluated our protocol on the Gnutella trace1[32]. The 
larger the leafset, the better the prediction will be, simply because 
nodes with higher uplink/downlink bandwidth have a better 
chance to be included. This is evident in Figure 5: the average 
relative error (ratio of the absolute error to the real bandwidth) 
decreases with leafset size. Specifically, with leafset of size 32, the 
average relative error of upstream bandwidth estimation is almost 
0 and the ranking is 100% correct. Therefore our scheme is rather 
effective in a practical setting. Note that uplink estimation is 
predicted more accurately than downlink. This is because most 
hosts in the Gnutella trace have downstream bandwidths higher 
than the upstream bandwidths of most others [32], whereas 
downlink can be underestimated. Fortunately, uplink bandwidth is 
also a more important metric in many applications. 

                                                                 

1 We wish to thank Stefan Saroiu and Steven Gribble for allowing us to 
use their traces. 

5. SCHEDULING  ALM SESSIONS WITHIN  
THE  P2P RESOURCE POOL 

In this section, we demonstrate how to utilize P2P resource pool 
to optimize for multiple simultaneous ALM sessions. The end 
goal is for active sessions to achieve optimal performance with all 
available and adequate peers in the resource pool. Session’s 
performance metrics is determined by certain QoS definitions. 
Moreover, higher priority sessions should proportionally acquire 
more shares of resources. Our emphasis is for small-to-medium 
session size where we believe QoS is often a requirement (e.g. 
video-conference). We also assume static membership and denote 
the original set of participants as M(s) for a given session s, 
though the algorithm can be extended to accommodate dynamic 
membership as well. 

From a high-level point of view, the procedure is simple. The task 
manager of a session is responsible to run a modified heuristic 
algorithm to plan the topology of the ALM. This algorithm was 
originally developed using M(s) only [34]. To utilize spare 
resources in the pool, the task manager queries SOMO to obtain a 
list of candidates. The item of the list includes not only the 
resource availability, but also its network coordinate as well as its 
bandwidth. When the plan is drawn, the task manager goes out to 
contact the helping peers to reserve their usages. Competing tasks 
will resolve their contention purely by their priorities.  

We will give our QoS definition and then describe our approaches 
in steps. First, we will show how additional resources are 
recruited assuming only one single session is active. Next, we will 
present our approach of how multiple sessions with different 
priorities are optimized. 

5.1 ALM QoS definition 
For ALM, there exist several different criteria for optimization, 
like bandwidth bottleneck, maximal latency or variance of 
latencies. In this paper, we choose maximal latency of all 
members as the main objective of tree building algorithms since it 
can greatly affect the perception of end users. Similar to many 
previous works [33][34][40], each node has a bound on the 
number of communication sessions it can handle, which we call 
degree. This may due to the limited access bandwidth or workload 
of end systems. 

Our definition of QoS for one given session is the same as 
proposed in AMCast [34] and can be formally stated as follows: 

Definition 1. Degree-bounded, minimal height tree problem 
(DB-MHT).  Given an undirected complete graph G(V,E), a 
degree bound dbound(v) for each v∈V, a latency function l(e) for 
each edge e∈E. Find a spanning tree T of G such that for each 
v∈T, degree of v satisfies d(v) � dbound(v) and the height of T 
(measured as aggregated latency from the root) is minimized. 

Using the resource pool, the above definition is slightly extended. 
An extended set of helper nodes H is added to the graph, and our 
objective is to achieve the best solution relative to an optimal plan 
derived without using H, by adding the least amount of helper 
nodes. 

5.2 Scheduling a single session 
To make the illustration simple, we will start by describing how to 
schedule and optimize one single ALM session. Optimizing DB-
MHT generally known as NP-complete. Our goal is not to propose 



new algorithms. Instead, we will select from a few well-known 
ones and investigate how much performance benefits we can 
achieve when the resource pool is utilized.  

Our base algorithm uses the one proposed in [34], with O(N3) 
performance bound. This algorithm can generate a solution for 
hundred of nodes in less than one second (Figure 6, without the 
code in the dashed box). This algorithm, which we refer to as 
“AMCast,” is a typical greedy algorithm. It starts first with the 
root and adds it to a set of the current solution. Next, the 
minimum heights of the rest of the nodes are calculated by finding 
their closest potential parents in the solution set, subject to degree 
constraints. This loops back by absorbing the node with the lowest 
height into the solution. The process continues until all nodes are 
finally included in the resulting tree. To ensure that we get the 
best possible tree to start with, we augment this algorithm with a 
set of further tuning2 (tagged as adjust in the rest of the paper.  

 
Figure 6. The AMCast algorithm (without the lines in the 
dashed box) and the critical-node algorithm that utilizes 

additional helper node. 

Our algorithm searching for beneficial helper nodes include two 
considerations: the time to trigger the search and the criteria to 
judge an addition. The general mechanism is described by the 
pseudo-code in the dash-box of Figure 6. Let u be the node that 
the AMCast algorithm is about to add to the solution and parent(u) 
be its parent. When parent(u)’s free degree is reduced to one, we 
trigger the search for an additional node h. If such h exists in the 
resource pool, then h becomes u’s parent instead and replaces u to 
be the child of the original parent(u).  Different versions vary only 
on the selection criteria of h but we refer to this class of 
optimization the critical node algorithm. “Critical” here means 

                                                                 

2 A known technique to approximate globally optimal algorithm is to 
adjust the tree with a set of heuristic moves. These moves include: (a) 
find a new parent for the highest node; (b) swap the highest node with 
another leaf node; (c) swap the sub-tree whose root is the parent of the 
highest node with another sub-tree. 

that, for a particular node, this is the last opportunity to improve 
upon the original greedy algorithm. 

We have experimented with different algorithm to search for h. 
The first variation is simply to find an additional node closest to 
the parent node and with an adequate degree (we use 4). Let l(a, b) 
be latency between two arbitrary nodes a and b. We find the 
following heuristic yields even better results: 

Here, v maybe one of u’s siblings. The idea here is that since all 
such v will potentially be h’s future children, l(h, parent(u)) + 
max (l(h, v)) is most likely to affect the potential tree height after 
h’s joining (condition 1). Such helper node should have adequate 
degree (condition 2). Finally, to avoid “junk” nodes that are far 
away even though their degrees are high, we impose a radius R: h 
must lie within R away from parent(u) (condition 3). 

The input parameters necessary to execute the procedure include 
the network coordinates so that we can calculate latency between 
arbitrary pair, as well as the degrees of each node. This is made 
available by letting each node to publish their network coordinates 
as well as bandwidth constraints (using the procedure outlined in 
Section-4) in their reports to SOMO (Figure 7). 

 
Figure 7. SOMO report structure for scheduling a single ALM session. 

Our experiments simulate a two-layer Transit Stub topology [38] 
with 600 routers. The network consists of 24 transit routers and 
576 stub routers. We assign link latencies of 100ms for intra-
transit domain links, 25ms for stub-transit links and 10ms for 
intra-stub domain links. We also append 1200 end systems to the 
stub routers randomly and set the last hop latency to a random 
value between 3ms and 8ms. The resource pool contains all the 
1200 end nodes in the network. The degree bound for all the 
nodes lie within 2 and 9, and follows the distribution 2-i for degree 
i-1 when i<9 and 2-7 for degree 9.  Thus, half of the nodes in the 
system have degree 2 and the population for higher degree 
decreases exponentially. 

We found that R between 50~150 yields satisfactory results for the 
topology parameters we chose. The tradeoff here is that a small R 
will reduce the choice of candidates, whereas a larger R will 
introduce links of long latency in the tree. That the setting of 
radius to be medium range gives good result isn’t a surprise. 
Recall that we have 100, 25, and 10 for intra-transit, stub-transit 

ALM( r, V) { // V==M(s), r is the root 
  for all v∈V // initialization 
    height(v)=l(r, v); parent(v)=r 
  T = (W={ r}, Link={}) 

 
  while (W<V) { // loop until finish 
    find u∈{ V-W} s.t. height(u) is minimum 
    if (d(parent(u))==dbound(parent(u)-1) 
      h=find_helper(u) 
    if h≠NULL { // integrate the helper node 
      W+={h}; Link+={h, parent(u)}; 
      W+={u}; Link+={u, h}; 
    } else   
      W+={u}; Link+={u, parent(u)}; 

 
    for all v∈{ V-W} {  // re-adjust the height 
      height(r)=∞ 
      for all w∈W 
        if d(w)<dbound(w) && height(v)>height(w)+l(w, v) 
          height(v)=height(w)+l(w, v); parent(v)=w 
    } 
  } 
  adjust(T) 
  return  T 
}  

l(h, parent(u))+max(l(h, v)) is minimum 

where v satisfies parent (v) = parent (u)  && \\ condition 1 

dbound(h) ≥ 4  &&           \\ condition 2 

 l(h, parent(u))<R            \\ condition 3 

Root report 

…
…

 

Report from node x 

…
…

 
…

…
 

Report from node y 

Report from node x 

System info: 
Load, memory, disk, … 

Network info : 
Location: cord(…) 
Bandwidth: available degree (5) 

Report from node y 

System info: 
Load, memory, disk, … 

Network info : 
Location: cord(..) 
Bandwidth: available degree (2) 



and intra-stub links respectively. Thus, a radius of 50-150 will 
avoid all nodes from another stub. 

In the followings, we call the algorithm where pair-wise node 
latency is known a priori via an oracle the Critical, and the one 
used the leafset estimation for vicinity judgment the Leafset.  

We are now ready to present our results. A fair evaluation should 
compare our results against those of a globally optimal algorithm. 
Since this is not available, we report our results in terms of 
percentage of tree height improvement relative to the AMCast 
algorithm. In other words, if Halg is the tree height achieved using 
alg, then: 

Improvement = (HAMCast – Halg)/HAMCast 

The upper bound is the latency between the furthest node to the 
root, corresponding to the ideal performance if the root has degree 
of infinity. For the data set that we used, the upper bound is 
between 40~50%. The average performance of these algorithms 
over 20 runs is shown in Figure 8 for various group sizes. It is 
conclusive that resource pool is very effective for small-to-
medium group size. For larger groups, the original AMCast has 
more rooms to optimize by using the existing members already. 
We believe that in reality, small groups are in fact more common.  

 
Figure 8. The performance of scheduling single ALM session. 

AMCast represents the original algorithm, Critical is our modified 
“critical node” heuristic, Leafset stands for the landmark based 

approach, Bound denotes the theoretical upper bound. adju 
denotes the combination when tree adjustment is performed. 

For instance, Leafset+adjustment, which is a practical algorithm, 
delivers more than 30% latency reduction over the baseline for 
group size of 100; for group size of twenty, the reduction is 35%.  
Interestingly enough, tree adjustment, which is otherwise 
mediocre in shortening the tree (5% over baseline), is remarkably 
effective especially for Leafset. Part of the reason may be due to 
the inaccuracy introduced by using delay vectors to estimate node 
proximity. 

5.3 Optimize Multiple ALM Sessions 
The preceding section describes the stand-alone scheduling 
algorithm for one ALM session; we now discuss how to deal with 
multiple active sessions. Our goals are: 1) higher priority sessions 
are proportionally assigned with more resources, and 2) that the 
utilization of the resource pool as a whole is maximized. 

All the sessions may start and end at random times. Each session 
has an integer valued priority between 1 and 3. Priority 1 session 
is the highest class. The number of maximum simultaneous 
sessions varies from 10 to 60 and each session has non-
overlapping member set of size 20. Thus, when there are 60 active 

sessions, all nodes will belong to at least one session. That is, the 
fraction of original members of active sessions varies from 17% 
to 100%. Counting helper nodes, a session typically employ more 
than the original members. Also, nodes with larger degrees may be 
involved in more than one session.  

The principle underlying our approach is very simple, and it draws 
insight from a well-organized society: as long as global, on-time 
and trusted knowledge is available, it may be best to leave each 
task to compete resources with their own credentials (i.e., the 
priorities). This purely market-driven model allows us to 
accomplish our goal, without the need of global scheduler of any 
sort. 

Setting the appropriate priorities at nodes involved in a session 
takes extra consideration. In a collaborative P2P environment, if a 
node needs to run a job which includes itself as a member, it is 
fair to have that job be of highest priority in that node. Therefore, 
for a session s with priority L, it has the highest priority (i.e. 1 in 
our experiment) for nodes in M(s), and L elsewhere (i.e., for any 
helper nodes lie outside M(s)). This ensures that each session can 
be run, with a lower bound corresponding to the AMCast+adju 
algorithm. The upper bound is obtained assuming s is the only 
session in the system (i.e., Leafset+adju).  

As before, the root of an ALM session is the task manager, which 
performs the planning and scheduling of the tree topology. Each 
session uses the Leafset+adjustment algorithm to schedule 
completely on its own, based on system resource information 
provided by SOMO. For a session with priority L, any resources 
that are occupied by tasks with lower priorities than L are 
considered available for its use. Likewise, when an active session 
loses a resource in its current plan, it will need to perform 
scheduling again. Each session will also rerun scheduling 
periodically to examine if a better plan, using recently freed 
resources, is better than the current one and switch to it if so. 

To facilitate SOMO to gather and disseminate resource 
information so as to aid the planning of each task manager, as 
before each node publishes its information such as network 
coordinates in its report to SOMO. However, its degree is broken 
down into priorities taken by active sessions. This is summarized 
in the degree table. 

 
Figure 9. Two example degree tables. 

In Figure 9, we show the degree tables of two nodes. x’s total 
degree is 4, and is taken by session s4 for 2 degrees, and s12 by 
another one degree, leaving x with one free degree. y on the other 
hand, has only two degrees and both of them are taken by session 
s5. The degree tables are updated whenever the scheduling 
happens that affect a node’s degree partition. Degree tables, as 
mentioned earlier, are gathered through SOMO and made 
available for any running task to query.  

Ideally, the performance improvement should have a lower bound 
of AMCast+adjust where only the original member set is involved, 
and an upper bound of Leafset+adjust, when the session is the 
only active one in the resource pool. Therefore, performance will 

y’s degree table 

dbound(x) 4 
x.dt[1] 2(S4) 
x.dt[2] 0 
x.dt[3] 1(S1 2) 

 

dbound(y) 2 
y.dt[1] 2(S5) 
y.dt[2] 0 
y.dt[3] 0 

 x’s degree table 



lie within 7%~35% reductions over AMCast (see data in Figure 8 
when group size is 20).  

The result is shown in Figure 10-(a). The x-axis is the number of 
active sessions, while the y-axis is the performance improvement. 
To ease the comparison, the upper bound and lower bound are 
also shown.  

As expected, the data perfectly drop into the interval between 
lower bound and upper bound. When there are more sessions and 
overall resource becomes scarce, performance decreases across the 
board. However, higher priority tasks are able to sustain much 
better than the lower ones, conforming to our predictions. Figure 
10-(b) depicts the number of helper nodes taken, which shows that 
lower priority tasks lose more helper nodes when resource is 
under intense competition. 

 
Figure 10. (a) The performance of multiple ALM sessions and 

(b) The average number of additional nodes used. 

6. RELATED WORK 
Our work spans across a number of related fields: scalable 
monitoring services and its use in resource pool, optimizing ALM. 
We will discuss them in turn. 

6.1 Resource Pool 
To create a resourced pool, it is inevitable that a hierarchical 
structure to be adopted to ensure timely aggregation. Ganglia [31], 
for instance, is a two-level architecture in which IP-level 
multicasting is employed to gather statistics in one location, and 
the result is then aggregated to a central site. Gangelia is used in 
planet-lab. The GRIP and GRRP from the Grid toolbox [8] are 
protocols to allow interesting hierarchy to be built. Neither of 
them addresses the self-scaling aspect and requires manual 
configuration and administration.  SOMO bears the most 
similarity to Astrolabe [28], a peer-to-peer management and data 
mining system. The difference between Astrolabe and SOMO was 
articulated in our earlier work [41]. Our contribution here is to 

point out the ingredients that make a wide-area resource pool 
feasible: the combination of the self-organizing capability of P2P 
DHT and an in-system, self-scaling monitoring infrastructure.  

For interesting applications such as ALM, 1-dimensional metrics 
such as CPU power, memory and disk size etc. are still important, 
but for from complete. We show how metrics such as pair-wise 
latency estimation and up/downlink bandwidths can be derived in 
a completely distributed fashion by leveraging interactions 
inherent to P2P DHT. While this builds upon results of many 
previous works such as GNP [12]., Lighthouse [23] and PIC [3], 
to the best of our knowledge this is the first time that a 
comprehensive proposal is made. 

We note that systems such as RanSub [19] establish an in-system 
aggregation and dissemination hierarchy as well. But a separate 
set of mechanism to generate the required statistics is still needed.  

6.2 Optimize ALM using Resource Pool 
Earlier work of ALM includes Aharoni’s paper [1] and ESM [6]. 
Since then, quite a few other proposals and systems have emerged 
[2][33][34] including AMCast [34] from which our algorithm is 
derived. Researchers in P2P community quickly realized that 
application-level multicast maybe one of the showcases of P2P 
DHTs as well [5][26][44]. But neither of them is optimal; they 
either ignore and hence does not explore the potentials of a 
resource pool; or can not guarantee (for the time being) any QoS 
requirements. The DHT-based ALM proposals do not explore 
node heterogeneity. For all practical purposes, we believe that 
ALM with QoS requirements are restricted to small number of 
participants, and a centralized heuristic algorithms can guarantee 
QoS far better than trees that are built in an ad-hoc manner, and 
can leverage spare resources shall they be found. More 
importantly, given a resource pool, we have not only studied how 
to optimize one single ALM session, but also advocates a hands-
off, market-driven approach to optimize multiple simultaneous 
sessions.  

We emphasize here that ALM is only one of the applications for 
P2P resource pool. We argue that our two-step approach – 
application specific per task scheduling combined with market-
driven fair competition coordinating among tasks is a far more 
distributed methodology than centralized matchmaking 
mechanisms. 

7. CONCLUSION AND FUTURE WORK 
To create a P2P resource pool, we need to combine the self-
organizing capability of P2P DHT with a self-scaling, hierarchical 
in-system monitoring infrastructure. To achieve self-scaling and 
robustness, this infrastructure must be a logical hierarchy 
established in the virtual space created by DHT, and then mapped 
onto participants. In this paper, we illustrate that SOMO 
combined with DHT effectively creates a resource pool.  

Our philosophy of utilizing the power of the resource pool is to 
take advantage of the on-time and accurate newscast via SOMO, 
install application-specific scheduler per each task and then take a 
hands-off, market-driven approach to coordinate among tasks with 
fair competition. We take the challenging application of ALM and 
demonstrate that significant benefits can be reached. 

We are currently building a wide-area testbed to test the idea of 
P2P resource pool, and the ALM scheduling algorithm is one of 
the experiments we plan to run. 

Upper bound 

Lower bound 

(a) 

(b) 
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