
P2P Resource Pool and Its Application to Optimize
Wide-Area Application Level Multicasting

Zheng Zhang, Yu Chen, Shi-Ding Lin, Bo-Ying Lu, Shu-Ming Shi*, Xing Xie and Chun Yuan
Microsoft Research Asia

5F, Sigma building, No.49, Zhichun Road
Beijing, 100080, P.R.China

{zzhang, ychen, i-slin, t-bylu, xingx, cyuan}@microsoft.com
ssm01@mails.tsinghua.edu.cn

ABSTRACT
The concept of resource pool has a very long history. Propelled by
the need to share CPU cycles of supercomputers for high-
throughput computing jobs from the scientific community, the
vision is most recently explored by the advocates of Grid. On the
other hand, the advent of P2P researches has demonstrated the
feasibility of integrating potentially unlimited amount of less
powerful machines around the world. Organizing a P2P resource
pool thus becomes an interesting research topic.

This paper attempts to address two problems. The first is how to
organize a P2P resource pool, and our answer is to combine the
self-organizing strength of P2P DHT with an in-system, self-
scaling monitoring infrastructure that is layered on top of DHT.
The second question is the utility of the P2P resource pool for
interesting applications. And we choose to showcase its power by
optimizing wide-area application level multicasting (ALM), a
problem far more challenging and interesting than conventional
tasks such as massively parallel computation.

We show that utilizing spare resources in the pool results in
significant savings for single ALM session. Furthermore, we
adopt a purely market-driven approach to optimize multiple
concurrent sessions. As expected, sessions of higher priority are
given higher share of resources.

1. INTRODUCTION
The concept of resource pool has a very long history. Most
recently, the Grid community has propelled this vision by uniting
the local resource pools (i.e. cluster) spread over a dozen sites into
a global one. However, the applications are restricted mostly in
the area of high-throughput computing.

The advent of P2P paints a different direction. First of all, the
research community has been actively investigating applications
beyond that of number crunching. The scale and composition of
resources are of an entirely different nature: we are talking about
millions of desktop PCs spread widely apart. If a P2P resource
pool is attempted, it is not clear that the same technologies in Grid
can be adopted in a straightforward manner.

On the other hand, A P2P resource pool differs from typical P2P
applications in that there can be multiple active instances of
different applications running in the pool. Also, a peer in the pool
may be helping an application instance of which it is not
necessarily a member.

Broadly speaking, we define a P2P resource pool as a collection
of desktop-grade resources on the edge of the internet, and some
form of middleware is managing these resources such that they
can offer computing, storage and networking capabilities for
multiple instances of potentially different distributed applications.

This paper addresses two related and important questions with
respect to P2P resource pool: its architecture and utility to
schedule interesting applications. We propose to employ
structured P2P in the form of DHT (distributed hash table)
[25][30][36][42] to pool together potentially unlimited amount of
and widely distributed resources. However, DHT alone does not
automatically generate a resource pool. Thus, we combine the
self-organizing capability of P2P DHT with an in-system, self-
scaling monitoring infrastructure SOMO (Self-Organized
Metadata Overlay). SOMO builds a dynamic system status
database which is available internally to any peers. This database
is being continuously updated and thus creates an illusion of a
single, large resource pool.

Next, we demonstrate the utility of P2P resource pool by
describing how to schedule and optimize application-level
multicasting (ALM), an application that is far more challenging
than, for instance, massively parallel computations. By using peers
that are otherwise idle, our finding is that up to 30% improvement
can be made for small-to-medium group size. In the context of
scheduling multiple competing sessions, our approach is
remarkably simple: global scheduling is never attempted. Instead,
we adopt a market-driven approach and let each session competes
based on their priorities, armed with the information provided by
SOMO. Our results show that, as expected, sessions of higher
priority are given higher share of resources, resulting in better
performance.

The rest of the paper is organized as follows. We articulate the
need of a P2P resource pool in Section-2 and contrast it with
existing alternatives. The architecture of a P2P resource pool is
described in Section-3. For many interesting P2P applications,
there is a need to generate resource attributes that can not be
derived locally from a machine. For instance, network coordinates
and bottleneck bandwidth are necessary to evaluate potential
helping peers in ALM. This problem is addressed in Section-4.
Section-5 evaluates how P2P resource can help ALM and
provides experiment results. We discuss related work in Section 6
and conclude in Section 7.

2. MOTIVATION AND ALTERNATIVES
2.1 The argument for a P2P resource pool
Over the recent years, the P2P research community has
investigated many interesting P2P applications; ranging from
wide-area distributed storage [20][9][10], scientific computing
[18], application-level multicasting [6][4], distributed web cache
[35], searching [29] and collaborative spam fighting [43], to name
just a few. There is, however, a common assumption that underlies
all these proposals: all peers are active participants in one
application instance.

* This work was performed when the author was a part-time student at
Microsoft Research Asia.

P2P resource pool explores a different dimension in which 1)
there can be multiple and simultaneous instances of different
applications and they could potentially overlap on the resources
they are running; and 2) a peer maybe helping an application
instance of which it is not a member. The first point illustrates
aggregated power of all potential resources, and the second
reflects and extends the very collaborative principle upon which
the P2P premise is found.

For instance, all existing application-level multicasting (ALM)
algorithms assume that the only resources available are those in
the ALM session. In a collaborative environment, many other
stand-by resources could be included for an otherwise more
optimal solution. For example, Microsoft Research has five
branches across the globe, and has many thousands of machines
that are geographically distributed. At a given hour, however,
number of active video-conference sessions is likely to be only a
handful, and each session may have a small number of participants
(say less than 20).

The availability of a P2P resource pool offers new optimization
possibilities. As shown in Figure 1, when an otherwise idle but
suitable helping peer is identified, it can be integrated into a
topology with better performance. This is an actual output of our
algorithm used in this paper.

Figure 1. (a) An optimal plan for an ALM. (b) An even better
plan using helper nodes in the resource pool. Circles are the

original members of the session, and the square is an available
peer with a large degree.

The P2P resource pool has seen its first incarnation in PlanetLab
[24], a wide-area P2P testbed. On PlanetLab, researchers upload
experiments on to machines comprising the testbed that will be
run concurrently with others. Up-to-date, its scale is still limited
(220 nodes as of the writing of the paper), and thus a need to
organize the pool in a more scalable and self-organizing fashion is
not yet profound. This is one of the problem this paper attempts to
address.

2.2 Resource pool and its alternatives
We wish to give a more concrete definition of resource pool by
contrasting it against another interesting alternative: the job pool.
This is necessary because, from a high-level perspective, both are
venues to deliver the matchmaking between job and resource, and
that neither is perfect: depending on the application scenario, each
has its unique strength and weakness.

Informally speaking, a job pool is a collection of jobs and is where
an idle resource look for suitable work to perform, whereas a
resource pool is the precisely the opposite: a task manager goes
into a resource pool to discover and acquire necessary helping
hands in order to accomplish a given mission. Of course, in a
distributed environment, there can be legitimate combination of
both.

A perfect example of a p2p job pool is SETI@home [18] (and of
course, many others of the same flavor). There is a well-
maintained central site and, typically, the application should be

easily parceled out for distribution. Machines register themselves
in order to grab a piece of work and then go away cranking away
whenever they feel like. This is a very economical model and
requires very limited amount of management at the central site.
Provided that job is of coarse granularity, a centralized
architecture works extremely well. It has been reported that
SETI@home has aggregated computing power far exceeding some
of the most powerful supercomputers in the world. The limitation
is also obvious. Although it is possible to think of advanced
variations, because the unpredictability of when and what
resources will become available, applications are restricted mostly
to those that are conventionally known as “embarrassingly
parallel” ones. It is also possible to implement the job pool as a
distributed architecture, but it will be far easier to just use a
centralized architecture.

In contrast, a node joins a resource pool in the hope that its power,
when otherwise idle, can be of some use. The economic incentive
can be stronger, especially in the context of P2P: tasks of arbitrary
type (beyond those of number crunching) will tap into the power
of other participants in the pool at some suitable point. The added
flexibility is particularly useful for applications such as running
application-level multicasting sessions with some level of QoS
guarantee. This is so because planning the topology of the tree is
itself a complex piece of work. On the other hand, the
consequences are many. Foremost of all is an accurate accounting
of what is going on in the resource pool. This is necessary for
each job to quickly query the available candidates and
subsequently make resource reservation. The implication is that,
given the potentially huge amount of resources in the millions, a
client-server architecture where each client updates one central
entity about its status is no longer a scalable – not to say robust
alternative.

To summarize, job pool is best for scenarios where the task can be
well-partitioned. Resource pool can ideally accommodate tasks of
arbitrary type. However, it will need, as a minimum, a scalable
way of monitoring and aggregating system information so that
resource reservations can be carried out at the discretion of task
managers that is responsible for individual incoming jobs.

The principle of resource pool is what motivates the work in the
Grid space, in particular the Condor-G line of work [14][8]. For
instance, the Grip Resource Registration Protocol (GRRP) is used
for an entity, typically representing a cluster of machines, to notify
other entities that it is part of the pool. Grip Resource Information
Protocol (GRIP), on the other hand, is the primitive to construct
aggregated resource directory service through which tasks can
query for potential candidates. The Condor-G agent can use such
infrastructure to submit jobs and monitor its progress.

There have been many discussions about the convergence of P2P
and Grid [13][22]. We believe that indeed there are many
synergies among the two in the space of resource pool
organization. In particular, we argue that the self-organizing
attributes is what the many excellent work of P2P can bring to the
scene of Grid. We will offer a more elaborate discussion at the
conclusion of Section-3.

3. BUILDING P2P RESOURCE POOL
The foundation of our resource pool proposal is the so-called
structured peer-to-peer systems, and in particular the distributed
hash table (DHT). DHT offers a way to pool together potentially
unlimited amount of resources together. But the capacity to pool

(a) (b)

h

h

resources together does not mean a resource pool is established;
the latter requires the availability of an infrastructure to know
what is going on. In this section, we will describe these points in
turn, and will conclude with the comparison of Grid-based
resource pool.

3.1 P2P DHT
We assume that the readers are reasonably familiar with the

concept of DHT, and for the sake of brevity will only go through
the basics. In DHT, a very large logical space (e.g. 160-bits) is
assumed. Nodes join this space with random IDs and thus
partition the spaced uniformly. The ID can be, for instance, MD5
over a node’s IP address. An ordered set of nodes, in turn, allows
a node’s responsible zone to be strictly defined. Let p and q be a
node x’s predecessor and successor, respectively. One definition
of a node’s zone is simply the space between the ID of its
immediate predecessor ID (non-inclusive) and its own ID. In other
words: zone(x) ≡ (ID(p), ID(x)]. This is essentially how consistent
hashing assigns zones to DHT nodes [36] (Figure 2). To harden
the ring against system dynamism, each node records r neighbors
to each side in the rudimentary routing table that is commonly
known as leaf-set. Neighbors exchange heartbeats to keep their
routing tables current, updating their routing tables when node
join/leave events occur. This base ring is the simplest P2P DHT.

Figure 2. The simplest P2P DHT – a ring, the zone and the
basic routing table that records r neighbors to each side.

If one imagines the zone being a hash bucket in an ordinary hash
table, then the ring is a distributed hash table. Given a key in the
space, one can always resolve which node is being responsible.
The lookup performance is O(N) in this simple ring structure,
where N is the number of nodes in the system.

Elaborate algorithms built upon the above concept achieves
O(logN) performance with either O(logN) or even constant states
(i.e. the routing table entries). Representative systems including
Chord[36], CAN[25], Pastry[30] and Tapestry[42].

The most interesting aspect of a DHT is that the whole system is
self-organizing with very low overhead – typically in the order of
O(logN). The second significant attribute is the virtualization of a
space where both resources and other entities (such as documents
stored in DHT) live together; this feature is what we explore the
most in this paper.

3.2 SOMO: Self-Organized Metadata Overlay
As we described earlier, to complete a P2P resource pool, we must
augment DHT with an in-system monitoring infrastructure. We
emphasize the in-system property because for a large system, it is
impractical to rely on external monitoring service. Such an
infrastructure must satisfy a few key properties: self-organizing at
the same scale as the hosting DHT, fully distributed and self-
healing, and be as accurate as possible of the metadata gathered
and disseminated. Our proposal, SOMO (for Self-Organized
Metadata Overlay), was designed for this purpose and was first

introduced in [41]. Its construction took a top-down approach; we
describe in this paper an improved bottom-up version.

The basic idea of SOMO is to draw a logical tree with a fixed fan-
out (e.g. 8) first. The positions of the tree nodes can be calculated
by each brick independently. Given its responsible zone in the
DHT, each node selects the highest logical tree node that it hosts
as its representation in the SOMO hierarchy, and then calculates
the position of the parent logical node, routes to that parent tree
node to form a child-parent link. A hierarchy is thus built in a self-
organized fashion. The SOMO hierarchy is completely self-govern
and self-repair, and can gather and disseminate metadata in
O(logfan_outN) time. Given a data reporting interval T, information
is gathered from the SOMO leaves and flows to its root with a
maximum delay of logkN⋅T. This bound is derived when flow
between hierarchies of SOMO is completely unsynchronized. If
upper SOMO nodes’ call for reports immediately triggers the
similar actions of their children, then the latency can be reduced to
T+thop⋅logkN, where thop is average latency of a trip in the hosting
DHT. The unsynchronized flow has latency bound of logkN⋅T,
whereas the synchronized version will be bounded by T in
practice (e.g. 5 minutes). Note that O(thop ⋅logkN) is the absolute
lower bound. For 2M nodes and with k=8 and a typical latency of
200ms per DHT hop, the SOMO root will have a global view with
a lag of 1.6s.

It would seem that SOMO derived all its self-organizing and self-
healing property by trading off configurability. For instance, what
if we want the most capable machine to be at the top of the
machine? The trick is to relax the requirement that node ID is
purely random. What we need to do is to make an upward merge-
sort through SOMO and first identify the most capable node. This
node then exchange ID with the one who currently possesses the
root logical point of SOMO (i.e 0.5 of the total space [0, 1]), and
this effectively changes the machine that acts as the root without
disturbing any other peers. Note that this self-optimizing property
is impossible unless we operate in the logical spaced first.

We have implemented a SOMO-based global performance
monitor called LiquidEye with which we monitor over 100
machines in our lab on a daily basis. This tool employs SOMO
built over a very simple ring-like DHT, and SOMO gathers data
from various performance counter on each machine. The complete
system status is obtained by querying the SOMO root report
through a unified UI interface. We tested the SOMO stability by
unplugging cables of servers being monitored, and each time the
global view is regenerated after a short jitter. The reporting cycle
is 5 seconds, and the leaf SOMO report is 40bytes. In a wide-area
and large-scale deployment, we will opt for a less aggressive
interval and also employ compression optimization. Likewise,
redundant links should be added to increase the robustness; this
can be easily accomplished by letting the representative virtual
node to connect to a random set of parent siblings.

3.3 Discussion
To summarize, our P2P resource pool is composed of two
ingredients, see Figure 3:

• DHT . A DHT is used not in the sense of sharing contents,
but rather as an efficient way to pool together a very large amount
of resources, with zero administration overhead and no scalability
bottleneck.

x

p q
zone(x)=(ID(p), ID(x)]

R0(x)

2r+1

• SOMO. SOMO is a self-organizing “news broadcast”
hierarchy layered over DHT. Aggregating resource status in
O(logN) time then creates the illusion of a single resource pool.

Figure 3. Combining DHT’s capability of pooling resource

with SOMO collectively makes the resource pool.

We are now ready to contrast the differences of a P2P resource
pool versus the one created by Grid and identify their synergy.
From a high-level point of view, the necessary steps are the same:
register the resource, gather statistics and then aggregate them into
a snapshot and, finally, ensure the resulting dynamic database can
be queried by applications.

While Grid is composed mostly by dozen of sites each maybe
composed by supercomputers (possibly in the form of clusters), a
P2P resource pool can potentially possess millions of machines
that are widely distributed. KaZaA [17], for instance, has current
installation base well over 4 million.

The scale and composition of P2P resources requires that every
layer be completely self-organizing, self-scaling and self-healing.
There should be very little administration overhead, if at all. We
have illustrated that how SOMO layered over P2P DHT
accomplishes the goal. In essence, SOMO builds a skeleton upon
which the aggregation is done. It makes perfect sense to adopt
components of GRIP and GRRP from Grid protocols as primitives
to do the job of pair-wise registration and aggregation.

4. GENERATING RESOURCE METRICS
FOR ALM

For many P2P applications, resource statistics including not only
the usual suspects such as CPU loads and network activities, but
also more complex ones that can not be derived locally from the
machine. A case in point is ALM, suppose we want to schedule a
session and we obtained a huge list of potential helping peers by
querying SOMO, we must select one that is nearby and also has
adequate bandwidth. If only the peers IP addresses are given,
pinging over them to find their vicinity is both time-consuming
and error-prone.

These two critical metrics are the focus of this section. We will
explain how these attributes can be generated by leveraging the
interactions among DHT nodes that maintain the logical space
integrity. For a more detailed treatment, we refer reader to our
technical report [39].

4.1 Node coordinate estimation
The idea of coordinates-based latency estimation is proposed in
GNP [12]. The point is that, in order to know latency(x, y), it is
sufficient to compute distance(coord(x), coord(y)), where coord is
a network coordinate in a d-dimension Euclidean space.

The GNP proposal relies on a set of well-distributed nodes called
the landmarks. GNP starts by computing coordinates of the
landmarks, solving their coordinates as an optimization problem.
Later, other nodes compute their coordinates using essentially the
same principle, but this time against the landmark nodes.

The requirement of landmark nodes contradicts to the fully
distributed nature of P2P resource pool. Our observation, which is
the same as Lighthouse [23] and PIC [3], is that the infrastructure
nodes are not necessary. Recall that each node must heartbeats
with its leafset nodes in order to collectively maintain the DHT
space. If each node randomly chooses to acknowledge the
heartbeat message from nodes in its leafset, then over time it will
have a measured delay vector, dm, to its leafset neighbors. In the
heartbeat message, each node also reports its current coordinates.
Thus, a predicted delay vector dp is available locally as well. Node
x update its own coordinates by executing downhill simplex
algorithm, minimizing the function:

�
=

−=
ri

mp ididxE
,1

|)()(|)(

Notice that the optimization is done locally and only updates x’s
own coordinate, which will be distributed to x’s leafset neighbors
in subsequent heartbeats.

The above procedure is executed by all nodes periodically, and
node coordinates, the measured and predicted delay vectors are
being updated continuously.

0 0.5 1
0

10

20

30

40

50

60

70

80

90

100

relative error

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
(%

)

leafset(16)
gnp(16)

0 0.5 1
0

10

20

30

40

50

60

70

80

90

100

relative error

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty
(%

)

leafset(32)
gnp(32)

Figure 4. CDF of relative error of GNP and the leafset-based
variance; number of infrastructure node/leafset size is 16 (left

graph) and 32 (right graph)

Figure 4 presents CDF of the relative errors of the original GNP
and its leafset-based version with our simulation of 1200 nodes.
These 1200 nodes are distributed according to the GT-ITM [38].
As can be seen, GNP is less sensitive to number of infrastructure
nodes than the leafset version is to the leafset size. Our data
indicates that when L (the leafset size) is 32, which is the default
configuration of Pastry, the result is very close to GNP with 16
infrastructure nodes.

4.2 Bottleneck bandwidth estimation
Network bandwidth of a peer is another important metrics for
many applications running on top of P2P resource pool. It is
shown that there is considerable correlation between bottleneck
bandwidth and throughput [11]. Therefore, we choose bottleneck
bandwidth as the predictor for throughput.

We will adopt the common assumption that bottleneck link lies in
the last hop. For each node, its upstream bottleneck bandwidth is

Gathering reports

Generating reports
Resource pool

SOMO

Root report

Report

DHT Internet

estimated as the maximum of the measured bottleneck bandwidths
from the node to its leafset members, which are limited by both
the node’s uplink bandwidth and the downlink bandwidths of the
leafset nodes. The basic idea is that if there is one neighbor with
downlink bandwidth greater than the node’s uplink bandwidth,
the estimation is accurate. So with more leafset nodes the chance
of getting accurate estimation would be better. For the same
reason, the node’s downstream bottleneck bandwidth is estimated
as the maximum of the measured bottleneck bandwidths from its
leafset nodes to itself.

Measuring bottleneck bandwidth is well understood. For instance,
in packet-pair technique [21] two packets of size S are sent back-
to-back from a source node. The receiver measures the time
dispersion T in between and estimates the bottleneck bandwidth
from the source as S/T.

The cooperation of leafset nodes over heartbeats enables packet-
pair technique to be naturally deployed. Periodically, a node x
chooses to send a neighbor y two consecutive heartbeat messages
back to back, padding each so that their size is sufficiently large
(say 1.5KB). y now has the estimation of the bottleneck
bandwidth on the path from x to itself. This value will be
piggybacked in the next heartbeat to x. Likewise, y does the same
probing as x. After x collects enough measured bandwidths from
its leafset members, it can now estimate its own bottleneck
bandwidth as above.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

leafset size

av
er

ag
e

re
la

tiv
e

er
ro

r(
%

)

upstream
downstream

Figure 5. Average relative error vs. leafset size

We have evaluated our protocol on the Gnutella trace1[32]. The
larger the leafset, the better the prediction will be, simply because
nodes with higher uplink/downlink bandwidth have a better
chance to be included. This is evident in Figure 5: the average
relative error (ratio of the absolute error to the real bandwidth)
decreases with leafset size. Specifically, with leafset of size 32, the
average relative error of upstream bandwidth estimation is almost
0 and the ranking is 100% correct. Therefore our scheme is rather
effective in a practical setting. Note that uplink estimation is
predicted more accurately than downlink. This is because most
hosts in the Gnutella trace have downstream bandwidths higher
than the upstream bandwidths of most others [32], whereas
downlink can be underestimated. Fortunately, uplink bandwidth is
also a more important metric in many applications.

1 We wish to thank Stefan Saroiu and Steven Gribble for allowing us to
use their traces.

5. SCHEDULING ALM SESSIONS WITHIN
THE P2P RESOURCE POOL

In this section, we demonstrate how to utilize P2P resource pool
to optimize for multiple simultaneous ALM sessions. The end
goal is for active sessions to achieve optimal performance with all
available and adequate peers in the resource pool. Session’s
performance metrics is determined by certain QoS definitions.
Moreover, higher priority sessions should proportionally acquire
more shares of resources. Our emphasis is for small-to-medium
session size where we believe QoS is often a requirement (e.g.
video-conference). We also assume static membership and denote
the original set of participants as M(s) for a given session s,
though the algorithm can be extended to accommodate dynamic
membership as well.

From a high-level point of view, the procedure is simple. The task
manager of a session is responsible to run a modified heuristic
algorithm to plan the topology of the ALM. This algorithm was
originally developed using M(s) only [34]. To utilize spare
resources in the pool, the task manager queries SOMO to obtain a
list of candidates. The item of the list includes not only the
resource availability, but also its network coordinate as well as its
bandwidth. When the plan is drawn, the task manager goes out to
contact the helping peers to reserve their usages. Competing tasks
will resolve their contention purely by their priorities.

We will give our QoS definition and then describe our approaches
in steps. First, we will show how additional resources are
recruited assuming only one single session is active. Next, we will
present our approach of how multiple sessions with different
priorities are optimized.

5.1 ALM QoS definition
For ALM, there exist several different criteria for optimization,
like bandwidth bottleneck, maximal latency or variance of
latencies. In this paper, we choose maximal latency of all
members as the main objective of tree building algorithms since it
can greatly affect the perception of end users. Similar to many
previous works [33][34][40], each node has a bound on the
number of communication sessions it can handle, which we call
degree. This may due to the limited access bandwidth or workload
of end systems.

Our definition of QoS for one given session is the same as
proposed in AMCast [34] and can be formally stated as follows:

Definition 1. Degree-bounded, minimal height tree problem
(DB-MHT). Given an undirected complete graph G(V,E), a
degree bound dbound(v) for each v∈V, a latency function l(e) for
each edge e∈E. Find a spanning tree T of G such that for each
v∈T, degree of v satisfies d(v) � dbound(v) and the height of T
(measured as aggregated latency from the root) is minimized.

Using the resource pool, the above definition is slightly extended.
An extended set of helper nodes H is added to the graph, and our
objective is to achieve the best solution relative to an optimal plan
derived without using H, by adding the least amount of helper
nodes.

5.2 Scheduling a single session
To make the illustration simple, we will start by describing how to
schedule and optimize one single ALM session. Optimizing DB-
MHT generally known as NP-complete. Our goal is not to propose

new algorithms. Instead, we will select from a few well-known
ones and investigate how much performance benefits we can
achieve when the resource pool is utilized.

Our base algorithm uses the one proposed in [34], with O(N3)
performance bound. This algorithm can generate a solution for
hundred of nodes in less than one second (Figure 6, without the
code in the dashed box). This algorithm, which we refer to as
“AMCast,” is a typical greedy algorithm. It starts first with the
root and adds it to a set of the current solution. Next, the
minimum heights of the rest of the nodes are calculated by finding
their closest potential parents in the solution set, subject to degree
constraints. This loops back by absorbing the node with the lowest
height into the solution. The process continues until all nodes are
finally included in the resulting tree. To ensure that we get the
best possible tree to start with, we augment this algorithm with a
set of further tuning2 (tagged as adjust in the rest of the paper.

Figure 6. The AMCast algorithm (without the lines in the
dashed box) and the critical-node algorithm that utilizes

additional helper node.

Our algorithm searching for beneficial helper nodes include two
considerations: the time to trigger the search and the criteria to
judge an addition. The general mechanism is described by the
pseudo-code in the dash-box of Figure 6. Let u be the node that
the AMCast algorithm is about to add to the solution and parent(u)
be its parent. When parent(u)’s free degree is reduced to one, we
trigger the search for an additional node h. If such h exists in the
resource pool, then h becomes u’s parent instead and replaces u to
be the child of the original parent(u). Different versions vary only
on the selection criteria of h but we refer to this class of
optimization the critical node algorithm. “Critical” here means

2 A known technique to approximate globally optimal algorithm is to
adjust the tree with a set of heuristic moves. These moves include: (a)
find a new parent for the highest node; (b) swap the highest node with
another leaf node; (c) swap the sub-tree whose root is the parent of the
highest node with another sub-tree.

that, for a particular node, this is the last opportunity to improve
upon the original greedy algorithm.

We have experimented with different algorithm to search for h.
The first variation is simply to find an additional node closest to
the parent node and with an adequate degree (we use 4). Let l(a, b)
be latency between two arbitrary nodes a and b. We find the
following heuristic yields even better results:

Here, v maybe one of u’s siblings. The idea here is that since all
such v will potentially be h’s future children, l(h, parent(u)) +
max (l(h, v)) is most likely to affect the potential tree height after
h’s joining (condition 1). Such helper node should have adequate
degree (condition 2). Finally, to avoid “junk” nodes that are far
away even though their degrees are high, we impose a radius R: h
must lie within R away from parent(u) (condition 3).

The input parameters necessary to execute the procedure include
the network coordinates so that we can calculate latency between
arbitrary pair, as well as the degrees of each node. This is made
available by letting each node to publish their network coordinates
as well as bandwidth constraints (using the procedure outlined in
Section-4) in their reports to SOMO (Figure 7).

Figure 7. SOMO report structure for scheduling a single ALM session.

Our experiments simulate a two-layer Transit Stub topology [38]
with 600 routers. The network consists of 24 transit routers and
576 stub routers. We assign link latencies of 100ms for intra-
transit domain links, 25ms for stub-transit links and 10ms for
intra-stub domain links. We also append 1200 end systems to the
stub routers randomly and set the last hop latency to a random
value between 3ms and 8ms. The resource pool contains all the
1200 end nodes in the network. The degree bound for all the
nodes lie within 2 and 9, and follows the distribution 2-i for degree
i-1 when i<9 and 2-7 for degree 9. Thus, half of the nodes in the
system have degree 2 and the population for higher degree
decreases exponentially.

We found that R between 50~150 yields satisfactory results for the
topology parameters we chose. The tradeoff here is that a small R
will reduce the choice of candidates, whereas a larger R will
introduce links of long latency in the tree. That the setting of
radius to be medium range gives good result isn’t a surprise.
Recall that we have 100, 25, and 10 for intra-transit, stub-transit

ALM(r, V) { // V==M(s), r is the root
 for all v∈V // initialization
 height(v)=l(r, v); parent(v)=r
 T = (W={ r}, Link={})

 while (W<V) { // loop until finish
 find u∈{ V-W} s.t. height(u) is minimum
 if (d(parent(u))==dbound(parent(u)-1)
 h=find_helper(u)
 if h≠NULL { // integrate the helper node
 W+={h}; Link+={h, parent(u)};
 W+={u}; Link+={u, h};
 } else
 W+={u}; Link+={u, parent(u)};

 for all v∈{ V-W} { // re-adjust the height
 height(r)=∞
 for all w∈W
 if d(w)<dbound(w) && height(v)>height(w)+l(w, v)
 height(v)=height(w)+l(w, v); parent(v)=w
 }
 }
 adjust(T)
 return T
}

l(h, parent(u))+max(l(h, v)) is minimum

where v satisfies parent (v) = parent (u) && \\ condition 1

dbound(h) ≥ 4 && \\ condition 2

 l(h, parent(u))<R \\ condition 3

Root report

…
…

Report from node x

…
…

…

…

Report from node y

Report from node x

System info:
Load, memory, disk, …

Network info :
Location: cord(…)
Bandwidth: available degree (5)

Report from node y

System info:
Load, memory, disk, …

Network info :
Location: cord(..)
Bandwidth: available degree (2)

and intra-stub links respectively. Thus, a radius of 50-150 will
avoid all nodes from another stub.

In the followings, we call the algorithm where pair-wise node
latency is known a priori via an oracle the Critical, and the one
used the leafset estimation for vicinity judgment the Leafset.

We are now ready to present our results. A fair evaluation should
compare our results against those of a globally optimal algorithm.
Since this is not available, we report our results in terms of
percentage of tree height improvement relative to the AMCast
algorithm. In other words, if Halg is the tree height achieved using
alg, then:

Improvement = (HAMCast – Halg)/HAMCast

The upper bound is the latency between the furthest node to the
root, corresponding to the ideal performance if the root has degree
of infinity. For the data set that we used, the upper bound is
between 40~50%. The average performance of these algorithms
over 20 runs is shown in Figure 8 for various group sizes. It is
conclusive that resource pool is very effective for small-to-
medium group size. For larger groups, the original AMCast has
more rooms to optimize by using the existing members already.
We believe that in reality, small groups are in fact more common.

Figure 8. The performance of scheduling single ALM session.

AMCast represents the original algorithm, Critical is our modified
“critical node” heuristic, Leafset stands for the landmark based

approach, Bound denotes the theoretical upper bound. adju
denotes the combination when tree adjustment is performed.

For instance, Leafset+adjustment, which is a practical algorithm,
delivers more than 30% latency reduction over the baseline for
group size of 100; for group size of twenty, the reduction is 35%.
Interestingly enough, tree adjustment, which is otherwise
mediocre in shortening the tree (5% over baseline), is remarkably
effective especially for Leafset. Part of the reason may be due to
the inaccuracy introduced by using delay vectors to estimate node
proximity.

5.3 Optimize Multiple ALM Sessions
The preceding section describes the stand-alone scheduling
algorithm for one ALM session; we now discuss how to deal with
multiple active sessions. Our goals are: 1) higher priority sessions
are proportionally assigned with more resources, and 2) that the
utilization of the resource pool as a whole is maximized.

All the sessions may start and end at random times. Each session
has an integer valued priority between 1 and 3. Priority 1 session
is the highest class. The number of maximum simultaneous
sessions varies from 10 to 60 and each session has non-
overlapping member set of size 20. Thus, when there are 60 active

sessions, all nodes will belong to at least one session. That is, the
fraction of original members of active sessions varies from 17%
to 100%. Counting helper nodes, a session typically employ more
than the original members. Also, nodes with larger degrees may be
involved in more than one session.

The principle underlying our approach is very simple, and it draws
insight from a well-organized society: as long as global, on-time
and trusted knowledge is available, it may be best to leave each
task to compete resources with their own credentials (i.e., the
priorities). This purely market-driven model allows us to
accomplish our goal, without the need of global scheduler of any
sort.

Setting the appropriate priorities at nodes involved in a session
takes extra consideration. In a collaborative P2P environment, if a
node needs to run a job which includes itself as a member, it is
fair to have that job be of highest priority in that node. Therefore,
for a session s with priority L, it has the highest priority (i.e. 1 in
our experiment) for nodes in M(s), and L elsewhere (i.e., for any
helper nodes lie outside M(s)). This ensures that each session can
be run, with a lower bound corresponding to the AMCast+adju
algorithm. The upper bound is obtained assuming s is the only
session in the system (i.e., Leafset+adju).

As before, the root of an ALM session is the task manager, which
performs the planning and scheduling of the tree topology. Each
session uses the Leafset+adjustment algorithm to schedule
completely on its own, based on system resource information
provided by SOMO. For a session with priority L, any resources
that are occupied by tasks with lower priorities than L are
considered available for its use. Likewise, when an active session
loses a resource in its current plan, it will need to perform
scheduling again. Each session will also rerun scheduling
periodically to examine if a better plan, using recently freed
resources, is better than the current one and switch to it if so.

To facilitate SOMO to gather and disseminate resource
information so as to aid the planning of each task manager, as
before each node publishes its information such as network
coordinates in its report to SOMO. However, its degree is broken
down into priorities taken by active sessions. This is summarized
in the degree table.

Figure 9. Two example degree tables.

In Figure 9, we show the degree tables of two nodes. x’s total
degree is 4, and is taken by session s4 for 2 degrees, and s12 by
another one degree, leaving x with one free degree. y on the other
hand, has only two degrees and both of them are taken by session
s5. The degree tables are updated whenever the scheduling
happens that affect a node’s degree partition. Degree tables, as
mentioned earlier, are gathered through SOMO and made
available for any running task to query.

Ideally, the performance improvement should have a lower bound
of AMCast+adjust where only the original member set is involved,
and an upper bound of Leafset+adjust, when the session is the
only active one in the resource pool. Therefore, performance will

y’s degree table

dbound(x) 4
x.dt[1] 2(S4)
x.dt[2] 0
x.dt[3] 1(S1 2)

dbound(y) 2
y.dt[1] 2(S5)
y.dt[2] 0
y.dt[3] 0

 x’s degree table

lie within 7%~35% reductions over AMCast (see data in Figure 8
when group size is 20).

The result is shown in Figure 10-(a). The x-axis is the number of
active sessions, while the y-axis is the performance improvement.
To ease the comparison, the upper bound and lower bound are
also shown.

As expected, the data perfectly drop into the interval between
lower bound and upper bound. When there are more sessions and
overall resource becomes scarce, performance decreases across the
board. However, higher priority tasks are able to sustain much
better than the lower ones, conforming to our predictions. Figure
10-(b) depicts the number of helper nodes taken, which shows that
lower priority tasks lose more helper nodes when resource is
under intense competition.

Figure 10. (a) The performance of multiple ALM sessions and

(b) The average number of additional nodes used.

6. RELATED WORK
Our work spans across a number of related fields: scalable
monitoring services and its use in resource pool, optimizing ALM.
We will discuss them in turn.

6.1 Resource Pool
To create a resourced pool, it is inevitable that a hierarchical
structure to be adopted to ensure timely aggregation. Ganglia [31],
for instance, is a two-level architecture in which IP-level
multicasting is employed to gather statistics in one location, and
the result is then aggregated to a central site. Gangelia is used in
planet-lab. The GRIP and GRRP from the Grid toolbox [8] are
protocols to allow interesting hierarchy to be built. Neither of
them addresses the self-scaling aspect and requires manual
configuration and administration. SOMO bears the most
similarity to Astrolabe [28], a peer-to-peer management and data
mining system. The difference between Astrolabe and SOMO was
articulated in our earlier work [41]. Our contribution here is to

point out the ingredients that make a wide-area resource pool
feasible: the combination of the self-organizing capability of P2P
DHT and an in-system, self-scaling monitoring infrastructure.

For interesting applications such as ALM, 1-dimensional metrics
such as CPU power, memory and disk size etc. are still important,
but for from complete. We show how metrics such as pair-wise
latency estimation and up/downlink bandwidths can be derived in
a completely distributed fashion by leveraging interactions
inherent to P2P DHT. While this builds upon results of many
previous works such as GNP [12]., Lighthouse [23] and PIC [3],
to the best of our knowledge this is the first time that a
comprehensive proposal is made.

We note that systems such as RanSub [19] establish an in-system
aggregation and dissemination hierarchy as well. But a separate
set of mechanism to generate the required statistics is still needed.

6.2 Optimize ALM using Resource Pool
Earlier work of ALM includes Aharoni’s paper [1] and ESM [6].
Since then, quite a few other proposals and systems have emerged
[2][33][34] including AMCast [34] from which our algorithm is
derived. Researchers in P2P community quickly realized that
application-level multicast maybe one of the showcases of P2P
DHTs as well [5][26][44]. But neither of them is optimal; they
either ignore and hence does not explore the potentials of a
resource pool; or can not guarantee (for the time being) any QoS
requirements. The DHT-based ALM proposals do not explore
node heterogeneity. For all practical purposes, we believe that
ALM with QoS requirements are restricted to small number of
participants, and a centralized heuristic algorithms can guarantee
QoS far better than trees that are built in an ad-hoc manner, and
can leverage spare resources shall they be found. More
importantly, given a resource pool, we have not only studied how
to optimize one single ALM session, but also advocates a hands-
off, market-driven approach to optimize multiple simultaneous
sessions.

We emphasize here that ALM is only one of the applications for
P2P resource pool. We argue that our two-step approach –
application specific per task scheduling combined with market-
driven fair competition coordinating among tasks is a far more
distributed methodology than centralized matchmaking
mechanisms.

7. CONCLUSION AND FUTURE WORK
To create a P2P resource pool, we need to combine the self-
organizing capability of P2P DHT with a self-scaling, hierarchical
in-system monitoring infrastructure. To achieve self-scaling and
robustness, this infrastructure must be a logical hierarchy
established in the virtual space created by DHT, and then mapped
onto participants. In this paper, we illustrate that SOMO
combined with DHT effectively creates a resource pool.

Our philosophy of utilizing the power of the resource pool is to
take advantage of the on-time and accurate newscast via SOMO,
install application-specific scheduler per each task and then take a
hands-off, market-driven approach to coordinate among tasks with
fair competition. We take the challenging application of ALM and
demonstrate that significant benefits can be reached.

We are currently building a wide-area testbed to test the idea of
P2P resource pool, and the ALM scheduling algorithm is one of
the experiments we plan to run.

Upper bound

Lower bound

(a)

(b)

8. REFERENCES
[1] E. Aharoni and R. Cohen, “Restricted dynamic Steiner trees for

scalable multicast in datagram networks,” IEEE/ACM Trans. on
Networking, vol. 6, no. 3, pp. 286-297, Jun. 1998.

[2] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable
application layer multicast,” ACM SigComm 2002, Pittsburgh, USA,
Aug. 2002.

[3] M. Castro, M. Costa, P. Key and A. Rowstron. PIC: Practical Internet
Coordinates for Distance Estimation. Microsoft Research Technical
Report.

[4] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and
A. Singh. SplitStream: High-bandwidth multicast in a cooperative
environment. SOSP'03, Lake Bolton, New York, October, 2003.

[5] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron A “SCRIBE: A
large-scale and decentralized application-level multicast
infrastructure,” IEEE Journal on Selected Areas in Communications,
vol. 20, no. 8, pp. 1489-1499, Oct. 2002.

[6] Y. Chu, S. Rao, and H. Zhang, “A case for end system multicast,”
ACM SigMetrics 2000, Santa Clara, CA, USA, Jun. 2000.

[7] The Condor Project, http://www.cs.wisc.edu/condor
[8] K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman. Grid

Information Services for Distributed Resource Sharing. Proceedings of
the Tenth IEEE International Symposium on High-Performance
Distributed Computing (HPDC-10), IEEE Press, August 2001.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris and I. Stoica. Wide-
area cooperative storage with CFS. 19th ACM Symposium on
Operating System Principles (SOSP), 2001.

[10] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-
peer storage utility. Proceedings of HotOS VIII, Schoss Elmau,
Germany, May 2001.

[11] T. S. Eugene Ng, Y.-H. Chu, S. G. Rao, K. Sripanidkulchai and H.
Zhang. Measurement-Based Optimization Techniques for Bandwidth-
Demanding Peer-to-Peer Systems. In Infocomm’03, San Fancisco, CA,
April 2003.

[12] T. S. Eugene Ng and H. Zhang. Predicting Internet Network Distance
with Coordinates-Based Approaches. In InfoComm’02

[13] I. Foster and A. Iamnitchi. On Death, Taxes, and the Convergence of
Peer-to-Peer and Grid Computing. In IPTPS'03

[14] J. Frey, T. Tannenbaum, I. Foster, M. Livny and S. Tuecke. Condor-G:
A Computation Management Agent for Multi-Institutional Grids.
Proceedings of the Tenth IEEE Symposium on High Performance
Distributed Computing (HPDC10), San Francisco, California, August
7-9, 2001.

[15] The Globus Project, http://www.globus.org.
[16] J. Gray, “Distributed Computing Economics, ” Microsoft Technical

Report, MSR-TR-2003-24, Mar. 2003.
[17] KaZaA. http://www.kazaa.com/en/index.htm
[18] E. Korpela, D. Werthimer, D. Anderson, J. Cobb and M. Lebofsky.

SETI@home: Massively Distributed Computing for SETI. Computing
in Science and Engineering, 3(1), 2001.

[19] D. Kosti�, A. Rodriguez, J. Albrecht, et al, “Using Random
Subsets to Build Scalable Nethwork Services”, USITS’03.

[20] J. Kubiatowicz, et al. OceanStore: An Architecture for Global-Scale
Persistent Storage. Proceedings of the Ninth international Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2000), November 2000.

[21] K. Lai, Nettimer: A Tool for Measuring Bottleneck Link Bandwidth. In
USITS’01

[22] J. Ledlie, J. Shneidman, M. Seltzer, J. Huth. Scooped, again. In
IPTPS'03

[23] M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti and T. Harris. Lighthouse
for Scalable Distributed Location. In IPTPS’03

[24] PlanetLab. http://www.planet-lab.org
[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A

scalable content-addressable network,” ACM SigComm 2001, San
Diego, CA, USA, Aug. 2001.

[26] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application
level multicast using content addressable networks,” 3rd Interl.
Workshop on Networked Group Comm., London, UK, Nov. 2001.

[27] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-
aware overlay construction and server selection,” IEEE Infocom 2002,
New York, USA, Jun. 2002.

[28] R.v. Renesse, K. Birman, D. Dumitriu, and W. Vogels, “Scalable
management and data mining using Astrolabe,” 1st International
Workshop on Peer-to-Peer Systems, Cambridge, MA, USA, Mar. 2002.

[29] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword Searching.
Proceedings of ACM/IFIP/USENIX International Middleware
Conference (Middleware 2003), June 2003.

[30] A. Rowstron and P. Druschel, “Pastry: scalable, distributed object
location and routing for large-scale peer-to-peer systems,” 18th
FIFP/ACM International Conference on Distributed Systems
Platforms (Middleware), Heidelberg, Germany, Nov. 2001.

[31] F. D. Sacerdoti, M. J. Katz, M. L. Massie and D. E. Culler. Wide Area
Cluster Monitoring with Ganglia. Proceedings of the IEEE Cluster
2003 Conference, Hong Kong

[32] S. Saroiu, K. Gummadi and S. Gribble. A measurement study of peer-
to-peer file sharing systems. In Proceedings of Multimedia
Conferencing and Networking (San Jose, Jan. 2002)

[33] S. Shi and J.S. Turner, “Routing in overlay multicast networks,” IEEE
Infocom 2002, New York, USA, Jun. 2002.

[34] S. Shi, J.S. Turner, and M. Waldvogel, “Dimensioning server access
bandwidth and multicast routing in overlay networks,” 11th
International Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV), New York, USA, Jun. 2001.

[35] T. Stading, P. Maniatis and M. Baker. Peer-to-Peer Caching Schemes
to Address Flash Crowds. In IPTPS’03

[36] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: a scalable peer-to-peer lookup service for Internet
applications,” ACM SigComm 2001, San Diego, CA, USA, Aug. 2001.

[37] Vahdat, A. and et al. Self-Organizing Subsets: From Each According
to His Abilities, to Each According to His Needs. In IPTPS’02.

[38] E.W. Zegura, K.L. Calvert, and S. Bhattacharjee, “How to model an
Internet-work,” IEEE Infocom’96, San Francisco, CA, USA, Apr.
1996.

[39] Z. Zhang, B. Lu, S. Shi and C. Yuan. Leafset Protocol in Structured
P2P Systems and its Application in Peer Selection. Microsoft Research
Technical Report.

[40] B. Zhang, S. Jamin, and L. Zhang, “Host multicast: a framework for
delivering multicast to end users,” IEEE Infocom 2002, New York,
USA, Jun. 2002.

[41] Z. Zhang, S. Shi, and J. Zhu, “SOMO: Self-organized metadata
overlay for resource management in P2P DHT,” 2nd International
Workshop on Peer-to-Peer Systems, Berkeley, CA, USA, Feb. 2003.

[42] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Josep, “Tapestry: an
infrastructure for fault-tolerant wide-area location and routing,” U.C.
Berkeley Technical Report, UCB/CSD-01-1141, Apr. 2001.

[43] F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. Joseph and J.
Kubiatowicz. Approximate Object Location and Spam Filtering on
Peer-to-Peer Systems. Proceedings of ACM/IFIP/USENIX
International Middleware Conference (Middleware 2003), June 2003.

[44] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, and J.D. kubiatowicz,
“Bayeux: An Architecture for Scalable and Fault-tolerant Wide-Area
Data Dissemination,” 11th International Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV),
New York, USA, Jun. 2001.

