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ABSTRACT

The concept of resource pool has a very long histropelled by
the need to share CPU cycles of supercomputershiigin-

throughput computing jobs from the scientific conmity, the

vision is most recently explored by the advocafeSrid. On the
other hand, the advent of P2P researches has deatedsthe
feasibility of integrating potentially unlimited amant of less
powerful machines around the world. Organizing & P&source
pool thus becomes an interesting research topic.

This paper attempts to address two problems. Teei§ how to
organize a P2P resource pool, and our answer ¢grtine the
self-organizing strength of P2P DHT with an in-sysf self-
scaling monitoring infrastructure that is layered top of DHT.
The second question is the utility of the P2P resmyool for
interesting applications. And we choose to showdtssgower by
optimizing wide-area application level multicastifgLM), a
problem far more challenging and interesting thanventional
tasks such as massively parallel computation.

We show that utilizing spare resources in the p@sults in
significant savings for single ALM session. Furthere, we
adopt a purely market-driven approach to optimizaltiple
concurrent sessions. As expected, sessions of higfwity are
given higher share of resources.

1. INTRODUCTION

The concept of resource pool has a very long histbtost
recently, the Grid community has propelled thisorisby uniting
the local resource pools (i.e. cluster) spread avdpzen sites into
a global one. However, the applications are reetfienostly in
the area of high-throughput computing.

The advent of P2P paints a different directionstof all, the
research community has been actively investigatipglications
beyond that of number crunching. The scale and ositipn of
resources are of an entirely different nature: veetalking about
millions of desktop PCs spread widely apart. If Z2PPresource
pool is attempted, it is not clear that the sarohrtelogies in Grid
can be adopted in a straightforward manner.

On the other hand, A P2P resource pool differs ftgoical P2P
applications in that there can be multiple active instances
different applications running in the pool. Alsopeer in the pool
may be helping an application instance of whichisit not
necessarily a member.

Broadly speaking, we defineR2P resource pooas a collection
of desktop-grade resources on the edge of thengtieand some
form of middleware is managing these resources s$hahthey
can offer computing, storage and networking capadsl for

multiple instances of potentially different distriled applications.

of

This paper addresses two related and importanttiqneswith
respect to P2P resource pool: its architecture atility to
schedule interesting applications. We propose toplemn
structured P2P in the form of DHT (distributed hastble)
[25][30][36][42] to pool together potentially unlited amount of
and widely distributed resources. However, DHT alalves not
automatically generate a resource pool. Thus, wabawe the
self-organizing capability of P2P DHT with an insggm, self-
scaling monitoring infrastructure  SOMO S¢lf-Organized
Metadata Overlay SOMO builds a dynamic system status
database which is available internally to any pe€hss database
is being continuously updated and thus createdlasion of a
single, large resource pool.

Next, we demonstrate the utility of P2P resourcenl pby
describing how to schedule and optimize applicatéwvel
multicasting (ALM), an application that is far moceallenging
than, for instance, massively parallel computati@ysusing peers
that are otherwise idle, our finding is that uB@% improvement
can be made for small-to-medium group size. In dbetext of
scheduling multiple competing sessions, our approads
remarkably simple: global schedulingneverattempted. Instead,
we adopt a market-driven approach and let eacliosessmpetes
based on their priorities, armed with the inforroatprovided by
SOMO. Our results show that, as expected, sessibrsgher
priority are given higher share of resources, tesylin better
performance.

The rest of the paper is organized as follows. \Aiewate the
need of a P2P resource pool in Section-2 and cginirawith
existing alternatives. The architecture of a P28uece pool is
described in Section-3. For many interesting P2pliegtions,
there is a need to generate resource attributésctiva not be
derived locally from a machine. For instance, neknepordinates
and bottleneck bandwidth are necessary to evalpatential
helping peers in ALM. This problem is addressedSettion-4.
Section-5 evaluates how P2P resource can help Alid a
provides experiment results. We discuss relatedk ioBection 6
and conclude in Section 7.

2. MOTIVATION AND ALTERNATIVES

2.1 The argument for a P2P resource pool

Over the recent years, the P2P research commuréy h
investigated many interesting P2P applications;giran from
wide-area distributed storage [20][9][10], scientitomputing
[18], application-level multicasting [6][4], distiited web cache
[35], searching [29] and collaborative spam fight[#3], to nhame
just a few. There is, however, a common assumghiahunderlies
all these proposals: all peers are active partidgpan one
application instance.

* This work was performed when the author was a frag-student at
Microsoft Research Asia.



P2P resource pool explores a different dimensiomwliich 1)

there can be multiple and simultaneous instancesliftérent

applications and they could potentially overlaptba resources
they are running; and 2) a peer maybe helping glicapion

instance of which it is not a member. The firstnpdllustrates
aggregated power of all potential resources, arel gbcond
reflects and extends the very collaborative prilecigpon which
the P2P premise is found.

For instance, all existing application-level mudsting (ALM)
algorithms assume that the only resources availatdethose in
the ALM session. In a collaborative environment,ngnather
stand-by resources could be included for an ottserwnore
optimal solution. For example, Microsoft Researchs Hive
branches across the globe, and has many thousénuacbines
that are geographically distributed. At a given hooowever,
number of active video-conference sessions isylikelbe only a
handful, and each session may have a small nuniiparticipants
(say less than 20).

The availability of a P2P resource pool offers ngtimization
possibilities. As shown in Figure 1, when an otlisewidle but
suitable helping peer is identified, it can be gngted into a
topology with better performance. This is an actuatput of our
algorithm used in this paper.
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Figure 1. (a) An optimal plan for an ALM. (b) An even better

plan using helper nodes in the resource pool. Cires are the

original members of the session, and the squareas available
peer with a large degree.

The P2P resource pool has seen its first incamatid®lanetLab
[24], a wide-area P2P testbed. On PlanetLab, relseer upload
experiments on to machines comprising the testhat will be
run concurrently with others. Up-to-date, its sdalestill limited
(220 nodes as of the writing of the paper), ands tAuneed to
organize the pool in a more scalable and self-orgamnfashion is
not yet profound. This is one of the problem thaper attempts to
address.

2.2 Resource pool and its alternatives

We wish to give a more concrete definition of reseupool by
contrasting it against another interesting altéveathejob pool
This is necessary because, from a high-level petispe both are
venues to deliver the matchmaking between job esdurce, and
that neither is perfect: depending on the appbecaticenario, each
has its unique strength and weakness.

Informally speaking, a job pool is a collectionjolbs and is where
an idle resource look for suitable work to perforwhereas a
resource pool is the precisely the opposite: a taakager goes
into a resource pool to discover and acquire necgdselping
hands in order to accomplish a given mission. Qirse, in a
distributed environment, there can be legitimatenlgimation of
both.

A perfect example of a p2p job pool is SETI@hom] [(and of
course, many others of the same flavor). There isvedi-
maintained central site and, typically, the appiaa should be

easily parceled out for distribution. Machines stgi themselves
in order to grab a piece of work and then go awaynking away
whenever they feel like. This is a very economicadel and
requires very limited amount of management at thetral site.

Provided that job is of coarse granularity, a cdited

architecture works extremely well. It has been ragub that

SETI@home has aggregated computing power far exaggedme

of the most powerful supercomputers in the worlde Timitation

is also obvious. Although it is possible to think advanced
variations, because the unpredictability of whend awhat

resources will become available, applications astricted mostly
to those that are conventionally known as “embaingsy

parallel” ones. It is also possible to implemerd tbhb pool as a
distributed architecture, but it will be far easi®r just use a
centralized architecture.

In contrast, a node joins a resource pool in theettbat its power,
when otherwise idle, can be of some use. The econiogentive

can be stronger, especially in the context of R28ks of arbitrary
type (beyond those of number crunching) will tafpithe power
of other participants in the pool at some suitgdgat. The added
flexibility is particularly useful for applicationsuch as running
application-level multicasting sessions with soragel of QoS
guarantee. This is so because planning the topalbgiye tree is
itself a complex piece of work. On the other hante

consequences are many. Foremost of all is an decacaounting
of what is going on in the resource pool. This éessary for
each job to quickly query the available candidatasd

subsequently make resource reservation. The intjglicés that,

given the potentially huge amount of resourcesha rhillions, a
client-server architecture where each client uplatee central

entity about its status is no longer a scalableot-to say robust
alternative.

To summarize, job pool is best for scenarios wileegtask can be
well-partitioned. Resource pool can ideally accordate tasks of
arbitrary type. However, it will need, as a minimuascalable
way of monitoring and aggregating system infornmatsn that
resource reservations can be carried out at trezetiisn of task
managers that is responsible for individual incagrjobs.

The principle of resource pool is what motivates work in the
Grid space, in particular the Condor-G line of w§tk][8]. For

instance, the Grip Resource Registration Protd8&RP) is used
for an entity, typically representing a clustenedchines, to notify
other entities that it is part of the pool. GripsBerce Information
Protocol (GRIP), on the other hand, is the pringitte construct
aggregated resource directory service through witéaks can
query for potential candidates. The Condor-G ageantuse such
infrastructure to submit jobs and monitor its pesy.

There have been many discussions about the comarged P2P
and Grid [13][22]. We believe that indeed there amany
synergies among the two in the space of resourcel po
organization. In particular, we argue that the -seffanizing
attributes is what the many excellent work of P2R bring to the
scene of Grid. We will offer a more elaborate d&sion at the
conclusion of Section-3.

3. BUILDING P2PRESOURCEPOOL

The foundation of our resource pool proposal is shecalled
structuredpeer-to-peer systems, and in particular distributed
hash table(DHT). DHT offers a way to pool together poterigial
unlimited amount of resources together. But theacty to pool



resources together does not mean a resource pestablished;
the latter requires the availability of an infrastiure to know
what is going on. In this section, we will describese points in
turn, and will conclude with the comparison of Ghidsed
resource pool.

3.1 P2P DHT

We assume that the readers are reasonably famiiibrthe
concept of DHT, and for the sake of brevity willlpgo through
the basics. In DHT, a very large logical space.(&&p-bits) is
assumed. Nodes join this space with random IDs g
partition the spaced uniformly. The ID can be, iftstance, MD5
over a node’s IP address. An ordered set of nadeayn, allows
a node’s responsibleoneto be strictly defined. Lgb andq be a
nodex’'s predecessor and successor, respectively. Orieitabef
of a node’s zone is simply the space between theoflDts
immediate predecessor ID (non-inclusive) and ita ¢ In other
words:zongx) = (ID(p), ID(X)]. This is essentially how consistent
hashing assigns zones to DHT nodes [36] (Figurer@)harden
the ring against system dynamism, each node recandgyhbors
to each side in the rudimentary routing table tlkatcommonly
known asleaf-set Neighbors exchange heartbeats to keep their
routing tables current, updating their routing ésblvhen node
join/leave events occur. This base ring is the BsiiP2P DHT.

zoneg)=(ID(p), ID(X)]
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Figure 2. The simplest P2P DHT — a ring, theone and the
basic routing table that recordsr neighbors to each side.

If one imagines the zone being a hash bucket iardmary hash
table, then the ring is distributed hash tableGiven a key in the
space, one can always resolve which node is b&sgonsible.
The lookup performance is NY in this simple ring structure,
whereN is the number of nodes in the system.

Elaborate algorithms built upon the above conceghiexes
O(logN) performance with either O(Id§ or even constant states
(i.e. the routing table entries). Representativetesys including
Chord[36], CAN[25], Pastry[30] and Tapestry[42].

The most interesting aspect of a DHT is that thelelsystem is
self-organizing with very low overhead — typicailythe order of
O(logN). The second significant attribute is the virtmation of a
space where both resources and other entities gsidocuments
stored in DHT) live together; this feature is wia explore the
most in this paper.

3.2 SOMO: Self-Organized Metadata Overlay

As we described earlier, to complete a P2P resquook we must
augment DHT with arin-systemmonitoring infrastructure. We
emphasize the in-system property because for a kygtem, it is
impractical to rely on external monitoring servicBuch an
infrastructure must satisfy a few key propertissif-organizingat

the same scale as the hosting DHT, fudigtributed and self-
healing and be asccurateas possible of the metadata gathered
and disseminated. Our proposal, SOMO (for Self-Om=d
Metadata Overlay), was designed for this purpostaas first

introduced in [41]. Its construction took a top-doepproach; we
describe in this paper an improved bottom-up versio

The basic idea of SOMO is to draw a logical trethwi fixed fan-
out (e.g. 8) first. The positions of the tree nodas be calculated
by each brick independently. Given its responsisee in the
DHT, each node selects the highest logical treeertbdt it hosts
as its representation in the SOMO hierarchy, aet ttalculates
the position of the parent logical node, routeshtat parent tree
node to form a child-parent link. A hierarchy isishbuilt in a self-
organized fashion. The SOMO hierarchy is completelf-govern
and self-repair, and can gather and disseminatedatst in
O(logan_ouN) time. Given a data reporting intervgl information
is gathered from the SOMO leaves and flows to ot with a
maximum delay of IogNT. This bound is derived when flow
between hierarchies of SOMO is completely unsynuizes. If
upper SOMO nodes’ call for reports immediately degs the
similar actions of their children, then the laterwey be reduced to
T+tnoI0GKN, Wherety,, is average latency of a trip in the hosting
DHT. The unsynchronized flow has latency bound agNT,
whereas the synchronized version will be boundedThyn
practice (e.g. 5 minutes). Note thattQy lbgN) is the absolute
lower bound. For 2M nodes and wkh8 and a typical latency of
200ms per DHT hop, the SOMO root will have a globeiv with
alag of 1.6s.

It would seem that SOMO derived all its self-orgamg and self-
healing property by trading off configurability. Fmstance, what
if we want the most capable machine to be at the dbthe
machine? The trick is to relax the requirement thade ID is
purely random. What we need to do is to make anaughmerge-
sort through SOMO and first identify the most cdpainde. This
node then exchange ID with the one who currentlyspeses the
root logical point of SOMO (i.e 0.5 of the totalage [0, 1]), and
this effectively changes the machine that acthasréotwithout
disturbing any other peers. Note that this selfrojzing property
is impossible unless we operate in the logical sgdicst.

We have implemented a SOMO-based global performance
monitor called LiquidEye with which we monitor ovefrO0

machines in our lab on a daily basis. This tool leygp SOMO

built over a very simple ring-like DHT, and SOMOtlgers data
from various performance counter on each machihe.cbmplete
system status is obtained by querying the SOMO repbrt

through a unified Ul interface. We tested the SOst@bility by

unplugging cables of servers being monitored, aawh dime the
global view is regenerated after a short jittehe Teporting cycle
is 5 seconds, and the leaf SOMO report is 40byes.wide-area
and large-scale deployment, we will opt for a lesgressive
interval and also employ compression optimizatibikewise,

redundant links should be added to increase thestobss; this
can be easily accomplished by letting the represest virtual

node to connect to a random set of parent siblings.

3.3 Discussion
To summarize, our P2P resource pool is composedwof
ingredients, see Figure 3:

DHT. A DHT is used not in the sense of sharing costent
but rather as an efficient way to pool togetheegyarge amount
of resources, with zero administration overhead rama@calability
bottleneck.



¢ SOMO. SOMO is a self-organizing “news broadcast”
hierarchy layered over DHT. Aggregating resourcatust in
O(logN) time then creates the illusion of a single reseyool.

Gathering reports
Resource pot

Root report

Generating reports
Report

Interne

Figure 3. Combining DHT’s capability of pooling reource
with SOMO collectively makes the resource pool.

We are now ready to contrast the differences oRB Resource
pool versus the one created by Grid and identiirtsynergy.

From a high-level point of view, the necessary staye the same:
register the resource, gather statistics and thgregate them into
a snapshot and, finally, ensure the resulting dynaatabase can
be queried by applications.

While Grid is composed mostly by dozen of sitesheawaybe
composed by supercomputers (possibly in the formludters), a
P2P resource pool can potentially possess millahsiachines
that are widely distributed. KaZaA [17], for instan has current
installation base well over 4 million.

The scale and composition of P2P resources reqthietsevery
layer be completely self-organizing, self-scalingl self-healing.
There should be very little administration overhei&ét all. We
have illustrated that how SOMO layered over P2P DHT
accomplishes the goal. In essence, SOMO buildsktsk upon
which the aggregation is done. It makes perfecsesdn adopt
components of GRIP and GRRP from Grid protocolprasitives

to do the job of pair-wise registration and aggtiega

4. GENERATING RESOURCE METRICS
FOR ALM

For many P2P applications, resource statisticsudiofy not only
the usual suspects such as CPU loads and netwtvkies, but

also more complex ones that can not be derivedlyotam the

machine. A case in point is ALM, suppose we wansdbedule a
session and we obtained a huge list of potentigitg peers by
querying SOMO, we must select one that is nearliya@so has
adequate bandwidth. If only the peers IP addressesgiven,
pinging over them to find their vicinity is bothnte-consuming
and error-prone.

These two critical metrics are the focus of thistism. We will
explain how these attributes can be generated \®rdging the
interactions among DHT nodes that maintain thechlgspace
integrity. For a more detailed treatment, we refesder to our
technical report [39].

4.1 Node coordinate estimation

The idea of coordinates-based latency estimatiogpraposed in
GNP [12]. The point is that, in order to kndatencyx, y), it is
sufficient to computelistancécoord§), coordg)), where coord is
a network coordinate in@dimension Euclidean space.

The GNP proposal relies on a set of well-distridutedes called
the landmarks. GNP starts by computing coordinates of the
landmarks, solving their coordinates as an optitiwmaproblem.
Later, other nodes compute their coordinates usgsgntially the
same principle, but this time against the landrmenttes.

The requirement of landmark nodes contradicts te thlly
distributed nature of P2P resource pool. Our oladem, which is
the same as Lighthouse [23] and PIC [3], is thatitifrastructure
nodes are not necessary. Recall that each node hmasteats
with its leafset nodes in order to collectively nmtain the DHT
space. If each node randomly chooses to acknowldtige
heartbeat message from nodes in its leafset, thentone it will
have a measured delay vectdy, to its leafset neighbors. In the
heartbeat message, each node also reports itstooerdinates.
Thus, a predicted delay vectdyis available locally as well. Node
X update its own coordinates by executing downhithpsex
algorithm, minimizing the function:

E() =D 1d, (i) ~dy )]

i=1r

Notice that the optimization is done locally andyoapdatesx’s
own coordinate, which will be distributed xts leafset neighbors
in subsequent heartbeats.

The above procedure is executed by all nodes pealhd and
node coordinates, the measured and predicted deletprs are
being updated continuously.
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Figure 4. CDF of relative error of GNP and the leafset-based
variance; number of infrastructure node/leafset sie is 16 (left
graph) and 32 (right graph)

Figure 4 presents CDF of the relative errors of the origi@BAP
and its leafset-based version with our simulatiéri200 nodes.
These 1200 nodes are distributed according to fhéT®! [38].

As can be seen, GNP is less sensitive to numbenfralstructure
nodes than the leafset version is to the leafsst. Dur data
indicates that wheh (the leafset size) is 32, which is the default
configuration of Pastry, the result is very closeGNP with 16
infrastructure nodes.

4.2 Bottleneck bandwidth estimation

Network bandwidth of a peer is another importantrice for
many applications running on top of P2P resourcel.pl is
shown that there is considerable correlation betweettleneck
bandwidth and throughput [11]. Therefore, we choostleneck
bandwidth as the predictor for throughput.

We will adopt the common assumption that bottlerigdklies in
the last hop. For each node, its upstream bottkehandwidth is



estimated as the maximum of the measured bottlelp@eliwidths

from the node to its leafset members, which arétdisnby both

the node’s uplink bandwidth and the downlink bardths of the

leafset nodes. The basic idea is that if therenis eighbor with

downlink bandwidth greater than the node’s uplirdndwidth,

the estimation is accurate. So with more leafselerdhe chance
of getting accurate estimation would be better. Far same
reason, the node’s downstream bottleneck bandvsdéistimated
as the maximum of the measured bottleneck bandsvifithm its

leafset nodes to itself.

Measuring bottleneck bandwidth is well understdeat. instance,
in packet-pair technique [21] two packets of sizare sent back-
to-back from a source node. The receiver measurestime

5. SCHEDULING ALM SESSIONSWITHIN
THE P2P RESOURCE POOL

In this section, we demonstrate how to utilize P@8burce pool
to optimize for multiple simultaneous ALM sessiori$ie end
goal is for active sessions to achieve optimalgrerénce withall

available and adequate peers in the resource [@edsion’s
performance metrics is determined by certain Qofinitiens.

Moreover, higher priority sessions should propaordity acquire
more shares of resources. Our emphasis is for 4oededium
session size where we believe QoS is often a reqpeint (e.g.
video-conference). We also assume static membesstupdenote
the original set of participants d4(s) for a given sessiors,

though the algorithm can be extended to accommadiatamic

dispersionT in between and estimates the bottleneck bandwidth membership as well.

from the source aS/T.

The cooperation of leafset nodes over heartbeatbles packet-
pair technique to be naturally deployed. Periotlicad nodex

chooses to send a neighhotwo consecutive heartbeat messages

back to back, padding each so that their size figcwuntly large
(say 1.5KB).y now has the estimation of the bottleneck
bandwidth on the path fromx to itself. This value will be
piggybacked in the next heartbeatxtd_ikewise,y does the same

probing asx. After x collects enough measured bandwidths from

its leafset members, it can now estimate its owitldrmeck
bandwidth as above.
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Figure 5. Average relative error vs. leafset size

We have evaluated our protocol on the Gnutellaetfag]. The

larger the leafset, the better the prediction ] simply because
nodes with higher uplink/downlink bandwidth have batter

chance to be included. This is evident in Figurah® average
relative error (ratio of the absolute error to tieal bandwidth)

decreases with leafset size. Specifically, witlidegof size 32, the
average relative error of upstream bandwidth esiimas almost

0 and the ranking is 100% correct. Therefore ohes® is rather
effective in a practical setting. Note that upliektimation is

predicted more accurately than downlink. This isduse most
hosts in the Gnutella trace have downstream barbsvidigher

than the upstream bandwidths of most others [3Zjereas

downlink can be underestimated. Fortunately, uptinkdwidth is

also a more important metric in many applications.

1 We wish to thank Stefan Saroiu and Steven Gribbteaflowing us to
use their traces.

From a high-level point of view, the procedureime. The task
manager of a session is responsible to run a neddhieuristic

algorithm to plan the topology of the ALM. This alghm was

originally developed usingM(s) only [34]. To utilize spare
resources in the pool, the task manager queries@@\bbtain a
list of candidates. The item of the list includest ronly the

resource availability, but also its network cooedaas well as its
bandwidth. When the plan is drawn, the task mangges out to
contact the helping peers to reserve their us&@@sipeting tasks
will resolve their contention purely by their prities.

We will give our QoS definition and then descrihe approaches
in steps. First, we will show how additional restes are
recruited assuming only one single session is echext, we will
present our approach of how multiple sessions wlifferent
priorities are optimized.

5.1 ALM QoS definition

For ALM, there exist several different criteria foptimization,
like bandwidth bottleneck, maximal latency or vada of
latencies. In this paper, we choose maximal latentyall
members as the main objective of tree building rétlgms since it
can greatly affect the perception of end users.il&no many
previous works [33][34][40], each node has a bowm the
number of communication sessions it can handlechviie call
degree This may due to the limited access bandwidth erkiwad
of end systems.

Our definition of QoS for one given session is theme as
proposed in AMCast [34] and can be formally statedollows:

Definition 1. Degree-bounded, minimal height tree wblem
(DB-MHT). Given an undirected complete gragh(V,E), a
degree boundl,,,n{V) for eachv/V, a latency functiori(e) for
each edgee/E. Find a spanning tre€ of G such that for each
V[T, degree of v satisfied(v) < dyoundVv) and the height off
(measured as aggregated latency from the rootjnismzed.

Using the resource pool, the above definition ighsly extended.
An extended set of helper noddss added to the graph, and our
objective is to achieve the best solution relatovan optimal plan
derived without using H, by adding the least amount of helper
nodes.

5.2 Scheduling a single session

To make the illustration simple, we will start bgsdribing how to
schedule and optimize one single ALM session. QOpiitg DB-
MHT generally known as NP-complete. Our goal istagbropose



new algorithms. Instead, we will select from a fewll-known
ones and investigate how much performance benefitscan
achieve when the resource pool is utilized.

Our base algorithm uses the one proposed in [3ith @(N%)
performance bound. This algorithm can generatelatiso for
hundred of nodes in less than one second (FiguretBout the
code in the dashed box). This algorithm, which werto as
“AMCast,” is a typical greedy algorithm. It starfisst with the
root and adds it to a set of the current solutibiext, the
minimum heights of the rest of the nodes are catedl by finding
their closest potential parents in the solution sebject to degree
constraints. This loops back by absorbing the nattethe lowest
height into the solution. The process continued afitnodes are
finally included in the resulting tree. To ensuhattwe get the
best possible tree to start with, we augment tlgerdghm with a
set of further tuning(tagged asdjustin the rest of the paper.

ALM(r, V) { Il V==M(s), r is the root
for allvOV [/ initialization
heigh¢v)=I(r, v); paren{v)=r
T= W={r}, Link={})

while (W<V) { /l'loop until finish

find u{ V-W} s.t. heigh{u) is minimum
" Tif (d(paren{u))==dooundparen{u)-1) 7T i
h=find_helper() |
if h#NULL { Il integrate the helper node :
W+={h}; Link+={h, parenfu)}; '
1
1
1

W+={u}; Link+={u, h};

W+={u}; Link+={u, parentu)};

for all vOO{ V-W} { // re-adjust the height
heightr)=co
for all wOW
if d(w)<dpoundW) && heigh{v)>heightw)+l(w, V)
heightv)=heigh{w)+l(w, \); paren{v)=w
}

;djust(l')

return T
}
Figure 6. The AMCast algorithm (without the lines n the
dashed box) and the critical-node algorithm that utizes
additional helper node.

Our algorithm searching for beneficial helper nodedude two
considerations: the time to trigger the search #medcriteria to
judge an addition. The general mechanism is desdrity the
pseudo-code in the dash-box of Figure 6. ldte the node that
the AMCast algorithm is about to add to the solumdparen{u)

be its parent. Wheparen{u)'s free degree is reduced to one, we

trigger the search for an additional ndddf suchh exists in the
resource pool, then becomess’s parent instead and replaaeto
be the child of the origingdaren(u). Different versions vary only
on the selection criteria oh but we refer to this class of
optimization thecritical node algorithm. “Critical” here means

2 A known technique to approximate globally optiméjaaithm is to
adjust the tree with a set of heuristic moves. &hesves include: (a)
find a new parent for the highest node; (b) swaphighest node with
another leaf node; (c) swap the sub-tree whoseisate parent of the
highest node with another sub-tree.

that, for a particular node, this is the last opyaity to improve
upon the original greedy algorithm.

We have experimented with different algorithm tarsk forh.
The first variation is simply to find an additionabde closest to
the parent node and with an adequate degree (w4)uketl(a, b
be latency between two arbitrary nodesand b. We find the
following heuristic yields even better results:

I(h, parenfu))+max((h, \)) is minimum

wherev satisfiegparent(v) = parent(u)

dooundh) =24 &&

I(h, parenfu))<R
Here,v maybe one ofr's siblings. The idea here is that since all
suchv will potentially beh'’s future children,I(h, parenfu)) +
max ((h, v)) is most likely to affect the potential tree Heigfter
h’'s joining (condition 1). Such helper node shoud adequate
degree (condition 2). Finally, to avoid “junk” nsi¢hat are far
away even though their degrees are high, we impaséiusR: h
must lie withinR away fromparen{u) (condition 3).

&& \\ condition 1
\\ condition 2
\\ condition 3

The input parameters necessary to execute the quoeénclude

the network coordinates so that we can calculdenty between
arbitrary pair, as well as the degrees of each node. This is made
available by letting each node to publish theiwmek coordinates

as well as bandwidth constraints (using the proeedutlined in
Section-4) in their reports to SOMO (Figure 7).

Report from node x

System infa
Load, memory, disk, ...

Root report

LY | Network info:
Location: cord(...)
Bandwidth: available degree (5)

Report from node x1

Report from node y

System infa
Load, memory, disk, ...

Network info:
Location: cord(..)
Bandwidth: available degree (2)

Report from node y

Figure 7. SOMO report structure for scheduling a sigle ALM session.

Our experiments simulate a two-layer Transit Stytotogy [38]
with 600 routers. The network consists of 24 transiters and
576 stub routers. We assign link latencies of 10@onsintra-
transit domain links, 25ms for stub-transit linksdalOms for
intra-stub domain links. We also append 1200 erstesys to the
stub routers randomly and set the last hop latéacy random
value between 3ms and 8ms. The resource pool cengdi the
1200 end nodes in the network. The degree boundilfothe
nodes lie within 2 and 9, and follows the distribat2' for degree
i-1 wheni<9 and 2’ for degree 9. Thus, half of the nodes in the
system have degree 2 and the population for higlegree
decreases exponentially.

We found thaR between 50~150 yields satisfactory results for the
topology parameters we chose. The tradeoff hetteaisa smalR

will reduce the choice of candidates, whereas getaR will
introduce links of long latency in the tree. Thhe tsetting of
radius to be medium range gives good result isn&ugprise.
Recall that we have 100, 25, and 10 for intra-taissub-transit



and intra-stub links respectively. Thus, a radifiS@150 will
avoid all nodes from another stub.

In the followings, we call the algorithm where puaiilse node
latency is known a priori via an oracle tBeitical, and the one
used the leafset estimation for vicinity judgmerelieafset

We are now ready to present our results. A faituateon should
compare our results against those of a globallingdtalgorithm.
Since this is not available, we report our resuttsterms of
percentage of tree height improvement relativeht® AMCast
algorithm. In other words, ifly4 is the tree height achieved using
alg, then:

Improvement {Hamcast— Haig)/Hamcast

The upper bound is the latency between the furthede to the
root, corresponding to the ideal performance ifrita has degree
of infinity. For the data set that we used, the arppound is
between 40~50%. The average performance of thgseitaims
over 20 runs is shown in Figure 8 for various graiges. It is
conclusive that resource pool is very effective fmall-to-
medium group size. For larger groups, the origislCast has
more rooms to optimize by using the existing memmkaready.
We believe that in reality, small groups are irt faore common.

50% .
45% < ~— | —+— AMCast
40% \ —s— AMCast+adju
35% &Y\\K\ —&— Leafset
Z 30% —x— Leafset+adju
S 25% e e —o—Critical
£ 20m A N TS | e rivicaltadu
= 15% \A\ \e/"\\e —+— Bound
10% \A\r/ﬂ\
g L, = ~
5%
0% -
20 50 100 150 200 250 300
Group size

Figure 8. The performance of scheduling single ALMsession.
AMCas represents the original algorithm,Critical is our modified
“critical node” heuristic, Leafset stands for the landmark based
approach, Bound denotes the theoretical upper boundadju
denotes the combination when tree adjustment is peermed.

For instancel.eafset+adjustmentwhich is a practical algorithm,
delivers more than 30% latency reduction over theebne for
group size of 100; for group size of twenty, thduetion is 35%.
Interestingly enough, tree adjustment, which is eotlise
mediocre in shortening the tree (5% over baseliseljemarkably
effective especially fot.eafset Part of the reason may be due to
the inaccuracy introduced by using delay vectorsstimate node
proximity.

5.3 Optimize Multiple ALM Sessions

The preceding section describes the stand-alonedsathg
algorithm for one ALM session; we now discuss hovdéal with
multiple active sessions. Our goals are: 1) highrity sessions
are proportionally assigned with more resources, 2nthat the
utilization of the resource pool as a whole is mazed.

All the sessions may start and end at random tifGash session
has an integer valued priority between 1 and 3rRyil session
is the highest class. The number of maximum simetas
sessions varies from 10 to 60 and each session nbas
overlapping member set of size 20. Thus, when tasré0 active

sessionsall nodes will belong to at least one session. Thahes
fraction of original members of active sessions varies from 17%
to 100%. Counting helper nodes, a session typieafiploy more
than the original members. Also, nodes with ladggrees may be
involved in more than one session.

The principle underlying our approach is very siep@ind it draws
insight from a well-organized society: as long &sbgl, on-time
and trusted knowledge is available, it may be bedeave each
task to compete resources with their own credentiaé., the
priorities). This purely market-driven model allowss to
accomplish our goal, without the need of globalestther of any
sort.

Setting the appropriate priorities at nodes invdle a session
takes extra consideration. In a collaborative P@Rrenment, if a
node needs to run a job which includes itself asember, it is
fair to have that job be of highest priority in timde. Therefore,
for a sessiors with priority L, it has the highest priority (i.e. 1 in
our experiment) for nodes (s), andL elsewhere (i.e., for any
helper nodes lie outsidd(s)). This ensures that each session can
be run, with a lower bound corresponding to &MCast+adju
algorithm. The upper bound is obtained assungrng the only
session in the system (i.eeafset+adjq.

As before, the root of an ALM session is the tasihager, which
performs the planning and scheduling of the tremltogy. Each
session uses the eafset+adjustmentalgorithm to schedule
completely on its own, based on system resourcernrgtion

provided by SOMO. For a session with priority any resources
that are occupied by tasks with lower prioritiesarthL are

considered available for its use. Likewise, wheraetive session
loses a resource in its current plan, it will need perform

scheduling again. Each session will also rerun cliveg

periodically to examine if a better plan, using emtty freed
resources, is better than the current one andfstati if so.

To facilitate SOMO to gather and disseminate resmur
information so as to aid the planning of each taslnager, as
before each node publishes its information suchnessvork
coordinates in its report to SOMO. However, itsréegis broken
down into priorities taken by active sessions. Tlhisummarized
in thedegree table

OboundX) | 4 Aooundy) 2
X.dt[1] 2(S) y.dt[1] 2(S)
x.dt[2] 0 y.dt[2] 0
X.dt[3] 1(S 5 y.dt[3] 0

X's degree table y's degree table

Figure 9. Two example degree tables.

In Figure 9, we show the degree tables of two noxlestotal
degree is 4, and is taken by sessipifior 2 degrees, ang,, by
another one degree, leavirgvith one free degreg.on the other
hand, has only two degrees and both of them aenthy session
ss. The degree tables are updated whenever the doigedu
happens that affect a node’s degree partition. &egables, as
mentioned earlier, are gathered through SOMO andlema
available for any running task to query.

Ideally, the performance improvement should hai@ner bound

of AMCast+adjustwhere only the original member set is involved,
and an upper bound dfeafset+adjust when the session is the
only active one in the resource pool. Thereforefopmance will



lie within 7%~35% reductions ové&fMCast(see data in Figure 8
when group size is 20).

The result is shown in Figure 10-(a). The x-axishis number of
active sessions, while the y-axis is the performangprovement.
To ease the comparison, the upper bound and losend are
also shown.

As expected, the data perfectly drop into the iralebetween

lower bound and upper bound. When there are masse and

overall resource becomes scarce, performance desreaross the
board. However, higher priority tasks are able ustan much

better than the lower ones, conforming to our ptiulis. Figure

10-(b) depicts the number of helper nodes takem;wshows that

lower priority tasks lose more helper nodes whesouece is

under intense competition.

40%
Upper boun
s e
30%
. \\ \\’_\\‘
5
5
: ‘\\\‘\\ \\\\‘
ém\n
= —e—Priority 1
E15% ) .
—=—Priority 2
10% —A—Priority 3
N
Lower bound
0% + + +
10 20 30 40 50 60
No. of sessions
(@
8
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N
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9 —e—Priority 1 \'
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(b)
Figure 10. (a) The performance of multiple ALM sessns and
(b) The average number of additional nodes used.

o

No. of additional nodes

6. RELATED WORK
Our work spans across a number of related fieldsilable
monitoring services and its use in resource paaimzing ALM.
We will discuss them in turn.

6.1 Resource Pool

To create a resourced pool, it is inevitable thatierarchical
structure to be adopted to ensure timely aggregaGanglia [31],
for instance, is a two-level architecture in whid¢R-level

multicasting is employed to gather statistics ire docation, and
the result is then aggregated to a central siteig€la is used in
planet-lab. The GRIP and GRRP from the Grid toolf@jxare

protocols to allow interesting hierarchy to be buleither of

them addresses the self-scaling aspect and requi@sual

configuration and administration. SOMO bears th®sim
similarity to Astrolabe [28], a peer-to-peer marragat and data
mining system. The difference between Astrolabe 010 was
articulated in our earlier work [41]. Our contrilart here is to

point out the ingredients that make a wide-are@wes pool
feasible: the combination of the self-organizingataility of P2P
DHT and an in-system, self-scaling monitoring isfracture.

For interesting applications such as ALM, 1-dimensi metrics
such as CPU power, memory and disk size etc. #lr@rgiortant,
but for from complete. We show how metrics suchpas-wise
latency estimation and up/downlink bandwidths cardbrived in
a completely distributed fashion by leveraging riattions
inherent to P2P DHT. While this builds upon resufsmany
previous works such as GNP [12]., Lighthouse [23&] &IC [3],
to the best of our knowledge this is the first tirtieat a
comprehensive proposal is made.

We note that systems such as RanSub [19] estadbiish-system
aggregation and dissemination hierarchy as welt. 8separate
set of mechanism to generate the required statististill needed.

6.2 Optimize ALM using Resource Pool

Earlier work of ALM includes Aharoni’'s paper [1] @ESM [6].
Since then, quite a few other proposals and systews emerged
[2][33][34] including AMCast [34] from which our gbrithm is
derived. Researchers in P2P community quickly zedlithat
application-level multicast maybe one of the shmesaof P2P
DHTs as well [5][26][44]. But neither of them is topal; they
either ignore and hence does not explore the patenof a
resource pool; or can not guarantee (for the tigiad) any QoS
requirements. The DHT-based ALM proposals do ngtlee
node heterogeneity. For all practical purposes,beteve that
ALM with QoS requirements are restricted to smalimber of
participants, and a centralized heuristic algorithsan guarantee
QoS far better than trees that are built in an @ed+manner, and
can leverage spare resources shall they be foundre M
importantly, given a resource pool, we have noy atlidied how
to optimize one single ALM session, but also adtesa hands-
off, market-driven approach to optimize multiplensitaneous
sessions.

We emphasize here that ALM is only one of the aions for
P2P resource pool. We argue that our two-step appro-
application specific per task scheduling combindth wnarket-
driven fair competition coordinating among tasksaigar more
distributed methodology than centralized matchmgkin
mechanisms.

7. CONCLUSION AND FUTURE WORK

To create a P2P resource pool, we need to combiaeself-

organizing capability of P2P DHT with a self-scalimierarchical
in-system monitoring infrastructure. To achievef-sehling and
robustness, this infrastructure must be a logic@ranchy

established in the virtual space created by DH®, then mapped
onto participants. In this paper, we illustrate tthaOMO

combined with DHT effectively creates a resourcelpo

Our philosophy of utilizing the power of the rescaipool is to
take advantage of the on-time and accurate newsmS8OMO,
install application-specific scheduler per eaclk tasd then take a
hands-off, market-driven approach to coordinateragrtasks with
fair competition. We take the challenging applicatof ALM and
demonstrate that significant benefits can be rehche

We are currently building a wide-area testbed &t tee idea of
P2P resource pool, and the ALM scheduling algoriterone of
the experiments we plan to run.
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